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Abstract— The accurate Bit Error Rate (BER) calculation of
an asynchronous Ricean-faded DS-CDMA system using random
spreading sequences and BPSK modulation is studied in this
paper. A new closed-form expression is derived for the conditional
characteristic function of the cochannel interference. Further-
more, a new BER expression involving only a single integration
is derived invoking the characteristic function approach and
hypergeometric functions of two variables. The accuracy of our
BER expression is confirmed by our simulation results for various
spreading sequence lengths and various Ricean K-factors. By
contrast, the Standard Gaussian Approximation (SGA) over-
estimates the BER of Rayleigh fading channels, when there is
no Line-of-Sight (LOS) component and it under-estimates the
BER, when the LOS component becomes stronger.

I. INTRODUCTION

The Bit Error Ratio (BER) is one of the most important
performance metric in communication systems and hence it
has been extensively studied in various contexts.

In Direct Sequence Code Division Multiple Access (DS-
CDMA) systems [1], various versions of the so-called Gaus-
sian approximation are widely used for modeling the distri-
bution of the Multiple Access Interference (MAI). A few ex-
amples are the Standard Gaussian Approximation (SGA) [2]–
[15], the Improved Gaussian Approximation (IGA) [2], [6],
[9], [10], [12], [13], [15]–[17], the Simplified IGA (SIGA) [2],
[6], [9], [11], [13], [15], and the Improved Holtzman Gaussian
Approximation (IHGA) [11]. However, the accuracy of the
various Gaussian approximation techniques depends on the
specific configuration of the system. It is well known that
the Gaussian approximation techniques become less accurate,
when a low number of users is supported or when there is a
dominant interferer [12].

Therefore the accurate BER analysis dispensing with the
previous assumptions on the MAI distribution is desirable.
Hence a number of accurate techniques have been devel-
oped, such as the series expansion [12], [13], [18]–[20], the
Fourier [2], [3], [11], [15], [18] and Laplace [21] transform
based methods. The latter two lead to the Characteristic
Function (CF) and Moment Generating Function (MGF) based
approaches and have been prevalent in the accurate BER
analysis of communication systems.

The BER performance of DS-CDMA systems communicat-
ing over Additive White Gaussian Noise (AWGN) channels
has been extensively studied [5]–[10], [12], [13], [15], [16],
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[18]–[20], [22]–[26], and there are numerous studies also for
transmission over both Rayleigh [2], [12] and Nakagami-
m [3], [4], [11], [17], [21] channels. Geraniotis and Purs-
ley [18] were the first authors, who investigated the accu-
rate BER calculation of asynchronous DS-CDMA systems
over AWGN channels using the CF approach. Then Cheng
and Beaulieu extended the results to both Rayleigh [2] and
Nakagami-m [3] channels.

However, to the authors’ best knowledge, the accurate BER
analysis of asynchronous Ricean-faded DS-CDMA systems
using random spreading [2]–[17], [19], [20] sequences is
still an open problem. There are many propagation environ-
ments, such as microcellular urban and suburban land mobile,
as well as picocellular indoor and factory scenarios, where
there exist Line-Of-Sight (LOS) propagation paths between
the transmitter and the receiver [27]. In the presence of a
LOS component, the Ricean distribution, also known as the
Nakagami-n distribution [28], [29], is a better model of the
fading channel. The Ricean distribution becomes the Rayleigh
distribution, when the energy of the LOS component becomes
zero [27], [30]. The novel contribution of this paper is that
we provide an accurate BER expression for asynchronous
DS-CDMA systems in a Ricean fading environment, which
requires only a single numerical integration, when using the
hypergeometric functions of two variables [31]–[33].

The organization of this paper is as follows. In Section II
an asynchronous DS-CDMA system using BPSK modulation
is considered in the context of a Ricean fading channel.
Then in Section III an accurate BER expression based on
the characteristic function approach is derived for the BER
calculation of the system using random spreading sequences.
In Section IV our numerical results are presented and finally,
in Section V our conclusions are provided.

II. SYSTEM AND CHANNEL MODEL

We consider an asynchronous Ricean-faded DS-CDMA
system using BPSK modulation, random spreading sequences
and rectangular chip waveforms. The rectangular pulse having
a duration of T is defined as:

pT (t) =
{

1, t ∈ [0, T ),
0, otherwise. . (1)

Each of the K users is assigned a binary random spreading
sequence {ak,m}∞m=−∞, where {ak,m}L−1

m=0 are mutually inde-
pendent and symmetrically Bernoulli distributed [34], imply-
ing that we have P{ak,m = ±1} = 1

2 , and L is the number

1-4244-0063-5/06/$2000 (c) 2006 IEEE



of chips in the random spreading sequences. The kth user’s
binary data sequence of {bk,m}∞m=−∞, which is also mutually
independent and symmetrically Bernoulli distributed, BPSK
modulates the phase of the the carrier. The complex lowpass
equivalent of the received signal, r̃(t), may be written as:

r̃(t) =
K∑

k=0

√
2Ptak(t− τk)bk(t− τk)h̃kej[ωc(t−τk)+θk] + η̃(t)

(2)
where Pt and ωc are the average transmitted power and the car-
rier’s angular frequency, respectively, both of which are com-

mon to all users. Furthermore, ak(t) =
∞∑

m=−∞
ak,mpTc

(t −

mTc) and bk(t) =
∞∑

m=−∞
bk,mpTs

(t−mTs) represents the kth

user’s spreading signal and data signal, respectively, Tc and Ts

are the chip duration and bit duration, respectively, satisfying
Ts = LTc, {θk}K−1

k=0 and {τk}K−1
k=0 are the carrier phase

shift and the time delay, respectively, which are independently
and uniformly distributed in [0, 2π) and [0, Ts), respectively.
Finally, η̃(t) is the zero-mean stationary complex-valued Ad-
ditive White Gaussian Noise (AWGN) having a double-sided
power spectral density of N0.

The received signal of each user suffers from independent
Ricean fading, which is characterized by the complex-valued
random variable h̃k = hkejϕk . The Ricean fading process
physically consists of a direct LOS component having a power
of µ2

k and many weaker components having a total power
of 2σ2

k. Hence the Probability Density Function (PDF) of its
modulus, hk, is given by [28], [29]:

f(hk) =
hk

σ2
k

exp
(
−h2

k + µ2
k

2σ2
k

)
I0

(
hkµk

σ2
k

)
, hk ≥ 0, (3)

where we have µk ≥ 0 and σk > 0, and I0(x) is the zeroth-
order modified Bessel function of the first kind [35]. Another
alternative expression is also often used [27], [30]. The Ricean
K-factor is defined as:

κk = n2
k =

µ2
k

2σ2
k

. (4)

where nk is the Ricean fading parameter. Using Horn’s con-
fluent hypergeometric function of two variables [31], [33], we
may derive the characteristic function of the modulus hk as:

Φhk
(ω) = exp

(
− µ2

k

2σ2
k

)
Ψ2

(
1; 1,

1
2
;

µ2
k

2σ2
k

,−1
2
σ2

kω2

)

+ j
√

2σkω exp
(
− µ2

k

2σ2
k

)
Ψ2

(
3
2
; 1,

3
2
;

µ2
k

2σ2
k

,−1
2
σ2

kω2

)
,

(5)

where Ψ2(α; γ, γ′;x, y) is one of Horn’s confluent hyper-
geometric functions of two variables [31], [33]. Equation 5
is a new closed-form expression, which is equivalent to the
expression of a sum of infinite series provided by Table II
in [30].

The phase ϕk is neither uniform distributed nor independent
of the modulus hk [29]. However the complex-valued Ricean
random variable h̃k may be decomposed into the sum of

two independent real-valued Gaussian variables according to
h̃k = hkx + jhky. The mean and variance of hkx and hky

are {µkx, σ2
k} and {µky, σ2

k}, respectively, where we have
µ2

kx + µ2
ky = µ2

k.

III. ACCURATE BER ANALYSIS

A. Receiver Statistic

In the case of coherent demodulation as well as perfect
phase and chip synchronization, the decision statistic derived
for the 0th user’s signal is given by:

Z = h0Lb0,0 +
K−1∑
k=1

�
{

Xkh̃kej∆k

}
+ η, (6)

where �{x̃} denotes the real part of the complex number x̃,
while ∆k = −ωc(τk − τ0) + (θk − θ0) denotes the phase shift
difference between the kth and 0th user, which is uniformly
distributed in [0, 2π). The noise component η can be shown to
be a zero-mean Gaussian distributed random variable having
a variance of σ2

η = N0L
Tc

. The random variable Xk is defined
as [2], [7]:

Xk =
L−2∑
m=0

Yk,m [(1 − νk) + a0,ma0,m+1νk]

+ Yk,L−1νk + Yk,L(1 − νk), (7)

where the (L + 1) random variables {Yk,m}L
m=0 are mutually

independent and symmetric Bernoulli distributed, conditioned
on the 0th user’s spreading sequence {a0,m}L−1

m=0. Furthermore,
the relative chip shifts between the kth and 0th user nor-
malized by the chip duration, νk, are mutually independent
and uniformly distributed in [0, 1). The (L − 1) possible
chip transitions of {a0,ma0,m+1}L−2

m=0 can be categorized into
two sets according to whether there is a chip value change
or not [2], [7]. Let B and A denote the number of chip
boundaries both with and without chip-value transitions within
the 0th user’s spreading sequence, respectively. Then we have
A + B = L − 1.

B. BER Calculation

The Co-Channel Interference (CCI) Ik = �
{

Xkh̃kej∆k

}
imposed by the different interferers is mutually independent,
conditioned on B [2], [7]. Upon defining the total interference

plus noise as ξ =
K−1∑
k=1

Ik+η [2], it transpires that both its PDF

fξ|B(x) and its CF Φξ|B(ω) = Φη(ω)
K−1∏
k=1

ΦIk|B(ω) are even.

Hence the Cumulative Distribution Function (CDF) Fξ|B(x)
of the CCI can be shown to be:

Fξ|B(x) =
1
2

+
1
2π

∫ ∞

−∞

sin(ωx)
ω

Φξ|B(ω)dω. (8)

Furthermore, the 0th user’s Bit Error Probability (BEP) Pe|B
conditioned on B may be shown to be:

Pe|B =
∫ ∞

−∞

[
1 − Fξ|B(xL)

]
fh0(x)dx, (9)



where fh0(x) is the PDF of the 0th user’s fading amplitude,
h0, given by Equation 3. Applying the definition of the
characteristic function [34] and the Fourier transform pair 8
in Table 17.23 of [35] as well as exchanging the order of the
integrals, Equation 9 may be simplified to:

Pe|B =
1
2
− 1

π

∫ ∞

0

1
ω

Φξ|B(ω)�{Φh0(ωL)}dω, (10)

where �{Φh0(ω)} is the imaginary part of the CF of the 0th
user’s fading amplitude, h0, which was given by Equation 5.
Alternatively, Equation 10 may also be derived by applying
Parseval’s theorem similar to the approaches of [30], [36].
Note that Equation 10 applies not only to Ricean fading,
but to any arbitrarily distributed fading, whenever fξ|B(x), or
equivalently Φξ|B(ω), is even. For example, when Rayleigh
or Nakagami-m fading is considered, Equation 10 reduces to
Equation 39 of [2] and to Equation 21 of [3], respectively.

Finally, the overall average BEP is obtained by averaging
Pe|B over all spreading sequences, yielding:

Pe = 2−(L−1)
L−1∑
B=0

(
L − 1

B

)
Pe|B. (11)

C. MAI Analysis

The only task that remained unsolved so far is the deter-
mination of the conditional CF of the co-channel interference
incurred by the kth user, ΦIk|B(ω). As seen in Equation 10,
only the characteristic function range spanning over ω ≥
0 is considered, which will be justified during our further
discourse.

Upon exploiting the fact that Ricean random variables are
composed of two independent Gaussian random variables,
as described in Section II, it can be readily shown that the
characteristic function of Ik conditioned on Xk and ∆k may
be expressed as:

ΦIk|Xk,∆k
(ω) = exp

[
jXkµkω cos(∆k + ϑk) − 1

2
X2

kσ2
kω2

]
,

(12)
where ϑk satisfies cos ϑk =

µkx

µk
and sin ϑk =

µky

µk
. Averaging

ΦIk|Xk,∆k
(ω) over ∆k ∈ [0, 2π) with the aid of Equation

3.339 in [35], we have the CF of Ik conditioned on Xk in the
following form:

ΦIk|Xk
(ω) = exp

(
−1

2
X2

kσ2
kω2

)
J0 (Xkµkω) , (13)

where J0(x) is the zeroth-order Bessel function of the first
kind [35], which has a relation with I0(x) as I0(x) = J0(jx).
Finally, the conditional CF, ΦIk|B(ω), is obtained by averaging
ΦIk|Xk

(ω) over {Yk,m}L
m=0 and νk as follows:

ΦIk|B(ω) = 2−(L+1)
∑

d1∈A

∑
d2∈B

(
A

d1+A
2

)(
B

d2+B
2

)

×
∑

Yk,L−1,Yk,L∈{±1}
ΦIk|λ0,λ1(ω), (14)

where the two sets A, B and the coefficients λ0, λ1 are defined
as [2], [7]:

A = {−A,−(A − 2), ..., A − 2, A} ,
B = {−B,−(B − 2), ..., B − 2, B} ,
λ0 = d1 + d2 + Yk,L

λ1 =−2d2 + Yk,L−1 − Yk,L.

(15)

The conditional CF, ΦIk|λ0,λ1(ω), may be shown to be:

ΦIk|λ0,λ1(ω) =


x

λ1
F

1:0;1
1:0;0

(
1
2 :− ;− ;
3
2 :− ; 1 ; −

1
2
σ2

kω2x2,−1
4
µ2

kω2x2

)∣∣∣∣
λ0+λ1

λ0

,

λ1 �= 0,
exp

(− 1
2λ2

0σ
2
kω2

)
J0 (λ0µkω) , λ1 = 0,

(16)

where F
C:D;D′
A:B;B′

[
(a) : (b) ; (b′) ;
(c) : (d) ; (d′) ;x, y

]
is the Kampé de Fériet

function [32], [33] and f(x)|x2
x1

= f(x2)−f(x1). When µk =
0 or equivalently κk = 0, i.e. when we experience Rayleigh
fading, Equation 16 reduces to the results of [2].

IV. NUMERICAL RESULTS

In this section we will compare our simulation results to
those obtained from our accurate BER analysis in Section III
as well as to those generated by the SGA approach.

Figures 1 and 2 illustrate the average BER performance
versus the number of users, when the effects of background
noise are ignored. Figure 1 compares the results obtained from
our accurate BER analysis to our simulation results and shows
that they match very well both for various spreading sequence
lengths and for various Ricean K-factors. On the other hand,
Figure 2 compares the results obtained using the SGA to
our simulation results and shows an interesting phenomenon.
It is widely recognized that the SGA slightly over-estimates
the average BER, when the Ricean K-factor is κ = 0, i.e.
for Rayleigh fading. This has also been reported in [2]. By
contrast, when κ increases to 9, the SGA under-estimates
the average BER. Although not shown explicitly here, if we
have κ → ∞, which corresponds to having no fading and no
noise, only CCI, the SGA will more severely under-estimate
the average BER, which has been reported in the context of
AWGN channels [12].

Figures 3 and 4 illustrate the average BER performance
versus the per-bit SNR, when the number of users is K = 4.
Figure 3 compares the results obtained from our accurate BER
analysis to the simulation results and shows that they match
very well for both different spreading sequence lengths and for
various Ricean fading parameters. On the other hand, Figure 4
compares the results obtained by the SGA to our simulation
results and shows similar performance trends to those seen in
Figure 2, when the Ricean K-factor κ increases. Furthermore,
the SGA still fails to accurately evaluate the average BER
performance, particularly when the SNR is high.

V. CONCLUSION

We studied the accurate BER calculation of an asynchronous
DS-CDMA system exposed to Ricean fading using random
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Fig. 1. BER versus the number of users K in an asynchronous DS-CDMA
system exposed to Ricean fading using random spreading sequences and
BPSK modulation. The length of the random spreading sequences is L = 7
and 63. The Ricean K-factor is κ = 0, 1 and 9, which is common to all users.
The average power of all users at the receiver is equal and the background
noise is ignored, i.e. we have γSNR = ∞.
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Fig. 2. BER versus the number of users K in an asynchronous DS-CDMA
system exposed to Ricean fading using random spreading sequences and
BPSK modulation. The length of the random spreading sequences is L = 7
and 63. The Ricean K-factor is κ = 0, 1 and 9, which is common to all users.
The average power of all users at the receiver is equal and the background
noise is ignored, i.e. we have γSNR = ∞.

spreading sequences and BPSK modulation. Using the CF
approach and hypergeometric functions of two variables [31]–
[33], we derived a new closed-form expression for the condi-
tional CF of the cochannel interference and a single integration
for the BER calculation. The accuracy of our BER expression
was confirmed by our simulation results both for various
spreading sequence lengths and for various Ricean K-factors.
By contrast, the SGA approach over-estimates the BER, when
the Ricean K-factor is κ = 0 for Rayleigh fading, while it
under-estimates the BER, when κ increases. The inaccuracy
of the SGA was also demonstrated, which becomes more
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Fig. 3. BER versus per-bit SNR in an asynchronous DS-CDMA system
exposed to Ricean fading using random spreading sequences and BPSK
modulation. The length of the random spreading sequences is L = 7 and
63. The Ricean K-factor is κ = 0, 1 and 9, which is common to all users.
The average power of all users at the receiver is equal. The number of users
is K = 4.
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Fig. 4. BER versus per-bit SNR in an asynchronous DS-CDMA system
exposed to Ricean fading using random spreading sequences and BPSK
modulation. The length of the random spreading sequences is L = 7 and
63. The Ricean K-factor is κ = 0, 1 and 9, which is common to all users.
The average power of all users at the receiver is equal. The number of users
is K = 4.

prevalent when a low number of interferers is encountered
and short spreading sequences are used.
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