PrIMe: A Software Engineering Methodology for
Developing Provenance-Aware Applications

Steve Munroe, Simon Miles, Luc Moreau
Electronics and Computer Science,
University of Southampton,
Southampton, UK

{sjm,sm, l.moreau}@ecs.soton.ac.uk

Provenance is a concept often used in the Art world to
refer to the documented history of an artifact, providing
information about the artifact’s lineage and authenticity.
Provenance-aware applications similarly allow their users to
have confidence about the data they produce, and can enable
users to make judgements relating to notions of trust, ac-
countability, validation, replication and compliance of their
data. PrIMe is a software engineering methodology for adapt-
ing applications to enable them to interact with a prove-
nance middleware layer, thereby making them provenance-
aware. Such applications allow users to answer questions
about provenance use cases, which are descriptions of sce-
narios in which a user interacts with a system by performing
particular functions on that system. In order to illustrate
how PrIMe can make applications provenance-aware, an Or-
gan Transplant Management example application is used.

1. INTRODUCTION

Provenance is already well understood in the study of fine
art where it refers to the trusted, documented history of
some art object. Given that documented history, the ob-
ject attains an authority that allows scholars to understand
and appreciate its importance and context relative to other
works. Art objects that do not have a trusted, proven his-
tory may be treated with some scepticism by those that
study and view them. This same concept of provenance may
also be applied to data and information generated within
computer applications.

In general, computer applications produce data, and mak-
ing an application provenance-aware allows its users to un-
derstand the provenance of their data, understood as the
process that led to that data [7]. To be able to determine the
provenance of data, it must be possible to document an ap-
plication’s execution and to then perform queries over that
documentation. Such documentation is called process docu-
mentation and is comprised of multiple, individual pieces of
information, called p-assertions [7], which are recorded dur-
ing execution and then stored and maintained in a reposi-

Javier Vazquez-Salceda
Knowledge Engineering and Machine Learning
Group,

Universitat Politécnica de Catalunya,
Barcelona, Spain

jvazquez@lsi.upc.edu

tory of such information called a provenance store [7]. One
difficulty that remains, however, is to ensure that necessary
and sufficient forms of process documentation is captured so
that queries can return a satisfactory account of a given data
item’s provenance. It is the role of such software engineering
tools as PrIMe to ensure this is achieved.

The concept of provenance is already used within databases
(e.g. [14]) and is becoming increasingly important in com-
puter applications in general (e.g. [3, 4, 16, 11]). In [7] a
provenance architecture is described that provides a middle-
ware layer that includes a provenance store for maintaining
and storing process documentation and interfaces for record-
ing, querying and viewing process documentation. However,
in order for developers of applications to fully exploit such an
architecture, software engineering practices for developing
provenance-aware systems are needed. To meet this need,
we have developed a Provenance Incorporating Methodology
(PrIMe) that enables developers to analyse and make ad-
justments to applications in order that the functionality pro-
vided by a middleware-based provenance architecture can be
fully exploited in the making of provenance-aware applica-
tions.

PrIMe is a tool to be used by system developers who make
modifications to applications by applying the steps of PrIMe
after querying the application’s users for the kinds of infor-
mation they require from their application. In the remainder
of this document, PrIMe and how it can be applied to com-
putational systems is described in detail, and the following
structure is followed. In the next section, PrIMe is intro-
duced and its overall structure is presented. In Section 3, an
example application from the medical domain is introduced
in order to ground the subsequent discussion and explana-
tion. In Section 4, we describe each step of PrIMe in detail
and apply them to the (example) application, and in Section
5 we discuss the security implications of such provenance-
aware applications. Section 6 discusses some related work,
Section 7 outlines future work and, finally, Section 8 offers
some concluding remarks.

2. THE STRUCTURE OF PriMe

The overall structure of PrIMe is shown in Figure 1. Each

Permission to make digital or hard copies of all or part of this work for . X o .
personal or classroom use is granted without fee provided that copies areoval in the diagram corresponds to a distinct step within the
not made or distributed for profit or commercial advantage and that copies methodology and the lines between each step indicate how
bear this notice and the full citation on the first page. To copy otherwise, to they are related. The dashed ovals delimit three different
republish, to post on servers or to redistribute to lists, requires prior specific phases of the methodology, comprising: (i) the identifica-

permission and/or a fee. : : : :
Sixth International Workshop on Software Engineering and Middlev@gre tion of-provenance use cases and the pleces of 1nf0rma.LtTon
that will be used to answer them, (4) the decomposition

Portland, Oregon USA L. .. .
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00. of the application into a set of actors and their interactions

Iteration

tep 2.37
Knowledgeable

A\ /. Step 3.1 \
i Adaptations §

S Phased .-~

Figure 1: Overall structure of PrIMe

(this phase is iterative for reasons described in Section 4.2.4)
and, (74) applying a set of principled adaptations to the ap-
plication in order to ensure the required information items
are available for documentation.

Traversing this process, PrIMe starts from the application
itself, and it is assumed that the structure and purpose of
the application is known beforehand. This does not mean
that the application must already exist, but that the overall
functionality of the application has been identified and the
general structure has been determined. Given this assump-
tion, the steps through PrIMe are as follows.

e Phase 1

— Step 1.1: Provenance use case analysis.

— Step 1.2: Identify use case information items.
e Phase 2

— Step 2.1: Identify application actors.
— Step 2.2: Map out actor interactions.

— Step 2.3: Identify knowledgeable actors.
e Phase 3

— Step 3.1: Introduce application adaptations.

The rest of this paper discusses each step in turn.

3. THE ORGAN TRANSPLANT MANAGE-
MENT EXAMPLE APPLICATION

The example application used in this paper is an Organ
Transplant Management (OTM) application, in which organ
donors and patients waiting for organs must be matched up
according to various criteria, such as blood type, immunol-
ogy tests and so on. This application is taken from work
done by the Technical University of Catalonia [2].

The example involves conducting blood tests on donor or-
gans in order to screen them for a variety of pathologies.
Here, a donor’s organs undergo a series of tests to enable a
decision to be made about whether they are suitable candi-
dates for transplantation. The high level view of this process
contains three entities: the hospital, the electronic healthcare
records system (EHCRS) and the testing laboratory. The
hospital is where the donor organ is recovered from a re-
cently deceased donor, and where the doctor who initiates
the screening process resides. The EHCRS is the place where

all the records for the donor are kept. Finally, the testing
laboratory is where the organ blood tests are performed.
Figure 2, shows these entities and the communication links
between them (shown by the arrows). In terms of workflow,
the hospital where the doctor resides must communicate first
with the EHCRS to obtain the donor’s records, after which
the hospital can request a blood test to the testing labora-
tory, passing along the necessary donor data obtained from
the EHCRS.

Denor A’s location
P

/‘\

)
|||“|||'|“
| M

T

Electronic HealthCare
Records System

i#°2| Donor A's
= organ
|K diagnosis

_7;‘1'\ test

Donor A’s
records

Testing Laboratory

Donor A’s organs are screened for potential donation.

Figure 2: The components in the OTM application
involved in the testing of blood

4. STEPPING THROUGH PriMe

PrIMe provides designers with the tools to enable appli-
cations to use the Provenance Architecture described in [7].
This architecture defines different forms of process docu-
mentation or p-assertions that enable a complete account
of an execution to be documented. Specifically, three types
of p-assertions are defined as follows. (i) Interaction p-
assertions; these are used to record the interactions between
application components and provide a complete model of
information flow between components. (i) Relationship p-
assertions; these record the relationships between a compo-
nent’s incoming and outgoing messages and provide a model
of information flow within a component. (iii) Actor state
p-assertions; these record state information of application
components. Note that the combination of interaction and
relationship p-assertions provide a complete account of an
application’s data flow. The following steps of PrIMe de-
scribe how to identify what kinds of information within an
application should be the focus of such p-assertions and how
they can be captured.

4.1 PrIMe Phase 1. Use Case Capture and
Identifying Use Case Answers

In Phase 1 of PrIMe, the kinds of provenance related ques-
tions to be answered about the application must be identi-
fied. These provenance use case questions determine how
PrIMe will be applied by highlighting which parts of execu-
tion needs to be documented and subsequently which parts
of the application must be made provenance aware. Use
cases in this sense are similar to those found in UML, i.e.

descriptions of scenarios in which users interact with an ap-
plication [8]. They drive the process of making an applica-
tion provenance-aware by informing application developers
of the granularity of the processes to be considered and the
critical information to expose.

Obtaining use case questions involves several steps. First,
the use cases must be identified, then an analysis must be
undertaken in order to discover the information within the
application that constitutes the answers to the use cases. In
the next few sections, descriptions of each of these steps is
given in detail.

4.1.1 Step 1.1: Provenance Use Case Analysis

It is not always obvious to users what provenance use cases
they could expect the provenance architecture to support.
To overcome this, PrIMe advocates a simple requirements
elicitation process, similar to many software engineering ap-
proaches (e.g. [12, 5]) to help developers collect the core
provenance use cases from users. The elicitation process
comprises two steps. (i) Provide an explanation and def-
inition of provenance in computational systems. (i) Give
examples of general questions that can be answered by a
provenance-aware application.

The definition of provenance that PrIMe uses is taken
from [7]: “The provenance of a piece of data is the process

that led to that piece of data”.
Some generalised use case questions may take the follow-
ing form.

o What are the details of the process that produced a given
piece of data?

e Two processes, thought to be performing the same steps
on the same inputs, have been run and produced different
data. Was this because of a change in the inputs, the steps
making up the process or the configuration of the process?

e Did the process that produced this data use the correct
types of information at each stage?

e What data was used as input to a process.

After these two steps have been executed, the users of the
application are invited to generate their own use case ques-
tions. In the case of the OTM example, two such use cases
might be as follows. (i) Donor A’s organs are screened for
potential donation. What is the provenance of the donor’s
organ diagnosis? (iz) A donor organ is considered for diag-
nosis. How many doctors have been involved in the organ’s
screening case?

4.1.2 Step 1.2: Information items

When considering how to answer a use case, it is neces-
sary to identify the information items that would provide
answers; there may be many such items, e.g., a given result,
or a sequence of decisions. In the OTM example, the first
use case question refers to the provenance of an organ diag-
nosis decision. To obtain this, it is necessary to obtain the
the donor record from the EHCRS, the organ test results
and the diagnosis decision. It is also necessary to obtain
the relationships between these data items, since otherwise
we would have no way of linking a given test result to a
given organ and a given donor. Some examples of the differ-
ent kinds of information items that can be used to answer
provenance use cases are described below.

Data Items Data items represent specific pieces of data such as
a result of a computation, the outcome of a decision or the
state of a given component.

Processes Interactions between components represents an ap-
plication’s processes.

Relationships When seeking the provenance of some data, it
is often necessary to identify the relationships between the
different components involved in its generation.

In order to obtain such pieces of information, we must
move to the next phase of PrIMe.

4.2 PrIMe Phase 2: Actor Based Decomposi-
tion

In this phase of the methodology, the aim is to associate
every information item necessary to answer a use case ques-
tion as identified above with a particular component within
the application. To achieve this, PrIMe decomposes the ap-
plication into a set of actors and performs an analysis of
their interactions. This approach is similar in nature to ob-
ject oriented approaches to modelling systems (e.g. [12]),
which decompose applications into classes and objects.

Decomposing an application into actors follows an itera-
tive approach, comprising the following three steps. Step
2.1: Identify an initial set of application actors. Step 2.2:
Map out the interactions between these actors. Step 2.3:
Identify those actors that have access to the identified in-
formation items. These steps may need to be repeated if
it is discovered that no actor can be identified at the cur-
rent level of granularity that has access to a use case related
information item (see Section 4.3).

4.2.1 Step 2.1: Identifying Actors

An actor is an entity within an application that performs
actions, such as a Web Service, software component, ma-
chine, a person and so on, and which interacts with other
actors. The identification of suitable actors in an application
is a key part of making the application provenance-aware.
In order to aid this process, PrIMe provides two simple ac-
tor identification heuristics: (i) identify the components
that are the receivers of information (these may be com-
ponents/services in a workflow, a script command, or the
GUI/desktop application into which a user enters informa-
tion) and, (i) identify the components that send informa-
tion in an interaction (these may be a workflow engine, a
script executor, a user or a sensor).

In the OTM example, the hospital, the EHCRS and the
testing laboratory all communicate with each other, so an
obvious place to begin is to classify each of these components
into high-level actors.

4.2.2 Step 2.2: Actor Interactions

The next step in PrIMe is to map out the interactions
between the identified actors. Other methodologies, for ex-
ample the GATA methodology used in agent oriented design
[15], also provide methods to identify interactions between
application components. In PrIMe, a similar approach is
taken. Specifically, the way that information flows between
actors is modelled as message passing and PrIMe requires a
representation of such messages to be stated explicitly along
with identification of the content of such messages. This
makes it possible to discover which actors have access to
information items necessary for answering provenance use
case questions. Figure 3 shows the notation by which we
define application interactions as a graph. The nodes repre-
sent individual actors and the arcs (shown as uni-directional
arrows) represent messages being passed from one actor to

o o

M3(c2)
M2ic)

M4(c3)

P = Message

@ = Actor

Figure 3: An abstract data graph

another. Annotations over the arrows show messages and
content identifiers. The use of such graphs makes explicit
which actors have access to which information items, and
thus enables application developers to identify knowledge-
able actors (see Section 4.2.4). We do not show the full
data contents of messages here for reasons of space.

4.2.3 Interactions in the OTM Example

Examining the OTM example, the developers determine
that when a donor organ is to to be screened, the hospital
(H) must send a query to the EHCRS to obtain the donor
ID. Then, the hospital sends a request to perform the nec-
essary tests to the testing laboratory (TL) along with the
ID. In this simple example, there are four messages being
passed between the three actors, where each of these mes-
sages contain the following data items: the query, the donor
ID, the request to perform a blood test on the organ, and
the test results from the laboratory.

Using the information gained from this step, a data graph
of the system is constructed to clearly show the interactions
between each actor (shown in Figure 4).

.a _M1(query)

M2(danor ID)

Mé4(result)
M3(request)

EHCR = Elactronic healthcare records.
H = Hospital
TL = Testing laboratory

& =Message

O = Acior

Figure 4: The data graph of the OTM example

4.2.4 Step 2.3: Knowledgeable Actors

Any actor that has access to an information item is known
as a knowledgeable actor and, as stated above, the aim is to

associate every information item necessary to answer a use
case question with such an actor. If this can be achieved,
then the developer can add the necessary provenance func-
tionality (see Section 4.3.3). However, there are two reasons
where such an association between actors and information
items may not be possible. Either: (i) an information
item is located within an actor and has not been exposed in
the interactions between actors through message exchanges
or, (ii)no more decomposition is possible and there are still
information items to be located and associated to an actor.

For (i), it is necessary to iteratively apply steps 2.1, 2.2
and 2.3 of PrIMe until a level of granularity is reached where
information items are revealed in the interactions between
actors. This is discussed in the next few sections, taking
the OTM application as an example. For (%), a number of
adaptations must be performed to change the application in
structured ways in order to be able to make the required in-
formation items explicit and associable to an actor. Section
4.3 discusses this in detail.

4.2.5 Knowledgeable Actors in the OTM Example

The structure of the OTM application has so far been de-
composed into three actors: (i) the hospital, (ii) the
EHCRS and, (i) the testing laboratory. Imagine how-
ever, that we try to answer the second use case question
listed in Section 4.1.1, i.e. How many doctors have been in-
volved in an organ screening case?. To answer this, the
information item containing the relevant information must
be identified, i.e. a record of all doctors involved in a given
case. If the actor-based decomposition of the OTM applica-
tion that was performed earlier is examined (Figure 4), this
question cannot be answered because the information about
how many doctors are involved in a given screening case is
not available within the interactions between any of the ac-
tors. What must be done in this situation is to perform a
further decomposition of the hospital, exposing its subac-
tors and revealing, through their state and interactions, the
information items needed to answer the use case question.

The first task is to identify the actor within the hospital
that has access to the information needed. After examining
the hospital actor, it is discovered that doctors access a user
interface (UI) to issue screening requests, and it is this com-
ponent that sends the request to a component in the hospital
called the donor data collector (DDC). The DDC then sends
the request for a donor ID to the EHCRS and then passes
this on, along with the doctor’s screening request, to the
testing laboratory.

Having performed another, deeper level of analysis, steps
2.2 and 2.3 of PrIMe must be executed again to map out the
interactions between these new actors and identify which are
knowledgeable about the information item for the use case.
In Figure 5, these steps have been completed. Actor H in
Figure 4 has been decomposed further into three actors: the
doctor, logging onto a wuser interface (UI) and the Donor
Data Collector. Three new interactions have been also iden-
tified to show how the screening request (originating from
a doctor logging onto the UI) goes from the User Interface
to the Donor Data Collector, and how the test result is sent
back to the User Interface from the the Donor Data Collec-
tor.

4.3 PrIMe Phase 3: Adapting the Application

In this section, we describe several application adapta-
tions used to reveal information items that are currently

M&(result)

M1(request)
.% _M2(query)
M3(donar ID)

M5(result)

M4 (request)
EHCR = Electronic healthcare records
Ul = User interface

TL = Testing laboratory

DDC = Donor data collector

i = Message

O = Actor

Figure 5: The modified OTM example

inaccessible, and to provide modifications to actors to en-
able them to record process documentation. We begin with
the former kind of adaptations.

There are three reasons why it may not be possible to
associate an information item to an application actor. Ei-
ther more decomposition is required until an actor can be
found that has access to an information item (in which case
Phase 2 of PrIMe must be re-applied as described above);
the information item has not been made explicit in the inter-
actions between the actors of the application (such as when
information required to produce the necessary information
item is distributed throughout the application), or actors
who have access to the information cannot record process
documentation (for instance, where a human owns the in-
formation item and thus requires a way to introduce the
information into the application). To overcome the latter
two problems, a number of modifications to the application
can be made in order to expose these information items or
to move information items to actors who can record process
documentation. PrIMe identifies two possible modifications
that can be made, which we detail below.

4.3.1 Modifying the Set of Actors

In those cases where an actor cannot be found that has
access to an information item needed to answer a use case,
certain modifications can be made to the set of actors in the
application. An actor that does not have access to a given
information item is termed a non-knowledgeable actor for
that item. Note that an actor may be non-knowledgeable
for one information item and knowledgeable for another. A
non-knowledgeable actor may be modified so that it gains
access to an information item that is local to it, i.e. that
does not need to be sent to it by another actor (since if
this were so, then the sending actor would be the knowl-
edgeable actor). Such cases may include situations in which
information outside of the system is important for answer-
ing provenance use cases — such as a data sensor taking
measurements of the external environment — or the infor-

mation is held by a human. Here, an actor may be modified
by adding sensing functionality to it so that it can read the
information from the data sensor or be given an interface
to record information from a human user. Thus, the actor
can gain access to previously hidden information and can
subsequently document it.

It is also possible to introduce actors into an application
to help in the answering of provenance use cases. In the
OTM example shown in Figure 5, we can imagine a use case
question asking how long it takes for a request entered into
the user interface by a doctor to reach the EHCRS. It is
clear that this question cannot be answered with the actors
so far identified in the application, since none of the actors
currently have access to the necessary time information (ac-
cording to our decomposition). To overcome this, another
actor can be added that receives first a message (M7) from
the Ul stating when a screening request is received from
a doctor (marked as timer_1), and second, a message (M8)
from the EHCRS stating when it received a donor ID request
from the DDC (marked as timer_2). This is shown in Figure
6, which makes an addition to the graph by adding the node
labelled ‘T’ representing a new Timer actor to record this
information.

M7(timer_1)
M8(timer_2)
M1(request)
@ T

M3(donaor ID)

M5(result)
M4(request)

EHCR = Electronic healthcare records
Ul = User interface

TL = Testing laboratory

DDG = Donar data collector

T= Timer

- = Record message ————
& =Message

Q = Actar

Figure 6: Modifications to the OTM Example

4.3.2 Modifying the Set of Interactions

The second method for locating information items neces-
sary to answer use case questions is by modifying the set of
interactions between the actors in an application. For exam-
ple, interactions can be modified to exchange more informa-
tion between a knowledgeable actor and a non-knowledgeable
actor, allowing the latter to use this information to make an
information item explicit. Similarly, in situations where a
knowledgeable actor cannot record process documentation
but the non-knowledgeable actor can, a message can be sent
from the former to the latter containing the information to
be recorded. (Examples of knowledgeable actors that can-
not record process documentation include a human actor, or
a component that, for security or legacy reasons, cannot be

Run 1 Run 2

M1(r1.tr_1) 1(r1.tr_2)

@ R e

M2(r1 tr_1 M2(r1,tr_2)

Ul = User inlerface

TL = Testing laboratory

DOC = Donor data collector
1 =Run 1 tracer
L = Run 2 tracer

A = Message

() s

Figure 7: Demarcating process using tracers

modified to record process documentation.)

One special form of interaction modification involves the
use of message tracers. Many provenance use cases require
that certain application processes be identified. A problem
here is that if the application makes several distinct runs
of the same process, and process documentation is recorded
for each, then how are the p-assertions about each process
to be distinguished? If the actors involved in these different
instances record process documentation, then how is it pos-
sible to ensure that documentation referring to one process
does not become associated with the other process? One
simple way to ensure this cannot happen is to modify the
messages sent by each actor recording process documenta-
tion so that whenever they send messages to other actors
about a given process they may be involved in, they include
a unique tracer in that message.

Figure 7 illustrates this graphically for the OTM exam-
ple. The boxes represent the actors involved, and the left
side of the figure represents (a part of) one run of the donor
screening process, while the right side of the figure represents
another run. The marker ¢r_n represents tracers added to
the messages being passed between the actors involved in
the process, where n is replaced by a number representing
the identifier of the tracer. The tracers added to the process
in the left hand side run can be distinguished from the mes-
sages from the right hand side run. At a later time, a querier
can now retrieve all p-assertions relating to one particular
run of the process by indicating which tracer it is interested
in.

4.3.3 Adding Provenance Functionality

The final adaptation that PrIMe discusses is how to pro-
vide the necessary functionality to actors so that they can
record process documentation.

When it is clear than an actor has access to an information
item necessary for answering use cases, functionality must
be provided for the actor to record documentation about it.
To do this, PrIMe recommends using a provenance wrap-
per. The wrapper must be given access to those information
items that must be recorded, where these might be evident in
the incoming and outgoing interactions of the actor, the in-
ternal states of the actor and also the relationships between
incoming and outgoing messages. To capture information
items in these circumstances the provenance wrapper allows
three kinds of p-assertions to be recorded: (i) interac-
tion p-assertions, (%) relationship p-assertions and, (%i:)
actor state p-assertions as described in Section 4. Once p-
assertions that contain the necessary information have been
captured by the wrapper, they can then sent to a provenance
store for later retrieval and querying.

Provenance wrapper

Incoming application Realtionship

interaction

Qutgoing application

Actor interaction

T
Actor state information

=

T =
Process documentation
record message

Figure 8: The provenance wrapper

Figure 8 shows a provenance wrapper diagrammatically.
Incoming and outgoing interactions are intercepted by the
wrapper, which also has access to relevant aspects of the
actor’s state and has access to the relationships between
incoming and outgoing messages. The wrapper then doc-
uments these pieces of information using the provenance
client side library (see below) and sends a record message
containing the documentation to a provenance store.

4.3.4 Embedding The Provenance Client Side Li-

brary

The Provenance client side library [9] is a collection of
functions that allows developers to provide the functionality
of a Provenance wrapper. It comprises a number of high
level client classes that provide the necessary recording and
querying interfaces that enable developers to implement the
necessary provenance functionality.

In order to determine which actors require provenance
functionality, two simple heuristics should be observed.

e For any important piece of data there should be a knowl-
edgeable actor capable of recording it, and

e for any interaction message there should be at least one
actor recording its view of such an interaction

Once the necessary functionality has been provided to the
actors in an application, they can then record the necessary
process documentation. In the OTM example, several ac-
tors to record process documentation are identified. This is
shown in Figure 6, where the shaded nodes represent those
actors that record process documentation.

4.3.5 The Modified OTM Example

Screening
request

Message = —

Relatonshia= 77 T

S
TL
seor= O

Screening
request

Figure 9: Relationships between incoming and out-
going messages for the DDC in the OTM example

Figure 6 shows how the OTM example looks once the ap-
propriate modifications have been made. The figure shows
that the DDC receives a message (M1) from a doctor’s UI,
which contains a request for an organ screening. Receiving
this message, the DDC passes it to the EHCRS (M2). Both
the UI and the DDC document their roles in this process,
with the Ul sending an interaction p-assertion to a prove-
nance store (not shown) stating that it has sent a message
(M1) to the DDC containing a request for an organ screen-
ing. The UI also records information about the doctor that
is currently logged onto the interface as an actor state p-
assertion to be able to identify who created the request.
Upon receiving M1 from the UI, the DDC records an in-
teraction p-assertion stating it has received a message from
the UI about a donor organ. The DDC may then record
a relationship p-assertion stating that the message it sends
to the EHCRS requesting a donor’s identifier was caused by
the receipt of the message from the UI. This is shown in
Figure 9, which shows the relationships that exist between
the DDC’s incoming and outgoing messages.

Upon receiving the reply message from the EHCRS (M3),
in Figure 6, containing the donor identifier, the DDC then
sends a request (M4) to the TL to perform an analysis of the
blood of the donor’s organ identified by the donor ID. This
in turn can be documented as a relationship p-assertion,
such that the sending of this message, although ultimately
caused by the receipt of M1, depended upon the receipt of
M3 containing the donor ID (see Figure 9). Once this is
done, the TL may record interaction p-assertions and rela-
tionship p-assertions, which state respectively that it had
received a message from the DDC to perform an organ test
and that the message it sends back in response containing
the result was caused by this message.

By storing the above information, it is now possible to
answer the use case questions listed above. The provenance
of a given organ diagnosis decision is given by understanding
how the individual components of the system were involved
in the process. We know that the provenance of the decision

depended upon the interactions between the doctor, the Ul
the DDC the EHCRS and the TL. The test performed on
the organ supplied by the identified donor resulted in the
doctor being able to make a decision based upon the result
of that test.

We can also understand how many doctors were involved
in a given case by examining the process documentation of
the Ul that recorded who first initiated the request for an
organ screening test. Other components may also record
similar information if they have the requisite functionality.

5. DOCUMENTATION STYLES

When recording documentation about processes, certain
pieces of application data will become associated to it that
will require access control. For example, the Donor ID found
in the OTM example constitutes private data and must be
kept so [2]. In such cases, action must be taken to ensure
that the information is adequately protected from a secu-
rity standpoint. To effect this, developers can utilise a set of
transformations that can be made to process documentation
that can either restrict access to, or obfuscate the associated
data contained within process documentation. These trans-
formations or documentation styles [7] are used to transform
certain parts of individual p-assertions to achieve a number
of different aims. Those that are relevant for security are as
follows:

e Reference-Digest documentation style transforms part
of a p-assertion creating a reference to the original
data stored elsewhere along with a digest. Secure ac-
cess to the original data is controlled by access mecha-
nisms and policies of the data container in a way that
only authorized users can access the original data. A
querying actor (with authorization to access the orig-
inal data) can compute and compare the digest in the
p-assertion with that created with the original data to
ensure the data’s integrity.

e In the OTM example used above, donor identifiers
are private information, and so any process documen-
tation that contains these identifiers must be trans-
formed to protect the privacy of donors. In such cases
as this, the anonymised documentation style can be
used. This style replaces restricted information with
an anonymised identifier.

o Security signing documentation style allows for parts
of a p-assertion to be signed by a recording actor in
order that it can be associated to a specific actor and
thus ensures accountability.

e Security encryption documentation style transforms a
message by encrypting some of its content. This en-
ables the p-assertion to be accessible to only those ac-
tors that have explicit rights to decrypt the encrypted
data.

6. RELATED WORK

PrIMe is the first methodology to specifically target the
development of provenance-aware applications. As such,
there is nothing else to compare it to directly. However,
there are many similarities that PrIMe shares with object-
oriented (OO) (e.g. [12]) and agent-oriented (AO) method-
ologies (e.g. [15]). Like both OO and AO approaches, PrIMe

is a top down decomposition approach in which the devel-
oper must identify those actors (objects in OO, agents and
roles in AO) required to record process documentation to an-
swer provenance queries. However, whereas OO approaches
go on to identify the functionality of the objects they identify
and AO approaches identify the roles and tasks that each
agent must execute, PrIMe does not need to go this far,
since it is assumed that the application has already been
specified.

Similar to AO approaches such as GAIA [15], PrIMe also
maps out interactions between identified actors, however,
unlike GATIA, the emphasis is on where the messages are
going and what their contents are so that it becomes possible
to locate information items within the application.

PrIMe also borrows the concept of use cases from the UML
[8] modelling language, but specifies these to be specifically
provenance-based use cases.

7. FUTURE WORK

We hope to extend and improve upon PrIMe in several
directions. First, we are intending to include features of As-
pect Oriented Programming [6] to enable annotations to be
made regarding the forms of information that need to be
captured in process documentation. Secondly, we are ex-
amining ways to provide evaluative metrics that will enable
us to provide examples of the benefit and cost trade-offs
in using PrIMe in the application design process. This is
necessary, since although we have applied PrIMe to several,
disparate application domains, such as bioinformatics [13],
aerospace engineering [10], health care [2] and a variety of
other applications within the Provenance Challenge [1], all
of which show the general applicability of the methodology,
we still require more quantitative evidence of its effective-
ness as a tool.

8. CONCLUSION

This document describes the PrIMe methodology. It de-
scribes in detail the necessary steps to take in making an
application provenance-aware and thus be able to exploit
the provenance-based middleware architecture presented in
[7]. The steps described are split into three distinct phases
comprising: () identification of provenance use cases and
the kinds of information necessary for them to be answered;
(ii) decomposition of applications into actors and the map-
ping of the data flow of applications into message passing
between the identified actors. This phase enables those ac-
tors that have access to the previously identified information
items to be discovered, or makes it evident where access to
information items is not yet possible and, (i) adaptations
to applications to enable the discovery or creation of actors
that have access to information items and can record them
to provenance stores.

The PrIMe methodology provides a step-by-step guide to
making applications provenance-aware, and is vital to the
development of provenance-aware applications. Application
developers and users will only consider making their appli-
cations provenance-aware if they can see a clear and easy
way to modify their applications to provide this function-
ality. Any development is a trade off between the effort
and resources required to effect the development and the
gains to be made by doing so. The availability of PrIMe
for developers and users of applications helps to ensure that
the effort required to make applications provenance-aware is

minimised.

9.
1]

2]

REFERENCES

The Provenance Challenge.
http://twiki.ipaw.info/bin/view/Challenge/WebHome,
2006.

S. Alvarez, J. Vazquez-Salceda, T. Kifor, L. Varga,
and S. Willmott. Applying provenance in distributed
organ transplant management. In L.Moreau and
I.Foster, editors, LNCS: Proceedings of the
International Provenance and Annotation Workshop
(IPAW’06), volume 4145. Springer-Verlag, 2006.

P. Buneman, S. Khanna, and W. Tan. Data
provenance: Some basic issues. In Foundations of
Software Technology and Theoretical Computer
Science, 2000.

P. Buneman, S. Khanna, and W. Tan. Why and
where: A characterization of data provenance. In Int.
Conf. on Databases Theory (ICDT), 2001.
C.Alexander, S. Ishikawa, and M. Silverstein. A
Pattern Language. Oxford University Press, 1977.

S. C. Filman, R.E.; T. Elrad. and M. Aksit.
Aspect-Oriented Software Development. Addison
Wesley, 2004.

P. Groth, S. Jiang, , S. Miles, S. Munroe, V. Tan,

S. Tsasakou, and L. Moreau. An Architecture for
Provenance Systems. Technical report, Electronics and
Computer Science, University of Southampton, 2006.
P. Harman and M. Watson. Understanding UML, The
Developers Guide. Morgan Kaufmann, 1998.

S. Jiang, P. Groth, S. Miles, V. Tan, S. Munroe,

S. Tsasakou, and L. Moreau. Client side library design
and implementation. Technical report, Electronics and
Computer Science, University of Southampton, 2006.
G. Kloss and A. Schreiber. Provenance
implementation in a scientific simulation environment.
In L.Moreau and I.Foster, editors, LNCS: Proceedings
of the International Provenance and Annotation
Workshop (IPAW’06), volume 4145. Springer-Verlag,
2006.

L.Moreau and I.Foster, editors. International
Provenance and Annotation Workshop (IPAW’06),
volume 4145. Springer Verlag, 2006.

J. Rambaugh. Object oriented Modeling and Design.
Prentice Hall, 1991.

W. F. P. G. Sylvia C. Wong, Simon Miles and

L. Moreau. Provenance-based validation of e-science
experiments. In In Proceedings of 4th Internation
Semantic Web Conference (ISWC’05), november 2005.
A. G. Woodruff. Data Lineage and Information
Density in Database Visualization. PhD thesis,
University of California at Berkeley, 1998.

M. Wooldridge, N. R. Jennings, and D. Kinny. The
GAIA methodology for agent-oriented analysis and
design. Journal of Autonomous Agents and
Multi-Agent Systems, 3(3):285-312, 2000.

J. Zhao, C. Goble, M. Greenwood, C. Wroe, and

R. Stevens. Annotating, linking and browsing
provenance logs for e-science. In Proc. of the
Workshop on Semantic Web Technologies for
Searching and Retrieving Scientific Data, 2003.

