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Abstract

Agents with partial observability need to share in-
formation to achieve decentralised coordination.
However, in resource-constrained systems, indis-
criminate communication can create performance
bottlenecks by consuming valuable bandwidth.
Therefore, there is a tradeoff between the utility at-
tained by communication and its cost. Here we ad-
dress this tradeoff by developing a novel strategy to
make communication selective based on informa-
tion redundancy; ensuring communication only oc-
curs when necessary, while maintaining acceptable
coordination. We apply this strategy to a state-of-
the-art communication protocol to evaluate its re-
source saving benefit in a distributed network rout-
ing problem. Furthermore, we design a mecha-
nism to adapt its selectivity level to the prevail-
ing resource constraints to ensure further improve-
ments. Empirical studies show our selective strat-
egy achieves relative savings in bandwidth usage
of 50-90%, with only a 5-10% relative reduction in
coordination effectiveness and the adaptive strategy
further improves relative bandwidth usage by up to
10% and also relative coordination effectiveness by
up to 12% over the non-adaptive approach.

1 Introduction
In many distributed systems, such as sensor networks, P2P
systems, and grid applications, decision-making is performed
by individual agents in a decentralised fashion under incom-
plete global knowledge. Now, to effectively coordinate their
actions under these circumstances, the agents need to share
information [Xuan et al., 2001; Goldman and Zilberstein,
2003]. Specifically, the fact that such exchanges can signif-
icantly improve distributed task processing has been shown
in [Dutta et al., 2005] where a state-of-the-art information-
sharing protocol is developed. However, their solution does
not consider communication cost, which is the extra band-
width required for communication and is limited in all prac-
tical applications. Given this, this paper develops a novel de-
centralised strategy that agents can employ to decide when
to exchange information. This strategy is practical for real-
istic applications and balances the need to communicate (to

improve coordination) with the need to reduce overhead (to
save valuable bandwidth).

In more detail, the issue of planning when to communi-
cate is a non-trivial problem. In particular, Goldman and Zil-
berstein [2004] show that solving this problem optimally is
intractable. Given this, a number of non-optimal solutions
to the problem have been proposed. For example, in [Gmy-
trasiewicz and Durfee, 2001], agents communicate to im-
prove their own utilities, but this may be at the expense of
the overall system performance. Zhang et al. [2004] require
all possible communication acts of agents to compute team
utility gained due to communication: an impractical proposi-
tion in real applications. The algorithms to solve the DEC-
MDP formulation in [Shen et al., 2003] need expensive of-
fline planning and so cannot readily be applied to dynamic
environments. Finally, centralised solutions are equally in-
applicable [Haas et al., 2000] as they are not scalable and
present a single point of failure.

Against this background, this paper presents a compro-
mising but scalable approach: agents exchange information
selectively such that it improves coordination, but without
incurring the high costs associated with computing exactly
when it is best to communicate. Here, the main challenge
is to find the right level of selectiveness that will restrict
resource usage, thereby allowing its use for realistic task
processing, while limiting performance degradation to non-
significant levels compared to strategies that permit uncon-
strained communication.

To design our information-sharing algorithm for efficient
task processing and resource usage, we use information re-
dundancy as the parameter for agents to decide when to
communicate. Specifically, we build upon the information-
sharing algorithm of [Dutta et al., 2005] which represents
the state-of-the-art in this area (having been shown to out-
perform Littman’s Q-routing, Stone’s TPOT-RL, and broad-
cast protocols). This benchmark algorithm distributes local
knowledge among cooperative agents after they jointly com-
plete a task. We call this approach non-selective information
exchange (NSIE) as information is shared every time a task
is completed without considering resource constraints (Sec-
tion 2). Here, we extend this approach by including a level
of decision-making among agents before distributing local
knowledge. Thus, after jointly completing tasks, the agents
now choose to communicate or not depending on whether



the information transmitted would be useful or redundant to
the recipient (Section 3). Such redundancy is captured using
a selectivity threshold,

���
, which is by how much the cur-

rent information (the value of an agent’s local state) differs
from what was previously transmitted. Now, various selec-
tivity values affect a system’s performance differently: the
higher the threshold, the more restricted the communication,
which lessens coordination quality but takes up less resource.
To improve resource usage still further, we then develop an
algorithm for adaptively setting the selectivity threshold so
that its level can be chosen according to the prevailing con-
text. This allows more informed communication decisions,
thereby reducing bandwidth usage and also increasing coor-
dination effectiveness compared to using a fixed threshold.
We then empirically assess the effectiveness of our selective
information exchange (SIE) and adaptive selective informa-
tion exchange (ASIE) protocols by comparing their perfor-
mances against NSIE (Section 4). In particular, for a dis-
tributed task processing problem, we measure the amount of
degradation (if any) in the quality of solutions and the amount
of savings (if any) in resource usage achieved by our strate-
gies compared to NSIE. The evaluations are carried out on an
exemplar problem: distributed network routing. This is the
same domain used in [Dutta et al., 2005] which allows valid
comparisons. That our SIE approach extends the state-of-the-
art significantly is confirmed by these empirical studies: SIE
achieves a 50-90% saving in bandwidth usage while reducing
throughput by only 5-10% compared to NSIE across various
network environments. ASIE further improves relative band-
width usage by about 10% and also the relative throughput by
about 12% compared to SIE.

2 Routing in Resource-Constrained Networks
This section outlines the call routing application on which our
selective information exchange protocol is evaluated. Note,
however, our protocol is generic and can be used to conserve
bandwidth in any system with resource constraints and using
information-sharing at some level to operate efficiently. Also
note, in systems where communication is different from ex-
changing state values (as happens in our application), we need
a suitable way of formalising the redundancy metric.1 In our
application, each node communicates directly with those that
are within its communication range. The system’s task is to
connect a call between the node where the call originates and
the one where it is destined. The originating node forwards a
call setup request to one of its neighbours. As each agent only
has local information, it chooses that neighbour for which it
estimates that the call would be placed via the most efficient
overall route.

Specifically, each node � maintains a routing table ����� ,
where each element �	� ��

������� ( � : the destination node, � :
a neighbour of � ) represents � ’s estimate of the best end-to-
end bandwidth availability in going from � to � . Node �
chooses a neighbour � using a Boltzmann distribution over
its ����� values: ����� 
��������! #"%$ &�'( � / )+*,�%�-� 
��.���/�0 #"%$ * '( � , where1 is the importance given to higher �	� values. Each node
chooses the next hop until the call setup request reaches the

1E.g., a measure of the “distance” between information elements.

destination. After this happens, the destination sends “up-
stream” along the call route an ack message indicating a
successful call connection. Each node � also appends its
state value to the ack. In this application, a node’s state is
the bandwidth available expressed as a fraction of the max-
imum availability. Thus, a node 2 receiving the ack from
the immediate “downstream” node 3 gets the set of state val-
ues that were appended by all “downstream” nodes on this
call route. Node 2 then updates its RT as: ����4 
5�6� 3 �87

!9	:<;=� �	�>4 
5�6� 3 �=?@;BAC
 �%D �FE#E#EG� � " � , where AH
I� is an aggrega-
tion function on a set of node state values, and ; is a discount
factor ( JLK ; K 9 ). Here, we choose A as the minimum of the
set of states since it is the minimum available bandwidth that
determines the maximum number of calls on a given path.

The above description of information exchange after every
call connection is called non-selective information exchange
(NSIE) which is the approach of [Dutta et al., 2005] and,
therefore, treated as the baseline algorithm in this paper. In
NSIE, information exchanged via the ack messages is signif-
icant in updating RTs and, hence, performing decentralised
routing efficiently. On the other hand, these messages con-
sume valuable bandwidth and, hence, act as overhead. The
larger the ack’s size is, the more the bandwidth it con-
sumes. To counter this, we make information exchange selec-
tive to restrict the ack size. Thus, we are essentially solving
the problem of controlling resource usage by communication,
while retaining system performance.

3 The Information Exchange Strategies
The state value that a node transmits to another at a given time
can be identical to what it sent to that node on the previous
occasion. This happens if, since the last transmission, exactly
as many new calls have been connected through this node as
existing calls on this node have terminated and, hence, the re-
sultant bandwidth availability on this node is unchanged. In
general, an agent’s local state can be identical or similar in
terms of information content to what it perceived when it last
communicated its state. In such cases, sending state informa-
tion is redundant and can be discarded. The goal, therefore,
is to communicate only when there is a significant enough
change in an agent’s state. Making information exchange se-
lective (SIE) in this way, the ack size can be reduced. To
this end, we discuss the requirements and the design of SIE,
how SIE affects system performance, and the notion of com-
munication selectivity. Finally, the adaptive (ASIE) protocol
is introduced.
Selective Information Exchange: To implement SIE, a
node should have the following:
Transmitter memory ( M ): To store the state values sent to
each neighbour on the most recent transmission. So, M �N
O��� is
the most recent state-value transmitted by � to neighbour � .
These are compared against the current state value to deter-
mine a redundancy. Thus, a node � needs a memory of sizeP/Q � P , where

Q � is its set of neighbours, for its decision of
when to transmit.
Receiver memory ( R ): To store the state values received
from any other node on the most recent transmission from the
latter. So, R ��
 � � is the most recent state-value received by �
from � . Thus, � uses this stored value to update its RT when



it receives an ack that does not include the current state of � .
This happens if � detects a redundancy and does not transmit.
On the other hand, when it receives the state value of � (when
� has not identified a redundancy), it replaces R � 
 � � with this
value and updates its RT with this new information. Thus, a
node � needs a memory of size

P � P : 9 , where
�

is the set of
all nodes, for its RT-update decision.

Given M and R , a formal description of the selective infor-
mation exchange decision and RT-update action follows:
Transmitting State Value Selectively. In SIE, a node �
( 9 K@��� � ) transmits its state to its “upstream” node �%� : 9��
if:

� ���� M �N
 � : 9�� 
!9/� . If condition (1) holds and � transmits
its state

� � to �%� : 9	� , then � updates M � 
 � : 9/� to: M � 
 � : 9/� � � � E
However, if condition (1) is not true, then � does not append� � to the ack before sending it to �%� :@9�� .
Updating RT. A node � ( 9 � � K � ) uses the following
set of state values of the “downstream” nodes to update its
RT: � ��
�
��� P � � 9��%EGE#E#�%

� : � ��� ��
�
��� is the latest of R ��
 � ?� � and

� ����� � 
���� . In the values in (2), � determines the
“recency” of state information by checking if the value of
node ��� ? � � is present in the message. If it is, then �%� ? � � has
transmitted this value by determining that this transmission is
not redundant (using condition (1)). Then, � uses this value to
update its RT (as stated in Section 2) and also updates R �N
 � ?� � to be

� � ��� . However, if � does not find the state value of
�%� ? � � in the message, then it uses the last value received
from ��� ? � � , R � 
 � ? � � , to update its RT.

Using the above-mentioned, we now analyse the effects of
SIE on decentralised routing along different dimensions:
Memory size. Each node � needs a memory of size

PIQ � P + P� P
-1 to store R and M . Thus, memory size is linear with

the number of nodes, but remains constant at run-time. Now,
hardware memory is cheap and can be easily incorporated
into the nodes.
Message size. This has a positive correlation with band-
width use. It increases only if a node appends a state value.
Using SIE, therefore, the message size cannot be any more
than NSIE. In fact, node states remain unchanged over time
intervals when new calls do not originate and when existing
calls are ongoing. In these scenarios, SIE would restrict the
size of ack, thus reducing overhead and freeing up valuable
bandwidth.
Quality of routing table. Information exchange allows
RTs to remain up-to-date with the actual end-to-end band-
width availabilities. Now, since SIE restricts communication,
the concern is whether it adversely affects the quality of RTs
(hence, the overall routing quality). However, SIE prevents
information exchange only if it is identical to what has been
communicated previously. Thus, by storing in memory the
latest transmissions ( M ), any new information is guaranteed
to be transmitted. Hence, SIE keeps the RTs up-to-date in ex-
actly the same way as NSIE; so routing performance should
be as good as NSIE.

The definition of SIE implies that information exchange
is restricted only when there is an exact equality between
the current state-value and the one transmitted most recently.
This is a very restrictive condition for defining redundancy
and, hence, for information exchange being selective. It can

be relaxed from zero difference (condition (1)) by incorporat-
ing a “threshold difference” between present and past state
values. Such relaxation would further restrict information
exchange resulting in further bandwidth savings, although it
may deteriorate the quality of RTs.

In more detail, a threshold difference (TD) is the amount
of change in state-value that a node needs to observe before
transmitting its value. Thus, a TD of

��� � for node � implies
that � transmits to its neighbour � iff:

P � ��: M ��
 � � P�� �L� ��E 
�� �
The higher the value of

���
, the more selective the communi-

cation, the lower the number of transmissions, and the smaller
the message size (a large

���
implies nodes communicate only

when there is at least an equally large state-change). How-
ever, when

���
is small, nodes communicate for both large

and small state changes.
Adaptive Selective Information Exchange: In SIE, all
agents use a common, pre-set, threshold to communicate.
However, agents can choose different levels of communica-
tion selectivity and each such combination can affect the sys-
tem performance differently. Thus, SIE searches only a lim-
ited region of the solution space. We now alleviate this by
letting each agent choose adaptively its own TD over time
(thus, exploring a larger number of combinations of commu-
nication behaviours). By so doing, we could have a more
effective system by improving upon the efficiencies of both
task processing and resource usage than achieved by SIE. To
use such adaptive selective information exchange (ASIE), we
need to determine how an agent should choose a particular
TD at a given time. To do this, we use stored performance
profiles [Zilberstein and Russell, 1996] of a network.

In more detail, to generate performance profiles, we let a
single agent use SIE (with different TD values) and all others
use NSIE. Then, for each TD value, we measure the differ-
ence of this system’s performance from that where all agents
use NSIE. This determines how a single agent’s communica-
tion selectivity affects global performance over time and, in
turn, defines our performance profiles. Subsequently, ASIE
is implemented when each agent selects, at a given time, the
TD which generated the best performance profile. Thus, the
stored profiles are re-used at run time by each agent to dy-
namically select its own TD.

However, in selecting TD dynamically as described above,
the following points should be noted. (1) Our ASIE approach
is myopic since each agent considers only how its own com-
munication action influences global performance. Using es-
timates of the actions of other agents could generate better
performances, but is likely to cause practical difficulties in
terms of the computational complexity associated with such
estimation [Goldman and Zilberstein, 2004]. (2) The time-
indexed performance profiles are re-used in the ASIE system,
where, in fact, the system could be at a different global state
than it was at the same time when the profile was gener-
ated. Thus, the TD that generated the best profile at a given
time (and, thus, is selected in ASIE) can be different from
the one required in the ASIE system at the current time. To
alleviate this potential limitation, an agent needs to estimate
the global state: again, a practical problem. (3) We gener-
ate performance profiles by letting one agent use SIE. Now,
in a distributed system, the communication actions of differ-



ent agents can impact global performance differently. In this
case, the performance profiles of different agents will be dif-
ferent. Nevertheless, we assume that by choosing a “repre-
sentative” agent, we can generate a performance profile that
will be fairly close to those of any agent. Moreover, perfor-
mance profiles of multiple agents can be stored in case of
systems with heterogeneous agents.

4 Experimental Evaluation
For our experiments, we use the network simulator of [Dutta
et al., 2005]. We create different network environments by
changing the following simulation parameters so that the re-
sults on performance tradeoffs can be generalised.� Topology: Different network structures can affect system
performance differently, although we would want to establish
some general conclusions about performance trends. To this
end, we use a 36-node irregular grid topology (fig 1(a)) used
previously in [Boyan and Littman, 1993] to make valid com-
parisons. Also, two random topologies of 50 nodes (fig 1(b))
and 100 nodes (fig 1(c)) are used.� Traffic patterns: Both uniform and non-uniform network
traffic is used. In the former, a common call origination
probability (COP) exists for all nodes and remains constant
throughout an experiment. Thus, the network faces a steady
traffic inflow. In the latter, the COP is selected randomly per
node and then used to generate a call.� Information exchange algorithms: We compare SIE
against NSIE (with various TD values) by comparing their
routing quality and message overheads across different
topologies and load patterns. ASIE and NSIE are compared
similarly.

(a) 36nodes (b) 50nodes (c) 100nodes

Figure 1: Random topologies

We choose the following performance measures (as
per [Dutta et al., 2005]):� Call success rate (CSR): This is the fraction of the number
of calls originating that actually get connected to their des-
tinations. Given a network load and maximum node band-
width, the more accurate the routing tables, the more likely
it is that calls will be connected. Thus, CSR is a measure of
routing quality (the coordination effectiveness).� Message size (MS): The size of an ack message is the
number of state-values appended to it. The smaller the mes-
sage size, the higher the bandwidth saved (the more efficient
the information-sharing algorithm).

We study the impact of communication selectivity (TD) on
network performance. Such empirical results allow a system
designer or user to examine performance tradeoffs across dif-
ferent network environments. In this context, we can form
subjective hypotheses such as: (i) small TD generates good

Table 1: NSIE performance: uniform load

COP

Topology 1 Topology 2 Topology 3
CSR MS CSR MS CSR MS

Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev

0.1 0.487 0.003 3.86 0.022 0.493 0.003 3.52 0.015 0.287 0.003 4.026 0.042
0.2 0.328 0.001 3.16 0.014 0.363 0.002 2.95 0.009 0.217 0.002 3.31 0.023
0.4 0.213 0.0001 2.58 0.01 0.247 0.001 2.32 0.012 0.158 0.001 2.676 0.016
0.6 0.164 0.0004 2.26 0.009 0.191 0.0005 1.996 0.009 0.128 0.0006 2.365 0.016
0.8 0.134 0.0004 2.06 0.006 0.158 0.0004 1.80 0.007 0.108 0.0007 2.159 0.008

bandwidth savings and only slightly deteriorates call routing;
or (ii) high TD generates significant bandwidth savings but
significantly deteriorates call routing. In our experiments,
first, the CSR and MS of the SIE and ASIE are compared
against those of NSIE using uniform load, followed by us-
ing non-uniform load. The following parameter values are
used (as per [Dutta et al., 2005]): ; � J E J � , 1 � J E#9 , and
maximum number of simultaneous calls per node is 10.
4.1 Uniform Load
Each experiment uses a constant COP chosen from the set
��J EG9-� J E � � J E � � J E � � J E � � . Note, the higher the COP value, the
more calls originate and, hence, the higher the network load.
Performance of NSIE: Our baseline results (NSIE) are
summarized in Table 1, showing the steady state average CSR
and average MS values for different topologies. For all topolo-
gies, the average CSR decreases as the COP increases (calls
originating increase). With limited bandwidth (10 units per
node), as the COP increases, larger percentages of originating
calls fail to be connected. Hence, the CSR decreases. Also,
the average MS decreases with increasing COP. At higher
COPs, when all nodes generate large number of calls, only
the short-distance calls connect. Having limited bandwidth,
a node gets saturated with the calls that it originates. Then,
the extent to which a node routes calls originating elsewhere
decreases with increasing COP. Since ack size is determined
by the route length, MS decreases with less long-distance calls
connecting at high COP.
Performance of SIE: Table 2 shows the steady state aver-
age CSR and MS in the different topologies using SIE when��� � J E#9 . This is the minimum value that

���
can take

to have any communication selectivity, generating a baseline
SIE. For all other

���
, we get the same trends (excluded due

to limited space).
In Table 2, the trends in both CSR and MS are identical to

those in Table 1. However, both of these in Table 2 are lower
than the corresponding values in Table 1. Hence, SIE uses less
bandwidth than NSIE, but it has a slightly reduced call suc-
cess rate. We then compare these across all COP and

���
val-

ues by generating the relative differences of the average CSRs
and MSs as: CSR " ����� � 
 CSR 
 NSIE ��: CSR 
 SIE ��� /CSR 
 NSIE � ,
and MS " ����� � 
 MS 
 NSIE �H: MS 
 SIE ��� /MS 
 NSIE � . Thus, the
higher the value of CSR " ����� , the poorer is the solution quality
of SIE compared to NSIE. However, the higher the MS " ����� ,
the more efficient the communication of SIE.

Studying the CSR " ����� values (figure 2(a)) of topology 1,
we learn: (1) At any COP, for small

���
, the CSR of SIE is

very close to that of NSIE. Thus, when
��� K J E � , CSR " �����



Table 2: SIE performance (
���

= 0.1): uniform load

COP

Topology 1 Topology 2 Topology 3
CSR MS CSR MS CSR MS

Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev

0.1 0.484 0.002 1.938 0.015 0.492 0.004 2.455 0.016 0.274 0.003 1.89 0.02
0.2 0.325 0.001 1.50 0.011 0.363 0.002 2.067 0.011 0.212 0.001 1.60 0.011
0.4 0.207 0.0006 1.098 0.004 0.246 0.0009 1.612 0.006 0.156 0.0008 1.298 0.006
0.6 0.157 0.0005 0.891 0.006 0.190 0.0007 1.352 0.004 0.127 0.0006 1.124 0.005
0.8 0.128 0.0005 0.755 0.004 0.156 0.0005 1.18 0.003 0.107 0.0004 0.985 0.005

is less than 4.0% for any COP. When
�L�

is low, communi-
cation occurs for both small and large state-changes. Now,
small state-changes occur at any COP value because the orig-
ination and termination of few calls are more common than
a larger number. Larger state-changes, however, occur more
at higher COPs. Thus, for any COP, a low

���
value allows

frequent communication. This keeps the RTs updated fairly
well, thus, generating good call success rates (close to NSIE).
(2) At larger

�L�
, the SIE CSR is significantly lower than NSIE

when COP is small, but remains close to NSIE at higher COPs.
Thus,

�L� � J E �
causes a 32.0% CSR " ����� when COP is 0.1,

but it is only about 3.0% when COP is 0.8. High
�L�

al-
lows communication only for large state-changes. Now, large
state-changes are rare at small COPs when nodes are sparsely
occupied, and so is communication. Thus, the RTs are not
up-to-date, causing poor routing and reducing the CSR of SIE.
But, at higher COPs, large state-changes (and communication)
are more frequent; hence CSR of SIE is close to NSIE.

Studying the MS " ����� values (figure 2(b)) of topology 1,
we learn: (1) At any COP, the larger the

�L�
, the larger

is the MS " ����� value. Since communication reduces with���
, so does the MS of SIE (but not influencing the MS of

NSIE). These results confirm that larger bandwidth savings
are achieved by making communication ever more selective.
(2) At any

�L�
, a change in COP does not significantly change

the MS " ����� value. Thus, SIE maintains a uniform advantage
over NSIE in terms of saving bandwidth for all COP values.

In summary, the significant result is that the bandwidth us-
age improvement of SIE (up to 99%) clearly offsets its de-
grading in routing (as low as 35%). More typically, we obtain
30-80% improvement in bandwidth efficiency at the expense
of less than 5% degradation in routing quality. The results
from the other topologies show similar trends.

(a) CSR difference (b) MS difference

Figure 2: CSR and MS differences between SIE and NSIE

Performance of ASIE: We study ASIE on a regular 6 � 6
grid where the centroid is the representative node ( � � ) (sec-
tion 3). Here, performance profiles (��� ) represent time-
variations of the percentage deviations of global CSR and MS
between NSIE and the one where only � � uses SIE and all
others use NSIE. In ASIE, node � selects that

��� � which gen-
erates the least degradation in CSR for the COP value, at that
time, in the profile. It then uses this

��� � for its communica-
tion decision (equation (3)) until it chooses a new

���
. We

select a period of 1000 time steps for storing performance
profiles and, thus, for choosing a new

���
.

For each COP, we studied the frequency with which the
CSR of ASIE deviated from that of NSIE (figure 3). In each
graph, using a different COP, the x-axis shows the different
(percentage) CSR deviations between ASIE and NSIE. The
y-axis shows the (percentage) duration of a simulation run
for which the corresponding CSR deviation (the x-value) was
observed. Thus, in figure 3(a), a 6% CSR deviation was ob-
served (ASIE worse than NSIE by 6%) for 10.2% time of the
simulation. We conclude: (1) At smaller COP values, ASIE
performs better than SIE by generating CSRs that are closer
to the baseline NSIE. Thus, the majority of the CSR differ-
ences between ASIE and NSIE is 4-6% for COP less than 0.6.
For the same COP values, the mean CSR differences between
SIE and NSIE is 8-16% (measured on the same topology but
omitted here due to lack of space). So, the CSR of ASIE is
up to 12% closer to the benchmark than SIE, implying a fur-
ther improvement in the quality of task processing. (2) At
higher COP values, SIE performs slightly better than ASIE by
achieveing CSRs closer to NSIE. Thus, for COPs 0.6 and 0.8,
the CSR difference in ASIE is mostly 6-9%, while for SIE it is
4.5-5.6%. The slight decrease in ASIE performance compared
to SIE is due to the limitation of a myopic algorithm (ASIE)
in a dynamic environment (large COP).

Now studying the MS of ASIE and SIE, we observe: For all
COP, ASIE ensures higher bandwidth savings than SIE: ASIE
saves up to 85-100% compared to NSIE, which is greater (by
up to 10%) than the bandwidth savings of SIE compared to
NSIE (plots omitted due to limited space).

(a) COP = 0.1 (b) COP = 0.4

(c) COP = 0.6 (d) COP = 0.8

Figure 3: CSR difference between ASIE and NSIE



4.2 Non-Uniform Load
Having a dynamic COP (varies between 0.1 and 0.9), we mea-
sure performances over time instead of steady-state averages.

Performance of SIE: Figure 4 shows the percentage dif-
ferences of the CSR and the MS between SIE and NSIE for
topology 1 (other topologies show similar trends). We con-
clude: (1) The higher the TD, the smaller is the CSR of SIE
than NSIE (poorer routing than NSIE, figure 4(a)), and (2) the
smaller is the MS of SIE than NSIE (more bandwidth savings
than NSIE, figure 4(b)). More typically, 60-90% bandwidth
saving is achieved incurring less than 10% loss in CSR; fur-
ther confirming that SIE is more bandwidth efficient and its
advantage thoroughly offsets its limitation.
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Figure 4: CSR and MS differences between SIE and NSIE

Performance of ASIE: Here, we use the performance pro-
files of uniform load experiments using the 6 � 6 grid topol-
ogy. This is a myopic choice since, with dynamic load,
the COP values are different across nodes which was not
the case in uniform load. Now, at run-time, each agent es-
timates the average COP (

���� � ) at its node over the past �
(=1000) time steps. Then, it determines its

���
value as:�����
	���


& �-����� � 

���� � � ��� & ����� , where ��� CSR is the CSR per-

formance profile. The CSR and MS differences between the
above-mentioned ASIE system and NSIE are shown in fig-
ure 5. We also run SIE to compare it against NSIE (results
omitted due to space limitation). Our results show, with
non-uniform load, ASIE performed better than SIE over all���

. Thus, the mean CSR difference in figure 5(a), about
7%, is smaller than the minimum CSR difference, about 8.1%,
achieved by SIE across all

���
, and the mean MS difference in

figure 5(b), about 99.9%, is larger than the maximum MS dif-
ference, about 99%, achieved by SIE, across all

���
values.

A fixed TD for all nodes (as in SIE) is not an effective strat-
egy in dynamic load. Rather, the nodes should adapt their
communication behaviours; hence, ASIE outperforms SIE.

5 Conclusions
Our novel protocol for selective information-sharing effec-
tively trades off communication utility and cost in resource
constrained MAS. It uses information redundancy for com-
munication decisions to save bandwidth and achieve good
coordination. Furthermore, it adapts the selectivity levels us-
ing stored performance profiles. Empirical studies on a call
routing problem shows, compared to the most effective com-
munication strategy currently available, our protocol achieves

(a) CSR Difference (b) MS Difference

Figure 5: CSR and MS differences between ASIE and NSIE

significant bandwidth savings, while achieving only a slightly
lower throughput. The adaptive strategy achieves further im-
provements over the non-adaptive one.
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