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Abstract. Cooperative autonomous agents form coalitions in order to share and
combine resources and services to efficiently respond to market demands. With
the variety of resources and services provided online today, there is a need for
stable and flexible techniques to support the automation of agent coalition forma-
tion in this context. This paper describes an approach to the problem based on
fuzzy coalitions. Compared with a classic cooperative game with crisp coalitions
(where each agent is a full member of exactly one coalition), an agent can partic-
ipate in multiple coalitions with varying degrees of involvement. This gives the
agents more freedom and flexibility, allowing them to make full use of their re-
sources, thus maximising utility, even if only comparatively small coalitions are
formed. An important aspect of our approach is that the agents can control and
bound the risk caused by the possible failure or default of some partner agents by
spreading their involvement in diverse coalitions.

1 Introduction

In today’s increasingly networked and competitive world, the appropriate utilization of
pay per use Web services are considered as one major key to the success of commer-
cial service oriented business applications in domains such as e-logistics, tourism, and
entertainment. In the near future, intelligent service agents are not only supposed to
search for, interact with, and compose, but also negotiate access to, and execute such
Web services on behalf of its user, or other agents. In fact, they may exhibit some
form of economically rational cooperation by forming coalitions to share the created
joint monetary value while at the same time maximizing their own individual payoff.
According to classical microeconomics, means and concepts of cooperative game the-
ory are inherently well suited to this purpose. In this paper, we propose a protocol for
resource-bounded computational rational agents to automatically form risk-bounded
fuzzy coalitions in order to fulfill service requests with deadlines.

As opposed to traditional cooperative games, games with fuzzy coalitions allow the
agents to be members of multiple coalitions with varying degrees of involvement. The
notion of fuzzy coalitions was first introduced by Aubin and Butnariu (see [2, 5]) to
overcome some problems of traditional cooperative games in real-world settings. For
example, suppose that agent a; can independently benefit from cooperations with agent
as as well as with agent a3. To realise both opportunities, a coalition of all three agents



has to be formed, requiring as and as to agree on a coalition contract although they do
not cooperate otherwise. Another drawback of non-overlapping coalitions emerges in
the case of failure. If, in the above example, a5 fails its task, thus reducing the coalition
value, all members of the coalition are affected, including a3, although it is not actually
working together with as. In contrast, with fuzzy coalitions makes it is possible to
form a coalition for each service request, without preventing other requests from being
satisfied. This approach has the advantage that there are no unnecessary negotiations
and contracts between agents which actually do not work together.

Additionally, using fuzzy coalitions allows the agents to lower their individual risk
of monetary losses by participating in a number of coalitions, if coherent risk measure
are considered. Assuming that agents are able to assess other agent’s risk of failure in a
coalition, we show how such risk-bounded coalition formation can be done. In partic-
ular, we consider the membership of an agent in a coalition as an investment, since the
costly service execution takes place first. Rewards are received later only for success-
ful and timely execution. We thus allow the agents to specify individual risk bounds
in terms of the coherent financial risk measure fail conditional expectation (TCE). The
adherence to these bounds is guaranteed by the proposed coalition formation protocol
RFCFE.

But as it turns out, we cannot directly use the existing solution concepts for coop-
erative games with fuzzy coalitions. The approaches taken by Aubin, Butnariu as well
as Nishizaki and Sakawa (see [9]) all assume that the coalition value is a proportional
function of the agents’ membership degrees. As this assumption does not hold in our
setting, we introduce appropriate extensions of the excess and surplus. We then show
that it is possible to compute the surplus in polynomial time under some additional as-
sumptions, similar to the approach taken in [10]. Stearns transfer scheme can then be
used to compute Kernel-stable solutions for the game (see [11]).

The remainder of this paper is organized as follows: in section 2 we introduce our
service agent and coalition model. In section 3, we introduce our notion of fuzzy coali-
tion games among service provider agents. We then show how to compute the risk of
fuzzy coalitions and fuzzy coalition structures in section 4. Section 5 is concerned with
the stability of risk-bounded fuzzy coalitions. We propose our coalition formation pro-
tocol RFCF in section 6. In section 7 we discuss related work and conclude in section 8.

2 Agent Model

In this section we specify more precisely the environment of service agents that we
consider in this paper.
We consider two types of agents: service request agents and service provider agents.

Definition 1 Service Request Agent

A service request agent sra requests exactly one (possibly complex) service s and
some deadline d. It will pay a certain monetary reward r € R for a successful execution
of s before d. Otherwise, no reward is paid.

S RA denotes the set of all service request agents in the system.



On the other hand, service provider agents offer the execution of exactly one type of
service. They are assumed to be computationally bounded, i.e. to have only limited
resources per time for the execution of their service. For simplicity, we assume that the
execution time for a service instance is a linear function of the resources devoted to it.
This is reasonable in the case where the bounded resources are computing power and/or
memory, for example.

Definition 2 Service Provider Agent
A service provider agent spa offers the execution of exactly one service sspq and
has the following properties:

1. Service Composition

(a) spais able to send service advertisements for 5.

(b) given a requested service s and a set of service advertisements, spa has the
ability to compute service composition plans, each such plan is a list of adver-
tised services whose execution implements the requested service s.

(c) each element of a plan P is called a service instance of the respective service.

2. Service Execution

(a) spa can spend only some max. amount of resources per time in service execu-
tions.

(b) the minimum execution time of an instance i of sp, is denoted M (i.e. this is
the execution time if spa devotes all its resources to it).

(c) spa can split its resources and execute multiple instances of ssp, at the same
time. The fraction of resources per time (wrt. the maximum) devoted to the
execution of service instance i is denoted r;.

(d) the execution time t; of service instance i is

t; = l X t;nln
K3

(e) spamight not be able to detemine t™"™ exactly in advance, but is able to specify
a probability density function (PDF) pdfymin over the values it might take.

(f) there is a monetary cost for resource coﬁsumption of spa. We assume this is
constant, so that because of Definition 2.2(d) the cost cost; for executing ser-
vice instance 1 is also constant and does not depend on r;.

SP A denotes the set of all service provider agents in the system.

Note that because of the linear relationship assumed in Definition 2.2(d), it is easy to
obtain the PDF of the execution time of a service instance ¢ with a given fraction of
resources per time 7;:

pdfi,(x) = pdfymn (r; ) (1)

Example 1. As an example, we consider a medical service provider agent scenario. We
assume that there are a number of these agents in the system, each offering medical
information in one or more specific medical domains. A specific set of symptoms of
a patient might have possible diagnosis in several domains. Thus, a full diagnosis as
response to a request from e.g. a medical doctor might require a set of provider agents



to collaborate. We assume that the medical personnel will request this information with
specific deadlines to ensure the timely treatment of patients. Suppose that agent spa;
gets a request from a doctor and realizes that it also needs spas to provide a feasible
diagnosis. spa; then estimates the runtime for its own service on the request and sends
coalition proposal to spas. spao then likewise estimates its runtime and sees that this
coalition might actually fail, producing high costs. However, spas has a further request
from agent spas. While forming just the coalition spa; is too risky for spas, it is ac-
ceptable if the coalition with spas is also formed.

3 Fuzzy Coalition Games of SPA Agents

In our setting, the capability of service provider agents to split their resources among
different service instance executions makes it possible for them to take part in several
service composition plan executions. This suggests to allow the agents to be a (par-
tial) member of several coalitions. For this purpose, a number of authors (most notably
Aubin, Butnariu and Nishizaki and Sakawa [2, 5, 9]) extended concepts from coopera-
tive game theory to allow for fuzzy coalitions, where each agent is a member only to
a certain membership degree. In our model, each fuzzy coalition will execute exactly
one service composition plan. The membership degree represents the relative amount
of resources they spend for their respective service instance executions in the plan. If
the same group of agents decides to execute an additional plan, it simply forms an addi-
tional fuzzy coalition. We also disallow any members that are not actually involved in
the execution of P.

Definition 3 Fuzzy Coalition of Service Provider Agents
Let there be a request for a service ws from a service request agent sra and a plan
‘P whose execution satisfies ws.

1. SPAp C SPAis the set of service provider agents involved in P.
2. The fuzzy coalition of service provider agents C for sra and P is written as

C = (spay/mems, ..., spay/memy, sra, P)

with k = |SPAp|, spa; € SPAp, 1 < j < k; mem; € [0,1] is a guaranteed
minimum for the fraction of resources per time r; devoted by spa; to any i of its
service instances in P. _

3. mem(spa, C) is agent spa’s membership in C.

4. We write spa € C if spa is a member of C with some positive membership, i.e.
mem(spa,C) > 0.

5. CCC’ if Vspa € C: mem(spa,é) < mem(spa, C~”) where C and C' are fuzzy
coalitions for the same service request agent and plan.

6. C(sra,plan) denotes the set of all fuzzy coalitions C' = (., sra, plan).

7. |C| is the number of agents in C.

We also denote “fuzzy coalition” or just “coalition” instead of “fuzzy coalition of ser-
vice provider agents” where the context is clear.



Because of the deadlines for service requests, C either earns the reward r for the
successful and timely execution of P from the requesting agent, or nothing otherwise.
To specify coalition values for fuzzy service provider agent coalitions, we thus need
to consider its probabilities of failure and success. For simplicity, we assume that the
execution times of service instances are independent of each other and that the services
in a plan P are executed sequentially. Then, the total execution time of P is the sum of
the execution times of the individual service instances:

tp = Zti 2

i€P

The PDF of the sum of two independent random variables A and B is given by the
convolution integral over their individual PDFs pdf 4 and pdfg(see, e.g., [8], p. 113).
ILe., with x € R:

pdfayp(z) = (pdfa * pdfp)(z)

= /0 pdfa(y)pdfs(x — y)dy (3)

For a plan P with m € N service instances, the PDF of its execution time is therefore
an m — 1 fold convolution over the individual service instance execution time PDFs.
With z € R™ (it is sufficient to consider only positive values since execution times are
always positive).

For specific cases, there exist simple analytical solutions of the convolution. E.g., the
convolution of two normal PDFs is again normal, as is the convolution of a normal
PDF with an exponential one. But this is not the case for arbitrary distribution types.
Fortunately, there are alternative ways to obtain the convolution, such as the pointwise
multiplication of the Fourier Transform F' of the PDFs:

f*g=F Y F(f)F(9)) )

The Fast Fourier Transform algorithm efficiently approximates the Fourier Transform
with complexity klog k, where k is the number of sample points taken from the func-
tions.

Suppose the agents executing a plan P agree to start the execution at time ¢,. With the
PDF of the execution time of a plan P and the deadline given for the respective service
request, it is then easy to determine the probability that the plan execution exceeds this
deadline, which we call the probability of failure (PoF'):

oo

PoF(P,ts,d) = / pdfi, (z)dx 6)
d—t,

Note that for d < t,, we always have PoF(P,ts,d) = 0, since the plan execution time
must be positive. Similarly, the probability of success (PoS) is:

PoS(P,ts,d) = 1 — PoF(P,t,,d) (7)



Given the membership degrees, the PDF over the upper bound #; for the execution
time of a service instance ¢ € P of agent spay, is, analogous to 1,

pdf;, (x) = pdfypn (memy, + ) ®

According to 4, we can then obtain the PDF of the upper bound ¢p for the execution
time of the complete plan, and thus the probabilities of failure and success of the fuzzy
coalition, denoted PoF'(C') and PoS(C), resp. This enables us to determine a lower
bound for the expected reward for C , denoted r &

ra = PoS(C) xr )

To specify a value for the fuzzy coalitions, we further have to consider the costs that are
generated by the service executions. The agents should reasonably stop the execution
once the deadline is reached, since no additional reward can be obtained by any further
work. However, to simplify things, we consider only the worst case, i.e. the case where
maximum costs have been produced even if the coalition fails.

Definition 4 Value of a Fuzzy Service Provider Agent Coalition _
Let there be a fuzzy coalition C with plan P. The value v(C) of C, also called
coalition value, is defined as

v(C) = e — Zcosti

i€P

Although fuzzy coalition structures allow the agents to be a member in several coali-
tions at the same time, we still have to require that each agent does not allocate more
resources to coalitions than it can actually provide. Formally, we have

Definition S Feasible Fuzzy Coalition Structure
c

For a fuzzy coalition C, let memsg,, denote the membership degree of spa in C,

with memscpa = 0 if spa is not member of C. A feasible fuzzy coalition structure S for

the agents in SPA is defined as a set of fuzzy coalitions with

Vspa € SPA : Z memC <1 (10)

spa
Ces

4 Risk of Fuzzy Coalition Structures

Given a variety of combination of coalitions that the agent can possibly join, rational
agents will prefer coalitions with a high reward and a low PoF, i.e. a high expected
value. But assume there is a coalition with a high expected value, but which also in-
volves very high costs. If an agent cannot afford to lose more than some amount with-
out compromising liquidity, even a low PoF' of the coalition might be still too risky.
To control and avoid such situations, a number of financial risk measures have been
introduced in the literature (for a recent overview, see [7] and references therein).



For the definitions in the remainder of this section, we follow Artzner et al.[1],
omitting certain details which are not important in our setting. Also, where Artzner et
al. speak of positions (meaning investment positions), we speak of strategies, meaning
an agent’s decision with whom to coalesce and service requests to work on. Lastly, note
that the definitions of V a R and other measures in [1] include the reward of a reference
investment (e.g. interest rates) as a scaling factor, which we omit here for simplicity.

Definition 6 Risk and Measure of Risk

Let (2 denote the set of states of nature, and assume it is finite. Considering {2 as the
set of outcomes of an experiment, we compute the final net worth of a strategy for each
element of (2. Risk is the investor’s future net worth, which is described by a random
variable. Let G be the set of all risks, that is the set of all real valued functions on (2. A
measure of risk r is a mapping r: G — R.

According to [7], a widely known and used one is the Value-at-Risk (VaR), which
also has become part of financial regulations. VaR calculates how much one may lose
during a specified period given a probability and the capital should be used to control
the risk.

Definition 7 Value-at-Risk (VaR)
Given o € [0,1], the Value-at-Risk VaR® at level o of the final net worth X € G
with distribution P is

VaR*(X)=—inf{z e R: P(X <z) > a}
Artzner et al. also introduce the notion of coherent risk measures.

Definition 8 Coherent risk measure
With XY € G,z € R, a risk measure r is called coherent if it satisfies

. subadditivity: forall X, Y € G: (X +Y) <r(X)+r()
. translation invariance: 7(X + z) = r(X) — z

. positive homogeneity: ¥z > 0, r(zX) = zr(X)

. monotonicity: if X <Y thenr(Y) < r(X)

A W N~

As has also been shown in [1], VaR is not coherent, since it does not fulfill subadditiv-
ity. As it turns out (see below), this lack of superadditivity constitutes a major drawback
in the design of a risk-bound coalition formation algorithm. Fortunately, a number of
coherent measures which are derived from V aR have been proposed. Here, we employ
the tail conditional expectation (7T'C'E)) which is coherent for continous distributions.

Definition 9 Tuail Conditional Expectation: given a probability measure P on §2 and a
level a, the tail conditional expectation is defined by:

TCE*(X) = —Ep{X|X < ~VaR*(X)}



Using this measure, each agent spa; may individually specify a parameter «; and a
TC E-threshold tT'C'E;, expressing that it will only accept coalition structures which
satisfy

TCE> (’U,Z) S tTCEZ

where u; is agent spa;’s final net worth, i.e. the total net result from all coalitions it is
involved in.

Proposition 1 Let service provider agent spa; be a member in a fuzzy coalition C, let
cost; be the cost for spa; if C fails, and let uZ(C~') > —cost; be the payoff obtained by
spa; if Cis successful. The TC E% (5’) i.e. the TC E“ restricted to consider only spa;
and C, can be computed as follows:

TOE™(©) - { PoF(C)eost;(C) + PoS(C)(~ui(C)) PoF(C) <
cost;(C) PoF(C) > oy
Proof. Let X; be spa;’s net result from (~7 with X; = u; in case of success of Q and
X; = —cost; in case of failure. Consider the first case, i.e. assume that PoF'(C) <
«oi. Then Nthe Value-at-Risk, i.e. the TC E® restricted to consider only spa; and C~' is
VaR* (C) = —u; because P(X; < —cost;) = PoF(C) % ai, but P(X; < u;) = 1
(since PoS (5) =1- PoF(é)). Thus, the set of relevant outcomes considered in
TCE® includes both X; = —cost; and X; = u;. In the second case, with PoF’ (5) >
ai, we have VaR™ (C) = cost; because P(X; < —cost;) = PoF(C) > «i. Thus,
the set of relevant outcomes considered in T'C'E“ contains only X; = —cost;, and the
case X; = wu; is disregarded.

To obtain the TC' E* for a fuzzy coalition structure, we have to consider the proba-
bility of failure for each subset of fuzzy coalitions that spa; is involved in, as well as
the payoffs and costs for spa; in these cases. The following follows directly from the
independency of the PoF' of different coalitions and the definition of VaR.

Corollary 1 Let there be a fuzzy coalition structure S and let Sspq, C S be the subset
of all coalitions involving spa;. For each S, € 25 spe; (including the empty set) let
cost;(S%,a,) be the cost for spa; if all coalitions in S3,,, fail, and let u;(S%,,,) be the
net payoff obtained by spa; from the coalitions in Sspa, U S}, (i.e. the reward minus
costs for the successful coalitions).

The probability PoF(S%,, ) that the coalitions in S

spa;
« :
Sipa; Succeed is

spa;

spa; Jail while those in Sspq, N

PoF(S3,,.)= ][] PoF(C [T  Pos©)

Ces: éesspaimsgml

spa;

The VaR*i(S), i.e. the VaR® restricted to consider only spa; and S, is then

VaR* (S) = —ming. ysepa, {ti(Sipa,) : > PoF(S%,q,) > o}
' S pa, €25Pai

w; (S )<u1(S

spag spag)



Having VaR%i(S), the computation of the TC E%i(S) is straight-forward. Please note
that VaR*(S) and thus also TC'E®: depend on the agent’s payoff. But as becomes
clear in section 5, computing a stable payoff depends on the risk. Also, we have to
consider each element in the power-set of coalitions that spa; is involved in, making
the complexity of this computation exponential. However, by bounding the number of
coalitions an agent might be involved in, we obtain polynomial complexity. This is also
shown in section 5.

5 Stability of Fuzzy Coalitions Structures

In this section, we finally show how a coalition’s payoff should be distributed among
its members. Cooperative game theory traditionally deals with the question how this
can be done in a stable way. Stable means that no agent has a reasonable incentive to
break its coalition(s). For games with fuzzy coalitions, several such solution concepts,
including the Core and the Shapley Value, have been introduced in the literature[2, 5,
9]. Unfortunately, these assume a linear or even proportional relationship of the mem-
bership and coalition values. This does not hold in our case, because the coalition either
gets the payoff or not, while the membership values determine the involved risk. But
even considering the expected values does not help, since (a) the execution time of a
service instance is characterized by an %-relationship wrt. to the membership (see Def-
inition 2.2(d)) and (b) the actual probability of failure also depends on the underlying
distributions of the service instance runtimes which might be arbitrary. We thus intro-
duce a new variant of the excess which is compliant with out setting. Since the excess
is the basis for a number of solution concepts including the Core, Kernel and Nucleo-
lus, this allows us to use these concepts. In this paper, however, we consider only the
Kernel.

In crisp games, the excess of a coalition C' wrt. a given coalition structure S with C' ¢ S
quantifies the difference in payoff that the agents in C' obtain by forming C' and leaving
their resp. coalitions in S. Because each agent can be a member of only one coalition in
a crisp coalition game, they then do not obtain any payoff from their former coalitions.
But this is not the case in fuzzy coalition games. Here, it is possible to withdraw just
some membership and put it into a new coalition. However, not all coalitions might be
feasible wrt. the involved agents’ individual risk bounds. We consider such coalitions
not to be a feasible threat. Also, we exclude the case that an agent threatens to withdraw
any amount membership from an existing coalition such that its own risk bound would
be exceeded. While this makes sure that the hard risk bounds are taken into account, we
also have to consider that more membership means a better chance of success. Thus,
we regard the expected coalition values.

Definition 10 Excess of a fuzzy coalition

Let there be fuzzy coalition C and fuzzy coalition structures S and S' with Ces,
C & 8, S is feasible, and VC' € S',C" # C : 3C" € S : C'"CC". Further; let there
be a payoff distribution u. We define

&C. 8" W)irce =vrep(C S = Y di(S,S)

spa; eC



with

(C) ifVspa; € C : TCE*(S' UC) < tTCE;

~ n o y
Q|TCE(O’ 5) = {0 otherwise

and
d; = > o(C") —u(C*)

C+eS8,C’es!,C'CC*

In crisp games, for a given configuration (S, u), the surplus of an agent a; over another
agent ay, with a;, ar, € C € S is then defined as the maximum excess of all coalitions
including agent a; but without agent a. For games with fuzzy coalitions, however, it is
possible to threaten with a number of alternative coalitions at the same time. Also, only
a membership transfer from coalitions that include both a; and a; should be considered.
Finally, we require that all membership of a; from such coalitions is transferred.

Definition 11 Fuzzy coalition surplus
Let there be a fuzzy coalition structure S and payoff distribution u and agents a;
and ay,.

1. A feasible fuzzy coalition structure S’ with vC € 51,5 ¢ S:a;eCoa ¢ C,
VC € S,a, ¢ C:C €8 and3C € S : a;,a;, € C is called an ik-fuzzy surplus
structure.

The set of all ik-fuzzy surplus structures wrt. S is denoted SS;i(S)

3. The fuzzy coalition surplus of a; over ay, is

N

5 = ma d EcC.a
ik|TCE S/ess;f(S){ = (<, )ITCE}
a; €CeS’

To compute a fuzzy coalition surplus it is thus not only necessary to identify the best
set of agents that should form alternative coalitions when excluding the other agent,
but also to find the best membership values for them wrt. feasibility and the individual
agent risk thresholds.

Definition 12 Let Q);, denote a set of pairs (sra, P) with P satisfies the request from
sra, a; € SPAp and ay, & SPAp. For a feasible coalition structure S, let SS;,(Qir)
denote the set of all ik-fuzzy surplus structures S’ wrt. S such that for all pairs (sra,P) €
Qir there exists C' € é(sra, P) with C € S'. We define the function MazS(Qix, S, u)
to return S* € SS;,(Qix) such that ) 5(5',’12)‘TCE is maximized wrt. all

a; eCes~
other elements in SS;;(Qik)-

Because the service instance runtime depends on the spent resources and thus the mem-
bership values by a %-relationship (see Definition 2.2(d)), MazS has to solve a non-
linear optimization problem. The complexity to compute a fuzzy coalition surplus is
thus even worse than in the crisp case, where we have exponential complexity wrt. the
number of agents in the system because of the exponential number of possible coalitions
and excesses. Shehory and Kraus proposed to reduce this to a polynomial complexity
by limiting the maximum coalition size[10]. We achieve the same effect for the fuzzy



coalition surplus by not only bounding the number of agents in a coalition, but also the
number of coalitions that an agent threatens to transfer membership to as well as the
number of plans per set of agents.

Proposition 2 Let aMax € N be an upper bound for the number agents in a coali-
tion and CMax € N be an upper bound for all sets |Q;|, i.e. the number of new
coalitions including agent a; and excluding agent ay, in the computation of S, 7cE-
Let further PMax be an upper bound for the number of plans that involve the same
set of agents and let n € N be the number of agents. Then the number of sets Qy,
constrained by C Maz and V(sra,P) € Q. : P € PLANS, is less or equal than
n(aMaa:XPMax)éM”_

Proof. Tt was shown in [10] that the number of crisp coalitions with maximum size
aMax among n agents is bounded by n®"?* Because each set of agents might be
involved in multiple plans, this has to be multiplied P M ax to obtain the upper bound
for the number of considered coalitions. By the same argument as in the proof in [10],
the number of sets of these coalitions with maximum size C'Max is then bounded by
n(a]\/faa: XPMag)CMaew .

In crisp games, the kernel of a cooperative game (A, v) with respect to a given coalition
structure S is a set of configurations (S, u) wherein each pair of agents a;, aj, in each
coalition C' € § is in equilibrium wrt. their surplusses. That is the case if the agents
cannot outweigh each other in (S,w) by having the option to get a better payoff in
coalition(s) not in S excluding the opponent agent (agent ¢ outweighs k, if s;x > Sk
and ug > w;(C)). Fortunately, having defined the surplus also for fuzzy coalitions, we
can substitute it in this definition to obtain a definition for the kernel for games with
fuzzy coalitions.

Definition 13 Let there be a fuzzy coalition structure S and payoff distribution u. (S, )
is in the kernel of the fuzzy coalition game iff each pair of agents a;,ay in each fuzzy
coalition C' € S is in equilibrium wrt. their fuzzy coalition surplusses.

To make a payoff distribution kernel-stable for a given coalition structure, Stearns trans-
fer scheme can be used in the case of crisp games. The same can be applied here, since
a side-payment from one agent to another will increase the former agent’s payoff while
lowering the latter agent ones.

6 Coalition Formation Protocol RFCF

In this section, we propose a fuzzy coalition formation protocol that guarantees to form
coalitions which are in compliance with the agents’ individual risk bounds. The negoti-
ation is to be finished in a fixed amount of time in order to ensure a timely start service
executions. In order to achieve polynomial complexity in the negotiation, some compro-
mises have to be made. In particular, upper bounds for the risk of a coalition structure
can be obtained by either considering only the self-values of the agents instead the
actual utilities or by computing the risk for subsets of the structure and utilizing the



subadditivity of TCE. The main drawback of using upper bounds for the risk is that it
might prevent the formation of some coalitions which are then considered too risky al-
though they are acceptable. We thus propose to execute a parallel process to continually
improve the bound as long as there is time.

the

Before we give the actual definition of RFCF, we here provide a short outline of
protocol to emphasize the main ideas of the individual steps. In RFCEF, each agent

performs multiple tasks in parallel:

Composition Planning - Composition plans are generated. Since only agents that
can execute a plan together will form coalitions, this step is necessary to identify
possibly worthwhile coalitions.
Coalition Negotiation
1. Proposal generation - The agent computes fuzzy coalitions such that their for-
mation certainly leads to a feasible coalition structure while minimising the
membership values. This way, no more membership (i.e. resources) than nec-
essary is used, allowing the involved agents to possibly form additional coali-
tions later. A proposal is then send to the agents of the fuzzy coalition which
maximises the value per membership.
2. Proposal evaluation - From the received proposals, form feasible coalitions
with acceptable risk the and maximal value per membership
3. Payoff distribution and risk bound update - Use the transfer scheme to compute
the Kernel-stable payoff distribution. Compute the single-coalition TCE and
add it to previous coalition structure TCE bound to obtain an updated bound
on the coalition structure TCE.
Risk Measure Computation - Compute TCE for a new random subset of coalitions
to obtain a tighter bound for the coalition structure TCE.

In the following definition of the algorithm, we use the following functions and

constants:

‘P M az: the maximum number of plans to be considered for a set of agents

aM azx: the maximum coalition size

C M az: the maximum number of coalitions that an agent threatens to transfer mem-
bership to in the surplus computation

sra(P) Returns the service request agent for whose request P was generated.
findFuzzyCoalition(S, P, risk): Computes a fuzzy coalition C such that the
membership degrees in C' are minimized while S U C is acceptable for all agents
wrt. risk. Use C(sra(P),P) as a starting point. If risk = nil then compute
an upper bound for TCE®«(S U C(sra(P), P)), otherwise use risk as this up-
per bound. It is possible to efficiently implement this function by exploiting the
monotonicity of the TCE wrt. to the membership values. If this is not possible or
|C| > MaxCSize, return nil

makeStable(S): Computes a new stable payoff distribution u* for the fuzzy coali-
tion structure S using the transfer scheme (see 5) and the bounds PMax, aM ax
and CMaz.

Algorithm 1 RFCF

Each agent a performs:



Initialization:

setPLANS := ()

setPPPLANS := )
setPPPLANSRISK =)
setPROPS := new priority queue
setrisk, := TCE({a}/1)

LR BN~

Parallel Execution:

— Composition plan generation: repeat (until terminated)

1. Generate a new composition plan ‘P for a random service request and for a
set of agents for which the number of previously generated plans is less than
PMaz.

2. PLANS := PLANSUP

— Coualition negotiation: repeat (until terminated)

1. Proposal generation
(a) set BestCoalition := nil, BestPayof fper Membership := 0
(b) for each P in PLANS do:

i. C:= findFuzzyCoalition(S,P,nil)
ii. if C = nil then PLANS := PLANS \ P;
POSTPONEDPLANS := UP ;next 1b
iii. ifv(C)/|C| > BestPayof fperMembership then
PLANS := PLANS \ P; BestCoalition := C;
BestPayof fper Membership := |5|
(c) if BestCoalition = nil then for each P in POSTPONEDPLANS
do:
i. if PPPLANSRISK contains (P,.) then
C := findFuzzyCoalition(S, P, PPPLANSRISK (P))
ii. lfé = nil then next 1b
iii. ifv(C)/|C| > BestPayof fperMembership then
PPPLANSRISK := PPPLANSRISK \ P;
BestCoalition := C; BestPayof fper Membership := \5|

2. send (BestCoalition, BestPayof fper Membership) as a proposal to all
other agents

3. Proposal evaluation
(a) receive coalition proposals from all other agents and self
(b) for each non-nil proposal (C, ppm), put C' in PROPS with priority ppm.
(c) set S* =)

(d) while PROPS is not empty do B
i. get and remove the highest priority coalition C from PROPS
ii. if C is feasible, set S* := S* U

4. Payoff distribution and TCE update
(a) setu* = makeStable(S U S*)

(b) do atomically: set S := S US* and u := u*

(c) setrisky = risk, + ) zcg. (TCEL(C))



— Risk measure computation of current structure: repeat (until terminated)
1. randomly choose a previously unconsidered subset S* from S,
2. risky = riske — Y g g. TCEL(C) +TCE,(S*)
— Risk measure computation of potential structures for postponed plans: repeat (until
terminated)
1. Randomly choose P from PPPLAN S suchthat (P,.) ¢ PPPLANSRISK
2. Compute exact TCE“*(S U C(sra(P),P)) and
put (P, TCE*(SUC(sra(P),P))) into PPPLANSRISK
— Termination of negotiation
1. Wait(ExecutionStartTime)
2. terminate all other tasks
3. start service instance execution in my coalitions; terminate

Proposition 3 The runtime of the coalition negotiation section of the RFCF is polyno-
mial.

Proof. In the proposal evaluation, each agent orders the coalition proposals in the same
way in the priority queue since the priority is defined as payoff per membership which
is a global measure. Because of the bounds used in the surplus computation, the payoff
distribution is done in polynomial time (see 5). All other steps in the coalition negotia-
tion section are of less complexity.

7 Related Work

In the research field of fuzzy coalition formation, Nishizaki and Sakawa in [9] pro-
posed a number of algorithms to compute solutions according to their concepts. They
did however not propose a protocol that enables a coalition negotiation among compu-
tational autonomous agents. Also, as we have pointed out in section 1, they assume that
the coalition value is a proportional function of the agents’ membership degrees, which
does not hold in our case.

Shehory and Kraus considered the formation of overlapping but non-fuzzy coali-
tions. They however focus on maximising the joint payoff of all agents rather than
individual payoffs or minimising potential individual losses. In contrast, our approach
focuses especially on the latter points. Thus, the motivations and the properties of the
obtained solutions are very different.

There also exist approaches for the formation of non-overlapping coalitions which
take uncertainty in the coalition values into account. These are also suitable to tackle
the problem of reduced coalition values due to (partial) coalition failure in some cases.
Probabilistic approaches, such as [6], usually consider the expected values of coalitions.
This might lead to the case that a number of risk-neutral agents decide to form a high-
risk coalition, excluding risk-averse agents to cooperate with them because overlap-
ping coalitions are not allowed. In contrast, our approach allows for such cooperations
by forming additional coalitions. Approaches that employ fuzzy coalition values, such
as [3], account for a range of possible coalition values. However, the fuzzy coalition
values are assumed to actually be fuzzy numbers or intervals. But this assumption is
not compatible with our setting where a coalition value either produces a specific profit
or a specific loss.



8 Conclusions

We have studied a setting of cooperative service provider agents that form fuzzy coali-
tions in order to share and combine resources and services to efficiently respond to
market demands while bounding individual risk. We showed how a coherent risk mea-
sure, the TCE, can be used to assess the risk for agents when taking part in coalitions
to satisfy service requests with deadlines. By splitting resources among different coali-
tions, an agent might lower its overall risk. Despite previous work on fuzzy coalitions in
the literature, we found it necessary to give our own definitions for the fuzzy coalition
game, including the excess and surplus for fuzzy coalitions. This is because of unre-
alistic assumptions in the cited models that do not hold in our setting. In the surplus
computation, sets of alternative fuzzy coalitions have to be considered. As a conse-
quence, we had to bound not only the maximum coalition size, but also the number of
coalitions in these sets as well as the number of plans for a set of agents to obtain a
polynomial computation time for the fuzzy coalition surplus.

References

1. P. Artzner, F. Delbaen, S. Eber, and D. Heath. Coherent measures of risk. Mathematical
Finance, pages 203-228, 1999.

2. J.-P. Aubin. Mathematical Methods of Game and Economic Theory. North-Holland, 1979.

3. B. Blankenburg, M. Klusch, and O. Shehory. Fuzzy kernel-stable coalitions between ratio-
nal agents. In Proc. 2" Int. Conference on Autonomous Agents and Multiagent Systems,
Melbourne, Australia, 2003.

4. R. N. Bracewell. The Fourier Transform and Its Applications. McGraw-Hill Sci-
ence/Engineering/Math, New York, 3rd edition, 1999.

5. D. Butnariu. Stability and shapley value for an n-persons fuzzy game. Fuzzy Sets and
Systems, 4:63-72, 1980.

6. G. Chalkiadakis and C. Boutilier. Bayesian reinforcement learning for coalition formation
under uncertainty. In Proc. 3¢ Int. Conference on Autonomous Agents and Multiagent Sys-
tems, New York, USA, 2004.

7. S. Cheng, Y. Liu, and S. Wang. Progress in risk management. Advanced Modelling and
Optimization, 6(1):1-20, 2004.

8. G.R. Grimmett and D. R. Stirzaker. Probability and Random Processes. Oxford University
Press, 3rd edition, 2001.

9. I. Nishizaki and M. Sakawa. Masatoshi Fuzzy and multiobjective games for conflict reso-
lution, volume 64 of Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidelberg,
2001.

10. O. Shehory and S. Kraus. Feasible formation of coalitions among autonomous agents. Com-
putational Intelligence, 15(3):218-251, 1999.

11. R. E. Stearns. Convergent transfer schemes for n-person games. Transactions of the Ameri-
can Mathematical Society, 134:449-459, 1968.



