
Book Title
Book Editors
IOS Press, 2003

Building Agents that Plan and Argue in a
Social Context

Dionysis Kalofonosa, Nishan Karunatillakeb, Nicholas R. Jenningsb,
Timothy J. Normana, Chris Reedc and Simon Wellsc

a Department of Computing Science, University of Aberdeen
b School of Electronics and Computer Science, University of Southampton

c Division of Applied Computing, University of Dundee

Abstract. In order for one agent to meet its goals, it will often need to influence
another to act on its behalf, particularly in a society in which agents have heteroge-
nous sets of abilities. To effect such influence, it is necessary to consider both the
social context and the dialogical context in which influence is exerted, typically
through utterance. Both of these facets, the social and the dialogical, are affected by,
and in turn affect, the plan that the influencing agent maintains, and the plans that
the influenced agents may be constructing. The i-Xchange project seeks to bring
together three closely related areas of research: in distributed planning, in agent-
based social reasoning, and in inter-agent argumentation, in order to solve some of
the problems of exerting influence using socially-aware argument.

Keywords.Multiagent Planning, Argument Protocols, Social Reasoning, Negotiation.

1. Introduction

Negotiation is a key form of interaction in multi-agent systems. It is important because
conflict is endemic in such systems and because the individual agents are autonomous
problem solving entities that are typically concerned with achieving their own aims and
objectives. Given its importance, such negotiations come in many different shapes and
forms, ranging from auctions to bilateral negotiations to argumentation. Here we focus
on this latter kind of interaction because it offers perhaps the greatest degree of flexibility
out of all these many different types. However, this flexibility comes at a price. Specifi-
cally, conceptualizing, designing, and building agents that are capable of argumentation-
based negotiation is a major challenge. Given this fact, most work in this area is pri-
marily directed at the theory of such agents and those implementations that do exist are
somewhat primitive in nature. Moreover, much of the theoretical work in this area tends
to concentrate on a specific aspect of the negotiation and fails to provide a coherent over-
arching framework. Against this background, we describe our work in the Information
Exchange Project (i-Xchange) that seeks to rectify these shortcomings.

In more detail, this work seeks to integrate and pull together the following key com-
ponents of an agent’s activity as it relates to argumentation-based negotiation:

• The ability of an agent to devise a plan of action that takes account of the fact
that the agent is situated within a multi-agent community. Thus such an agent can
devise a plan that involves steps that will be performed by agents other than itself.

Social
Reasoning

Dialectical
Argumentation

Planning JUDE
Agent 0

Social
Reasoning

Dialectical
Argumentation

Planning
JUDE

Agent 1

SWI Prolog Runtime

Prolog Planner Prolog Planner

Dialogical
Exchanges

JUDE

JACK Kernel

Jack Agent Jack Agent

Figure 1. The structural components of thei-Xchange architecture

• For those actions that need to be performed by other agents, social reasoning is
required to determine what agents should be chosen to perform what actions. This
involves determining which agents are most suited for the task, which are likely
to be available, and which are likely to be the most reliable.

• Once the appropriate agents have been identified, the agent needs to determine the
most effective way of persuading these agents to perform the desired action. This
dialogical goal can be achieved through a variety of means such as by offering
rewards, making threats, or making use of social relationships that exist between
the agents.

By bringing together these key building blocks, we are able to produce a coherent frame-
work and software architecture for an agent that can perform a complete planning-acting
cycle in which argumentation is used as the basis for all social inter-changes. As well as
detailing the various components and their interfaces, we also demonstrate their opera-
tion in an e-Science scenario that has motivated much of this work.

2. The Information Exchange

The i-Xchange uses two multiagent system frameworks; JACK and JUDE (the Jack-
daw University Development Environment. JUDE is a lightweight, flexible, industrial-
strength agent platform that uses a modular approach to agent development. This enables
domain specific functionality to be encapsulated into a module which can be dynamically
loaded into an agent at runtime. Individual agents within thei-Xchange are represented
by JUDE agents composed of a number of modules. A proxy module incorporating a

communications bridge allows a 1:1 relationship with JACK agents. The reason for the
use and integration of multiple disparate frameworks is twofold, firstly it allows existing
domain specific software to be used without reimplementation, and secondly it demon-
strates that agents can be developed under different extant frameworks and integrated
into a single heterogeneous MAS.

An i-Xchange agent is composed of three modules offering domain specific func-
tionality. These are the planning, social-reasoning, and dialogical argumentation modules
which are discussed through the remainder of this section. Figure 2 gives an overview
of the components and modules that comprise the infrastructure for ani-Xchange MAS.
Modules communicate with each other to provide aggregate behaviours. Inter-module
communication is achieved by passing data objects between modules. Two such objects
are theservice requestand theproposal. A service request is created by the Planning
module to encapsulate a partial plan consisting of a set of actions and the name of an
agent committed to perform the actions (initially set to⊥). A proposal is created by the
dialogical argumentation module during a dialogue to encapsulate a service request re-
ceived from another agent and any associated social issues. Figure 2 shows a complete
circuit of communication for a simple enquiry dialogue between the six modules incor-
porated in a pair ofi-Xchange agents.

D

R

P

D

R

P

Service serviceID, result evaluationID, result

ProposalgoalID, resultDialogueGoal

[1] [2]

[3] [4]

[7] [8]

[5] [6]

ServiceEvaluation

proposalID, result

Figure 1: Interface Diagram

• Planner and Reasoner - Interactions 1 & 2
– Interaction 1

∗ Content: Service.java Action.java
∗ Method: PlannerReasonerIF - addServiceRequest(Service)

– Interaction 2
∗ Content: serviceID, result
∗ Method: ReasonerPlannerIF - addServiceResponse(String, String)

• Reasoner and Dialgoue - Interactions 3 & 4
– Interaction 3

∗ Content: DialgoueGoal.java
∗ Method: ReasonerDialogueIF - addDialogueGoal(DialogueGoal)

– Interaction 4
∗ Content: goalID, result
∗ Method: DialogueReasonerIF - addDialogueResult(String, String)

p

• Dialgoue and Reasoner - Interactions 5 & 6
– Interaction 5

∗ Content: Proposal.java Parameter.java
∗ Method: DialogueReasonerIF - addProposal(Proposal)

– Interaction 6
∗ Content: proposalID, result
∗ Method: ReasonerDialogueIF - addProposalResponse(String, String)

2

Figure 2. Basic inter-module and inter-agent communication pathways. The modules P, R, and D on the left
constitute the initiating agent, iXchangeagent0, and the modules P, R, and D on the right constitute the recipient
agent, iXchangeagent1.

2.1. Planning

The planning module makes use of the Graphplan algorithm first introduced in [1] which
we have implemented in Prolog. Let us discuss the algorithm in detail and present our
extensions for the extraction of services from the constructed plans and for service eval-
uation through the merging of services into the constructed plans.

A Planning graph is a layered graph with each layer consisting of a set of proposi-
tions and a set of actions (see figure 3). Each layer (named time-step) represents a point
in time, hence a set of propositions at a time-stepn represents a snapshot of the state of
the world at the time-stepn, while a set of actions appearing at a time-stepn contains all
the actions that are executable in the state of the world at time-stepn.

The graph consists of two kinds of nodes namely, the proposition nodes which form
the proposition sets at each time-step and the action nodes which are the instantiations

clear a

ontable a

clear b

ontable b

handempty ag

P1

pick-up ag a

pick-up ag b

noop

noop

noop

noop

noop

A1

holding ag a

holding ag b

clear a

ontable a

clear b

ontable b

handempty ag

P2

stack ag a b

stack ag b a

pick-up ag a

pick-up ag b

noop

noop

noop

noop

noop

noop

noop

A2

on a b

on b a

holding ag a

holding ag b

clear a

ontable a

clear b

ontable b

handempty ag

P3

Figure 3. A planning graph generated for a very simple blocks world problem (some nodes and edges are
omitted for clarity).

of the operators on the propositions of the time-step. The nodes within the graph are
connected with three kinds of edges:

Precondition edges:The precondition edges connect the actions nodes of a time-stepn
with their preconditions appearing in time-stepn.

Delete edges:The delete edges connect the action nodes of a time-stepn with their
negative effects appearing in time-stepn + 1.

Add edges:The add edges connect the action nodes of a time-stepn with their positive
effects appearing in time-stepn + 1.

For each action node placed into the graph a number of edges are generated that con-
nect the action nodes with their preconditions. Those edges are the precondition edges
(see figure 3:P1 – A1). Having placed the action nodes into the graph, Graphplan col-
lects their effects which are placed as propositions into the subsequent time-step (see
Figure 3:P2). Subsequently, Graphplan connects the action nodes with their positive ef-
fects through a set of add edges (see Figure 3:A1 – P2), and with their negative effects
through a set of delete edges.

Since the actions of the same time-step are applied on the same state with a finite
set of resources there is a potential that the actions will interfere during the consump-
tion of non sharable resources. In order to capture the conflicts that may arise through
the parallel execution of actions, Graphplan propagates binary constraints among the ac-
tions that appear in the same time-step. The propagated constraints are named mutual
exclusion relations (mutex for short) and their meaning is that only one of the two action
nodes marked as mutually exclusive can be performed at that time-step. The notion of ex-
clusivity extends to the propositions meaning that two propositions marked as mutually
exclusive cannot coexist at the same time-step.

At the completion of the generation of a time-step Graphplan tries to identify the
goals and ensure that the goals are mutex free at the newly generated time-step. If the

goals are present and mutex free, Graphplan performs a search within the generated
graph in order to extract a plan. The search starts from the goals going backwards (i.e.
towards the initial state). Moreover, the search is layered meaning that a new layer of the
graph is considered only when the current goal set is fully satisfied with the actions that
appear in the current layer. To make this more concrete let us have a look at our example
of planning graph shown in figure 3. Graphplan starts from 3:P3 where it tries to identify
the goals. Having found the goals Graphplan tries to support all the goals with a mutex
free set of actions from the previous time-step 3:P2. If that is not possible Graphplan
backtracks. If a set is found Graphplan generates a new goal set containing the precon-
ditions of the selected actions and repeats the process with the new goal set. The search
succeeds when Graphplan reaches the initial state. Upon the successful completion of
the search the extracted plan is returned (the extracted plan of our example is highlighted
in figure 3).

Having constructed a plan, the planning module fragments the plan into a set of ser-
vices. A service consists of a unique identifier of the service, and the name of the agent
that has committed to the execution of the service (initially set to⊥). More importantly, a
service contains a set of actions which are causally related on the actor who needs to per-
form them. For instance the highlighted plan of figure 3 consists of a service containing
the actions ‘pick-up ag a’ – ‘stack ag a b’ as the same actor who is going to pick up the
block needs also to stack it. An action consists of a literal representation of its instance
(in the Prolog formalism), and the point in time that it needs to be executed, hence the
precedence constraints among the actions of a service are explicitly captured within the
service.

Having received a service the planning module extracts the actions of the service and
tries to incorporate the actions into the plan in the time-steps defined in the service. If that
is achievable then the service is integrated successfully with the plan and the planning
component returns a positive reply (i.e.>), negative otherwise (i.e.⊥).

2.2. Social Reasoning

An agent planning and acting in a solitary manner has capabilities that are limited to
its own. Thus, the goals it can achieve by functioning as an individual entity are rather
constrained. The real potential of agents arises when these solitary entities begin to act
as communities. In such a context, opportunities exist for individual agents to compen-
sate for each other’s deficiencies by acting collectively, thereby achieving higher overall
performance as a system. A key mechanism for coordinating social interaction between
agents isnegotiation[2].

In abstract, negotiation is commonly viewed as a dialectic process that allows two
or more parties to interact and resolveconflicts of interestthat they have among each
other with respect some issues of mutual interest [3,4]. For example, in a situation where
a buyer agent attempts to purchase a car from a seller agent, there is a clear conflict
of interest between the two parties with respect to the price of the car. The buyer is
interested in paying the lowest price possible, whereas the seller is interested in gaining
the highest price possible (thus, the conflict of interest). Negotiation provides a means for
the two agents to resolve their conflict of interest by allowing them to come to a mutually
acceptable agreement. Thus, it can be observed that the ultimate goal of the negotiation
is to arrive at a mutual agreement and, thereby, resolve the conflict of interest present
among the different parties.

Negotiation is so central and fundamental because it provides the agents with the
means of influencing the behaviour of theirautonomouscounterparts. By definition, an
autonomous entity cannot be forced to adopt a certain pattern of behaviour. Thus, ne-
gotiation provides agents with the means to convince their autonomous counterparts by
forwarding proposals, making concession, trading options, and, by so doing, (hopefully)
arriving at a mutually acceptable agreement [5]. Apart from being used as a means to
achieve agreements, negotiation also underpins agents’ efforts to coordinate their activi-
ties, achieve cooperation, and resolve conflicts in both cooperative [6] and self-interested
[7] domains.

Increasingly it is argued that incorporating the ability to exchange arguments within
such a negotiation interaction mechanism not only increases the agent’s ability to reach
agreements, but also enhances the mutual acceptability of the agreement [8,9,10,11]. In
more detail, when agents interact within a multi-agent society, in most cases they do so
with imperfect knowledge about their own capabilities, preferences, and constraints and
those of their counterparts. When agents interact within such knowledge imperfections
they may lead to another form of conflict between the agents, termedconflicts of opin-
ion, which may hinder the the agents ability to reach agreements or lead them to sub-
optimal agreements with their counterparts. “Argumentation-Based Negotiation" allows
the agents to exchange additional meta-information such as justifications, critics, and
other forms of persuasive locutions within their interactions. These, in turn, allow agents
to gain a wider understanding of each others capabilities, preferences, and constraints,
thereby making it easier to resolve such conflicts that may arise due to incomplete knowl-
edge. In the current implementation the social reasoning component considers three im-
portant decisions; namely (i) what agent to argue with, (ii) what issues to argue on, and
(iii) within which ranges. The following considers these in more detail:

• What agent In considering which counterpart to interact with the social reason-
ing component considers two important aspects; first the structure of the society
and secondly the experience that it has gained in its past encounters. In most in-
stances, an agent society usually embodies a structure. Certain agents may act in
certain roles within the agent society which may lead to relationships with other
agents acting certain other roles. As a result of these roles and relationships agents
may obtain specific obligations to others and may gain rights to influence certain
others. These obligations and rights constitute social influences which can be con-
structively exploited in a society. In such a context, when considering the coun-
terpart to interact with agent could constructively exploit these social influences.
For instance, when negotiating for a certain service an agent may choose another
which already is obliged to provide this capability through the social structure.
Instead of randomly picking any agent in the society, using such a heuristic in
selecting its counterpart may make the interacting more efficient. Apart from the
social influences of the structure of the society, agents may also take into account
the experience gained in its past encounters. In more detail, if the agent has in-
teracted with that agent in the past to obtain a certain service, it may select the
same agent when it requires the same type of service again. This may enhance
the interaction being more effective since the agent already knows that it has the
capability to perform the required service, which may not always be the case in
selecting a random agent from the society.

• What IssuesOnce an agent has chosen its counterpart, the next main decision that
it needs to make are the set of issues to negotiate with. In the negotiation literature,
this set of issues is generally referred to as the negotiation object [5]. For example,
when two agents are negotiating the sale of a car they will address a number of
parameters such as price, warranty period, and after sale service. Each of these
will be a certain negotiation issue, whereas all of these issues taken together will
form the negotiation object. One of the advantages of using an argumentation-
based negotiation approach is that new issues can be introduced or the existing
once be retracted from the negotiation object during the argumentative encounter.

• What rangesFinally, the agent would need to decide the ranges (i.e., the upper
and the lower limits) for each particular negotiation issue that it should adhere
to during its negotiation encounter. The agent may have a certain objective for
each particular issue. For instance, the buyer agent may desire to minimise the
price paid while trying to maximise the quality or after-sales service parameters.
The seller on the other hand may wish to maximise the price while attempting to
minimise the after-sales service parameter. Thus, the upper and the lower limits as
well as the direction (maximise or minimise) would depend the agents individual
desire in the negotiation interaction. A rational agent wouldn’t make an offer that
costs the agent more than the expected benefit it aims to receive in return. Thus,
the upper limit of the all the negotiation issues would have a cost less than the
exacted benefit of buying that service. On the other hand, an agent would not
make an offer with a negative reward since it will be irrational for another agent
to accept such an offer. Between these upper and the lower bounds an agent can
derive a series of offers with a combination of issue value tuples that are viable
(cost is less than the benefit). This will give the set of proposals that the dialogue
module can use in its encounter.

These three components (the agent, the issues, and their respective ranges) compose
the dialogue object which is passed to the dialogical argumentation module. In the next
section we discuss how an agent argues with the chosen counterpart to gain the service
required.

2.3. Dialectical Argumentation

Agents in thei-Xchange system possess a number of capabilities, for example, they are
able to construct plans for achieving goals (detailed in section 2.1), and they are able to
reason in a social context about how to get other agents in the MAS to perform the actions
required by the plan (as detailed in section 2.2). Once a plan has been constructed and a
strategy for achieving the plan is devised it is necessary to interact with the other agents
to engage them in performing the tasks required to satisfy the plan. In thei-Xchange
this is achieved through the use of argumentative dialogue which is controlled by the
Dialectical Argumentation(DA) module.

Dialogue games have been proposed as a means to model the interactions between
participants during argumentative dialogues. One branch of dialogue game research is
into formal dialectical games [12]. These are two-player, turn-taking games in which the
moves available to the players represent the locutional acts or utterances made by the
participants of a dialogue. In other words a formal dialectical system expresses a protocol

for communication between conversing agents by regulating what an agent can say and
when they can say it.

Many dialectical games have been proposed based on the characterisations of a range
of dialogical situations, for example, Hamblin’s “simple dialectical system" [12] and
Mackenzie’s DC [13] are targeted towards fallacy research whilst McBurney and Parsons
specify some games for use in communication between agents in MAS [14]. The formal
dialectic systems used in thei-Xchange are represented using the unified specification
format introduced in [15]. This representation is part of a unified framework for repre-
senting, rapidly implementing and deploying formal dialectic systems called the Archi-
tecture for Argumentation (A4A). To facilitate this, the framework incorporates a range
of general machinery for representing dialogues and dialectical games. Each dialecti-
cal game is itself designed to model the interactions between participants in a particular
dialogical situation.

An example of the most basic dialogical interaction betweeni-Xchange agents is
illustrated in the sample system output in section 3 where a partial plan has been con-
structed by the planning module and the social-reasoning module has selected an agent to
carry out the partial plan. The DA module initiates a dialogue with the nominated agent
to determine whether the other agent is capable of performing the actions required of the
partial plan. The dialogue uses a small range of moves to achieve this which are detailed
as follows using the A4A schema:

Game
Name iXchange0
Turns 〈 Liberal, Single〉
Participants = {init, resp}
Stores: 〈CStore, Init, Mixed, Set, Public〉

〈CStore, Resp, Mixed, Set, Public〉
Structure

Initiation
Requirements:
Tcurrent = 0
Effects:
Tinit

next_move = 〈Initiate, (–)〉

Termination
Requirements:
Tlast_move = 〈Affirm, (–)〉 ∨
Tlast_move = 〈Deny, (–)〉
Effects:
Dialoguestatus= complete

Moves

〈Initiate, (S)〉
Requirements:
TCurrent = 1
Effects:
Tlistener

next_move = 〈 Acknowledge, (–)〉

〈Acknowledge, (S)〉
Requirements:
Tlistener

last_move = 〈 Initiate, (-)〉

Effects:
Tlistener

next_move = 〈 Enquire, (PP)〉

〈Enquire, (S)〉
Requirements:
Tlistener

last_move = 〈 Acknowledge, (–)〉
Effects:
CStorespeaker

current + PP∧ CStorespeaker
current +

PP∧ (Tnext_move = 〈Affirm, (PP)〉 ∨

Tnext_move = 〈Deny, (PP)〉)

〈Affirm, (S) 〉
Requirements:
Tlistener

last_move = 〈 Enquire, (PP)〉 Effects:
CStorespeaker

current + PP

〈Deny, (S)〉
Requirements:
Tlistener

last_move = 〈 Enquire, (PP)〉
Effects:
CStorespeaker

current + ¬PP∧
CStorespeaker

current – PP

The iXchange0 protocol is split into three parts; game, structure and moves. The
game part specifies the turn structure, participants, and commitment stores. The structural
part specifies the required state for legal initiation of a dialogue and the states under
which the dialogue will terminate. The moves part specifies the moves which players
can make during a dialogue. Moves are presented in terms of their legality requirements
and resultant effects if the move is legally played. Legality requirements are formulated
in terms of earlier moves during the dialogue. Effects are formulated in terms of legal
responses and commitment store updates.

When all threei-Xchange agent modules are integrated in a single agent, the game,
iXchange0, is sufficient to enable an agent to engage in a simple dialogue with another
and determine whether the other agent can execute a partial plan thus enabling a commu-
nication round trip between two agents composed of the basici-Xchange agent modules.

3. Example

This section illustrates the use of thei-Xchange MAS when applied to ane-Science
scenario. Thee-Science domain consists of a network of host machines, a set of datasets
that need to be processed, a set of data transportation mediums that can transfer the
datasets between hosts and a set of data processing systems that are needed to be available
in the host machine so that the dataset can be processed. The following operators are
supported;

move dataset:Moves a data transportation medium loaded with a data set between
hosts.

move data processing system:Moves a data transportation medium loaded with a data
processing system between hosts.

move data transportation medium: Moves a data transportation between hosts.

load dataset: Loads a dataset to a data transportation medium.

load data processing system:Loads a data processing system to a data transportation
medium.

unload dataset: Unloads a data set from a data transportation medium.

unload data processing system:Unloads a data processing system from a data trans-
portation medium.

execute:Executes a data processing system at a given host.

terminate: Terminates the execution of a data processing system.

process:Processes a data set.

Thee-Science domain has the following properties; Three classes of agents appear in the
domain, namely the data processing systems, the data transportation mediums, and the
host machines. Thee-Science domain is a mixture of the transportation class of planning
domains (logistics for instance) and the puzzle class of planning domains (for example
blocks-world). The first property allows us to model complex societies structured as a hi-
erarchical network of social influences. Hence the agents are provided with a rich social
model to exploit the capabilities of their social reasoning component. The second prop-
erty allows the agents to fully exploit their planning capabilities as thee-Science domain
allows for the specification of very complex planning problems. The combination of the
two properties provides a scenario where complex agent interactions can emerge for con-
flict resolution and task delegation, hence the agents can exploit their capabilities on di-
alectical argumentation. The following fragment illustrates system output as the planner
generates a partial plan, the social reasoning module nominates an agent to execute the
plan and the dialectical argumentation module engages that agent in dialogue.

Planner: {Agent=p1, Action=load_dps(t2, p1, m3), Time=1}
Planner: {Agent=p1, Action=move_dps(t2, p1, m3, m2), Time=2}
Planner: {Agent=p1, Action=unload_dps(t2, p1, m2), Time=3}
Planner: {Agent=p1, Action=execute(p1, m2), Time=4}
Planner: {Agent=p1, Action=process(d1, p1, m2), Time=6}
Planner: {Agent=p2, Action=execute(p2, m2), Time=1}
Planner: {Agent=p2, Action=process(d2, p2, m2), Time=2}
Planner: {Agent=p2, Action=terminate(p2, m2), Time=3}
Planner: {Agent=t1, Action=move_dtm(t1, m3, m2), Time=1}
Planner: {Agent=t1, Action=move_dtm(t1, m2, m1), Time=2}
Planner: {Agent=t1, Action=load_ds(t1, d1, m1), Time=3}
Planner: {Agent=t1, Action=move_ds(t1, d1, m1, m2), Time=4}
Planner: {Agent=t1, Action=unload_ds(t1, d1, m2), Time=5}
Planner: {Agent=t2, Action=load_dps(t2, p1, m3), Time=1}
Planner: {Agent=t2, Action=move_dps(t2, p1, m3, m2), Time=2}
Planner: {Agent=t2, Action=unload_dps(t2, p1, m2), Time=3}
ServiceImpl: ID: 77158a:10abd317fb0:-7fcf
|-> name: load_dps(t2, p1, m3) – time: 1
|-> name: move_dps(t2, p1, m3, m2) – time: 2
|-> name: unload_dps(t2, p1, m2) – time: 3
|-> name: execute(p1, m2) – time: 4
|-> name: process(d1, p1, m2) – time: 6
ServiceImpl: ID: 77158a:10abd317fb0:-7fce
|-> name: execute(p2, m2) – time: 1
|-> name: process(d2, p2, m2) – time: 2
|-> name: terminate(p2, m2) – time: 3
ServiceImpl: ID: 77158a:10abd317fb0:-7fcd
|-> name: move_dtm(t1, m3, m2) – time: 1
|-> name: move_dtm(t1, m2, m1) – time: 2
|-> name: load_ds(t1, d1, m1) – time: 3
|-> name: move_ds(t1, d1, m1, m2) – time: 4
|-> name: unload_ds(t1, d1, m2) – time: 5
ServiceImpl: ID: 77158a:10abd317fb0:-7fcc
|-> name: load_dps(t2, p1, m3) – time: 1
|-> name: move_dps(t2, p1, m3, m2) – time: 2
|-> name: unload_dps(t2, p1, m2) – time: 3
Reasoning: addServiceRequest
Reasoning: received ServiceRequest with ID:77158a:10abd317fb0:-
7fcf and actions:
|-> name: load_dps(t2, p1, m3) – time: 1
|-> name: move_dps(t2, p1, m3, m2) – time: 2

|-> name: unload_dps(t2, p1, m2) – time: 3
|-> name: execute(p1, m2) – time: 4
|-> name: process(d1, p1, m2) – time: 6
iXchangeAgent0::Reasoning: invokeAddDialogueGoal
iXchangeAgent0::DialogueModule Dialogue Goal Added
iXchangeAgent0::DialogueModule sending message to: iX-
changeAgent1 with message content:INIT DIALOGUE
iXchangeAgent1::DialogueModule handling message from: iX-
changeAgent0 with message content:INIT DIALOGUE
iXchangeAgent1::DialogueModule sending message to: iX-
changeAgent0 with message content:OK
iXchangeAgent1::DialogueModule calling invokeAddProposal in
Social Reasoning Module
iXchangeAgent1::ReasoningModule: addProposal()
iXchangeAgent1::ReasoningModule: invokeAddServiceEvaluation
Loading scheduler.pl... ok – PlanningModule: iXchangeAgent1:
Schedule for move_dtm(t1, m3, m2) at 1 – result: yes
iXchangeAgent1::PlanningModule::Schedule for move_dtm(t1,
m2, m1) at 2 – result: yes
iXchangeAgent1::PlanningModule::Schedule for load_ds(t1, d1,
m1) at 3 – result: yes
iXchangeAgent1::PlanningModule::Schedule for move_ds(t1, d1,
m1, m2) at 4 – result: yes
iXchangeAgent1::PlanningModule::Schedule for unload_ds(t1, d1,
m2) at 5 – result: yes
iXchangeAgent1::Reasoning: invokeAddProposalResponse
iXchangeAgent1::DialogueModule Response to proposal:
77158a:10abd317fb0:-7fcd iXchangeAgent1
iXchangeAgent1::DialogueModule sending message to: iX-
changeAgent0 with message content:ACCEPT: iXchangeAgent1
iXchangeAgent0::DialogueModule handling message from: iX-
changeAgent1 with message content:ACCEPT: iXchangeAgent1
iXchangeAgent0::DialogueModule calling invokeAddDialogueRe-
sult in Social Reasoning Module iXchangeAgent0::Reasoning: ad-
dDialogueResult()
iXchangeAgent0::Reasoning: invokeAddServiceResponse
iXchangeAgent0::Planning Module: Setting the agent name for
service with ID: 77158a:10abd317fb0:-7fcd to: iXchangeAgent1
ixchange.shared.ServiceImpl@97eded

The output demonstrates the iXchange system, starting with the planning module
constructing a number of partial-plans. A service is then constructed from each partial
plan requiring an action to be performed by an agent at a certain timepoint. The services
are then passed to the social-reasoning module which determines which agents can ex-
ecute each partial plan encapsulated in each service. The social-reasoning module then
instantiates a dialogue goal which requires the dialogue module to communicate with
the agent selected to perform the service and determine whether that agent will perform

the required actions. If the recipient agent can perform the action then the dialogue is
successful and the planner is informed via the social-reasoning module that an agent has
been found which has accepted to perform the required action at the determined time-
point.

4. Conclusions

There are two facets to the results presented here. The first is that the i-Xchange is the first
system to successfully integrate planning, social reasoning and argumentation. Though
plans have been maintained in the context of agents communicating, this is the first time
that individual agents have been equipped with modern planning techniques that are fully
integrated with the communication subsystems, and where communicative “failures" (in
the sense of refusals) have been taken into account by the planner on the fly. Similarly,
though social structures have long formed a part of agent reasoning, and have contributed
to the environment in which planners operate, this is the first time that plan refinement
has explicitly involved reasoning about the social context. Finally, though argumentation
has often been thought of in a social context [11], this is the first time that social reason-
ing has been integrated to the execution of specific argument protocols for inter-agent
communication.

There is also a practical facet: the i-Xchange clearly demonstrates that the use of
heterogeneous engineering techniques, different agent platforms and architectures, and
a wide variety of languages and tools can provide a rich but solid foundation for a sin-
gle, focused, coherent agent system. As the sophistication of individual systems contin-
ues to increase, and the scope of functionality becomes ever wider, such cross-platform
heterogeneous development is going to become ever more the norm.

References

[1] A. L. Blum and M. L. Furst Fast planning through planning graph analysis. InArtificial
Intelligence, 90: 281–300, 1997.

[2] M. N. Huhns and L. M. Stephens. Multiagent systems and societies of agents. In Gerhard
Weiss, editor,Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence,
chapter 2, pages 79–120. MIT Press, Cambridge, MA, USA, 1999.

[3] N. R. Jennings, S. Parsons, C. Sierra, and P. Faratin. Automated negotiation. In J. Brad-
shaw and G. Arnold, editors,Proceedings of the 5th International Conference on the Prac-
tical Application of Intelligent Agents and Multi-Agent Systems (PAAM-2000), pages 23–30,
Manchester, UK, 2000.

[4] A. Lomuscio, M. Wooldridge, and N. R. Jennings. A classification scheme for negotiation
in electronic commerce. In F. Dignum and C. Sierra, editors,Agent-Mediated Electronic
Commerce: A European AgentLink Perspective, volume 1991, pages 19–33. Springer Verlag,
March 2001.

[5] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge. Auto-
mated negotiation: Prospects, methods and challenges.Int. J. of Group Decision and Negoti-
ation, 10(2):199–215, 2001.

[6] R. Mailler, V. Lesser, and B. Horling. Cooperative negotiation for soft real-time distributed
resource allocation. InProceedings of the Second AAMAS, pages 576–583, 2003.

[7] J. Rosenschein and G. Zlotkin.Rules of encounter : designing conventions for automated
negotiation among computers. MIT Press, Cambridge, MA, USA, 1994.

[8] N. R. Jennings, S. Parsons, P. Noriega, and C. Sierra. On argumentation-based negotiation. In
Proceedings of International Workshop on Multi-Agent Systems (IWMAS’98), Boston, USA,
1998.

[9] S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and negotiate by arguing.
Journal of Logic and Computation, 8(3):261–292, June 1998.

[10] I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons, and L. Sonenberg.
Argumentation-based negotiation.The Knowledge Engineering Review, 18(4):343–375,
2003.

[11] K. Sycara. Persuasive argumentation in negotiation.Theory and Decision, 28(3):203–242,
May 1990.

[12] C. L. Hamblin.Fallacies. Methuen and Co. Ltd, 1970.
[13] J. D. Mackenzie. Question begging in non-cumulative systems.Journal Of Philosophical

Logic, 8:117–133, 1979.
[14] P. McBurney and S. Parsons. Dialogue games in multi-agent systems.Informal Logic,

22(3):257–274, 2002.
[15] S. Wells and C. Reed. Formal dialectic specification. In I. Rahwan, P. Moraitis, and C. Reed,

editors,First International Workshop on Argumentation in Multi-Agent Systems, 2004.

