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Abstract. We adopt the Markov chain framework to model bilateral negotia-
tions among agents in dynamic environments and use Bayesian learnivapte e
them to learn an optimal strategy in incomplete information settings. Specifically
an agent learns the optimal strategy to play against an opponent whategs
varies with time, assuming no prior information about its negotiation parame-
ters. In so doing, we present a new framework for adaptive negatiatisuch
non-stationary environments and develop a novel learning algorithrichvigh
guaranteed to converge, that an agent can use to negotiate optimaliynoser
We have implemented our algorithm and shown that it converges quickly in a
wide range of cases.

1 Introduction

Automated negotiation plays a key role in resolving cordliat multiagent systems in
which individual agents have different stakes in a jointragien. Now, in many such
cases, agents have little information about one anothdr,iaraddition, the environ-
ment changes as a result of interactions between them [4is,Tlearning about the
other agents in the system and about their common enviraneeomes essential for
effective performance. In particular, while an agent isagyegl in negotiations, it has
to learn about th@egotiation parameterandstrategieq10] of its opponents if it is to

bargain optimally in such non-stationary environments.

Generally speaking, reinforcement learning, in partic@dearning, is often used
in multiagent systems since it does not need a model forileguamd can be used online
[4], [11]. In this vein, several researchers have adoptedstbchastic game framework
for multiagent reinforcement learning and have developadi®n techniques lik&ash
Equilibrium [4], [9] and best response strategies [12]. Others, likeHaye usedicti-
tious playtechniques to analyse learning in games. However our proldelifferent.
We are not trying to model learning in multiagent systemegigame theory, but rather,
we are trying to develop negotiation techniques for muétitgystems for which learn-
ing is necessary. Therefore, we believe that reinforcerfearhing, in which agents
learn to maximize a reward signal, is not best suited for aup@ses. Moreover, rein-
forcement learning algorithms rely on the assumption thatinderlying environment
is stationary (i.e., the parameters and strategies of theramt do not change over time,



they are simply unknown). Now, this is clearly not the casmamy realistic negotiation
encounters, so we need to look at other learning methods.

Some of the first models to discuss the need for learning imtie@gns among
agents were [5] and [7]. However, while these papers disttiessoncept of reasoning
based on experience among negotiating agents, they doplaith develop a learning
model. In [13] this notion is formally modelled, as a seqimrearning mechanism
based on a Bayesian belief update process. Specificallyyagemeral framework is
adopted for the negotiation in which multiple agents bardar multiple items. Thea
priori model that the agents have of their opponents is constapdsted using current
information which is received as a signal from the environmén particular, given
the prior knowledge of an agent and the newly incoming inftiom, the posterior
distribution of the knowledge of the agents is computedgiBiayesian rules. However,
this model does not capture the non-stationarity in therenment. By this, we mean
that, although the agents are assumed not to know the ditstribof players’ strategies
and their negotiation parameters, it is assumed that thisilalition does not change
over time. Now, this is a serious shortcoming in the typesp@ioenvironment in which
multiagent systems are often deployed and is somethingubatish to rectify in this
work. Thus, in our case, the agent has to learn how its opisiceange their strategies
and then respond optimally to them. We have used Bayesianirgain our model
because we believe it is more suitable than other forms afileg, like reinforcement or
supervised learning, to represent uncertainties in thetia@n process as a probability
function and then update this based on signals receivedtfieranvironment.

In particular, we consider negotiation between a pair oh&gever a single issue
(price). We use the non-stationary Markov chain frameworknbdel the negotiation
process and prove, for the first time, an important estimgbimperty for these pro-
cesses (namely that the future distribution of the statesbeaobtained given their
initial distribution and the probabilities of state chartfyging the process). Within this
framework, at each stage in the negotiation process, that ages Bayesian updating
to learn the strategy that its opponent is most likely to usk based on this, determines
what it should adopt to maximise its payoff at that stage efrthgotiation process. In
so doing, we analytically prove that in repeated negotmatiour algorithm converges to
the actual optimal strategy at every stage of the negotigtiocess. We verify this by
means of an example problem, and have shown that our algoistht leas200% more
effective than random estimation. Our empirical resuk® a&how that, on average, the
algorithm converges withi4 iterations and that each iteration tak&s92 seconds.

The rest of the paper is organized as follows: Section 2 ptes$iee basics of our ne-
gotiation model, Section 3 the learning model, Section 4evapirical results. Finally,
Section 5 concludes.

2 The Negotiation Model

In this section, we detail the basic concepts that we willinggir model. First, we de-
fine the notion of &tochastic procesand the corresponding notion ofMarkov Chain

in order to use it to capture the uncertainty in our domairer o provide a grounding
for our learning algorithm, we give tHgayesian probability rul@nd explain how it is



used in Bayesian learning techniques. Finally, we pre$entancept of mixed strategy
profiles in the context of classical game theory which we wilé as a framework to
describe the strategies that our negotiating agents véll us

Turning first to stochastic processes and Markov Chainghéeteal random vari-
able(r.r.v), X, be defined as a function that maps a space of events to a raakenu
Formally, if 2 represents the space of events &hrepresents the set of all real num-
bers, thenX : 2 — . The probability thatX = a wherea € R is represented as
Pr(X = a). A sequence of.r.vs that is indexed by some parameterwheren € T
andT is a suitable index set, is representedXgsand is called &tochastic Process
A realization of a stochastic procesk,,,n € T, is an assignment to each € T,
of a possible value oX,,. Now, there are two important sets associated with stoichast
processes:

— State Spaces: This is the space in which possible values X, lie. If S =
0,1,2,3,.. then the associated process is called a discrete statesprdoeour
model the state space is discrete.

— Index Parametefl: If T = 0,1, 2,3, ... (i.e., if T takes only discrete values) then
X, is called a discrete time stochastic process. Again, in cagleh) we assume
thatT is discrete.

We also need to define the concept of tdumditional probabilityof random vari-
ables. Thus, ifA and B represent two events, then tbenditional probabilityof event
A given that evenB occurred is defined by:

Pr{A and B}

PriAlB} = =5

1)
We now move onto Markov processes.

Definition 1: A first order Markov process is a stochastic process that satisfies the
following condition:

PT{Xn-i-l = x‘Xn =Ty, Xpn_1=Tp_1, } = PT{X7L+1 = x|Xn = xn} (2)

Intuitively, this means that the probability of any futurehaviour of the process, when
its present state is known exactly, is not changed by anyiaddl information about its
past states. That is, the Markov Processi@morylessThis property of the stochastic
process enables elegant mathematical analysis. Now, d@t isrmreasonable to suppose
that the negotiation strategy at a particular stage is di@ronly on the immediately
preceding stage, since a single offer captures the entiiside making that preceded it.
Therefore we model the negotiation process as a Markov psoétere, the probability
P = Pr{X,+1 = z|X,, = z,} is called theone-step transition probability function
and it is fundamental to the study of Markov processes andguek, to our model.
This functionP is usually represented as a matrix where each dfitrj) is given by
P;; = Pr{X,4+1 = j|X, = i¢}. A Markov process, for whicl$ andT are discrete, is
called aMarkov chainand, so therefore, can our model.



Having introduced Markov chains, we now define the notionsvbith the learn-
ing component of our model is based. Specifically, our agpdates its beliefs using a
Bayesian update rulesuch Bayesian analysis is often used to estimate the maist pr
able underlying model for a random process, based on sonervalosdata or infer-
ence [13], and we choose it here because it enables us tseapthe uncertainty in
the environment as probability functions and it gives usranéd procedure to update
these functions based on our observations. Nowd|etd,, ..., A,,, represent random
events. Then, we leX,,,t = 0, 1, ... be the stochastic process we are trying to estimate.
Each of these: events can be thought to represent the hypothesis that thenpters
of {X,,t=0,1,...} belong to setd7, 15, ..., T,,. Finally, we let the evenB represent
the set of observed data. NoBayes rulecan be stated as:

> Pr{B|A;} x Pr{A;}

Pr{A;|B} = ®3)

where Pr{A;} is the prior probability of modeH; in the absence of any information,
Pr{ B|A,} isthe likelihood that observatiaB was produced given that the model was
A;, andPr{A;|B} is the posterior probability of the model beiag given the obser-
vation isB. Our learning agent will use these inference rules to esértiee underlying
randomness of the negotiation process.

Our final discussion in this section refers to the stratetfiat the agents will use
in the negotiation process. In classical game theoStrategic-Formgame has three
elements:

1. the set of players € I, wherel =1,2,...,n

2. thepure-strategy spacs;, for each playet, and

3. payoff functions:; that give playe¥’s utility u;(s) for eachprofile, s = (s1, s2, ..., 8n),
of strategies

Therefore in game theorysrategyis perceived as an action choice of a player that has
autility associated with it. Often the objective in games is to deitegra strategy; that
will maximise player:’s payoff given the strategy set, ;, that the other players use.
Also, notice that the; that playeri receives depends on the strategies of all the players
in the game and is not related to an isolated strategyithay use. In the definition
of a strategic game we called the strategy spapara-strategythis is because game
theorists often refer to an alternate strategy space ctikhixed-strategy spac&he
mixed-strategy space is a probability distribution over $pace of pure-strategies and
for mathematical ease of analysis it is often more conven@deal with the mixed-
strategy space [3]. Thus in our problem the agent will leaenrhixed-strategy profile
of its opponent and evolve a strategy in response to thaegtrahat earns it maxi-
mum payoff. In this sense, our negotiation problem can beidened as a two-player
strategic game.

Having introduced the main concepts that we use in our madesre now ready to
describe the learning component and outline the solutiongafure we have developed.



3 The Learning Model

The main objective of our agent is to learn the mixed-strafmgfile of its opponent
and determine a strategy in response to this profile thatmisas its pay-off at each
stage of the negotiation process. This learning probleronspticated by the fact that
the agent has no information about its opponent and thatithtegy that the opponent
uses may well change during the course of the negotiatiow, Momodel this process
of change in the strategies of the opponent, we userastationary Markov chain
Formally, anon-stationary Markov chaiis a Markov chain (see Section 2) whose one-
step transition probability functio®(t) = Pr{X,+: = z|X, = =z,}, varies with
time [8]. If we define the state spacg, associated with this non-stationary Markov
chain to be the space of all possible strategies that thermmpaan employ, and the
corresponding time dependent transition probability fiom; P™(t), to represent the
probability that the strategy of the opponent changes dt stapn of the game and
that this probability function itself is a function of timghen this framework gives us
a powerful tool to describe and analyse the non-stationagptiation process that we
are trying to model. Therefore, we adopt this mathematmahtilation in this work.
Now, if P (t) were specified as a function of time, then we could obtaintiiategy
profile of the opponent at each stage of the negotiation peogsing standard stochas-
tic process analysis [6] and then obtain a strategy that mags our own payoff us-
ing maximization algorithms [1]. But since this functionusknown in our problem,
the agent has to learn it from interactions with the oppomat the environment. In
Bayesian learning, as explained in Section 2, the protiglofia hypothesis being true
is continuously updated by signals that are received fraetivironment and, as such,
is well suited to modelling uncertainty in the environmelnt.our problem, in order
to learn the functionP™(t), we propose that the learning agent initially has a finite
number of hypothesé'sof the possible distributions d*(t) which it updates using
Bayesian inference rules. This means that in successiwaiaigns, by updating the
different hypotheses, the agent comes closer to estimdtengue value oP™(t) and,
therefore, to estimating the true optimal strategy in respdo its opponent’s play.
Formally, we consider two agents say buyeand selleft”, negotiating over price.
We assume that the buyer is learning to respond to the syrafabe seller. Now, we
assume that there is a payoff functiad, (¢), associated witkk’, which depends on the
strategys that X uses in response 16 at each step, of the negotiationX’s objective
in the negotiation is to find a strategy profile that maximigggt) which we assume
is known toX. Therefore X must learn the strategy profile &f in order to determine
an optimal response strategy. To describe Bovearns this strategy within the Markov
chain, we need to first define some of its properties. In statipMarkov chains, the
probability of moving from statéto statej in n time steps is represented &§ and is
given by [6]:

Pﬁ:ZH‘TkXPl?j (4)
k=0

! This assumption reduces the search space while allowing us to repesencertainty in the
problem.



wherem is the total number of statek,s some intermediate state and- s = n. Intu-
itively, this means that the probability of moving from ortate to another in a certain
number of stepsy, is equivalent to the probability of moving from the firsttstéo an
intermediate state, in r steps together with the probability of moving franto the
final state in the remaining number of steps. Now, from mattgebra, we recognise
equation 4 as the formula for matrix multiplication, so thstap transition matrix, rep-
resented byP", is equal toP(™) or that the entrie$’]; in P are equal to the entries in
the matrix (™), which is then'"* power of the one-step transition mati#x It follows
that if the probability of the process initially being in &g is p;, (i.e.,Pr{ Xo = j}),
then the probability of the process being in statat timen is:

m

pi = _p;iPji (5)
j=0

wherem is the total number of states. Thus in our problem if we knosvittitial dis-
tribution of the opponent’s strategies we can calculatgtbbability that the opponent
uses a certain strategy aftetime steps. This is the main reason for using the Markov
chain framework to model the negotiation process. In ourehdtbwever, the Markov
chain is non-stationary and, therefore, we need to provegaivalent result for the
non-stationary case (this has not previously been doneg,ldenceP™(t) is a func-
tion of time, at each step of the process we have a differansition probability matrix.
Here, we propose that to obtgif) as a function of time, we need to multiplydifferent
transition matrices. We now formally state and prove thésilte

Theorem 1. In non-stationary Markov chains, the probability of movingm statei to
statej in n time steps, during time instantis represented as; (t) 2 and is given by:

PI(t) = Y4 P (u) x Pg;(v)
wherem is the total number of states,is some intermediate state;+ s = n andu, v
are time instants at which the transitions occur.

Proof. We prove the result when = 2. The event of moving from state i to state
j can happen in mutually exclusive ways, of going to somerimgdiate statek <
{0,1,2...,m} in the first transition and then moving from state k to state fhe next
transition. Now, because of the Markovian assumption thatttansition probability
is independent of the history of the process, the probghilitthe second transition is
simply Py (v) and, by definition, the probability of the first transition#%, (). There-
fore, by the law of total probabilityP? (t) = Y7 P (u) x Pl (v). In the general
case, by breaking up the firststeps and then the nextsteps into a series of single
step transitions and again by using, the law of total protigbfor each transition, the
proof is obtained. O

2 Heren represents the number of time steps anelpresents the fact that the transition proba-
bility P/;(t) is a function of time.



Thus, in the non-stationary case also, given the probgltfildt initially the process
was in, say statg (i.e.,pJ(0) = Pr{X,(0) = j}), then the probability that it is in state
k aftern time steps and at timeis represented gs}(t) = Pr{ X, (t) = k} andis
given by:

PR(E) = D_IP5(0)] < Qi (1)] (6)

whereQ (t) = [P2(0)] x [P*(1)]... x [P"~1(t - 1)].

Therefore, we now have a means of obtaining the probabilityibution of the process
and, thereby, the probability distribution of strategi¢smay stage in the negotiation
process given an initial distribution of strategies andtthasition probability matrices.

Now, we come to the main issue of learning the transition bdlly matrices. As
already stated, we propose to do this using Bayesian infeneres. However, to do this
we must assume that the learning agent, in our case the Bljyess some knowledge
about the negotiation process. Specifically, in order tcatgdits hypothesis about the
strategy distribution ot” from the offers that it receives, it has to know how the offer
generation process depends on the strategy selectiorsgrdaethis end, let us assume
thatS, the set of all possible strategies thatan use, and as such constitutes the state
space of our Markov chain, is given & = {s§, ¢, ..., s%,}. Therefore,Y" switches
between the strategies fhaccording to the transition probability matd#® (t), which
varies with time. We leD,,(t) represent a sequence of offers madeYband OZ (¢)
represent the event that the offer at t1i& step of the process at tintas p. We also let
H,(t) represent a sequence of finite sets of hypotheses &3t} during the negoti-
ation process. Therefo,,(t) = {H}(t),..., H*(t)}, wherek is some finite positive
integer. We assume that the hypothesis representing thgdtue of the transition prob-
ability function also belongs té/,,(¢). Then the objective of our learning algorithm is
to update each of these hypothe§ék (t) € H, (t)} at every stem of the negotiation.
The steps of the algorithm are detailed in Algorithm 1. In endetail, using Bayes rule
we have for each hypothesis, at stepf the process that:

Pr{H}(t)} x Pr{OA(1)|H, (1)}
W UIPr{HG(6)}] x [Pr{O&(t)|Hj(t)}]

Pr{H,(t)|On(t)} = (7)

We call Pr{H (t)|OE(t)} the likelihood function,L. Thus eachH (¢) is updated
in the light of the incoming offelO? (¢). Now, B uses the hypothesiH#"*"(t) =
=OLPr{HI (t)|OR(t)} x Hi(t)} to find the strategy used by the opponent. There-

fore the learning agent weights the different hypothesethbyprobabilities of their
occurring in order to form a new hypothesis ab®t(t). Because of this construc-
tion of the new hypothesis we can show thatt as T whereT is sufficiently large,
H<*(t) approaches the true value BF*(t) (see theorert for details). Then, accord-
ing touy (t), the agent determines the strategy, . (¢) that maximises:; (¢) at each
step of the negotiation process. We denote this maximunewalthe payoff function

by v (t). This completes the solution procedure for determiningbibst response

Smawx



Algorithm 1 The Adaptive Negotiation Algorithm
1. for (t=0,1,2,..,7)

2. for(n=0,1,2,..., trerminal)

3. initialize HY(t) € H,(t) as an arbitrary distribution.
4, input opponent offep € Domain{O,(t)}

5. Pr{H:(t+ 1)} « Pr{H.(t)|O%(t)} using equation 7

6. assignHy;“* (t) = Yi_o{ Pr{H.(1)|O%(t)} x H (1)}

7. assign[P"™(t)] = H;;°¥(t)
8. compute [(s{, s3, ..., s9,)]" (¢) using equation 6
9. computes?, . (t) = max|[(si, s2, ..., $m)]"(t) x uZ (t) x [(57, 85, ..., s%)]" ()] * s.t

ZZZO si=1 andsi >0Vi

10. computeug, . (t)
11. nextn
12. nextt

strategy to the opponent’s play and consequently the maripayoff at each step of
the negotiation process.

Here, it is important to note that according to this algarittthe agent learns across
successive negotiations and not within a single negotigitiocess. Therefore, we claim
that in repeated negotiations using our algorithm, the fgamns to use the optimal
strategy and earn maximum payoff at each stage of the négat@rocess. In order to
prove this claim we need the following lemma.

Lemma 1 After a sufficiently large timé’, the real probability distribution over the
future rational play of a game isclose to what player believeghe distribution is [5].

Here, e-close implies that we can approach arbitrarily close toatimal distribution
and rational play means that at each stage of the negotidtgoplayers take the action
that maximises their pay-offs. Having stated Lemma 1, wenare ready to prove our
main result.

Theorem 2. In the non-stationary negotiation process, the sequeneé'adtep strate-
gies{s" ..(0), ..., 8", (1), s%..(t + 1), ..., } and the corresponding sequencent?

max Y Ymax r“max

step payoff functiongu?, ... (0), ..., ul ... (t), ul .. (t+1), ..., }, after a sufficiently large

max T max



timeT", are e-close to the true optimal strategy and the correspondingimam payoff
function at then!" step of the negotiation process.

Proof. According to Lemma 1, in a systematic belief updategss, the learner even-
tually comes arbitrarily close to the true distribution afta sufficiently large time
T. Since the process by which our learning agent estimatessttategy of the op-
ponent is constructed as a Bayesian belief process, theesequof updated proba-
bilities, { Pr{HC()|OP (1)}, ..., Pr{H.(t)|OP(t)}, ..., Pr{HF(t)|OP(t)}} comes ar-
bitrarily close to{0,...,1,...,0} for somei € {0,1,2,....,k} ast — T. This implies
that H} (¢) is the true hypothesis. Therefo* (t) = S { Pr{H: (t)|02(t)} x
H(t)}, by construction, and, thereforé]"¢¥(t) — H} (t) ast — T. Since the oppo-
nent determines its strategy at each step ugifig™ (¢) and since our agent determines
its optimal strategy and the maximum payoff at each stepspaese to this updated
opponent strategy, the result is proved. O

Thus we have analytically shown that our algorithm converg®e now present an
example to illustrate this operation (and in section 4 welaepthe actual speed of
convergence). Specifically, in this problem, we make thiefohg assumptions:

1. The strategy space of the opponent consists of two strategiss {s1, s2}.
2. Ateachtime step of the negotiation, the learning agent has a set of threethgpo
ses about the possible valueR¥ (t).

We now describe the solution procedure in our problem.
— Here as specified in Step 3 of algorithm 1, we initializg&,(0) € H(0).

0.5 0.5
H5(0) = [0.5 0.5}

0 =[]

o =[]

Now the agent is unaware of the true valudP3¥(t), but has arbitrary probabilities
assigned to each of these hypotheses abBdiit).

— Let {Pr(H(0)) = 0.5}, {Pr(HZ(0)) = 0.25}, {Pr(HZ(0)) = 0.25} and offer
of opponent0,(0) = 100.

— Then according to Step 4 in algorithm 1, we observe the offén@opponent and
assume thaPr{O(0)|H}(0)} = 0.6, Pr{Oy(0)|HZ(0)} = 0.2andPr{Oq(0)|H3(0)} =
0.2 (here we assume arbitrary values for{O|H }, but we are in the process of
studying the offer patterns of traders in different domainsrder to get an accurate
representation for these values).

— Using Step 5, we update probabilitiesias{ H}(0)|0o(0)} = 0.75, Pr{HZ(0)|0x(0)} =
0.125 and Pr{ H3(0)|O(0)} = 0.125.

— From Step 6, we determinB;°*(0) = (0.75) x H}(0) + (0.125) x HZ(0) +
(0.125) x H(0).



— Step 7 specifies the strategy profile of the opponent. Thialipitofile is assumed
to be given ag0.2,0.8] (i.e., Pr{S = s} = 0.2, Pr{S = s3} = 0.8) and the
payoff function of the agent is:

o) = ]

— From Step 8, to determine its strategy profilg, s2] and the corresponding payoff
function, the agent solves the linear program:
max(si, sa] x ul(0) x [0.2,0.8]7 s.ts; + so = 1 andsy, s3 > 0.
The strategy profile thus obtained is denoted'as, (0) and the payoff function is
ul . (0).

max

— We do this for every time stepof the negotiation process and obtdif, .. (0), s. .. (0), ...

’“max

and{u},q(0), Unaq (0), Uinaq (0), ..}

— We then repeat this for every negotiation during time instan= 0, 1,2, 3, ... and
obtain the sequencgs?
{82,.:(0), 83 .. (1),...} and the corresponding payoff sequences.

)’ “max

In this case the two sequences converge wittiterations to the optimal values at each
step of the negotiation process. Having proved that ourrikgo converges, we need to
determine the rate of this convergence and the factorsrfiaénce this. This can only
be done empirically and our results are presented in thesaekion.

4 Empirical Results

We have run experiments by varying the number of hypothesd®'(t). Specifically,
we have experimented with bothx 2 and3 x 3 matrices representing the strategy
profiles. We have found that using our algorithm, the ageraroaverage (computed by
varying the number of hypotheses ie., the numbe? gf2 and3 x 3 matrices) learns
the maximum payoff within 3.6 iterations for2 x 2 matrices and on an average within
23.6 iterations for3 x 3 matrices. On an average, each iteration takeé$ seconds to
complete for2 x 2 matrices and8.92 seconds foB x 3 matrices. We have also exper-
imented by changing the elements of the transition matrioes results indicate that
the rate of convergence is independent of variations in #ttems of the opponent’s
offers. But it depends on the number of hypothese®fft) at each step of the nego-
tiation. However, since the computation of updated prdhiss is a simple arithmetic
operation and since this computation alone is affected eyntimber of matrices, the
time for convergence does not drastically increase withntlmaber of matrices. This
is shown in tables 1 and 2 and figure 1 shows the actual convegsf the algorithm
during successive iterations asigle stepof the negotiation process. In figure 1 the
optimal value line for the payoffs is computed by assumirat the opponent’s strat-
egy profile is known to the agent. The other line correspondké agent learning the
opponent’s strategy profile and therefore the optimal gayadfie, using our algorithm,
as illustrated in the example problem. In figure 1 we uded2 matrices to represent
the opponent’s strategy profiles and assumbgpotheses foP™ (t) at each step of the
negotiation.

max (0)7 S(7)nax(1)7 Sgn,am(2)’ }’ {571n,a:c (0)7 Sin,am(l)’ 57171,(137 (2), }'

}



Now, in general, if we assume that there arbypotheses foP*(t), then in the
random case the probability of finding the true hypothesidvigysl /% (i.e., this prob-
ability does not improve with time). However, the convergenf our algorithm is guar-
anteed by theorem 2 and therefore our estimation of theRft(¢) improves with each
iteration and eventually converges. With this and the faat the algorithm converges
on an average withim315 seconds even with0 hypotheses angl strategies, we claim
that our algorithm ig: times more effective than random estimation. Therefora éve
the case when there are ortyhypotheses at each stepfor P*(t) our algorithm is
200% more effective than random estimation. Obviously, as wee@se the number of
hypotheses, which allows for a more general representafi®i*(t) and therefore of
the uncertainty in the problem, the effectiveness of ouorigm over random estima-
tion increases proportionally.

No of Hypothese®©ffer Distribution Average Iterationg\verage Time for Iteration in sefs
2 Arbitrary 2 2.7
4 Arbitrary 4 4.6
6 Arbitrary 11 7
8 Arbitrary 21 10.1
10 Arbitrary 30 12.8
Table 1. Dependence of rate of convergence on nhumber of hypothesgsd@matrices

No of Hypothese®©ffer DistributionAverage Iterationg\verage Time for Iteration in segs
2 Arbitrary 7 6.2
4 Arbitrary 15 12
6 Arbitrary 25 18.4
8 Arbitrary 29 26.7
10 Arbitrary 42 31.3
Table 2. Dependence of rate of convergence on nhumber of hypothesgsd@rmatrices

5 Conclusions and Future Work

In this work we have developed a new framework, using Markuairts, for studying

negotiation in non-stationary environments. This is a garfeamework which can be
used to study decision making in many stochastic systerasiirket places and auc-
tions. Within this framework, we have derived, for the fifate, an important result for
non-stationary Markov chains that computes the distrsutf the random variable,
which defines it, at any future step of the process given itgimprobability distri-

bution and the transition probability matrices at each sffeftie process. Then, using
this framework we have developed an algorithm to learn degjyain response to a
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Fig. 1. Convergence to Optimal Strategy

non-stationary opponent’s play and proved that it conv@tgehe optimal strategy in
repeated negotiations. Unlike previous work in this areaatgorithm does not assume
knowledge of the opponent’s strategy profile and, as suchpwverful tool to analyse
negotiations in real world environments where such unizéytés common. Our algo-
rithm is also explicitly designed to deal with cases in whicl strategy profile is not
only unknown, but changes with time during the course of thgotiation process it-
self. This significantly extends the state of the art in thiel fid automated negotiations
in non-stationary, real world environments. For such caseshave proved, analyti-
cally, that our algorithm converges. Our empirical resulddicate that the algorithm
converges within reasonable timeframes to the true hygiteyen when the number
of hypotheses is large. Also, in our algorithm, the statehefMarkov chain represent
the strategies that are available to the opponent and thalactcertainty in the prob-
lem is represented by the number of hypotheses. Therefoneee® not increase the
number of states to represent greater uncertainty in theaotoriihe algorithm is also
vastly more accurate than random estimation.

In our future work, we intend to use the structure of the Markbain to develop
a more formal model for the likelihood function in the Bayasbelief update process
which would help us to reduce the computation effort invdlue updating the agent’s
knowledge even in complicated real world scenarios. We B® ia the process of
doing statistical analysis to estimate the number of hygexh that are required to get
an accurate representation of the dynamism in exemplawaéd domains like mobile
communications and we also intend to extend the algorithhedm the opponent’s
negotiation parameters along with its strategy profile argtudy negotiation when the
opponent is also changing its strategies in response tayemt'a adaptivity. Finally, we
intend to do a detailed comparative study between other madbarning techniques,
like Reinforcement learning and Bayesian methods in autethaegotiations, for non-



stationary environments. This study would also provide aemeffective benchmark
than random estimation for our algorithm.
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