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Abstract. We adopt the Markov chain framework to model bilateral negotia-
tions among agents in dynamic environments and use Bayesian learning to enable
them to learn an optimal strategy in incomplete information settings. Specifically,
an agent learns the optimal strategy to play against an opponent whose strategy
varies with time, assuming no prior information about its negotiation parame-
ters. In so doing, we present a new framework for adaptive negotiation in such
non-stationary environments and develop a novel learning algorithm, which is
guaranteed to converge, that an agent can use to negotiate optimally overtime.
We have implemented our algorithm and shown that it converges quickly in a
wide range of cases.

1 Introduction

Automated negotiation plays a key role in resolving conflicts in multiagent systems in
which individual agents have different stakes in a joint operation. Now, in many such
cases, agents have little information about one another, and, in addition, the environ-
ment changes as a result of interactions between them [4]. Thus, learning about the
other agents in the system and about their common environment becomes essential for
effective performance. In particular, while an agent is engaged in negotiations, it has
to learn about thenegotiation parametersandstrategies[10] of its opponents if it is to
bargain optimally in such non-stationary environments.

Generally speaking, reinforcement learning, in particular Q-learning, is often used
in multiagent systems since it does not need a model for learning and can be used online
[4], [11]. In this vein, several researchers have adopted the stochastic game framework
for multiagent reinforcement learning and have developed solution techniques likeNash
Equilibrium [4], [9] and best response strategies [12]. Others, like [2], have usedficti-
tious playtechniques to analyse learning in games. However our problem is different.
We are not trying to model learning in multiagent systems using game theory, but rather,
we are trying to develop negotiation techniques for multiagent systems for which learn-
ing is necessary. Therefore, we believe that reinforcementlearning, in which agents
learn to maximize a reward signal, is not best suited for our purposes. Moreover, rein-
forcement learning algorithms rely on the assumption that the underlying environment
is stationary (i.e., the parameters and strategies of the opponent do not change over time,



they are simply unknown). Now, this is clearly not the case inmany realistic negotiation
encounters, so we need to look at other learning methods.

Some of the first models to discuss the need for learning in negotiations among
agents were [5] and [7]. However, while these papers discussthe concept of reasoning
based on experience among negotiating agents, they do not explicitly develop a learning
model. In [13] this notion is formally modelled, as a sequential learning mechanism
based on a Bayesian belief update process. Specifically, a very general framework is
adopted for the negotiation in which multiple agents bargain for multiple items. Thea
priori model that the agents have of their opponents is constantly updated using current
information which is received as a signal from the environment. In particular, given
the prior knowledge of an agent and the newly incoming information, the posterior
distribution of the knowledge of the agents is computed using Bayesian rules. However,
this model does not capture the non-stationarity in the environment. By this, we mean
that, although the agents are assumed not to know the distribution of players’ strategies
and their negotiation parameters, it is assumed that this distribution does not change
over time. Now, this is a serious shortcoming in the types of open environment in which
multiagent systems are often deployed and is something thatwe wish to rectify in this
work. Thus, in our case, the agent has to learn how its opponents change their strategies
and then respond optimally to them. We have used Bayesian learning in our model
because we believe it is more suitable than other forms of learning, like reinforcement or
supervised learning, to represent uncertainties in the negotiation process as a probability
function and then update this based on signals received fromthe environment.

In particular, we consider negotiation between a pair of agents over a single issue
(price). We use the non-stationary Markov chain framework to model the negotiation
process and prove, for the first time, an important estimation property for these pro-
cesses (namely that the future distribution of the states can be obtained given their
initial distribution and the probabilities of state changeduring the process). Within this
framework, at each stage in the negotiation process, the agent uses Bayesian updating
to learn the strategy that its opponent is most likely to use and, based on this, determines
what it should adopt to maximise its payoff at that stage of the negotiation process. In
so doing, we analytically prove that in repeated negotiations our algorithm converges to
the actual optimal strategy at every stage of the negotiation process. We verify this by
means of an example problem, and have shown that our algorithm is at least200% more
effective than random estimation. Our empirical results also show that, on average, the
algorithm converges within24 iterations and that each iteration takes18.92 seconds.

The rest of the paper is organized as follows: Section 2 presents the basics of our ne-
gotiation model, Section 3 the learning model, Section 4 ourempirical results. Finally,
Section 5 concludes.

2 The Negotiation Model

In this section, we detail the basic concepts that we will usein our model. First, we de-
fine the notion of astochastic processand the corresponding notion of aMarkov Chain
in order to use it to capture the uncertainty in our domain. Then, to provide a grounding
for our learning algorithm, we give theBayesian probability ruleand explain how it is



used in Bayesian learning techniques. Finally, we present the concept of mixed strategy
profiles in the context of classical game theory which we willuse as a framework to
describe the strategies that our negotiating agents will use.

Turning first to stochastic processes and Markov Chains, letthe real random vari-
able(r.r.v), X, be defined as a function that maps a space of events to a real number.
Formally, if Ω represents the space of events and< represents the set of all real num-
bers, thenX : Ω → <. The probability thatX = a wherea ∈ < is represented as
Pr(X = a). A sequence ofr.r.vs that is indexed by some parameter,n, wheren ∈ T
andT is a suitable index set, is represented asXn and is called aStochastic Process.
A realizationof a stochastic processXn, n ∈ T , is an assignment to eachn ∈ T ,
of a possible value ofXn. Now, there are two important sets associated with stochastic
processes:

– State SpaceS: This is the space in which possible values ofXn lie. If S =
0, 1, 2, 3, .. then the associated process is called a discrete state process. In our
model the state space is discrete.

– Index ParameterT : If T = 0, 1, 2, 3, ... (i.e., if T takes only discrete values) then
Xn is called a discrete time stochastic process. Again, in our model, we assume
thatT is discrete.

We also need to define the concept of theconditional probabilityof random vari-
ables. Thus, ifA andB represent two events, then theconditional probabilityof event
A given that eventB occurred is defined by:

Pr{A|B} =
Pr{A and B}

Pr{B}
(1)

We now move onto Markov processes.
Definition 1: A first orderMarkov process is a stochastic process that satisfies the

following condition:

Pr{Xn+1 = x|Xn = xn,Xn−1 = xn−1, ...} = Pr{Xn+1 = x|Xn = xn} (2)

Intuitively, this means that the probability of any future behaviour of the process, when
its present state is known exactly, is not changed by any additional information about its
past states. That is, the Markov Process ismemoryless. This property of the stochastic
process enables elegant mathematical analysis. Now, it is not unreasonable to suppose
that the negotiation strategy at a particular stage is dependent only on the immediately
preceding stage, since a single offer captures the entire decision making that preceded it.
Therefore we model the negotiation process as a Markov process. Here, the probability
P = Pr{Xn+1 = x|Xn = xn} is called theone-step transition probability function
and it is fundamental to the study of Markov processes and, assuch, to our model.
This functionP is usually represented as a matrix where each entry(i, j) is given by
Pij = Pr{Xn+1 = j|Xn = i}. A Markov process, for whichS andT are discrete, is
called aMarkov chainand, so therefore, can our model.



Having introduced Markov chains, we now define the notions onwhich the learn-
ing component of our model is based. Specifically, our agent updates its beliefs using a
Bayesian update rule. Such Bayesian analysis is often used to estimate the most prob-
able underlying model for a random process, based on some observed data or infer-
ence [13], and we choose it here because it enables us to represent the uncertainty in
the environment as probability functions and it gives us a formal procedure to update
these functions based on our observations. Now, letA1, A2, ..., An, representn random
events. Then, we letXn, t = 0, 1, ... be the stochastic process we are trying to estimate.
Each of thesen events can be thought to represent the hypothesis that the parameters
of {Xn, t = 0, 1, ...} belong to setsT1, T2, ..., Tn. Finally, we let the eventB represent
the set of observed data. Now,Bayes rulecan be stated as:

Pr{Ai|B} =
Pr{B|Ai} × Pr{Ai}

∑

Pr{B|Ai} × Pr{Ai}
(3)

wherePr{Ai} is the prior probability of modelAi in the absence of any information,
Pr{ B|Ai} is the likelihood that observationB was produced given that the model was
Ai, andPr{Ai|B} is the posterior probability of the model beingAi given the obser-
vation isB. Our learning agent will use these inference rules to estimate the underlying
randomness of the negotiation process.

Our final discussion in this section refers to the strategiesthat the agents will use
in the negotiation process. In classical game theory, aStrategic-Formgame has three
elements:

1. the set of playersi ∈ I, whereI = 1, 2, ..., n

2. thepure-strategy spaceSi, for each playeri, and
3. payoff functionsui that give playeri′s utility ui(s) for eachprofile, s = (s1, s2, ..., sn),

of strategies

Therefore in game theory astrategyis perceived as an action choice of a player that has
autility associated with it. Often the objective in games is to determine a strategysi that
will maximise playeri′s payoff given the strategy set,s−i, that the other players use.
Also, notice that theui that playeri receives depends on the strategies of all the players
in the game and is not related to an isolated strategy thati may use. In the definition
of a strategic game we called the strategy space apure-strategy, this is because game
theorists often refer to an alternate strategy space calledthemixed-strategy space. The
mixed-strategy space is a probability distribution over the space of pure-strategies and
for mathematical ease of analysis it is often more convenient to deal with the mixed-
strategy space [3]. Thus in our problem the agent will learn the mixed-strategy profile
of its opponent and evolve a strategy in response to that strategy that earns it maxi-
mum payoff. In this sense, our negotiation problem can be considered as a two-player
strategic game.

Having introduced the main concepts that we use in our model,we are now ready to
describe the learning component and outline the solution procedure we have developed.



3 The Learning Model

The main objective of our agent is to learn the mixed-strategy profile of its opponent
and determine a strategy in response to this profile that maximises its pay-off at each
stage of the negotiation process. This learning problem is complicated by the fact that
the agent has no information about its opponent and that the strategy that the opponent
uses may well change during the course of the negotiation. Now, to model this process
of change in the strategies of the opponent, we use anon-stationary Markov chain.
Formally, anon-stationary Markov chainis a Markov chain (see Section 2) whose one-
step transition probability function,P(t) = Pr{Xn+1 = x|Xn = xn}, varies with
time [8]. If we define the state space,S, associated with this non-stationary Markov
chain to be the space of all possible strategies that the opponent can employ, and the
corresponding time dependent transition probability function, Pn(t), to represent the
probability that the strategy of the opponent changes at each stepn of the game and
that this probability function itself is a function of time,then this framework gives us
a powerful tool to describe and analyse the non-stationary negotiation process that we
are trying to model. Therefore, we adopt this mathematical formulation in this work.

Now, if Pn(t) were specified as a function of time, then we could obtain the strategy
profile of the opponent at each stage of the negotiation process using standard stochas-
tic process analysis [6] and then obtain a strategy that maximises our own payoff us-
ing maximization algorithms [1]. But since this function isunknown in our problem,
the agent has to learn it from interactions with the opponentand the environment. In
Bayesian learning, as explained in Section 2, the probability of a hypothesis being true
is continuously updated by signals that are received from the environment and, as such,
is well suited to modelling uncertainty in the environment.In our problem, in order
to learn the function,Pn(t), we propose that the learning agent initially has a finite
number of hypotheses1 of the possible distributions ofPn(t) which it updates using
Bayesian inference rules. This means that in successive negotiations, by updating the
different hypotheses, the agent comes closer to estimatingthe true value ofPn(t) and,
therefore, to estimating the true optimal strategy in response to its opponent’s play.

Formally, we consider two agents say buyerX and sellerY , negotiating over price.
We assume that the buyer is learning to respond to the strategy of the seller. Now, we
assume that there is a payoff function,un

sx

(t), associated withX, which depends on the
strategys thatX uses in response toY at each step,n, of the negotiation.X ′s objective
in the negotiation is to find a strategy profile that maximisesun

sx

(t) which we assume
is known toX. Therefore,X must learn the strategy profile ofY in order to determine
an optimal response strategy. To describe howX learns this strategy within the Markov
chain, we need to first define some of its properties. In stationary Markov chains, the
probability of moving from statei to statej in n time steps is represented asPn

ij and is
given by [6]:

Pn
ij =

m
∑

k=0

P r
ik × P s

kj (4)

1 This assumption reduces the search space while allowing us to representthe uncertainty in the
problem.



wherem is the total number of states,k is some intermediate state andr + s = n. Intu-
itively, this means that the probability of moving from one state to another in a certain
number of steps,n, is equivalent to the probability of moving from the first state to an
intermediate state,k, in r steps together with the probability of moving fromk to the
final state in the remaining number of steps. Now, from matrixalgebra, we recognise
equation 4 as the formula for matrix multiplication, so the n-step transition matrix, rep-
resented byPn, is equal toP (n) or that the entriesPn

ij in Pn are equal to the entries in
the matrixP (n), which is thenth power of the one-step transition matrixP . It follows
that if the probability of the process initially being in statej is pj , (i.e.,Pr{ X0 = j} ),
then the probability of the process being in statek, at timen is:

pn
k =

m
∑

j=0

pjP
n
jk (5)

wherem is the total number of states. Thus in our problem if we know the initial dis-
tribution of the opponent’s strategies we can calculate theprobability that the opponent
uses a certain strategy aftern time steps. This is the main reason for using the Markov
chain framework to model the negotiation process. In our model, however, the Markov
chain is non-stationary and, therefore, we need to prove, anequivalent result for the
non-stationary case (this has not previously been done). Here, sincePn(t) is a func-
tion of time, at each step of the process we have a different transition probability matrix.
Here, we propose that to obtainpn

k as a function of time, we need to multiplyn different
transition matrices. We now formally state and prove this result.

Theorem 1. In non-stationary Markov chains, the probability of movingfrom statei to
statej in n time steps, during time instantt, is represented asPn

ij(t)
2 and is given by:

Pn
ij(t) =

∑m

k=0 P r
ik(u) × P s

kj(v)

wherem is the total number of states,k is some intermediate state,r + s = n andu, v
are time instants at which the transitions occur.

Proof. We prove the result whenn = 2. The event of moving from state i to state
j can happen in mutually exclusive ways, of going to some intermediate statek ∈
{0, 1, 2...,m} in the first transition and then moving from state k to state j in the next
transition. Now, because of the Markovian assumption that the transition probability
is independent of the history of the process, the probability of the second transition is
simplyPkj(v) and, by definition, the probability of the first transition isPik(u). There-
fore, by the law of total probability:P 2

ij(t) =
∑m

k=0 P 1
ik(u) × P 1

kj(v). In the general
case, by breaking up the firstr steps and then the nexts steps into a series of single
step transitions and again by using, the law of total probability for each transition, the
proof is obtained. ut

2 Heren represents the number of time steps andt represents the fact that the transition proba-
bility P n

ij(t) is a function of time.



Thus, in the non-stationary case also, given the probability that initially the process
was in, say statej (i.e.,p0

j (0) = Pr{X0(0) = j}), then the probability that it is in state
k aftern time steps and at timet is represented aspn

k (t) = Pr{ Xn(t) = k} and is
given by:

pn
k (t) =

m
∑

j=0

[p0
j (0)] × [Qn

jk(t)] (6)

whereQn
jk(t) = [P 0(0)] × [P 1(1)]... × [Pn−1(t − 1)].

Therefore, we now have a means of obtaining the probability distribution of the process
and, thereby, the probability distribution of strategies at any stage in the negotiation
process given an initial distribution of strategies and thetransition probability matrices.

Now, we come to the main issue of learning the transition probability matrices. As
already stated, we propose to do this using Bayesian inference rules. However, to do this
we must assume that the learning agent, in our case the buyerX, has some knowledge
about the negotiation process. Specifically, in order to update its hypothesis about the
strategy distribution ofY from the offers that it receives, it has to know how the offer
generation process depends on the strategy selection process. To this end, let us assume
thatS, the set of all possible strategies thatY can use, and as such constitutes the state
space of our Markov chain, is given byS = {so

0, s
o
1, ..., s

o
m}. Therefore,Y switches

between the strategies inS according to the transition probability matrixPn(t), which
varies with time. We letOn(t) represent a sequence of offers made byY andOp

n(t)
represent the event that the offer at thenth step of the process at timet is p. We also let
Hn(t) represent a sequence of finite sets of hypotheses aboutP

n(t) during the negoti-
ation process. ThereforeHn(t) = {H1

n(t), ...,Hk
n(t)}, wherek is some finite positive

integer. We assume that the hypothesis representing the true value of the transition prob-
ability function also belongs toHn(t). Then the objective of our learning algorithm is
to update each of these hypotheses{Hi

n(t) ∈ Hn(t)} at every stepn of the negotiation.
The steps of the algorithm are detailed in Algorithm 1. In more detail, using Bayes rule
we have for each hypothesis, at stepn of the process that:

Pr{Hi
n(t)|Op

n(t)} =
Pr{Hi

n(t)} × Pr{Op
n(t)|Hi

n(t)}
∑i=0

k [Pr{Hi
n(t)}] × [Pr{Op

n(t)|Hi
n(t)}]

(7)

We call Pr{Hi
n(t)|Op

n(t)} the likelihood function,L. Thus eachHi
n(t) is updated

in the light of the incoming offerOp
n(t). Now, B uses the hypothesisHnew

n (t) =
∑i=0

k {Pr{Hi
n(t)|Op

n(t)} × Hi
n(t)} to find the strategy used by the opponent. There-

fore the learning agent weights the different hypotheses bythe probabilities of their
occurring in order to form a new hypothesis aboutP

n(t). Because of this construc-
tion of the new hypothesis we can show that, ast → T whereT is sufficiently large,
Hnew

n (t) approaches the true value ofP
n(t) (see theorem2 for details). Then, accord-

ing to un
sx

(t), the agent determines the strategysn
max(t) that maximisesun

sx

(t) at each
step of the negotiation process. We denote this maximum value of the payoff function
by un

smax

(t). This completes the solution procedure for determining thebest response



Algorithm 1 The Adaptive Negotiation Algorithm
1. for (t = 0, 1, 2, ..., T )

2. for (n = 0, 1, 2, ..., tterminal)

3. initialize Hi
n(t) ∈ Hn(t) as an arbitrary distribution.

4. input opponent offerp ∈ Domain{On(t)}

5. Pr{Hi
n(t + 1)} ← Pr{Hi

n(t)|Op
n(t)} using equation 7

6. assignHnew
n (t) =

� k

i=0
{Pr{Hi

n(t)|Op
n(t)} × Hi

n(t)}

7. assign[P n(t)] = Hnew
n (t)

8. compute[(so
1, s

o
2, ..., s

o
m)]n(t) using equation 6

9. computesn
max(t) = max[(s1, s2, ..., sm)]n(t)×un

x(t)× [(so
1, s

o
2, ..., s

o
m)]n(t)]T s.t�m

i=0
si = 1 andsi ≥ 0 ∀i

10. computeun
smax

(t)

11. next n

12. next t

strategy to the opponent’s play and consequently the maximum payoff at each step of
the negotiation process.

Here, it is important to note that according to this algorithm, the agent learns across
successive negotiations and not within a single negotiation process. Therefore, we claim
that in repeated negotiations using our algorithm, the agent learns to use the optimal
strategy and earn maximum payoff at each stage of the negotiation process. In order to
prove this claim we need the following lemma.

Lemma 1: After a sufficiently large timeT , the real probability distribution over the
future rational play of a game isε-close to what playeri believesthe distribution is [5].

Here,ε-close implies that we can approach arbitrarily close to theactual distribution
and rational play means that at each stage of the negotiationthe players take the action
that maximises their pay-offs. Having stated Lemma 1, we arenow ready to prove our
main result.

Theorem 2. In the non-stationary negotiation process, the sequence ofnth step strate-
gies{sn

max(0), ..., sn
max(t), sn

max(t + 1), ..., } and the corresponding sequence ofnth

step payoff functions,{un
max(0), ..., un

max(t), un
max(t+1), ..., }, after a sufficiently large



timeT , areε-close to the true optimal strategy and the corresponding maximum payoff
function at thenth step of the negotiation process.

Proof. According to Lemma 1, in a systematic belief update process, the learner even-
tually comes arbitrarily close to the true distribution after a sufficiently large time
T. Since the process by which our learning agent estimates the strategy of the op-
ponent is constructed as a Bayesian belief process, the sequence of updated proba-
bilities, {Pr{H0

n(t)|Op
n(t)}, ..., P r{Hi

n(t)|Op
n(t)}, ..., P r{Hk

n(t)|Op
n(t)}} comes ar-

bitrarily close to{0, ..., 1, ..., 0} for somei ∈ {0, 1, 2, ..., k} as t → T . This implies
that Hi

n(t) is the true hypothesis. Therefore,Hnew
n (t) =

∑i=0
k {Pr{Hi

n(t)|Op
n(t)} ×

Hi
n(t)}, by construction, and, therefore,Hnew

n (t) → Hi
n(t) ast → T . Since the oppo-

nent determines its strategy at each step usingHnew
n (t) and since our agent determines

its optimal strategy and the maximum payoff at each step in response to this updated
opponent strategy, the result is proved. ut

Thus we have analytically shown that our algorithm converges. We now present an
example to illustrate this operation (and in section 4 we explore the actual speed of
convergence). Specifically, in this problem, we make the following assumptions:

1. The strategy spaceS of the opponent consists of two strategies,S = {s1, s2}.
2. At each time stepn of the negotiation, the learning agent has a set of three hypothe-

ses about the possible value ofP
n(t).

We now describe the solution procedure in our problem.

– Here as specified in Step 3 of algorithm 1, we initialize,Hi
0(0) ∈ H0(0).

H1
0 (0) =

[

0.5 0.5
0.5 0.5

]

H2
0 (0) =

[

1 0
0 1

]

H3
0 (0) =

[

0 1
1 0

]

Now the agent is unaware of the true value ofP
n(t), but has arbitrary probabilities

assigned to each of these hypotheses aboutP
n(t).

– Let {Pr(H1
0 (0)) = 0.5},{Pr(H2

0 (0)) = 0.25}, {Pr(H3
0 (0)) = 0.25} and offer

of opponent,O0(0) = 100.
– Then according to Step 4 in algorithm 1, we observe the offer of the opponent and

assume thatPr{O0(0)|H1
0 (0)} = 0.6, Pr{O0(0)|H2

0 (0)} = 0.2 andPr{O0(0)|H3
0 (0)} =

0.2 (here we assume arbitrary values forPr{O|H}, but we are in the process of
studying the offer patterns of traders in different domainsin order to get an accurate
representation for these values).

– Using Step 5, we update probabilities asPr{H1
0 (0)|O0(0)} = 0.75, Pr{H2

0 (0)|O0(0)} =
0.125 andPr{H3

0 (0)|O0(0)} = 0.125.
– From Step 6, we determineHnew

0 (0) = (0.75) × H1
0 (0) + (0.125) × H2

0 (0) +
(0.125) × H3

0 (0).



– Step 7 specifies the strategy profile of the opponent. The initial profile is assumed
to be given as[0.2, 0.8] (i.e., Pr{S = so

1} = 0.2, P r{S = so
2} = 0.8) and the

payoff function of the agent is:

u0
x(0) =

[

1 0
−2 3

]

– From Step 8, to determine its strategy profile,[s1, s2] and the corresponding payoff
function, the agent solves the linear program:
max[s1, s2] × u0

x(0) × [0.2, 0.8]T s.ts1 + s2 = 1 ands1, s2 ≥ 0.
The strategy profile thus obtained is denoted ass0

max(0) and the payoff function is
un

max(0).
– We do this for every time stepn of the negotiation process and obtain{s0

max(0), s1
max(0), ...}

and{u0
max(0), u1

max(0), u2
max(0), ...}

– We then repeat this for every negotiation during time instants t = 0, 1, 2, 3, ... and
obtain the sequences{s0

max(0), s0
max(1), s0

max(2), ...}, {s1
max(0), s1

max(1), s1
max(2), ...},

{s3
max(0), s3

max(1), ...} and the corresponding payoff sequences.

In this case the two sequences converge within4 iterations to the optimal values at each
step of the negotiation process. Having proved that our algorithm converges, we need to
determine the rate of this convergence and the factors that influence this. This can only
be done empirically and our results are presented in the nextsection.

4 Empirical Results

We have run experiments by varying the number of hypotheses for Pn(t). Specifically,
we have experimented with both2 × 2 and3 × 3 matrices representing the strategy
profiles. We have found that using our algorithm, the agent onan average (computed by
varying the number of hypotheses ie., the number of2 × 2 and3 × 3 matrices) learns
the maximum payoff within13.6 iterations for2× 2 matrices and on an average within
23.6 iterations for3 × 3 matrices. On an average, each iteration takes7.44 seconds to
complete for2× 2 matrices and18.92 seconds for3× 3 matrices. We have also exper-
imented by changing the elements of the transition matrices. Our results indicate that
the rate of convergence is independent of variations in the patterns of the opponent’s
offers. But it depends on the number of hypotheses forP

n(t) at each step of the nego-
tiation. However, since the computation of updated probabilities is a simple arithmetic
operation and since this computation alone is affected by the number of matrices, the
time for convergence does not drastically increase with thenumber of matrices. This
is shown in tables 1 and 2 and figure 1 shows the actual convergence of the algorithm
during successive iterations at asingle stepof the negotiation process. In figure 1 the
optimal value line for the payoffs is computed by assuming that the opponent’s strat-
egy profile is known to the agent. The other line corresponds to the agent learning the
opponent’s strategy profile and therefore the optimal payoff value, using our algorithm,
as illustrated in the example problem. In figure 1 we used2 × 2 matrices to represent
the opponent’s strategy profiles and assumed2 hypotheses forPn(t) at each step of the
negotiation.



Now, in general, if we assume that there arek hypotheses forPn(t), then in the
random case the probability of finding the true hypothesis isalways1/k (i.e., this prob-
ability does not improve with time). However, the convergence of our algorithm is guar-
anteed by theorem 2 and therefore our estimation of the trueP

n(t) improves with each
iteration and eventually converges. With this and the fact that the algorithm converges
on an average within1315 seconds even with10 hypotheses and3 strategies, we claim
that our algorithm isk times more effective than random estimation. Therefore even in
the case when there are only2 hypotheses at each stepn for P

n(t) our algorithm is
200% more effective than random estimation. Obviously, as we increase the number of
hypotheses, which allows for a more general representationof P

n(t) and therefore of
the uncertainty in the problem, the effectiveness of our algorithm over random estima-
tion increases proportionally.

No of HypothesesOffer DistributionAverage IterationsAverage Time for Iteration in secs
2 Arbitrary 2 2.7
4 Arbitrary 4 4.6
6 Arbitrary 11 7
8 Arbitrary 21 10.1
10 Arbitrary 30 12.8

Table 1.Dependence of rate of convergence on number of hypotheses for2 × 2 matrices

No of HypothesesOffer DistributionAverage IterationsAverage Time for Iteration in secs
2 Arbitrary 7 6.2
4 Arbitrary 15 12
6 Arbitrary 25 18.4
8 Arbitrary 29 26.7
10 Arbitrary 42 31.3

Table 2.Dependence of rate of convergence on number of hypotheses for3 × 3 matrices

5 Conclusions and Future Work

In this work we have developed a new framework, using Markov chains, for studying
negotiation in non-stationary environments. This is a general framework which can be
used to study decision making in many stochastic systems like market places and auc-
tions. Within this framework, we have derived, for the first time, an important result for
non-stationary Markov chains that computes the distribution of the random variable,
which defines it, at any future step of the process given its initial probability distri-
bution and the transition probability matrices at each stepof the process. Then, using
this framework we have developed an algorithm to learn a strategy in response to a
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Fig. 1.Convergence to Optimal Strategy

non-stationary opponent’s play and proved that it converges to the optimal strategy in
repeated negotiations. Unlike previous work in this area, our algorithm does not assume
knowledge of the opponent’s strategy profile and, as such, isa powerful tool to analyse
negotiations in real world environments where such uncertainty is common. Our algo-
rithm is also explicitly designed to deal with cases in whichthe strategy profile is not
only unknown, but changes with time during the course of the negotiation process it-
self. This significantly extends the state of the art in the field of automated negotiations
in non-stationary, real world environments. For such cases, we have proved, analyti-
cally, that our algorithm converges. Our empirical resultsindicate that the algorithm
converges within reasonable timeframes to the true hypothesis even when the number
of hypotheses is large. Also, in our algorithm, the states ofthe Markov chain represent
the strategies that are available to the opponent and the actual uncertainty in the prob-
lem is represented by the number of hypotheses. Therefore weneed not increase the
number of states to represent greater uncertainty in the domain. The algorithm is also
vastly more accurate than random estimation.

In our future work, we intend to use the structure of the Markov chain to develop
a more formal model for the likelihood function in the Bayesian belief update process
which would help us to reduce the computation effort involved in updating the agent’s
knowledge even in complicated real world scenarios. We are also in the process of
doing statistical analysis to estimate the number of hypotheses that are required to get
an accurate representation of the dynamism in exemplar realworld domains like mobile
communications and we also intend to extend the algorithm tolearn the opponent’s
negotiation parameters along with its strategy profile and to study negotiation when the
opponent is also changing its strategies in response to our agent’s adaptivity. Finally, we
intend to do a detailed comparative study between other machine learning techniques,
like Reinforcement learning and Bayesian methods in automated negotiations, for non-



stationary environments. This study would also provide a more effective benchmark
than random estimation for our algorithm.
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