
Design Patterns for Wrapping Similar Legacy Systems with

Common Service Interfaces

David E. Millard, Yvonne Howard, Swapna Chennupati,

Hugh C. Davis, Ehtesham-Rasheed Jam, Lester Gilbert, Gary B. Wills

School of Electronics and Computer Science, University of Southampton, UK

{dem,ymh,cs,hcd,erj2,lg3,gbw}@ecs.soton.ac.uk

Abstract

Web Services are increasingly being used to create

a wide range of distributed systems, many of which

involve legacy software. Developing service interfaces

for these legacy systems can be difficult, as for

interoperability reasons it is advantageous to use a

common service interface that is independent of the

particular legacy system behind it. This enables other

services to interoperate with like legacy systems

regardless of their implementation. Unfortunately,

similar legacy systems can offer subtly different

functionality from each other, making agreeing on a

common interface difficult. This paper introduces three

design patterns for managing this problem: Lowest

Common Denominator, Most Popular and Negotiated

Interfaces. It formally presents these patterns and

reflects on how they have been used within the domain

of e-learning to wrap legacy systems that function as

databases of objective questions.

1. Introduction

Distributed systems pose unique challenges for

software engineers; components need to agree common

protocols, data models, and paradigms of

communication in order to work together. Often these

components are created by disparate teams of

developers, and agreeing on these interoperability

issues can be difficult.

Service-Oriented Architectures (SOAs) aim to

simplify this problem, by providing a framework in

which components publish and consume services using

standard protocols and well-defined interfaces. This

means that systems can be developed in a modular

fashion, and can later be extended to adapt to new

challenges, or to provide new functionality [17].

Service-orientation is a philosophical approach to

creating distributed systems, but there are a number of

SOAs, each using different standards and approaches to

providing them at an implementation level. For

example, Web Services are based on SOAP, GRID

Services are based on OGSI, and REST services are

based on HTTP and XML. All of these approaches

share a common problem, however, that it is often

necessary to wrap existing legacy software in a service

interface to make it easily accessible to clients that are

using the SOA.

Wrapping a single legacy application can be a

simple process of capturing all the system’s

functionality in a new service interface and then writing

some intermediary code that converts from service calls

to the proprietary API. However, many legacy systems

provide similar functionality and wrapping them all in

specific Web service interfaces does not encourage

reuse. Different legacy systems can also provide

overlapping functionality, and large service interfaces

seem bulky and inappropriate.

A better solution would be to devise a number of

smaller service interfaces which legacy systems can

support as appropriate. The granularity should not be

too small, however, (for example, one method per

interface) as this adds overhead to the service design,

and can be as big an obstacle to reuse as large

interfaces (because of the difficulty of finding many

services to fulfill what is conceptually one larger

service, and the increased risk that one of more small

services will be unavailable therefore preventing the

larger conceptual service from functioning).

 Service designers thus have to balance granularity,

defining service interfaces that are complete and

therefore robust, but at the same time consolidating the

functionality of legacy systems into only a few

interoperable interfaces. Design patterns are a semi-

formal method of capturing design practice so that it

may be shared and reused in other design exercises.

In this paper we present three design patterns for

wrapping legacy systems with common service

interfaces. We have developed these patterns during

our own work in the domain of e-learning, and e-

assessment in particular. E-learning is a rich domain

that is beginning to embrace service architectures, and

is replete with legacy systems which contain valuable

data such as questions, course structures, and student

information. We believe that the methods that we have

explored and generalised into design patterns will be

valuable to other service developers faced with a

similar legacy software environment.

Section 2 provides background information on

existing Web service design practice, and the use of

design patterns within software engineering. Section 3

describes the motivation and context for our work -

services development in the domain of e-assessment -

as evidence for the need for these types of service

pattern. Section 4 presents the patterns themselves:

Lowest Common Denominator, Most Popular and

Negotiated Interfaces, using the ‘Gang of Four’

structure. Section 5 describes our experiences and

observations from our own implementations of the

patterns. Section 6 concludes the paper and summarizes

our contribution.

2. Background

There are a number of distinct architectures that

subscribe to the service-oriented paradigm. Web

services have received a great of recent attention, and

are defined around a set of standards (such as SOAP,

WSDL, UDDI) developed by the W3C to make

functionality available over the Web as simply as data

Web services are mostly not secure and stateless. This

mirrors the Web approach, and is good for non-

sensitive information and ad-hoc systems.

GRID services, on the other hand, assume a highly

secure environment, and rely on certificates and

authentication bodies to operate [7]. This approach to

security makes it possible to build virtual organisations

(that exchange and manipulate sensitive information)

but can be prohibitively heavyweight for developers

wishing to build simpler services and applications.

These two technologies are becoming more closely

defined and a new generation of Web Service standards

(such as WS_Security) is now being introduced to add

a standard layer of authentication and security to Web

Services. This will make Web Services more attractive

for systems builders as it is possible to build virtual

organisations using relatively lightweight middleware.

A third approach to service provision is represented

by Representational State Transfer (REST) [6]. This is

the name for a methodology rather than a set of

standards, where HTTP and XML are used to send and

retrieve data to a remote script or application living on

a Web server. Web sites such as Google which offer

both a REST and SOAP interface report that most

activity is through the REST interface, indicating that

REST may be good enough for much of current

service-oriented practice.

Whichever service architecture is chosen, there

remains the common problem of service design,

choosing how to decompose a system into co-operating

services such that the services are atomic, reusable, and

work efficiently together in some greater context.

2.1. Web Service Design Methodologies

Dijkman and Dumas [5] suggest that there are three

characteristics that differentiate Service from

Component-based design: Services are developed by

autonomous teams, they have a coarser granularity, and

they are driven by specific business processes.

A number of researchers have suggested that the

tight binding between enterprise practice and service

workflow can be used to model and develop services.

Martin et al. [10] suggest that the best way to

implement Web Services in an enterprise is to start

with a component-based architecture that exposes

business process level services as Web services.

Quartel et al [12] use design milestones to develop

Web services from explicit business practices.

Others have also explored this type of modeling

approach. Wada et al [16] construct a model of the

domain and then use this to derive an object design;

this kind of modeling can also been used with SOAs to

validate a design as fit for purpose [1].

These methods focus upon developing services

from a model of the problem domain, but sometimes it

is useful to capture actual design strategies for common

problems, rather than to reinvent them through detailed

modeling.

2.2. Design Pattern Methodology

Design Patterns are a method for effective

communication of design rationale, to aid people in

reasoning about what they do and to help them

understand why they do it in a given context. Schmidt

et al. propose writing patterns to concentrate on

recording the essential patterns successful developers

use [15]. Schmidt et al also suggest that this is

motivated by a number of values:

• Success is more important than novelty. It is

not just a matter of recording novel ideas but

proven patterns that work.

• Emphasis on writing and clarity of

communication. Patterns are written in a

concise standard format to aid

communication

• Quality validation of knowledge. Software

development can be a creative process, with

implicit knowledge imbedded in it. Patterns

help expose this knowledge.

• Good patterns arise from particular

experience. Patterns are best developed from

the collective experience of a community of

developers.

• Recognizing the human dimension in

software development. Patterns help to

recognize the importance of the developer in

creating effective software.

Beck et al describe their industrial experience

which showed that design patterns were very useful for

transcending the reuse of personal knowledge to the

sharing of knowledge among developers [2]. They

found patterns were an effective shorthand for

communicating complexity in software development,

that they encouraged the use of good practice, and

provided a compact means of capturing the essential

element of a design. Beck et al also make the point that

good design patterns are difficult to write for

developers who find it difficult to abstract out the key

concepts.

Cline makes the point that design patterns are

written and categorized by people who really

understand them, which can make it difficult for new

people to learn where to find relevant patterns [3]

Gomaa et al have used the Unified Modeling

Language (UML) to describe the components of an

interaction pattern [9]. Their definition of a pattern is

one that describes a recurring problem, its solution, and

the context in which it applies. They used this broad

definition to provide a number of patterns for the ways

in which components communicate within a

client/server system.

Schmidt and Buschmann recognize the synergy

between patterns, frameworks, and middleware, yet

suggest that there is no hierarchy in the relationship of

patterns to frameworks or to middleware [14]. They

describe frameworks as a concrete instantiation of a

number of patterns, where the patterns steer the design

and use of the framework.

While there is no fixed format for describing

patterns, they do have four essential elements: a name,

a description of the problem, a proposed solution, and a

list of consequences [13]. The most common approach

to describing patterns is given by Gamaa, et al who are

commonly referred to as the ‘Gang of Four’ [8]. As

well as the motivation section which includes the

rationale for the pattern and a consequences section for

recording the trade-offs when using the pattern, the

format also records the participants in the pattern, their

responsibilities, and their collaborations.

3. Motivation

Our design patterns are motivated by our work on

the FREMA project, which is part of the JISC e-

Framework initiative [11].

The e-Framework is a collection of services that

work together to support applications in the domains of

e-learning, e-science, e-research and e-administration.

At present it is a mainly a political construct, at the

centre of the JISC e-learning strategy, but there are a

number of current projects with the aim of defining

and/or creating services to populate the framework.

FREMA is a Community Reference Model for the

area of e-assessment (shown in Figure 1). It provides a

number of descriptions of services within the e-

Framework and how they function together to support

assessment activities. It is community-based in that it

aims to provide a Web forum where new service-

designs can be authored, discussed and eventually

promoted to full reference model status.

While the current version is a Web site based on an

ontological database of resources, the next version will

be a semantic wiki fully in the control of the

assessment community.

FREMA takes an agile view of service development

(emphasizing a rapid and lightweight development

cycle). In FREMA, Use Case diagrams are used to

capture common problem scenarios within the

assessment domain, and these are then converted into a

set of Service Responsibility and Collaboration (SRC)

cards. SRCs are a high-level, abstract view of a service,

which lists all the responsibilities of a service and the

collaborations with other services that are needed to

fulfill them. UML 2.0 sequence diagrams are used to

describe how a number of SRCs work together to fulfill

the broader scenario described in the Use Case.

The domain of e-Assessment is a brown field site,

in that there many existing systems, protocols and

standards in the area. Services must work alongside, or

wrap, this existing software if they are to be accepted

into real practice and used with current systems.

In a number of cases we had been forced to tackle

this problem. The issue is that there is often more than

one software system that fulfills the responsibilities of a

given Service. We have looked in particular detail at

the area of item banks (open databases of questions),

and how different item banks can be wrapped by

common query services.

Examples of item banking software include TOIA

(a sophisticated Item Management system)
1
, E3AN (a

simple database of questions adhering to QTI standards

[4] and SPAID (a JISC system for storage and

packaging of items) [18].

Figure 1: FREMA Web Site

We have made the observation that even for similar

systems the intersection of functionality can be small.

In terms of service design this means that it is often not

possible to have one definitive common interface. It

also means that a non-definitive but common interface

(covering the intersection of functionality) may not

capture the core functionality of either system.

It is necessary to come up with strategies to cope

with this problem. We have thus developed three

design patterns for wrapping similar legacy systems

that can be used depending on the circumstances.

4. The Design Patterns

The following design patterns have been defined in

the ‘Gang of Four’ format. We have been deliberately

concise with some of the fields to accommodate the

format of an academic paper.

1
 TOIA Homepage: http://www.toia.ac.uk/ (July, 2006)

4.1 Lowest Common Denominator Interface

Pattern Name and Classification: Lowest Common

Denominator (LCD) Interface (Behavioral)

Intent: To provide the simplest way to create a

common interface for two or more software

components that are non-identical but which share

some common methods.

Also Known As: LCD Interface

Motivation: When integrating existing software

components into a Service-Oriented Architecture

(SOA) it is necessary to create a Service Interface

that captures the functionality of that software and

makes it available as a Service. Similar software

components should be wrapped with a common

interface to enable them to be used modularly

within the SOA. The LCD interface is a simple

approach to rapidly defining a common interface,

with a direct relation between the methods of the

common interface and the functionality of the

underlying legacy component.

Implementation: A LCD interface is a strict

intersection of the functionality of all the legacy

components considered. This can be derived by

creating interfaces for individual legacy

components, normalizing the methods, and

extracting those that are common. The data models

used in the LCD interface may be different from

those wrapped in the legacy systems, although

typically the most common approach will be re-

used.

Structure: Figure 2 shows a Venn diagram comparing

the hypothetical interfaces of two legacy systems

with the LCD interface.

Applicability: It is feasible to use a LCD interface

when the intersection of functionality between

legacy systems includes the functionality that, in the

view of an expert, captures the core essence of all

the legacy systems considered.

Participants: The pattern applies to at least two

software components which have service-like

behavior that is similar. It can be generalised to

include more components.

Collaboration: The LCD interface can be

implemented as an Adaptor-style service. Calls to

the LCD interface can be passed directly on to the

legacy systems that have been wrapped, although

data types may have to be converted and coarse

grained methods may have to be devolved into

several fine grained calls.

Consequences: The LCD interface is simple to derive,

but its effectiveness at capturing the functionality of

wrapped legacy systems depends on a high

similarity between the functionality of those

systems. It may stifle richness by ignoring novel

functionality that is not shared by all. In addition,

the likelihood of the LCD interface being effective

(capture core functionality) is reduced in proportion

to the number of legacy systems being wrapped.

Figure 2: The LCD interface – the intersection of the

methods of legacy systems A and B.

Known Uses: This pattern was used within the JISC

FREMA project to wrap two item banks (TOIA and

E3AN). The code is available from the FREMA

website (www.frema.ecs.soton.ac.uk).

Related Patterns: Adaptor Pattern [8]: described how

classes can be wrapped in Object Orientation, it is a

structural pattern focusing on methods of

implementation, rather than what parts of the

wrapped class should be exposed. Most Popular

Interface and Negotiated Interface are alternative

patterns that deal with defining common interfaces

for similar software systems.

4.2 Most Popular Interface

Pattern Name and Classification: Most Popular

Interface (Behavioral)

Intent: To provide a rounded and robust common

interface for two or more software components that

are non-identical but which share some common

methods.

Also Known As: N/A

Motivation: When integrating existing software

components into a Service-Oriented Architecture

(SOA) it is necessary to create a Service Interface

that captures the functionality of that software and

makes it available as a Service. Similar software

components should be wrapped with a common

interface to enable them to be used modularly

within the SOA. The Most Popular interface is an

approach that produces a compromise interface that

reflects the best practice of many legacy systems.

Implementation: A Most Popular interface is an

interface whose methods form a set M, such that the

intersection of the methods of two or more legacy

systems is a proper subset of M. The methods

included in M are chosen by a group of experts, to

reflect the functionality that they believe would be

expected by the community.

Structure: Figure 3 shows a Venn diagram comparing

the hypothetical interfaces of two legacy systems

with the Most Popular interface.

Figure 3: The Most Popular Interface - the methods

deemed essential by a group of experts – a subset C, such

that the intersection of A and B is a proper subset of C.

Applicability: It is feasible to use a Most Popular

interface when there is agreement between experts

in a community about the core functionality that

should be expected from that type of system.

Participants: The pattern applies to at least two

software components which have service-like

behavior that is similar. It can be generalised to

include more components.

Collaboration: The Most Popular interface can be

implemented as an Adaptor-style service. In some

cases there will be a mismatch between the

functionality represented in the interface and that

supported by the wrapped legacy system. There are

two possible approaches, to either make the

mismatched methods empty calls, that return null,

or to replicate the missing functionality with new

code (that may utilize the functionality of the

wrapped legacy system in a new

way).Consequences: The Most Popular interface is

complex to derive, and may require a prolonged

standardization effort, but it is highly effective at

capturing a broad set of capabilities from legacy

software and creating a robust and reusable

common service. If experts differ then it is possible

that many competing common interfaces evolve. It

is also possible that in some cases no common view

exists. When implementing missing functionality

there are two approaches that may be taken:

o The wrapping service might use additional

information that was not part of the wrapped

legacy system. In this case the new information

must be created in order for the wrapping

service to work. For example, some item bank

services have a “Search by Keyword” method,

for those item banks without this method

keywords for each item must be created and

stored, so the method can be simulated.

o The wrapping service uses existing information

within the legacy system in a new way in order

to simulate the method. In the “Search by

Keyword” example a Term Frequency analysis

could be used on the main text of the items, held

in the legacy system, to calculate keywords at

runtime.

The latter approach is more robust, and can deal

with changing data within the legacy system, but

may not be appropriate if Quality of Service is an

issue.

Known Uses: This pattern was used within the JISC

FREMA project to wrap two item banks (TOIA and

E3AN). The code is available from the FREMA

website (www.frema.ecs.soton.ac.uk).

Related Patterns: Adaptor Pattern described how

classes can be wrapped in Object Orientation, it is a

structural pattern focusing on methods of

implementation, rather than what parts of the

wrapped class should be exposed. Lowest Common

Denominator Interface and Negotiated Interface

are alternative patterns that deal with defining

common interfaces for similar software systems.

4.3 Negotiated Interface

Pattern Name and Classification: Negotiated

Interface (Behavioral)

Intent: To provide a flexible common interface that

preserves richness, for two or more software

components that are non-identical but which share

some common methods.

Also Known As: N/A

Motivation: When integrating existing software

components into a Service-Oriented Architecture

(SOA) it is necessary to create a Service Interface

that captures the functionality of that software and

makes it available as a Service. Similar software

components should be wrapped with a common

interface to enable them to be used modularly

within the SOA. The Negotiated interface is an

approach that produces a flexible interface which

enables all the functionality from all the similar

legacy systems to be represented, even though that

functionality may be impossible to replicate on

some other legacy systems.

Implementation: A Negotiated interface is an interface

whose methods represent the union of all methods

from two or more legacy systems that have been

identified by experts as being important within a

domain. The interface also includes methods that

allow users of the service to query which methods

are supported by the currently wrapped legacy

system. This may be done by returning a contract

that describes which methods are currently

available, or by querying at runtime for the

availability of individual methods.

Structure: Figure 4 shows a Venn diagram comparing

the hypothetical interfaces of two legacy systems

with the Negotiated interface:

Applicability: It is advisable to use a Negotiated

interface when there is novel functionality in some

legacy systems that experts believe should be

reflected in a common interface even though it is

not universally supported. However, a Negotiated

interface adds runtime complexity, and makes

systems less robust, as they may fail if functionality

that is required is missing from the wrapped legacy

system.

Participants: The pattern applies to at least two

software components which have service-like

behavior that is similar. It can be generalised to

include more components.

Collaboration: The Negotiated interface pattern can

be implemented as an Adaptor-style service.

Consequences: The Negotiated interface is

cumbersome to define, but avoids complex expert

decisions about definitive interfaces. It adds

runtime complexity to a service framework, and

because of its dynamic nature can destabilize a

service-based system (although this can be

mitigated by contract-style negotiation that allows

for earlier error checking).

Figure 4: The Negotiated Interface - all the interface

methods supported by all major systems – the union of A

and B – but with a negotiation interface that allows

individual systems to declare whether they support

methods at runtime.

Known Uses: This pattern was used within the JISC

FREMA project to wrap two item banks (TOIA and

E3AN). The code is available from the FREMA

website (www.frema.ecs.soton.ac.uk).

Related Patterns: Adaptor Pattern described how

classes can be wrapped in Object Orientation, it is a

structural pattern focusing on methods of

implementation, rather than what parts of the

wrapped class should be exposed. Lowest Common

Denominator Interface and Most Popular Interface

are alternative patterns that deal with defining

common interfaces for similar software systems.

5. Experience and Reflections

Within FREMA we wanted to show how web

services could be used to wrap legacy systems. In e-

Assessment Item Banking is one of the best supported

activities. Item banks are databases of questions that

can be queried to provide content for either summative

or formative assessment. Item Banks are a good

example of legacy systems as they often have slightly

different query functionality and use different data

formats for their questions (although the QTI format is

becoming a popular standard). We attempted to wrap

two systems, trying each of our three patterns:

 TOIA (Technologies for Online Interoperable

Assessment) is a free question management system

developed for use by UK HE institutions. TOIA

supports the basic idea of grouping items together by

subject theme. However TOIA takes this concept of

grouping even further by grouping a number of subject

themes as a hierarchical content structure. For

example, there could be a content structure called

“Computer Science First Year” which could have a

number of subject themes like “Programming”,

”Computer Basics”, “Digital Circuits”, etc. In addition

to Content Structure & Subject theme, TOIA also

supports search by keyword. However keywords are

associated with subject themes not Assessment Items.

When you search for a keyword in TOIA, you get all

the Items that are associated with one or more Subject

themes with which that keyword is associated.

E3AN (Electronics and Electrical Engineering

Assessment Network) was an initiative to collect

questions around the topic of electrical and electronic

engineers, it uses a large open database as its

repository. E3AN supports the concept of grouping

items by subject theme. However there is no concept of

content structure. E3AN also supports the concept of

keywords, and associates keyword with individual

Assessment Items. Search by Keyword operation in

E3AN returns all the relevant Items that are associated

with a specific keyword, unlike TOIA where keywords

are associated with subject themes.

Originally we also hoped to use SPAID as one of

our systems, but the documentation and code where

difficult to obtain and in the end we had to concentrate

on the two systems that we had available. Although the

systems use different formats for their questions, both

formats are similar to QTI, and are expressed in XML.

Figures 5 shows the front end to the web service

wrappers that we wrote. There is a simple web

interface for each pattern that allows queries to be

made through the pattern interface. A drop down

option allows the user to choose which of the two

legacy systems they wish to query. The results are

returned with metadata mapped onto the QTI standard.

If the user goes through this to the question below they

retrieve the original question XML.

Implementing the Lowest Common Denominator

(LCD) interface was relatively easy; both systems

implement a simple keyword search scoped by question

level and type. However, since E3AN does not

categorize its questions we do not support searching by

subject theme. Implementing the Most Popular

interface meant that we were able to extend the

interface to include searches by subject theme. Since

E3AN does not include a content structure we had to

produce this new information in some way. We briefly

considered attempting to derive the category from the

existing keywords, but since the E3AN database is

static we decided that it would be easier to manually

classify the questions and store the info in a separate

database accessed by the wrapper service.

Figure 5: The Web Interface to our wrapper

services, the results returned, and Item XML.

Implementing the Negotiated interface involved

adding validation to the interface. For reasons of

simplicity we did not implement a contract system, but

instead added a new validator method that took another

method name as a parameter and returned whether it

was supported or not. In our interface this was used as

the page was loaded in order to determine whether to

disable certain search options. This introduced some

runtime overhead, but in our system the validation calls

were infrequent, and so the added complexity did not

adversely effect the application.

Our work demonstrates that all three patterns are

viable, and we made the following observations:

• Writing/wrapping a service interface around a

legacy system is non-trivial, even for

functionally simple systems such as Item

Banks, because of the variety of technologies

involved. For example, E3AN is based on

MS-Access and TOIA uses a proprietary .Net

application. There are a number of

commercial tools from main stream vendors

to service enable legacy systems
2
, but these

tools are very costly initially to buy and also

complex to configure.

• Writing a wrapper around existing systems

involves a close understanding of the data

model for each of these applications. This can

be challenging if the data model is not well

documented (for example, reverse

engineering from a normalized database,

TOIA uses 10+ tables to model its questions).

Therefore the complexity of wrapping rises in

proportion to the complexity of the data

model as well as the interface.

• Even when there is standardization internal

representations can vary. Although the QTI

specification standardizes the representation

of assessment items, these items are stored in

application (E3AN, TOIA) databases in

diverse ways for performance and scalability

reasons. For example, in TOIA an assessment

item is called “Question” whereas in E3AN

it’s called “Item”. Similarly, “Subject

Theme” is called “Topic” in TOIA. Mapping

the terminology used in different systems can

be time consuming and in some cases non-

obvious.

• Interpretations of standards can sometimes

vary. For example, the QTI specification

2
 For example: The Web Sphere Integration platform,

and the Oracle Integration Suite

provides a standard for the recording of

metadata, but different implementations

interpret this in different ways: in some item

bank systems, keywords are associated with

assessment items and in others they are

associated with subject themes

• Support for web service standards is

intermittent as tools for implementing Web

services are fairly new and not very stable.

For example, few IDEs or service containers

support WS-I Basic profile, and WS-I secure

profile is still being finalized. This situation

should improve, but at the moment remains a

barrier to creating interoperable legacy

wrappers.

6. Conclusions and Future Work

In this paper we have described how wrapping

legacy systems is a common problem when introducing

service-oriented architectures to a particular domain or

community. This is made more difficult as there are

often many systems that offer similar functionality (we

term these similar legacy systems) and it is desirable to

give all these systems a common interface to aid in

interoperability and modularity.

Through our work with the JISC e-Framework we

have formalized three design patterns for coping with

this problem. All three patterns are based on creating

specialized services for each legacy system and then

normalizing them in terms of data model and

terminology.

The Lowest Common Denominator (LCD) pattern,

selects only the methods common to all the legacy

systems considered. It is simple to create, and rapid to

build, as all the functionality required already exists

within the legacy systems. However, it can be overly

simple, and may miss out valuable functionality that is

not common to all legacy systems

The Most Popular pattern selects a set of core

methods based on the view of experts. These methods

may not be supported by all the wrapped systems and

so it may be necessary to write additional functionality

into the wrapping service. This pattern depends on a

common expert view, which can be difficult to reach,

and may still reflect a compromise by the community,

but is likely to fulfill the requirements of the majority.

It can be expensive to implement, as some wrappers

will need to add the additional functionality

themselves.

The Negotiated Interface represents all the methods

from all legacy systems, but within a negotiation

framework such that services can inquire of one

another which of their advertised services are available

(based on which legacy system is being wrapped). The

negotiation may happen on a per method basis, or

could be implemented via a system of contracts. This is

the most flexible of the patterns, but it adds a run-time

overhead, and makes failure checking complex (as the

system can fail at run-time).

Combinations of these patterns are possible, for

example by implementing a Most Popular interface

with Negotiated-style caveats on the non-common

methods. Or by using the LCD interface as a contract

point within the Negotiated interface to assure a

minimum level of co-operation.

Service-Oriented architectures offer an opportunity

for communities to create common frameworks of

pluggable software components, and thus to

interoperate to a new level. However, to bootstrap

these efforts it is necessary to include the rich

collections of existing legacy software in these new

frameworks. It is our belief that the design patterns we

have presented here will enable developers to achieve

this more easily. While none of the approaches

described in the patterns are individually novel, we

hope that by expressing them in a formalized way, and

in a common context, we may help future service

developers to choose an appropriate approach, and to

articulate their decisions more effectively.

7. References

[1] Baresi, L., Heckel, R., Thöne, S., and Varró, D. (2003).

Modeling and validation of service-oriented architectures:

application vs. style. In Proceedings of the 9th European

Software Engineering Conference Held Jointly with 11th

ACM SIGSOFT international Symposium on Foundations of

Software Engineering (Helsinki, Finland, September 01 - 05,

2003). ESEC/FSE-11

[2] Beck, K., Crocker, R., Meszaros, G., Vlissides, J.,

Coplien, J. O., Dominick, L., and Paulisch, F. 1996.

Industrial experience with design patterns. In Proceedings of

the 18th international Conference on Software Engineering

(Berlin, Germany, March 25 - 29, 1996). International

Conference on Software Engineering. IEEE Computer

Society, Washington, DC, 103-114..

[3] Cline, M. P. 1996. The pros and cons of adopting and

applying design patterns in the real world. Commun. ACM

39, 10 (Oct. 1996), 47-49.

[4] Davis, H. C., White, S. A. and Dickens, K. P. (2002)

Engineering a Testbank of Engineering Questions. In

Proceedings of ICEE 2002: The International Conference on

Engineering Education, Manchester.

[5] Dijkman, R. and Dumas, M (2004). Service-oriented

Design: A Multi-viewpoint Approach. International Journal

of Cooperative Information Systems 13(4), December 2004.

[6] Fielding, R. T. and Taylor, R. N. 2002. Principled design

of the modern Web architecture. ACM Trans. Inter. Tech. 2,

2 (May. 2002), 115-150.

[7] Foster, I., Kesselman, C., and Tuecke, S. (2001). The

Anatomy of the Grid: Enabling Scalable Virtual

Organizations. Int. J. High Perform. Comput. Appl. 15, 3

(Aug. 2001), 200-222.

[8] Gamma, E., Helm, R., Johnson R, and Vlissides J.

1995 Design patterns: elements of reusable object-orient

software. Addison-Wesley Professional 1995

[9] Gomaa, H., Menascé, D. A., and Shin, M. E. 2001.

Reusable component interconnection patterns for distributed

software architectures. In Proceedings of the 2001

Symposium on Software Reusability: Putting Software Reuse

in Context (Toronto, Ontario, Canada). SSR '01. ACM Press,

New York, NY, 69-77.

[10] Martin J, Arsanjani A, Tarr P, and Hailpern B, (2003),

"Web Services: Promises and Compromises," Queue vol. 1,

pp. 48-58, 2003.

[11] Olivier, B., Roberts, T. and Blinco, K. (2005). The e-

Framework for Education and Research: An Overview.

Version R1, July 2005. DEST, JISC-CETIS.

[12] Quartel D.A.C., Dijkman R.M., and van Sinderen M.J..

(2004) Methodological Support for Service-oriented Design

with ISDL. In: Proceedings of the 2nd ACM International

Conference on Service Oriented Computing (ICSOC), New

York City, NY, USA, pp. 1-10, 2004

[13] Rossi, G., Schwabe, D., and Garrido, A. 1997. Design

reuse in hypermedia applications development. In

Proceedings of the Eighth ACM Conference on Hypertext

(Southampton, United Kingdom, April 06 - 11, 1997). ACM

Press, New York, NY, 57-66.

[14] Schmidt, D. C. and Buschmann, F. 2003. Patterns,

frameworks, and middleware: their synergistic relationships.

In Proceedings of the 25th international Conference on

Software Engineering (Portland, Oregon, May 03 - 10,

2003). International Conference on Software Engineering.

IEEE Computer Society, Washington, DC, 694-704.

[15] Schmidt, D. C., Fayad, M., and Johnson, R. E. 1996.

Software patterns. Commun. ACM 39, 10 (Oct. 1996), 37-

39.

[16] Wada, H., Suzuki, J., and Oba, K. (2005). Modeling

turnpike: a model-driven framework for domain-specific

software development. In Companion To the 20th Annual

ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (San

Diego, CA, USA, October 16 - 20, 2005). OOPSLA '05.

ACM Press, New York, NY, 128-129.

[17] Wilson, S., Blinco, K. and Rehak, D. (2004). Service-

Oriented Frameworks: Modelling the infrastructure for the

next generation of e-Learning Systems. A Paper prepared on

behalf of DEST (Australia), JISC-CETIS (UK), and Industry

Canada.

[18] Young R., MacNeill S., Adams D., McAlpie M. 2005.

SPAID (Storage and Packaging of Assessment Item Data)

Final Report Published by JISC, 28 Oct 2005.

