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Abstract

Many learning algorithms make an implicit assumption that all the at-
tributes of the presented data are relevant to a learning task. However,
several studies on attribute selection have demonstrated that this assump-
tion rarely holds. In addition, for many supervised learning algorithms such
as nearest neighbour algorithms, the inclusion of irrelevant attributes can
result in a degradation in the classification accuracy of the learning algo-
rithm. Whilst a number of different methods for attribute selection exist,
many of these are only appropriate for datasets which contain a small num-
ber of attributes (e.g. < 20). This paper presents an alternative approach to
attribute selection, which can be applied to datasets with a greater number
of attributes. We present an evaluation of the approach which contrasts its
performance with one other attribute selection technique.
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1 Introduction

The dimensionality of a supervised learning task can be characterised in many ways. A dataset
contains a number of situations or instances, each of which contain several attributes and a class
value. The attributes may be considered to be predictor (relevant) attributes, as they may be used
to induce a classification hypothesis' (sometimes represented as a set of rules or a decision tree)
which is later used to predict the class of an instance. However, other attributes may be considered
as irrelevant attributes, as they contribute nothing to the classification task, and may even degrade
the accuracy of the resulting classifications. The time taken to induce a concept description from a
training set, and to predict the class of a new instance is dependent on both the learning algorithm
used, and the number of attributes present (i.e. the number of dimensions used to describe the data).
Techniques that reduce the number of dimensions required to represent large, complex domains are
becoming more sought after, as the number of these domains increases. Example domains include:
finance, marketing, fraud detection, etc.

Determining which of the attributes are relevant to the learning task (i.e. identifying attributes
which predict the class value) is a central problem in machine learning. In the past, domain experts
selected the attributes believed to be relevant to the learning task. However, in the absence of such
background knowledge, automatic techniques are required to identify such attributes. Rule induction
algorithms have been developed which use a variety of metrics as part of their learning bias to select
relevant attributes when building decision trees. Such metrics include the Information Gain metric
(Quinlan, 1986) or the Distance-Based Gain Ratio (De Méntaras, 1991). However, studies have shown
that the biases used by rule induction algorithms to favour smaller numbers of attributes and smaller
decision trees fail to find the minimal subset of attributes necessary to identify the concept (Almuallim
& Dietterich 1991).

The inclusion of irrelevant attributes can reduce the performance of different learning techniques.
Nearest neighbour algorithms are especially prone to the inclusion of these attributes, as the metrics
used calculate an average similarity measure across all of the attributes (Aha 1992). In addition
to this, the sample complexity (i.e. the number of instances required to learn a concept) grows
exponentially with the number of irrelevant attributes (Langley & Iba 1993), indicating that simple
nearest neighbour algorithms may not scale up well if irrelevant attributes are present. For these
reasons, various weighting techniques have been investigated in an attempt to reduce the contribution
of irrelevant attributes with nearest neighbour algorithms (Wettschereck et al., 1997; Payne, 1999).

Empirical studies have also indicated that the type of concept learned influences the rate at which
sample complexity grows when irrelevant attributes are present. (Langley & Sage) explored changes
in sample complexity for conjunctive and parity concepts. With conjunctive concepts, they found
that whilst sample complexity increased linearly with an increase in irrelevant attributes for the
rule induction algorithm, C4.5 (Quinlan 1993), it grew exponentially for a simple nearest neighbour
algorithm. However, the sample complexity grew exponentially for both algorithms with the parity
concept.

A redundant-attribute set occurs when two or more relevant attributes exist, such that each makes
an equal contribution towards learning some concept (John, Kohavi, & Pfleger 1994). In general, only
a single member of this redundant-attribute set is required when learning the concept. The inclusion
of more than one member will not only increases the time taken to induce the concept description,
but may place emphasis on the part of the concept description the attributes in the set represent,
and thus reduce the influence of other relevant attributes (Langley & Sage 1994a). The remaining

LA number of learning algorithms do not explicitly perform any induction until the classification stage.
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attributes in this set are sometimes described as redundant.?

A number of different attribute selection techniques have been proposed which attempt to identify
and eliminate those attributes which are either irrelevant or redundant. However, the number of
different possible attribute subsets is exponential (2") with respect to the number of original attributes
(n). As a result, many of the techniques that perform a search through a space of different attribute
subsets do not scale up well when the number of original attributes is large (e.g. n > 20). An
alternative approach to attribute selection is presented here. The instances in a dataset are represented
as vectors within an instance space. An approximation of this space is then found, and the vectors
are projected into this lower dimensional space. This is achieved by using the geometric technique,
Correspondence Analysis (Greenacre, 1984), to identify and approximate the lower dimensional space
(or sub-space). This sub-space can then be used by a nearest neighbour learning algorithm to perform
class predictions for new instances. Two learning algorithms have so far been developed that utilise
this approach to dimensionality reduction: CA and CACP.

Section 2 presents a brief survey of the different attribute selection methods currently in use. The
principals behind the dimensionality reduction approaches used by CA and CACP are discussed in
Section 3, and the algorithms themselves are presented in Section 4. The evaluation of these two
learning algorithms, and a description of the datasets used as part of the evaluation are presented in
Section 5, and then discussed in Section 6. The paper concludes with Section 7.

2 Dimensionality Reduction and Attribute Selection

The task of dimensionality reduction and attribute selection has been one of the central problems in
machine learning, and to date, many techniques have been proposed (Payne 1999). Such techniques
are also required within large Information Retrieval (IR) systems (Salton & McGill 1983; Deerwester,
Dumais, Furnas, Landauer, & Harshman 1990), and text categorisation systems (Edwards, Bayer,
Green, & Payne 1996; Yang & Pedersen 1997). These systems use large indexes to search and retrieve
text documents stored in a database or corpus. Dimensionality reduction techniques are often used to
reduce the number of words (or terms) used to index the documents, and hence improve the rate at
which documents are retrieved. This section describes some of the different approaches used to reduce
the dimensionality of datasets by a number of machine learning algorithms and IR /text categorisation
systems.

The attribute selection techniques used by machine learning algorithms can be grouped into two
broad categories: those that belong to the filter model, where the selection technique is independent
of the learning algorithm used to learn the concept hypothesis; and those that belong to the wrapper
model, where the learning algorithm is integral to the selection mechanism (John, Kohavi, & Pfleger
1994). Both models perform a search within a space of attribute subsets to determine the optimal
(or sub-optimal) subset for the classification task. In contrast to these models, a number of nearest
neighbour techniques utilise weights to identify irrelevant attributes. As these approaches do not
fall into either previous category, we have suggested a third model which we refer to as the weighted
model (Payne & Edwards, 1996).

The attribute selection approaches used for IR /text categorisation tasks differ slightly from those
used by machine learning algorithms in that they are often applied to domains with huge numbers
of attributes (often > 5 000). Whilst many of the approaches used by most IR/text categorisation

2Redundancy is not a property of a single attribute; rather the conditional property on the remaining attributes once
one member has been selected from the redundant-attribute set.
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systems fall into the filter model, an alternative approach has recently been investigated that makes
use of geometric tools. This approach is described in greater detail in Section 3.

The next four subsections briefly describe the different attribute selection models used by various
machine learning algorithms, and the dimensionality reduction techniques used by IR /text categori-
sation systems. They are followed by a discussion of the relative merits of each approach.

Filter Model

The filter model (Figure 1) utilises an independent search criterion and evaluation function to find
the appropriate attribute subset. This subset is then used to generate a reduced dataset which in
turn is presented to a learning algorithm. The evaluation function is used to determine whether or
not the inclusion of an attribute will affect the classification performance of the learner. For example,
the consistency measure used by (Almuallim & Dietterich) and (Liu & Setiono) determines whether
or not the removal of an attribute will result in the creation of instances that have identical attribute
values but different class values. This filter model, however, does not take into account the learning
biases used by the final learning algorithm, and thus may not select the subset most suitable for that

algorithm.
Original ____, | Feature Subset Learning
Data Selection Algorithm

Figure 1: The Filter Model.

Table 1 lists some of the attribute selection systems that use the filter model. The Search column
represents the type of search used. The forward selection and backward elimination searches start
from either no attributes, or a full complement of attributes, and then search for solutions by greedily
selecting and adding (eliminating) attributes to (from) the attribute subset. (Cardie) and (Kubat
et al.) perform searches by presenting data which includes all the attributes to a decision tree
algorithm, and selecting the attributes which appear in the resulting decision tree. The FEvaluation
column refers to the evaluation function used, and the final column, Testing Alg. refers to the learning
algorithm that utilised the attribute subset within each study.

Wrapper Model

In the wrapper model (Figure 2), the attribute selection algorithm utilises the final learning algorithm
as part of its evaluation function. The training data is normally divided into two partitions: a training
partition, and an evaluation partition. The attribute subset is used to reduce both data partitions to
contain only those attributes within the subset. The learning algorithm is trained using the instances
in the training partition. The instances in the evaluation partition are then classified, and an overall
predictive accuracy is generated for that attribute subset. This accuracy measure is then used to
guide the search.

(Aha & Bankert) compared the filter and wrapper models and found that the wrapper model
performed best when applied to data on cloud patterns. This supports the original hypothesis that
attribute selection should take biases used by the final learning algorithm into account. Whilst this
model may yield better results than the filter model, the time taken to evaluate each attribute subset
visited during the search makes this approach infeasible for problems with very large numbers of
attributes.
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‘ Authors (System)

‘ Search

‘ Evaluation

‘ Testing Alg.

(Aha & Bankert)

Beam variants of

Calinski-Harabasz

IB1

(BEAM) | forward & backward | separability index
selection /elimination
(Almuallim & Dietterich) | Breadth-first Consistency ID3
(FOCUS)
(Cardie) Forward Selection Information Gain® | kNN

(Kubat et al.)

Forward Selection

Information Gain®

Naive Bayes

(Liu & Setiono) Las Vegas Consistency ID3
(LVF) | (random sampling)
(Singh & Provan) Forward selection Maximise 1 of 3 Bayesian
(Info-AS) information metrics | Network

“The C4.5 learning algorithm is used to induce a decision tree to identify the attribute subset.
The ID3 learning algorithm is used to induce a decision tree to identify the attribute subset.

Table 1: Comparison of different attribute selection studies (filter model).

I Learning
Algorithm

Original

[ Search for Feature Subset ]
Data

A

\
[ Evaluate Feature Subset ]

A

Y
[ Learning Algorithm ]

Figure 2: The Wrapper Model.

Table 2 lists some of the attribute selection systems that use the wrapper model. The Search
column again represents the type of search used. The Control column refers to the control mechanism
used when evaluating the attribute subsets. The last column refers to the learning algorithm used to
evaluate each attribute subset.

Weighted Model

A number of learning algorithms make use of real-valued attribute vectors to weight attributes based
on their past performance. A weighted attribute vector is generated, which initially gives each at-
tribute an equal weight. The training set is then evaluated using a leave-one-out cross validation.
After each instance has been evaluated, the weights are adjusted according to whether or not the
classification was correct. We refer to this model as the weighted model (Figure 3).

The intuition behind this model is that irrelevant attributes will contribute very little overall to the
classification task. The weighting strategies used normally reward attributes if they are responsible for
correct predictions, and penalise them if they are responsible for incorrect ones. Thus, the contribution
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‘ Authors (System) ‘ Search ‘ Control ‘ Learning Alg.
(Aha & Bankert) Beam variants of leave-one-out IB1
(BEAM) | forward & backward | cross validation
selection/elimination
(Bala et al.) Genetic algorithm 2 cross validated C4.5
(GA-ID3) fixed partition tests
(Caruana & Freitag) |Forward, backward | fixed size train/ ID3/C4.5
& stepwise selection/ | evaluation partitions
elimination variants
(Cherkauer & Shavlik) | Genetic algorithm k-fold cross C4.5
(SET-GEN) validation
(John et al.) Forward selection & | k-fold cross C4.5
backward elimination | validation
(Kohavi) Best first search k-fold cross C4.5
(BFS) validation
(Kohavi) Best first search leave-one-out Decision trees
(IDTM) cross validation
(Langley & Sage) Forward selection accuracy measure Naive Bayes
(Selective Bayes) across training set
(Langley & Sage) Backward elimination | k-fold cross Oblivious
(OBLIVION) validation decision trees®
(Langley) Forward selection leave-one-out Determination
(CONDET) cross validation table?
(Moore & Lee) Forward & backward | leave-one-out 1-NN
(RACE) | selection, and cross validation
schemata search
(Richeldi & Lanzi) Genetic algorithm k-fold cross C4.5
(ADHOC) validation
(Salzberg) Combined stepwise | fixed size train/ 1-NN and
(CSS) | selection evaluation partitions | EACH
(Singh & Provan) Forward selection fixed size train/ Bayesian
(K2-AS) evaluation partitions | networks
(Skalak) Random mutation k-fold cross 1-NN
(RMHC-PF1) | search validation
(Terano & Ishino) Genetic algorithm - C4.5¢
(SIBILE)
(Vafaie & De Jong) Genetic algorithm fixed size train/ AQ15
evaluation partitions

@« ..equivalent to a nearest neighbour scheme that ignores some attributes...” (Langley & Sage, 1994b)

A Determination table classifies unseen instances in a similar manner to a nearest neighbour scheme except that if
no identical match can be found then the majority class is used.

“Decision trees induced by C4.5 are evaluated and rated by a domain expert.

Table 2: Comparison of different attribute selection studies (wrapper model).
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Original

Data — [ Data Evaluation ] - — —p| Feature Subset

f Selection

[ Adjust Feature Weights ]

Learning
Algorithm

[ Weighted Learning Algorithm ]

Figure 3: The Weighted Model.

of irrelevant attributes to the classification task falls as the contribution of other attributes rises.
Those attributes that make a small contribution can then be eliminated.

‘ Authors (System) ‘ Selection ‘ Evaluation ‘ Testing Alg. ‘
(Aha) Weighted | Adjust weights wrt accurate | Weighted nearest
(IB4) | attributes | or inaccurate predictions neighbour
(Kira & Rendell) Threshold | Adjust weights wrt closest ID3
(RELIEF) | selection | +ve/-ve neighbours
(Kononenko) Threshold | Adjust weights wrt closest ID3
(RELIEF-extensions) | selection | neighbours from each class
(Littlestone) Weighted | Adjust weights wrt Linear threshold
(WINNOW) | attributes | inaccurate predictions classifier
(Payne & Edwards) Weighted | Weights based on class Weighted nearest
(OMVW) | attributes | conditional probability neighbour
(Salzberg) Weighted | Reduce weights wrt Weighted nearest
(EACH) | attributes | inaccurate predictions hyperrectangle

Table 3: Comparison of different attribute selection studies (weighted model).

Table 3 lists some of the systems that employ the weighted model. The Selection column indicates
whether the attribute weights are used as part of the final learning algorithm or used to select an
attribute subset. The FEwaluation column refers to the way attribute weights are updated during
the evaluation phase. The last column refers either to the type of algorithm used during attribute
selection, or in the case of RELIEF (Kira & Rendell, 1992) and the extensions to RELIEF (Kononenko,
1994), to the learning algorithm used once the attributes have been selected.

IR /Text categorisation approaches

Dimensionality reduction techniques have been used by a number of IR systems to reduce the number
of terms used to index the documents, resulting in an improvement in the rate at which documents
are retrieved. These techniques have also been applied to the problem of reducing the number of
terms presented to learning algorithms for text categorisation problems (Edwards, Bayer, Green, &
Payne 1996; Yang & Pedersen 1997). (Moulinier) presents a framework for text categorisation, which
includes a dimensionality reduction or attribute selection stage between the initial representation,
that of textual data, and the final representation presented to the learning algorithm. Whilst some



2 DIMENSIONALITY REDUCTION AND ATTRIBUTE SELECTION 7

studies have omitted this stage (Creecy, Masand, Smith, & Waltz 1992), the number of unique terms
(typically in the region of tens or hundreds of thousands) is prohibitively high for most machine
learning algorithms. For this reason, several different techniques have been developed specifically to
reduce the dimensionality of the final data representation.

‘ Technique Study Learning Algorithms ‘
Information Gain  (Lewis & Ringuette) PropBayes and DT-min10
(Armstrong et al.) Winnow, Wordstat and a Rocchio-based NN
(Moulinier) ID3, Charade, NN and Naive Bayes
(Moulinier) Ripper and Scar
(Yang & Pedersen) k-NN and a linear least squares fit mapping
Mutual Information (Weiner et al.) Neural Network classifier
(Yang & Pedersen) k-NN and a linear least squares fit mapping
x? Statistic (Schiitze et al.) Logistic regression, linear discriminant analysis

and a Neural Network classifier
(Yang & Pedersen) k-NN and a linear least squares fit mapping
(Lang) Rocchio-based NN and MDL
(Edwards et al.) IBPL and C4.5
(
(

Frequency Measure

Payne & Edwards) IBPL and CN2
Yang & Pedersen) k-NN and a linear least squares fit mapping

Table 4: A sample of different dimensionality reduction methods for text categorisation.

The techniques used by many text categorisation systems are similar to those categorised by the
filter model. Table 4 lists a sample of the different evaluation methods used by various systems.
Latent Semantic Indexing (LSI) (Deerwester et al., 1990; Schiitze et al., 1995; Weiner et al., 1995)
is an alternative approach for reducing the number of dimensions used to represent documents in a
number of IR systems. Unlike the techniques presented in Table 4 which select a subset of terms
to use when representing each document, LSI utilises an orthogonal decomposition technique to
determine a smaller numeric representation for each document. A corpus is represented as a term
X document matrix, where each row corresponds to a document, and each column to one of the
terms appearing with the corpus. Thus, each document (i.e. row vector) is expressed as a point
within some geometric space. An orthogonal decomposition technique is then applied to this matrix,
resulting in a set of decomposed matrices that describe this space and the points within it. The
space can then be approximated (by approximating the decomposed matrices) resulting in a lower
dimensional representation of the points in the approximated space. This approach is described in
greater detail in Section 3.

Singular Value Decomposition (SVD) (Press, 1992; Greenacre, 1984, Appx A.) is normally used to
perform the matrix decomposition, although other orthogonal decomposition approaches, such as the
ULV decomposition (Berry & Fierro 1996), can be used to replace SVD for this task. Studies have
demonstrated that a significant reduction in dimensionality can be achieved when used within IR
systems; for example from 5000-7000 terms to about 100 dimensions (Deerwester et al., 1990). SVD
has also been successfully applied to the problem of reducing the dimensionality of protein sequence
data for presentation to neural networks (Wu, Berry, Shivakumar, & McLarty 1995). The size of the
input vectors presented to a backward propagation neural network was reduced from 9696 to 100. In
addition to this, the predictive accuracy of the neural network improved when SVD was used.



2 DIMENSIONALITY REDUCTION AND ATTRIBUTE SELECTION 8

Discussion

The various models described above differ in the way they reduce dimensionality. The filter and
wrapper models perform a search through a space of possible attribute subsets. The number of states
within this space is exponential; if there are n attributes in the original dataset, then there are a
total of 2™ possible states in the search space. This exponential rise means that exhaustive, optimal
searches are infeasible for all but simple problems involving few attributes. Therefore, most systems
perform greedy or stochastic searches.

Several studies have shown that the wrapper model can identify better attribute sets, when com-
pared with the filter model (Aha & Bankert 1994; John, Kohavi, & Pfleger 1994). However, induction
is performed at every search state visited. This can result in an exponential rise in the time taken
for an exhaustive search to locate an optimal subset of attributes. The number of instances, i, in
the training set and the control mechanism used to evaluate each state will also influence the length
of time taken to determine the final attribute subset. Many systems utilise a k-fold cross validation
approach (Kohavi, 1995a) when testing each attribute state to reduce the number of times induction
is performed (from 4 to k). Whilst this may reduce the time taken to generate the final attribute
subset, this subset will be dependent on the order in which the training data is presented to the
wrapper>.

The weighted model differs from the other models in that no explicit search is performed. Instead,
a weight vector is modified as each of the training instances is classified. Some weighted approaches
utilise the weighted vector when evaluating each training instance, and hence the final weighted vector
may be dependent on the order in which the training instances are evaluated. As this model generally
evaluates the training data using a single leave-one-out cross validation approach, the time taken to
generate the final attribute subset is linearly dependent on the number of instances in the training
set and the total number of attributes used to describe the training set. For this reason, this model
is more suited to performing attribute selection when the number of attributes is large.

The weighted model may also be unsuitable for numeric data. This model rewards attributes that
are responsible for correct classifications, and penalises attributes that are responsible for incorrect
classifications. For symbolic data, it is relatively simple to determine whether or not an attribute is
responsible for a classification (if the overlap metric is used). In this case, the value (for each attribute)
of the nearest neighbour is either equal or different to the corresponding value of the instance that
is being classified. However, if a numeric distance metric is used, then the distance between these
two attribute values can occur somewhere within a continuous range, and therefore correlation or
regression techniques may be required to determine whether or not the attribute is responsible for
the classification.

Although the filter and wrapper models involve a search through a large state space, the filter
model generally takes less time to find a sub-optimal attribute subset than the wrapper model. This
is due to the length of time taken to evaluate each attribute subset. However, if the number of
attributes is very large, as in the case of IR and text categorisation problems, then performing any
form of search becomes impractical. For this reason, a number of attribute selection approaches
used by IR and text categorisation systems make an assumption that the relevance of each term is
independent of the others. Although this assumption is counter-intuitive, it allows the relevance of
each term (i.e. each attribute) to be assessed independently of the other terms. This reduces the
number of possible evaluations that may be performed from 2™ to n, where n is the number of terms

3A deterministic approach should be used when partitioning the data into folds, so that the evaluated search states
can be compared. If a stochastic approach is used, then each evaluated search state will not only be dependent of the
attribute subset, but on the way in which the folds were partitioned.
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extracted from the corpus of documents.

Latent Semantic Indexing (LSI) has been demonstrated to both improve performance of IR and
text categorisation systems, and reduce the number of dimensions (i.e. attributes) required. This
technique has also been used to reduce the dimensionality of data for other problems, such as within
the task of protein sequence classification (Wu, Berry, Shivakumar, & McLarty 1995). However, such
studies have demonstrated that LSI and the principals behind this method work for specific problems,
but have not investigated the applicability of LSI to a broader range of classification tasks. For this
reason, we have investigated a similar technique, based on Correspondence Analysis (Greenacre 1984),
and have embedded two variations of this technique within a nearest neighbour learning algorithm.
The resulting algorithms have been applied to a variety of classification problems found in the UCI
Machine Learning Database Repository (Murphy & Aha 1994), and to artificial data (described in
Section 5).

3 Subspace Approximation through Correspondence Analysis

In the previous section, a technique known as Latent Semantic Indexing (Deerwester et al., 1990)
utilised various geometric techniques to reduce the dimensionality of data utilised by an Information
Retrieval system. A related technique, known as Correspondence Analysis (Greenacre, 1984), is
used to graphically display points within a dataset as a two or three dimensional data plot. This
section summarises the theory behind Correspondence Analysis, and describes how singular value
decomposition (SVD) can be used to reduce the number of dimensions required to represent the data
points.

Correspondence analysis reduces the number of dimensions required to represent instances in a
dataset. It achieves this by identifying an approximation of the Euclidean space that contains the
instances (which are represented as vectors). This approximation is used to project the vectors from
a J-dimensional instance space into a K-dimensional subspace, where J is the number of attributes
of the dataset, and consequently the number of components of the vectors, and K (where K < J) is
the rank of the approximated space.

The way in which the space can be approximated and the vectors projected may be explained by
means of an example. Consider the values given in Table 5. Each value represents either the annual
Profit or Debt of a fictitious company over the span of three consecutive years. These values can be
represented as three vectors corresponding to Profit and Debt tuples for each year. They can then be
plotted within a two-dimensional space. These three vectors, y1, y2 & y3 are illustrated in Figure 4.

Profit | Debt
Year 1 140 | 1580
Year 2 290 | 1310
Year 3 470 410

Table 5: Artificial data representing fictitious annual Profit and Debt figures over three years.

Any vector in a J dimensional space can be expressed as a linear combination of a basis and J
scalar coefficients. A basis is a set of J linearly independent vectors that characterises a space. A
particular basis is the canonical basis; it is this that characterises Euclidean space. For example, the
canonical basis for the two dimensional Euclidean space E? consists of two basis vectors, e; and es,
and can be expressed as:
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o [30] -t [i]o 1]

Hence, the vector y2 can be expressed as the linear combination of the canonical basis for a
two-dimensional space, and of two scalar coefficients 290 and 1310, i.e.

2 — [ 290] :290[1

+ 1310 [ 0 ] = 290e; + 1310e2

1310 0 1
In Figure 4 we can see that the three vectors y1, ..., y3 exist close to the straight line r. It
is possible to express each of the vectors yl1, ..., y3 as the combination of three new vectors: a

vector from the origin to a fixed point (the centroid) on the line r; a vector along this line from the
centroid; and a vector orthogonal to the line r. For example, it is possible to express the vector y2
as a combination of the three vectors ¥, b and ¢ (Figure 5), where ¥ = [ 300 1100 |7 is the vector?
from the origin to the centroid, b = [ 40 —120 ]T is the vector running along the line r (from top
left to bottom right in Figure 5), and ¢ =[ 30 90 ] is a vector which is orthogonal to the line r.

y2 =y + (-b) + ¢

(300 1100 "+ (—[ 40 —120 ) +[30 90 ]
= (300e; + 1100ez) + (—40e; + 120ez) + (30e; + 90e2)
= 290e; + 1310ey

‘ . year1(yl)
1600~ e

1400- year 2 (y2) 1400- year 2 (y2)
: AN : RN

‘ . year1(yl)
1600~ e

centroid

>

400~ o .
year 3 (y3) r

year 3 (y3) r

S R o B L (| e ] L e S|
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Profit Profit

Figure 4: The three vectors, y1, ..., y3, plotted Figure 5: Each of the three vectors can be ex-
as points within a two-dimensional space. Note pressed as a combination of three new vectors:
that each of the vectors lies close to the straight ¥, a vector running along the line r, and a vector
line r. orthogonal to the line r.

“The T symbol is used here to refer to the transpose of each vector.
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The coefficients of the vectors b and ¢ (in conjunction with the centroid vector ¥) used to express
the vector y2 are -1 and 1 respectively. By varying these coefficients, it is possible to express every
instance in the dataset using the centroid vector and these two vectors. The coefficient of the centroid
vector y is constant for all the instances in the dataset. Hence, the two vectors b and ¢ can be used
to construct the basis of a new space that has been translated from the origin by the vector y. Each
of the instances in Table 5 can be expressed as a combination of the vector ¥ and a vector who’s
components are the coefficients of the basis vectors b and c. Figure 6 illustrates the three instances
mapped onto this new two dimensional space.

year 2
year 1 +C b
rrrrrr R =]
-ab | +5b Lo
: year 3
Figure 6: The three vectors y1, ..., y3, mapped onto a new, 2-dimensional space. The new space is

characterised by the two basis vectors b =[40 — 120]T and ¢ = [30 90]"

Singular Value Decomposition (SVD) can be used to identify the basis {b, ¢}. The advantage of
using this technique is that it is then possible to approximate the space that this new basis charac-
terises using fewer dimensions. For example, the space illustrated in Figure 6 can be approximated
by a space of only one dimension, characterised by the single basis vector b. The following subsec-
tion describes how SVD can be used to find a best-fit subspace within an n-dimensional space, and
illustrates how the best lower-rank approximation of the subspace is found.

Determining the centroid and new basis

If SVD is used to identify a space that best fits the instances in the dataset, the matrices it generates
can be used to calculate a good approximation to this space. This subsection shows how the centroid
vector can be determined, and describes how SVD can be applied to the task of determining a new
basis and finding an approximation of the space the basis characterises.

The space characterised by the basis {b, ¢} (see above), was translated from the origin by the
centroid vector y. The centroid vector is used for two reasons: it is relatively simple to compute, and
it is guaranteed to exist within a space containing the instances (Deerwester et al., 1990). Whilst any
vector can be used to perform this translation, it is difficult to identify such vectors if the basis of the
new space is unknown.

The centroid vector is calculated by determining the mean vector for all the vectors that represent
the instances in the dataset. For example, the centroid vector y for the three vectors y1, ..., y3 can
be calculated as follows:

y = i(yl+y2+y3)
= 1(140e; + 1580ez + 290e; + 1310ez + 470e; + 410ez)
= 1(900e; + 3300ez)

= 300e; + 1100ex
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To simplify the process of identifying the new basis, the vectors representing the data can be
translated by the centroid vector. This has the advantage of creating a new set of vectors whose
centroid is located at the origin. Hence, these vectors can be expressed as coefficients of the new
basis, without the need for an initial translation. For example, a new vector, z2, can be found by

translating the vector y2 with the centroid vector y. It can also be expressed with respect to the
basis {b, c}, i.e.

z2 = y2—-y = —lb+c
Singular Value Decomposition is often used for solving most linear least squares problems, and
for performing eigenvalue/eigenvector decomposition. However, it can also be used to construct an
orthonormal basis of a best-fit space. The detailed theory behind SVD is not discussed here; for a
more thorough discussion see (Greenacre, Appendix A.). The SVD of a matrix X of I rows and J
columns, and of rank N (see below) can be expressed as:

X = L D RT
IxJ IXxXN NxN NxJ

where LTL = RTR =1 (the identity matrix).

The N orthonormal vectors of L, called the left singular vectors, form an orthonormal basis for
the columns of X. Similarly, the N orthonormal vectors of R, called the right singular vectors, form
an orthonormal basis for the rows of X. The diagonal matrix D contains the N singular values of
X, where the elements of D : d; > do > --- > dny > 0. Figure 7 illustrates the singular value
decomposition from an I x J matrix.

J N N J

Figure 7: A Singular Value Decomposition of an I x J matrix.

The matrix X can be constructed such that each row corresponds to each of the translated vectors
representing each instance in the dataset, and each column corresponds to one of the attributes of the
dataset. For example, a matrix constructed from the example above would consist of three rows and
two columns. Each row would correspond to the translated vectors z1, ..., z3 (where z1 = yl —y,
etc.).

As stated above, the matrix R forms an orthonormal basis for the rows of X. It is this matrix which
characterises the best-fit space for the I instances in matrix X. The rows of matrix X (corresponding
to the instances in the dataset) can be projected into the new space by multiplying this matrix with
the basis R. The number of dimensions of the space characterised by the basis R will be equal to the
rank (Fraleigh & Beauregard 1995) of the original matrix X. The rank N of this matrix will be equal
to or less than I or J, whichever is the smaller, i.e. N < min (/,J).
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An advantage of using SVD is that the singular values in the diagonal matrix D can be used to
determine which of the N columns of R can be omitted, and hence result in a lower rank approximation
of the space characterised by R. A basis that contains the columns of R corresponding® to the
largest singular values in D will better approximate the space (characterised by R) than one which
contains columns corresponding to the smallest singular values. Therefore, if the basis R(g for a K
dimensional approximation of an N dimensional space is required (where 0 < K < N), then the K
columns of R corresponding to the K largest singular values of D should be included in the basis for
this approximation. This process is called low rank approximation (Greenacre, 1984).

To conclude, given a matrix Y representing I instances and J attributes (i.e. the rows of Y are
the vectors yJ,ys,... ,y;), a centroid vector ¥ can be calculated from Y. If a translated matrix
X is defined as the matrix Y — 1§", then X can be decomposed into the three matrices L, D and
RT. A K dimensional low rank approximation of R can be constructed, such that the row vectors®
71,79, ...,TK Of RT(K) correspond to the dy,ds,...,dk largest singular values of D. Thus, the basis
Rk characterises an approximated space of rank K. Once this basis has been determined, it can
be used to project instances (represented as vectors) into the new space. For example, if there is a
new vector y; consisting of J components (i.e. dimensions), then we can find its projection, f; which
consists of K components in the space characterised by the basis R, (with respect to the centroid
vector y) as follows:

First, translate the vector y; by the centroid vector:

x; =y —1y'

7

Then project the translated vector x; into the new space, by finding the product of x;
and the basis Rx:
1x K I1xJ JxK

It is possible to determine how good the approximated space is, by calculating the variation (as
a percentage) of the space. The total variation of a space characterised by the basis R is given by
Z{Ll dz, i.e. the sum of the squared singular values di,ds,...,dx. Thus, the variation of the K-
dimensional approximated space can be found by calculating the sum of the squares of the largest K
singular values, Zszl di, and expressing this value as a percentage of the total variation.

It is also possible to determine the importance, or inertia of each dimension 1 < k < K in the
approximated space (of rank K) by squaring the corresponding singular value dj, and expressing this
value as a percentage of the total variation.

Thus, to find a K-rank approximation of a matrix Y containing I point vectors of dimension J:

1. Find the centroid vector y.
2. Find the translated matrix X =Y — 1§ '.

3. Determine the basis R and the diagonal singular matrix D using singular value de-
composition.

4. Select the K columns of R (or K rows of RT) that correspond with the largest K
singular values in the diagonal matrix D.

5. Project the instances represented by the matrix X into the space characterised by
R (f), by multiplying X with R x.

By corresponding, we mean that the nth singular value of D, d,, corresponds to the nth column in the matrix R.
6The row vectors of R(TK) are equivalent to the column vectors of R xy.
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The points plotted in Figure 8 illustrate how a 13 dimensional space can be approximated to a
2-dimensional subspace. The instances are represented as rows in the matrix Y, and their attributes
are represented as columns. The two dimensions correspond to the dimensions with the largest inertia
values, 40.75% and 18.97%.
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Figure 8: The 13-dimension Wine dataset approximated in a 2-dimensional subspace.

4 System Design

Many machine learning systems incorporate, or utilise some form of attribute selection to select an
optimal (or sub-optimal) subset of the available attributes prior to induction (see Section 2). The
sub-space approximation techniques described in the previous section project instances (represented
as data points within some instance space) into a lower dimensional sub-space. To compare the
benefits (in terms of predictive accuracy) of this approach with other attribute selection techniques,
a suitable learning paradigm is required. Learning algorithms based on the Instance-Based Learning
paradigm (IBL) (Aha, Kibler, & Albert 1991; Aha 1992; Salzberg 1991; Wettschereck & Dietterich
1995; Wilson & Martinez 1997) are ideal, as the accuracy of these techniques degrades in the presence
of irrelevant or redundant data (Payne 1999), and they can be applied to problems where the domain
contains numeric data.

Instance-based learning algorithms, which are sometimes referred to as Nearest Neighbour (NN)
algorithms (Dasarathy, 1991), store and represent some or all the training instances as data points
within a hyperdimensional instance space. Each instance consists of N attributes, and a class value.
The instance space is usually described by N dimensions, where each dimension corresponds to a single
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attribute. New (unseen) instances are classified by determining their location with this instance space,
and identifying their nearest neighbour (or in the case of &-NN methods, the & nearest neighbours),
using some distance function. The class value of the nearest instance (or instances) is then used to
predict the class of the unseen instances.

Although a variety of distance functions exist (Wilson & Martinez, 1997), the Euclidean Distance
function is traditionally used in most nearest neighbour algorithms. It is used to compare two numeric
values within a Fuclidean space. This distance function is a special case of the Minkowskian Distance
function with r = 2, i.e.

N 1/r
P
a=1

where N is the number of attributes, and ¢ and j are two instances. Another commonly used dis-
tance function, known as the Manhattan Distance (or city-block) function, is a special case of the
Minkowskian Distance function with r = 1.

As these distance functions sum the difference between the values of each attribute, it is possible
that attributes with large ranges can overwhelm those with relatively smaller ranges. For example,
if one attribute has the range [0..1000] and a second attribute has the range [0..10], the relative
difference between values for the first attribute will have a far greater effect on the final distance than
the difference between values for the second distance. For this reason, the values are normalised so
that they all lie in the range [0..1]. This can be achieved by dividing each value of each attribute
by the range of that attribute’. Other normalisation functions ignore the values at the ends of the
ranges, to avoid the effect of outliers. This may be achieved by, for example, eliminating the highest
and lowest 5% of the values, or by selecting a range between two standard deviations either side of
the mean value.

To compare the effects of using correspondence analysis for dimensionality reduction with more
traditional approaches to attribute selection, a wrapper based attribute selection method was im-
plemented. The search method used was a stochastic search known as the Monte Carlo method
(Skalak 1994; Liu & Setiono 1996a; Liu & Setiono 1996b). This method was chosen as the number
of search states visited can be controlled, and, unlike hill climbing approaches, it is not susceptible
to local maxima (Payne & Edwards 1996). It is also possible to show that as the number of states
visited increases, so does the probability of finding an optimal solution (Liu & Setiono 1996a). This
method searches for the best attribute subset by selecting a random subset and evaluating it. The
evaluation was performed using a leave-one-out cross validation with the nearest neighbour Euclidean
distance learning algorithm on the training dataset (which contained only those attributes present in
the attribute subset). A finite number of search states were visited (270 states for this study) and
the attribute subset resulting in the highest cross validated accuracy were presented as the optimal
subset.

5 Experimentation and Results

In order to determine whether or not the use of dimensionality reduction techniques can improve the
performance of a nearest neighbour learning algorithm, experiments were run on twelve numerical
datasets (Table 6) from the UCI Machine Learning Database Repository (Murphy & Aha 1994).
Four nearest neighbour learning algorithms were evaluated (Table 7): NN, a basic Euclidean distance

"This function has been used to normalise the datasets presented in this paper.
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nearest neighbour learning algorithm which utilised all the available attributes when classifying new
instances; MC, which utilised a wrapper based attribute selection technique with a Monte Carlo
search to locate optimal (or sub-optimal) attribute subsets prior to classifying new instances; and two
new algorithms, CA and CACP, that employed the Correspondence Analysis techniques described
in Section 3 to identify lower dimensional subspaces, and to map numeric data points into these
subspaces. CA and CACP differed in the way the way the subspace mappings were generated: CA
generated a subspace mapping from the entire training set, without utilising any class information;
whereas CACP identified the mean or centroid data point for all the training instances of each class,
and then used those centroids to generate the subspace mapping. Both CA and CACP used the
Euclidean distance function to identify the nearest neighbours in the subspace.

‘ Data Set ‘ Attrs ‘ Class ‘ Inst ‘ Inst/Class (%) ‘
bupa BUPA liver disorders 6 2| 345 | 42.0 58.0
ionosp JHU Ionosphere Database 34 2| 351 64.0 36.0
pima Pima Indians Diabetes Database 8 2| 768 | 349 65.1
sonar  Sonar, Mines vs. Rocks 60 2| 208 | 53.4 46.6
wiscon Wisconsin Breast Cancer Database 9¢ 2 | 683 | 65.0 35.0
wdbc  Wisconsin Diagnostic Breast Cancer 30° 2| 569 | 37.3 62.7
wpbc  Wisconsin Prognostic Breast Cancer 33¢ 2| 194 | 76.3 23.7
balance Balance Scale Weight & Distance 4 3| 625 7.8 46.1 46.1
glass Glass Identification Database 9¢ 6| 214 | 32.7 355 7.9

6.1 4.2 13.6
iris Iris Plants Database 4 3| 150 | 33.3 33.3 33.3
shuttle Challenger Space Shuttle O-Ring Data 4 3 23 | 74.0 21.7 4.3
wine Wine Recognition Data 13 3] 178 | 33.1 399 27.0

“The original dataset has an additional attribute which contains a unique identifier for each instance. This attribute
was removed prior to use.
*There are 699 instances in the original database, but 16 had missing values and hence were removed.

Table 6: UCI Datasets used in this study.

A 20-fold cross validation strategy was used to evaluate the performance of the different learning
algorithms on each of the datasets in Table 6. Several of these datasets each contained an attribute
corresponding to a unique identification value. These attributes were removed from the datasets to
prevent them affecting the classification accuracy. For example, the glass dataset contains an ordered
numeric identifier, which is highly correlated (using Spearman’s Rank Correlation, the coefficient is
0.958). If NN is used with a leave-one-out cross validation strategy, then the classification accuracy
rises from 69.16% to 90.65% when this highly correlated attribute is included in the dataset.

Table 7 lists the different mapping functions used by the various learning algorithms. Each function
generates a mapping by analysing the data in the training folds. This is done to prevent the data in
the test folds affecting the way in which all the data is mapped. The normalisation function maps the
range of numerical values for each attribute into the range [0..1]. Any values in the test folds that fall
outside this range are mapped to the nearest boundary, i.e. ip =1 iff (iyg > 1) or i, =0 iff (i, < 0)
where i, is the value corresponding to the attribute e within the instance 7. The class centroid
identification function creates a single centroid instance for each class, by averaging all the instances
in the training folds belonging to that class (Kibler & Aha 1988). The subspace mapping function
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uses the technique described in Section 3 to identify and approximate the basis for a subspace.
The mapping is either generated from the instances in the training folds (CA) or from the class
centroids (CACP). It is then used to project the instances in both the training and test folds into the
approximated subspace prior to performing any classification tasks.

Normalisation | Class Centroid | Subspace
Identification | Mapping

NN X
MC X
CA X X
CACP X X X

Table 7: The pre-processing and mapping functions used by the four learning algorithms.

To determine the lowest number of dimensions that achieve the highest accuracy, the CA and
CACP algorithms varied the number of dimensions to approximate the subspace for each dataset
between 1 and n, where n was the total number of attributes available for the dataset. The results
presented in the tables below refer to those tests that achieved the highest classification accuracy.

| NN | MC | A(MC) |
bupa || 61.978 (6) || 60.377 (4) | -1.601
ionosp 87.174 (34) || 90.638 (14) 3.464
pima || 70.994 (8) || 67.958 (4) | -3.036
sonar || 85.955 (60) | 83.683 (28) | -2.272
wiscon || 95.896 (9) || 95.027 (5) | -0.869
wdbe || 95.401 (30) || 96.109 (14) 0.708
wpbe || 69.056 (33) || 71.168 (15) 2.112
balance || 78.096 (4) || 78.096 (4) 0.000
glass || 68.093 (9) || 71.001 (5) 2.908
iris 96.160 (4) || 98.125 (2) | 1.965
shuttle || 75.000 (4) || 60.000 (1) | -15.000
wine 94.862 (13) || 94.792 (7) |  -0.070

Table 8: Classification accuracies for the numeric UCI datasets for NN and MC. Values in bold or
italic type indicate a significant difference at the 5% and 10% confidence levels respectively. The
numbers of features used for each dataset are given in parenthesis.

Results from the UCI datasets

The results of the 20-fold cross validated tests for NN and MC are given in Table 8. The first two
columns in this table refer to the classification accuracy of these two algorithms. The third column,
A(MC), presents the difference in classification accuracy between these two algorithms, and hence
changes in accuracy due to the feature selection component utilised by MC. The values in bold or
italic indicate a significant difference with a 5% or 10% confidence interval respectively. The number
of features used by each algorithm for each dataset is given in parenthesis.

The wrapper method succeeded in reducing the number of attributes for eleven of the twelve
datasets. The number of attributes found for these datasets was typically half that of the original
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| [ NN [ CA TJA(CA ] CACP [A(CACP)]
bupa 61.978 (6) || 61.978 (6) | 0.000 || 61.978 (6) 0.000
ionosp || 87.174 (34) || 90.898 (22) | 3.724 || 91.193 (11) 4.019
pima 70.994 (8) || 70.994 (8) | 0.000 || 70.994 (8) 0.000
sonar || 85.955 (60) || 86.955 (23) 1.000 || 85.995 (60) 0.000
wiscon || 95.896 (9) || 97.362 (6) | 1.466 || 96.191 (3) 0.295
wdbe || 95.401 (30) || 96.651 (5) |  1.250 || 96.294 (16) 0.893
wpbe || 69.056 (33) || 71.611 (16) | 2.555 || 73.056 (15) 4.000
balance || 78.096 (4) || 78.122 (4) | 0.026 || 88.952 (1) 10.856
glass 68.093 (9) || 68.093 (8) | 0.000 || 70.002 (8) 1.909
iris 96.160 (4) || 96.160 (4) |  0.000 || 96.696 (3) 0.536
shuttle || 75.000 (4) || 75.001 (1) |  0.001 —
wine 94.862 (13) || 97.084 (6) | 2.222 || 97.639 (6) 2.777

Table 9: Classification accuracies for the numeric UCI datasets for CA and CACP. Values in bold
or italic type indicate a significant difference at the 5% and 10% confidence levels respectively. The
number of dimensions used to describe the final approximated subspace for each dataset is given in
parenthesis.

number of attributes. There was a significant increase in classification accuracy for the iris dataset
(at the 5% confidence level) and ionosp dataset (at the 10% confidence level). However, there was a
significant decrease in classification accuracy for the pima, shuttle and wiscon datasets. No significant
difference in classification accuracy was found between NN and MC for the remaining seven datasets.
These results suggest that the wrapper method (used with a Monte Carlo search and a nearest
neighbour algorithm) can successfully reduce the number of attributes in most cases, with little or
no loss in classification accuracy, and that in some cases the classification accuracy can increase.
Similar results were achieved by (Liu & Setiono) where a wrapper approach utilising the Monte Carlo
search was evaluated with the two learning algorithms, C4.5 and ID3, on symbolic data. The wiscon
dataset was used by another study of wrapper approaches (Kohavi & Sommerfield 1995), but found
no significant difference in classification accuracy when a forward stepwise selection search was used
to reduce the number of attributes with either ID3 or Naive-Bayes.
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Figure 9: Mapping the two most relevant attributes of the iris dataset into a full ranked subspace.
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Table 9 contains the results of the 20-fold cross validated tests for CA and CACP. Again, the results
of the standard nearest neighbour algorithm, NN are presented, as are the changes in accuracy, A(C'A)
and A(CACP), for each dataset due to these two algorithms. The values in bold or italic indicate a
significant difference between each approach employing the dimensionality reduction algorithms and
NN, with a 5% or 10% confidence interval respectively. The number of dimensions used to describe
the final approximated subspace for each dataset is given in parenthesis.

Both CA and CACP achieved a reduction in the number of dimensions required to represent the
dataset for six of the twelve datasets. Again, the number of dimensions used was half that available
for each dataset. The effects of the two algorithms differed for the balance, iris, shuttle and sonar
datasets: CA failed to reduce the dimensionality of balance or iris; whereas CA CP failed to reduce the
dimensionality of sonar. No subspace mapping could be found for the class centroids of the shuttle
dataset, and hence no results are given for CACP with this dataset. Neither dataset succeeded in
reducing the dimensionality of the bupa or pima datasets.

The subspace mappings used by CA and CACP resulted in an increase in classification accuracy
for most of the datasets, in addition to reducing the number of dimensions. The only dataset for
which a reduction in the number of dimensions was achieved whilst the classification accuracy was
unaffected was the glass dataset.

The results obtained for the iris dataset were lower than expected, as two of the four attributes
(petal length and petal width) are known to be highly relevant to the classification task (Duda & Hart
1973; Michie, Spiegelhalter, & Taylor 1994). If only these two attributes are included in the dataset,
then the accuracy for NN increases from 96.160% to 98.125%, and there is a corresponding increase
in accuracy for CA (CACP) from 92.053% (93.927%) to 96.607% (96.607%) for a one dimensional
approximated space. This suggests that the classification performance of both CA and CACP may
degrade in the presence of irrelevant attributes. Figure 9 illustrates distribution of these two dimen-
sional instances in the original (canonical) space, and their distribution within the new (full rank)
subspace.

NN MC CA CACP

attrs | attrs reduction | attrs reduction | attrs reduction
bupa 6 4 33.33% 6 0.00% 6 0.00%
ionosp 34 14 58.82% | 22 35.29% | 11 67.65%
pima 8 4 50.00% 8 0.00% 8 0.00%
sonar 60 28 53.33% | 23 61.67% | 60 0.00%
wiscon 9 5 44.44% 6 33.33% 3 66.67%
wdbc 30 14 53.33% 5 83.33% | 16 46.67%
wpbc 33 15 54.55% | 16 51.52% | 15 54.55%
balance 4 4 0.00% 4 0.00% 1 75.00%
glass 9 5 44.44% 8 11.11% 8 11.11%
iris 4 2 50.00% 4 0.00% 3 25.00%
shuttle 4 1 75.00% 1 75.00% - —
wine 13 7 46.15% 6 53.85% 6 53.85%
Average 11 datasets 8 datasets 8 datasets
Reduction 51.22% 50.64% 50.06%

Table 10: The number of attributes used by each algorithm and the corresponding reduction in
dimensionality (given as a percentage of the original number of dimensions).
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The result achieved by CA for the balance dataset suggests that when all the dimensions are
present (i.e. no approximation is generated), the subspace mapping may still affect the classification
accuracy of the learning algorithm. This is supported by the result obtained for the iris dataset
when only the petal attributes are used. The effects of the mapping function generated by CA on
this dataset are illustrated in Figure 9. In this case, the mapping function performs a rotation and a
linear translation. The rotation should not affect the performance of the nearest neighbour algorithm.
However, the varying translation of each dimension has the affect of distorting the subspace with
respect to the original space, which is analogous to assigning relevance weights to each dimension.
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Figure 10: The difference in accuracy obtained when using the various dimensionality reduction
techniques.

All three methods (MC, CA and CACP) succeeded in reducing the number of attributes required
for the majority of the datasets used in this study. The reductions in dimensionality for each dataset
(given as a percentage of the original number of dimensions) are listed in Table 10. MC reduced the
number of attributes for eleven datasets by an average of 51.22% whereas CA and CACP reduced
the dimensionality of eight datasets by an average of 50.64%, and 50.06% respectively. The reduction
in dimensionality due to either CA or CACP resulted in an increase in classification accuracy for
eight of the twelve datasets, although only four of these results (three for CACP) were significant
at < 10% confidence level. M(C achieved a significant increase in classification accuracy for only two
of the datasets; but suffered a significant drop in classification accuracy for three others. Figure 10
charts the effects of the different methods of dimensionality reduction on the classification accuracy
for each dataset.

Results from artificial datasets

The results for the iris dataset suggested that the performance of CA and CACP may degrade in the
presence of irrelevant attributes. To investigate this hypothesis, two further datasets were created,
consisting of 100 instances each. The datasets, illustrated in Figure 11, each consist of two numeric
attributes and a boolean class label. The first dataset comprises of two linearly separable partitions.
As CACP identifies and utilises class centroids, the second dataset contains four linearly inseparable
partitions, two per class. A set of fifty, single attribute datasets were constructed, each containing a
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single random value for each instance. New datasets were created for each experiment by combining
one of the binary class datasets with a random sample of these irrelevant attribute datasets.

1

Linearly Separable Datapoints

1
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Figure 11: Two dimensional artificial data. Datapoints are either Positive (4) or Negative (x).

Various experiments were performed to investigate the behaviour of CA and CACP in the presence
of irrelevant attributes. For each experiment, the two datasets containing the relevant attributes were
augmented with an increasing number of irrelevant attributes. Each dataset was then tested with NN,
CA and CACP. This was repeated fifteen times for different combinations of irrelevant attributes.

Figure 12 illustrates the results obtained from experiments on the linearly separable dataset. The
classification accuracy of all three algorithms falls exponentially, as the number of irrelevant attributes
increase. The classification accuracies for NN and CA are comparable with datasets containing small
numbers of irrelevant attributes. However, after the number of irrelevant attributes exceeds fourteen,
the difference in classification accuracy between the two algorithms becomes small but significant (a
one-tailed t-test shows significance at the 5% level), with CA achieving a slightly higher accuracy
than NN. The number of dimensions used by CA varies as the number of irrelevant attributes in the
dataset increases. There is no reduction in dimensionality for datasets with few irrelevant attributes.
As the number of irrelevant attributes increases beyond eight to forty-nine, the number of dimensions
selected by CA increases slowly from eight to twenty-nine.

The error rate of CACP is much lower than that achieved by either CA or NN. CACP achieved a
mean accuracy of 74.74% with forty-nine additional attributes, whereas CA and NN achieved mean
accuracies of 57.47% and 55.93% respectively. The number of dimensions selected to approximate the
space remained relatively constant (between three to five dimensions).

The results for the three algorithms on the linearly inseparable datasets are shown in Figure 13.
Although CACP achieved superior results for these datasets, the overall performance was much lower
than with linearly separable data. This drop in accuracy for CACP may be due to the method used
to generate the centroids for each class. These centroids occur within a close proximity to each other,
due to the distribution of the instances of each class. Although the instance space is divided into
multiple partitions for each class, only a single centroid is generated for each.

The initial drop in accuracy in NN is not surprising, as there is an additional boundary separating
the points of the two classes, and a small number of points lie along this new boundary. However,
the results after the addition of only a few attributes (e.g. 11 attributes) are little better than that
achieved by pure chance, indicating that any contribution that the relevant attributes have to any
classification hypothesis has been obscured by the effects of the irrelevant attributes. The results



6 DISCUSSION 22

100 100
X>< NN —— i NN ——
| CA -B-- B CA -B--
907 iy %%, CACP - 90 CACP -
01,
X
5 807 -~ 000006 5 807 CACP Significant at 5%
§ 704 CA Significant at 5% § 704
< <
60 S e 60
50 50
40 T T T T T T T T T 40 T ‘ T T T T T T T T ‘
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Additional Irrelevant Attributes Additional Irrelevant Attributes

Figure 12: The effects of additional irrelevant at- Figure 13: The effects of additional irrelevant
tributes for a linearly separable dataset on three attributes for a linearly inseparable dataset on
learning algorithms. three learning algorithms.

show an unusual increase in accuracy for CACP for datasets containing between five and fourteen
additional attributes. As yet, no explanation has been found for this behaviour.

The above experiments were repeated to investigate the behaviour of both CA and CACP in the
presence of redundant attributes. A set of forty-eight, single attribute datasets were constructed,
each containing a single value for each instance. These values were based on those in the two datasets
illustrated in Figure 11, and were calculated in one of several ways: values were copied from one of
the dimensions of the original datasets; or values were calculated by inverting one of the dimensions
using the function f(z) =1 — z. In addition, some of the single attribute datasets were modified to
introduce some variability to the similar dimensions. The function f(z) = = x (1 £rnd(d)) was used,
where rnd(d) generates a small random number between 0 and §; for this study we used § = 0.05.

All three algorithms achieved approximately 100% accuracy for the linearly separable dataset and
96.00% for the linearly inseparable dataset. A rank of two was always selected for CA, whereas the
mean rank varied between one and four for CACP.

6 Discussion

The correspondence analysis techniques described in Section 3 were found to reduce the number of
dimensions required by a nearest neighbour learning algorithm for eight of the twelve datasets studied.
In addition, the resulting classification accuracy increased for all but one of these eight datasets. The
techniques used by CA and CACP identified a new basis for a space that contained the instances in
the training set, and then generated a lower dimension approximation to this space. As the number
of dimensions of the approximated space (i.e. the rank of the space) was increased, the resulting
classification accuracies were found to initially rise, and then fall slightly as a full rank subspace was
used (i.e. no approximation performed).

In general, attribute selection techniques have been used to identify and eliminate both redundant
and irrelevant attributes. The dimensionality reduction techniques used by CA and CACP appear
to be very successful in removing redundant dimensions from the dataset. The data points are
represented by an attribute-by-instance matrix. Once this matrix has been decomposed, the rank of
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the matrix can be determined by the resulting diagonal matrix. This rank represents the number
of linearly independent, orthogonal dimensions within a subspace. Therefore, the addition of any
duplicate attributes, or any linear combination of attributes will not result in an increase in rank, and
so will be eliminated by the decomposition. If two or more attributes contain very similar but not
identical values, then there will be additional orthogonal dimensions to express the slight deviations
between them (Figure 6). Because the inertia of such dimensions will be small, a lower rank subspace
that excludes these dimensions will closely approximate the original subspace.

Unlike many of the existing attribute selection techniques, the dimensionality reduction techniques
described here appear to have little impact in reducing the effects of irrelevant attributes. However,
the performance of the class projected variant CACP degrades at a slower rate than either CA or a
simple nearest neighbour in the presence of irrelevant attributes.

7 Conclusions

A number of different attribute selection techniques that reduce the dimensionality of a dataset have
been investigated in recent years. These techniques not only reduce the number of dimensions required
to learn a hypothesis, but can result in a classification increase for most learning algorithms (see
Section 2). Various filter techniques have been proposed, but studies have shown that by including
the learning algorithm in the selection process, better attribute subsets can be found. However,
this wrapper approach cannot be scaled up to problems of more than a few attributes, due to the
exponential increase in the size of the search required.

The text categorisation problem is one where attribute selection techniques have to function in
the presence of tens or hundreds of thousands of attributes. The problem of scalability has been
partially resolved by utilising simple variants of the filter method, or using a technique called Latent
Semantic Indexing (Deerwester et al., 1990). We have studied the underlying principles upon which
LSI was based, and developed two algorithms that reduce the dimensionality of data for small numeric
classification tasks. The results from an evaluation of these algorithms suggest that this approach is
successful in reducing the number of dimensions required for a learning task, and can result in an
increase in the classification accuracy of the learning algorithm. However, the success of this approach
appears to be due to the identification and elimination of redundant attributes. It fails to resolve the
issue of removing irrelevant attributes. An investigation is required to determine the behaviour of this
approach when used in conjunction with other attribute selection methods, such as weighted methods
that identify and eliminate irrelevant attributes, but retain redundant ones. Further investigations
are also required to determine the utility of correspondence analysis based approaches with other
learning algorithms (such as rule induction algorithms), and to determine their performance in the
presence of noise.
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