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UNIVERSITY OF SOUTHAMPTON 

 

ABSTRACT 

 

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS 

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE 

 

Doctor of Engineering 

ON PROBABILISTIC METHODS FOR OBJECT DESCRIPTION AND 

CLASSIFICATION 

by Alexander Ian Bazin 

 

This thesis extends the utility of probabilistic methods in two diverse domains: 

multimodal biometrics and machine inspection. The attraction for this approach is that 

it is easily understood by those using such a system; however the advantages extend 

beyond the ease of human utility. Probabilistic measures are ideal for combination 

since they are guaranteed to be within a fixed range and are generally well scaled.  

We describe the background to probabilistic techniques and critique common 

implementations used by practitioners. We then set out our novel probabilistic 

framework for classification and verification, discussing the various optimisations and 

placing this framework within a data fusion context. 

Our work on biometrics describes the complex system we have developed for 

collection of multimodal biometrics, including collection strategies, system 

components and the modalities employed. We further examine the performance of 

multimodal biometrics; particularly examining performance prediction, modality 

correlation and the use of imbalanced classifiers. We show the benefits from score 

fused multimodal biometrics, even in the imbalanced case and how the decidability 

index may be used for optimal weighting and performance prediction. 

In examining machine inspection we describe in detail the development of a 

complex system for the automated examination of ophthalmic contact lenses. We 

demonstrate the performance of this system and describe the benefits that complex 

image processing techniques and probabilistic methods can bring to this field. 

We conclude by drawing these two areas together, critically evaluating the work 

and describing further work that we feel is necessary in the field. 
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Definitions and Abbreviations Used 

Biometrics  Identification of a person by an observed biological or 

behavioural characteristic. 

Posterior P(C|x) Probability of data coming from a particular class in 

light of all data. 

Likelihood P(x|C) Probability of observing the data given that the data 

belongs to the specified class. 

Evidence P(x)  Probability of observing data irrespective of the data’s 

class. 

Prior P(C)  Probability of observing a particular class irrespective 

of the data obtained. 

Intra-class variance Variance between recorded data belonging to the same 

class. 

Inter-class variance Variance between recorded data belonging to differing 

classes. 

Data fusion  Combination of multiple sources of information in order 

to make a more accurate or more robust decision. 

Feature fusion  Combination of data sources at the feature level, i.e. 

before classification. 

Score fusion  Combination of data sources at the score level, i.e. after 

classification with classifiers providing continuous outputs. 

Decision fusion  Combination of data sources at the decision level, i.e. 

after each piece of information has had a classification assigned. 

Balanced classifiers Two or more classifiers where the performance of the 

worst classifier is no more than half that of the best classifier. 

Imbalanced classifiers  Two or more classifiers that do not fulfil the 

definition of balanced classifiers. 

Score transformation Process of altering scores from disparate classifiers such 

that all conform to the same range and distribution. 

False match rate Percentage of those impostors who are falsely matched 

to a client at a given threshold, also known as a false acceptance. 



 x 

False non-match rate Percentage of genuine clients who are falsely identified 

as impostors at a given threshold, also known as a false rejection. 

Equal error rate Percentage value at which the false match rate and false 

non-match rate become equal whilst varying the threshold. 

Client   Genuine enrolled user of a biometric system attempting 

to gain authorised access. 

Impostor  Malicious user of a biometric system attempting to gain 

access despite not having permission to do so. 

Gait   Unique, repeatable, observable pattern produced by a 

subject as they walk. 

Modality  Single biometric method used for identification. 

Agent   Part of a system that performs information preparation 

and exchange on behalf of a client or server. 

Voxel   Volume pixel, the smallest distinguishable box-shaped 

part of a three-dimensional space. 

SQL   Structured query language. 

XML   Extendable mark-up language. 

Industrial inspection Visual based task of determining faults in manufactured 

goods in a production environment. 

Commercial of the shelf process control device Device for interfacing 

industrial inspection system with the production line.  
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Symbols Used 

Chapter 2 (First Use) 

P(C|x), P(C|d) Posterior probability given x or d 

P(x|C), P(d|C) Class likelihood based on x or d 

P(x), P(d) Evidence of x or d 

P(C)  Prior probability of class C 

N  Number of classes 

Ci, Cj  Class i or j 

C  The client class 

I   The impostor class 

t   Threshold for a verification decision 

R   Number of classifiers under combination 

wi  Weight of classifier i 

Ei  Error rate of classifier i 

Λ   Covariance of feature vectors 

M  Length of feature vector (also number of training examples in 

eigenface technique leading to feature of length M) 

σ
2
   Variance of feature 

Ω  Feature vector from eigenface technique 

µ   Mean of feature 

d   Distance between new measured feature and reference vector 

K  Number of example images per class 

L   Number of likelihoods produced in training set 

HL  Vector of example likelihoods from training set 

HF  Mapping vector to a flat histogram of likelihoods 

HG  Mapping vector to a Gaussian histogram of likelihoods 

S(C)  Degree of support to a proposition C 

si   Evidence in support of S(C) 

 

Chapter 3 (First Use) 

Γ   Face image 
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Ψ  Average (mean) face 

Φ  Difference between face image and average (mean) face 
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S   LDA between class scatter 
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Ns  Number of subjects 
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p   Expected or desired error value 

α   Confidence level 

d’  Decidability index 
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Chapter 1  

   Context and Contributions 

1.1 Overview of Research 

Probabilistic methods are a group of classification techniques marked by the 

fact that their output is a probabilistic measure of similarity between the object under 

test and some hypothesised class or classes. The output of this kind of measure 

compared with a hard decision or unconstrained score has numerous advantages 

explained here. Initially the attraction for such a measure is that it is easily understood 

by those using such a system; however the advantages extend beyond the ease of 

human utility. For example probabilistic measures are ideal for combination with 

other probabilistic outputs since they are guaranteed to be within a fixed range and are 

generally well scaled, in certain formulations we may also transparently bias the 

classification in favour of certain outcomes. We are interested in examining the utility 

of probabilistic methods in two diverse computer vision application domains: 

multimodal biometrics and machine inspection. 

 

Biometrics in the automated recognition of a subject by biological or 

behavioural characteristics; whilst the field is over fifty years old the majority of this 

work has focused on the use of single biological traits, usually termed modalities, 

captured in a controlled environment at short range. Recently interest has turned both 

to recognition at a distance and the concurrent use of multiple modalities, so called 

multimodal biometrics. Recognition at a distance is of obvious benefit in the era of 

CCTV surveillance and for covert identification; it also has significant benefits in 
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terms of throughput and of user acceptance where contact devices have proven 

unpopular for hygiene and other health related fears. However identification at a 

distance often suffers from occlusion and hence strengthens the case for multimodal 

biometrics.  Investigators of multimodal biometrics have claimed significant 

performance improvements over individual modalities in addition to their greater 

flexibility. Probabilistic methods are well suited to the combination techniques used in 

multimodal biometrics; and in this thesis we examine the utility of these techniques, 

the range of their use, technical issues with their implementation and the prediction of 

when such techniques should be employed. In order to perform such analysis we have 

constructed an automated system for the collection of multimodal biometric data, this 

is a highly complex system incorporating significant technical challenges and 

considerable research effort. We describe the system, the processing algorithms used, 

and the modalities employed; we also describe the collection methodology and the 

statistical basis for these decisions. 

 

In comparison with biometrics, machine inspection is a relatively mature field; 

however we have examined the sub-field of ophthalmic contact lens inspection at the 

request of a commercial organisation. This is field that has had little to no intervention 

from complex image processing techniques nor from probabilistic methods. 

Ophthalmic contact lens inspection involves the examination of images of contact 

lenses on a production line for detection and classification of any faults on the lenses. 

Since contact lenses are classified as medical devices the standards for fault tolerance 

are very tightly controlled by medical regulators and all decision must be carefully 

recorded for subsequent auditing; in addition since inspection takes place in a 

production environment processing time is strongly constrained. In this thesis we 

develop an automated contact lens inspection system that is suitable for use in a 

production environment, we demonstrate the performance of this system and describe 

the benefits that complex image processing techniques and probabilistic methods can 

bring to this field. 

1.2 Contributions 

This thesis documents several key contributions made to the fields of 

probabilistic methods, biometrics and machine inspection. 
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In the field of probabilistic methods these contributions may be summarised as: 

1. The use of global variance estimation for homogeneous sets of classes; 

2. The modelling of class likelihoods by a logistic function; 

3. The formulation of the verification problem as a two class problem modelled 

by intra and inter-class logistic functions; 

4. The demonstration of a real improvement in both equal error rate and score 

distribution by the use of our probabilistic framework; 

5. Examination of claims of optimal weighting for probabilistic fusion. 

 

In the field of biometrics these contributions may be summarised as: 

1. The development of an automated system for the collection and processing of 

multimodal biometric data; 

2. The examination of the use of footfall data as a viable modality for biometric 

verification; 

3. The demonstration of performance improvements using weighted fusion on 

highly imbalanced modalities; 

4. The examination of the effect of modality correlation on biometric fusion, and 

the conclusion that reduction in correlation is a good indicator of improvement 

in performance; 

5. The demonstration that the decidability index after fusion may be accurately 

be predicted, and further more that calculating the maximal decidability 

provides an optimal weighing scheme in multimodal biometrics. 

 

In the field of machine inspection these contributions may be summarised as: 

1. The development of a system for automatically inspecting medical devices 

within a time-constrained environment. 

2. The application of complex image processing techniques to ophthalmic lens 

inspection; 

3. The demonstration of the reliability of our probabilistic classification 

framework for classifying faults in medical devices. 
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1.3 Document Structure 

The overall structure separates the industrial inspection application from the 

biometrics application, starting with basic probabilistic tenets common to both 

application domains.  

 

Chapter 2 provides a background to popular probabilistic techniques and 

methods of combining probabilistic confidence measures for different sources. It also 

details the theoretical background behind the probabilistic framework we have 

developed, which forms an underpinning for the work in the remainder of this thesis. 

In the final section of this chapter we perform a comparison between our probabilistic 

formulation and Dempster-Shafer theory. 

 

Chapter 3 describes a broad range of novel contributory methodologies, 

technologies and systems for biometric recognition that have been used in the Data 

Information Fusion, Defence Technology Centre 8.11 (DTC 8.11) contract.  Our aim 

in the DTC 8.11 contract, that forms the basis of much of the work in this Chapter 3, 

was to construct a system for collecting multimodal biometric data from subjects and 

automatically verify their identity. Chapter 3 explains the modalities that are targeted 

by the system, reviews the background to these modalities and common extraction 

techniques before describing in detail the extraction methods we use. It then describes 

the collection and verification system we have developed, focusing on the following 

areas: the hardware used to construct the system, the pre-processing stages carried out 

on the captured data, and the storage solutions for the large volume of data collected. 

The collection strategy for our system is explained along with the testing 

methodologies we use in the system, as well as detailed descriptions of specific tests. 

 

Chapter 4 examines the simple case of whether score fusion based on our 

probabilistic framework is an effective method for improvement of performance. It 

then continues, to examine whether multimodal biometrics are an effective tool when 

the performance of the modalities are imbalanced. In using the weighted fusion 

schemes described in Chapter 2, we state that “Equation 16 describes the optimal 

weights, wi, … where Ei is the error in addition to the Bayes error from classifier i.” 

in Chapter 4 we seek to explore whether this is the optimal weight when 
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approximated by the Equal Error Rate; we expand this to examine the role correlation 

may have on performance and optimal weighting. Finally Chapter 4 considers the 

how we may predetermine any performance improvement we may see and provide a 

quantitative assessment of when score fusion is of benefit.  

 

Chapter 5 provides an overview of our developed ophthalmic lens inspection 

system including its interaction with the manufacturing equipment and human 

operators. This is more industrial in nature than the other work described in this thesis 

and fulfils much of the commercial focus elements of the Engineering Doctorate 

scheme. This high level overview describes both the inspection system and allied 

control and monitoring software. We then describe in detail the methods used for 

processing the lens image, extracting relevant feature metrics, classifying fault types 

and comparing these classified features with the customer’s inspection standards. 

Finally the testing regime that has been implemented is discussed both with reference 

to the accuracy of the algorithms and the performance of the system as a whole. 

 

Chapter 6 summarises the findings and contributions made in this thesis. It then 

discusses the further work that is desirable to complete outstanding tasks in this thesis 

or to provide further development of our key work. 

1.4  Publications 

The following publications by have ensued from this research programme: 

 

[1] Bazin, A.I., Cole, T., Kett, B., Nixon, M.S. (2006) An Automated System 

for Contact Lens Inspection. In Proceedings of 2
nd
 International Symposium on Visual 

Computing (ISVC), In Press, Lake Tahoe, NV, USA. 

 

[2] Middleton, L., Wagg, D. K., Bazin, A. I., Carter, J. N. and Nixon, M. S. 

(2006) A smart environment for biometric capture. In Proceedings of IEEE 

Conference on Automation Science and Engineering, In Press, Shanghai, China. 

 

[3] Middleton, L., Wagg, D. G., Bazin, A. I., Carter, J. N., and Nixon, M. S. 

(2006) Developing a non-intrusive biometric environment. In Proceedings of 
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IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), In 

Press, Beijing, China.  

 

[4] Middleton, L., Buss, A. A., Bazin, A. I. and Nixon, M. S. (2005) A floor 

sensor system for gait recognition. In Proceedings of Fourth IEEE Workshop on 

Automatic Identification Advanced Technologies, pp. 171-176, Buffalo, New York, 

USA.  

 

[5] Bazin, A. I., Middleton, L. and Nixon, M. S. (2005) Probabilistic Fusion of 

Gait Features for Biometric Verification. In Proceedings of Eighth International 

Conference of Information Fusion, pp. 124-131, Philadelphia, PA, USA.  

 

[6] Bazin, A. I. and Nixon, M. S. (2005) Probabilistic combination of static and 

dynamic gait features for verification. In Proceedings of Biometric Technology for 

Human Identification II, SPIE Defense and Security Symposium 5779, pp. 23-30, 

Orlando (Kissimmee), Florida USA.  

 

[7] Bazin, A. I. and Nixon, M. S. (2005) Gait Verification Using Probabilistic 

Methods. In Proceedings of 7th IEEE Workshop on Applications of Computer Vision, 

pp. 60-65, Breckenridge, CO.  

 

[8] Bazin, A. I. and Nixon, M. S. (2004) Facial Verification Using Probabilistic 

Methods. In Proceedings of British Machine Vision Association Workshop on 

Biometrics, London.  

 

The work in [8] describes our initial attempts at constructing a novel 

probabilistic framework and this work is described in Appendix B. In [7] we explain 

our novel probabilistic framework based on logistic functions, the first such use of 

logistic functions in this manner, we demonstrate the performance of this approach on 

the gait verification task. Our work in [5, 6] extend our novel probabilistic method 

into multimodal biometrics, including the consideration of decidability and correlation 

as measures of efficacy; this is the first application directly combining the output of 

probabilistic classifiers for biometric verification. 
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We describe in [4] a new biometric modality, footfall, and the construction of a 

suitable sensor system. The work in [2, 3] explains our work in constructing the first 

system for multimodal biometric capture at a distance. Finally [1] gives an overview 

of our innovative industrial inspection system utilising modern computer vision 

techniques combined with our novel probabilistic framework. 

 

The following publications were also produced by the author during the course 

of their Engineering Doctorate, but do not contribute to the content of this thesis:  

 

Damper, R. I., Marchand, Y., Marsters, J. D. S. and Bazin, A. I. (2005) Aligning 

text and phonemes for speech technology applications using an EM-like algorithm. 

International Journal of Speech Technology, 8(2) pp. 149-162. 

 

Damper, R. I., Marchand, Y., Marsters, J. D. S. and Bazin, A. I. (2004) Aligning 

letters and phonemes for speech synthesis. In Proceedings of 5th International Speech 

Communication Association (ISCA) Workshop on Speech Synthesis, pp. 209-214, 

Pittsburgh, PA.  

1.5 Declaration 

This thesis describes the research undertaken by the author while working 

within a collaborative research environment at the Information: Signals, Images, 

Systems research group under the support of the Engineering and Physical Sciences 

Research Council. This report documents the original work of the author except in: 

Chapter 4 which was conducted in conjunction with Drs. Lee Middleton, Galina 

Veres, David Wagg and Mr. Alex Buss under the Data Information Fusion, Defence 

Technology Centre 8.11 project, and Chapter 6 which was developed in conjunction 

with Mr Trevor Cole at Neusciences under contract for CooperVision. 
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Chapter 2  

Probabilistic Methods 

2.1 Introduction 

Probabilistic methods are a group of classification techniques that, when 

comparing a piece of query data to a set of possible classifications, produce a 

probabilistic measurement of similarity between the query data and each class. This 

can be contrasted with the distance based (dissimilarity) metrics or hard classification 

(decision) based produced by many other popular classification schemes. There are a 

number of obvious advantages with the use of probabilistic methods which return 

class assignment with accompanying measures of class certainty, especially in areas 

where one may wish to combine disparate sources of data or where one would like 

further understanding as the confidence in a classification decision.  

 

This chapter provides a background to popular probabilistic techniques and 

methods of combining probabilistic confidence measures for different sources. It also 

details the theoretical background behind the probabilistic framework we have 

developed, which forms an underpinning for the work in the remainder of this thesis. 

In the final section of this chapter we perform a comparison between our probabilistic 

formulation and Dempster-Shafer theory. 
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2.2 Bayesian Classification 

Bayesian classifiers are perhaps the best known method of obtaining a 

probabilistic output from a classifier. The naïve Bayesian classifier and its variants [9, 

10] have gained interest for use in face recognition [11-15]. The Bayesian classifier 

calculates the posterior probability, P(C|x), of a class, C, given data, x. This is based 

on the likelihood of the data given the class, P(x|C), the evidence of the data, P(x), 

and the prior probability of the class, P(C), as shown in equation 1. 

 

)(

)()|(
)|(

xP

CPCxP
xCP =    (1) 

 

The prior probability, P(C), is usually assigned such that all classes are 

equiprobable; and the evidence is taken as the weighted sum of the likelihoods over 

all classes: 

 

N
CP

1
)( =      (2) 

∑=
N

j
jj CxPCPxP )|()()(    (3) 

 

where i is the number of classes. By combining equations 1, 2 and 3, this leads 

to: 

 

)|(

)|(
)|(

∑
=

N

j

j

i
i

CxP

CxP
xCP     (4) 

 

Here, x will be a feature vector describing an unclassified object and Ci will be 

one possible class identity. In the classification task we assign the data from an 

unknown object to the identity Ci if the posterior probability for that class is 

maximum: 
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)|(max)|(

if assign 

xCPxCP

Cx

k
k

i

i

=

→
   (5) 

 

It also aids our future work to consider the more restricted verification problem, 

which is more typically used in biometrics. In this problem one already has a claimed 

class identity for an object descriptor. Here the object descriptor is an extraction of 

measurements of the subject and the class claim provides a claim for the identity of a 

single subject. This makes the process somewhat simplified with two possible classes, 

either: Client, C, where the individual subject is who they claim to be or Impostor, I, 

where they are not. The two classes can be assumed to be equally likely (in the 

absence of other evidence) and are mutually exclusive, P(C|x) = 1 - P(I|x). Hence 

simplifying equation 4 we obtain: 
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We would then accept the individual identity claim if P(C|x) > t where t is a 

threshold that may be chosen based on the desired security of the system. 

 

The likelihood, P(x|C), will be estimated from the distribution of x for each 

subject; in many examples [12, 13] this is assumed to be Gaussian distributed. The 

multivariate Gaussian for likelihood estimation is given in equation 7; where µi and Λi 

are the values for the mean and covariance of the feature vectors of class Ci. 
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Moghadden et al. [13] argue for two global distributions; one to describe the 

distribution of variance between measurements of the same subject (intra-class 

variation) and another to describe variation between subjects (inter-class variation). 

Liu and Wechsler’s work [12] describes only intra-class variation but hypothesises 

that this variance is consistent across subjects, leading to the ability to estimate 

variance globally. In section 2.4 we evaluate the use of global covariance estimation 
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and the suitability of Gaussian likelihood estimation. We also investigated the 

statement by Liu and Wechsler that the posterior probability is not a significantly 

better metric than the likelihood.  

2.3 Data Fusion 

Data fusion may be defined as the combination of two or more feature vectors, 

classification schemes or identification decisions with the aim of providing a more 

robust estimate of class identity. Fusion may occur on one of three levels [16]: 

feature, score or decision. This section will give a brief overview of all methods but 

shall focus primarily on score fusion in a probabilistic environment. 

 

For fusion at the feature level, combinations of feature vectors are usually 

produced by simple vector concatenation before being passed to a classifier of choice 

(usually a simple Euclidean distance classifier), this type of fusion is exemplified by 

Kyong’s work on combining face and ears [17]. Whilst this method is simple and 

when used with sufficient training data should be optimal, given the usual paucity of 

data it is unlikely to be as effective as late fusion. This is especially true if simple 

classifiers are used which do not take into account the varying performance of the 

modalities being fused. More complex methods may involve the use of feature set 

selection or transformation after combination to yield the most discriminant feature 

vector [18]. In practice good results from feature level fusion are difficult to achieve 

due to incompatible feature types or unknown relationships between feature spaces. 

Additionally this technique does not scale well due to increasing demands for more 

complex classifiers and increased storage to deal with rapidly expanding 

dimensionality. 

 

Decision fusion methods are attractive since they need little or no training and 

so cope well with the lack of data often available. Simple decision fusion rules are 

merely logical functions such as AND or OR, slightly more complex rules may also 

include weighted voting algorithms. Rank based rules [19] such as rank summation, 

Borda count or minimum rank can also considered decision fusion schemes. These 

methods are simple but do not take into account the scores underlying the initial 

decisions; voting rules are also prone to ambiguity especially when there are few 
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inputs or classes. The output of these rules is a hard classification and hence 

unappealing in a probabilistic framework or if further analysis may be needed. 

 

Score fusion schemes are broadly of two types: those that regard the output of 

the initial classifiers as feature vectors that may be used as inputs to further classifiers 

[20, 21]; and those that treat the outputs of the initial classifiers as scores that may be 

combined using mathematical rules [19, 22-28]. 

 

Many classifiers have been used in score fusion (e.g. support vector machines, 

multilayer perceptrons, Bayesian classifiers, Fisher’s linear discriminant analysis 

based classifiers and C4.5 decision trees); with Ben-Yacoub et al. [20] claiming that 

Bayesian classifiers or support vector machines give the greatest improvement. The 

major drawback of using a classifier based fusion scheme is the requirement for 

training; in many tasks data is at a premium, especially where many examples of one 

class are needed. This lack of training data makes a classifier based fusion scheme 

unsuitable for the applications envisaged in this thesis. 

 

Kittler et al. [22] propose a common theoretical framework for the combination 

of scores based on the Bayesian decision rule (equation 5), this assumes the 

combination of posterior probabilities (or approximations thereof). The rules 

described by Kittler are shown in equations 8-12; where P(C|xi) is the posterior 

probability from a signal classifier and  P(C|x1,…,xR) is the posterior probability from 

the R fused classifiers. 

 

Sum rule:  ∑=
R

i

iR xCPxxCP )|(),...,|( 1    (8) 

Product rule:  ∏=
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i
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i
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The minimum and maximum rules are approximations to the product and sum 

rules respectively; the median rule considers that the sum rule can be considered as 

computing the mean posterior probability and hence approximates this behaviour 

using the median as a robust estimate of the mean. 

 

The assumption of posterior probabilities poses problems for non-Bayesian 

classifiers, especially when attempting to combine classifiers with disparate 

distributions of ranges and scores. Where fusion of non-Bayesian classifiers has been 

attempted then score transformation techniques have been proposed [19, 21, 29, 30] to 

allow these classifiers to fit into the framework proposed by Kittler. It was the 

intention of our research to provide a probabilistic framework for data fusion where 

score transformation is not necessary; for this reason these methods will not be 

discussed further, other than to note that this transformation may introduce further 

errors into the classification process.  

 

These rules work well in the case where classifiers are balanced (the error rates 

from each classifier are approximately equal); however when classifiers are 

imbalanced, use of the sum or product rules can lead to performance that is worse 

than the best individual classifier [25]. One solution is the use of Behaviour-

Knowledge Space as proposed by Huang and Suen [31] which formulates a look-up 

table to translate classifier outputs to a class label with attached confidence. This 

again reduces the fusion to a rank rather than score based system, and requires a very 

large training set to populate the knowledge space. A more straightforward solution is 

the use of weighted sum and product rules (Linear and Logistic Opinion Pools) 

proposed by Benediktsson and Swain [32], these rules are shown in equations 13 and 

14. 

 

Weighted sum:  ∑=
R

i

iiR xCPwxxCP )|(),...,|( 1   (13) 

Weighted product:  
iwR

i

iR xCPxxCP ∏= )|(),...,|( 1   (14) 
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where:    ∑ =
R

i

iw 1     (15) 

 

The setting of the weights, wi, still represents a training requirement but a very 

much smaller requirement than other trained methods discussed above. Equation 16 

describes the optimal weights, wi, as stated in [25] where Ei is the error in addition to 

the Bayes error from classifier i. 
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Other methods [33, 34] base the decision to fuse on the perceived expertise of a 

given classifier for a given situation. If the classifier is considered an expert then the 

decision of that classifier is used, otherwise fusion rules are used that reflect the 

confusion over the classification. “Arrogant” classifiers (those that tend towards a 

certain decision regardless of collaborating evidence) as described in [34] may be 

discounted since they do not yield outputs suitable for combination.  

 

Also of interest are papers describing those situations where classifiers are 

suitable for fusion, some interesting rules of thumb appear [19]: 

 

“1. Combining data from multiple inaccurate sensors (having an individual 

probability of correct inference of less than 0.5) does not provide a significant overall 

advantage. 

  

2. Combining data from multiple highly accurate sensors (having an individual 

probability of correct inference of more than 0.95) does not provide a significant 

increase in inference accuracy.  

 

3. When the number of sensors becomes large (e.g., greater than 8 to 10), 

adding additional identical sensors does not provide a significant improvement in 

inference accuracy. Note, however, that adding a new sensor type may have a very 
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significant impact in inference capability, because of an added dimensionality of 

observational data. 

 

4. The greatest marginal improvement in sensor fusion occurs for a moderate 

number of sensors (i.e., one to seven), each having a reasonable probability of correct 

identification.” 

 

In addition Daugman [28] states that in the case of imbalanced classifiers the 

error rate of the weaker classifier “must be smaller than twice the cross-over [equal 

error] rate of the stronger test”. However Roli et al. [25] have demonstrated that the 

use of the weighted sum rule does give an improvement in performance when fusing 

imbalanced classifiers in face recognition. We will seek to explore the accuracy of 

these assertions in Chapter 4 since we have the means to test these in a probabilistic 

multimodal setting. 

2.4 Global Variance Estimation 

 As described in section 2.2, obtaining accurate likelihoods is dependent on 

good estimates of the mean and variance of class data. We are often very constrained 

on the availability of data, particularly multiple examples of the same class. Given a 

set of M dimensional feature vectors Ω from class Ci, it is trivial to calculate the mean 

vector, µi, even from small numbers of examples. However when we attempt to 

calculate the covariance matrix of the feature vectors Λi we find that unless the 

number of examples used to calculate Λi is greater than M, the covariance matrix is 

likely to be singular and hence unsuitable for use in calculations. Where there can be a 

reasonable assumption that classes have similar distributions such as in the case of 

biometrics; we considered the proposal by Liu and Wechsler [12] that the covariance 

could be assumed to be uniform across all classes and further that the covariance 

could be considered as a diagonal matrix of the M variances, σ
2
,of the elements in Ω. 
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For a training set T consisting of K examples from N classes we estimate the 

variance by subtracting the class mean, µi, from each training vector belonging to 

class Ci.  

 

    iikk CKkd ∈Ω=−Ω=    ,,...,1   ,µ
  (18) 

 

This forms a set of differences },..,,{ 21 KdddD =  and hence: 
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This then yields a non-singular outcome. Tests on the validity of these 

assumptions may be found in the chapter describing biometric data and systems 

(Chapter 3). This method would clearly be inappropriate in circumstances where both 

the location (mean) and structure (variance) of the data differ greatly between each 

class. 

2.5 Gaussian Based Likelihood Models 

In this section we examine the use of Gaussian based likelihood models for 

classification in high dimensional feature space. The multivariate Gaussian likelihood 

is given by equation 20: 
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We further found that with no loss of performance we may approximate the 

covariance matrix with the diagonal variance matrix as described in 2.4. 

 

In order to test the use of this Gaussian probabilistic frame work, we used the 

Principal Component Analysis technique to extract facial feature vectors from a data 

set of the Notre-Dame HID database [35]. Having pre-processed the images by 
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centring and cropping to uniform size, transforming to 8-bit greyscale and reducing 

them to a 78-dimensional feature space we then constructed training, gallery and 

probe sets. We trained the global covariance estimate using 595 images from 119 

subjects. We approximated the class means, µi, using a gallery of single images of 200 

subjects not used in training the covariance matrix.  

 

From equation 20 we estimated the likelihoods for 200 probe images of the 

subjects in the gallery using both the local and global covariance estimates. We then 

used equation 4 to calculate the posterior probabilities of each probe image over all 

classes and formed an identification decision using equation 5. For comparison we 

also used a Euclidean distance classifier for subject identification using the same 

probe and gallery sets. 

 

The rank one recognition rate of the Bayesian classifier using a global 

estimation of the covariance matrix was 78%; this compares favourably with the 

Euclidian distance classifier with a rank one recognition rate of 61%. However, 

looking at the probabilistic outputs we realised that there appeared to be a significant 

difficulty with Bayesian classifiers that had not been reported in the biometrics 

literature. It appears that the likelihoods derived from the PCA data are badly scaled, 

spanning fifty or more orders of magnitude, due to the Gaussian functions becoming 

very narrow in high dimensions. Likewise the posterior probabilities from Bayes rule 

tend to cluster near 0 or 1. These properties could make it difficult to obtain a 

reasonable threshold for verification and may reduce the effectiveness of the proposed 

data fusion algorithms; they also remove much of the intuitive nature of probabilistic 

recognition. This problem appears to be not yet covered in the literature; we suspect 

since there has as yet been no consideration of subsequent use of the classification 

data, research performance has been satisfied by recognition performance alone. 

2.5.1 Histogram Scaling 

In order to rectify the problem of poorly scaled outputs we propose a new 

method for scaling the likelihoods such that they are well distributed between 0 and 1 

[8]. This method is based on using histogram equalisation to map the likelihoods 

obtained through the multivariate Gaussian to one of three histograms: a uniform 
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histogram, a Gaussian histogram with a centre at 0.5, and a twin Gaussian histogram 

with one centre at 0.25 for impostors and another at 0.75 for clients. 

 

 

 

Figure 2-1  Results of Histogram Scaling of Likelihoods 

 

Using likelihoods from clients and impostors we form an input vector of length 

L, HL, ranked in ascending order. We create two ordered output vectors drawn from 

flat, HF, and Gaussian distributions, HG. For the Gaussian distribution the mean, v, is 

chosen as 0.5 with a variance, s, of 0.25; the length of these two vectors, J, is set so 

that there may be a unique mapping between the input vector and both of the output 

vectors, these are constructed according to equations 21 and 22.  

 

    ,...,J  jj
J

HF(j) 1,
1

==    (21) 

 

   ,...,J  j
s

vj
erfHG(j) 1,

2
1

2

1
=















 −
+=   (22) 

 



 19 

Each point in vectors HF and HG is multiplied by the number of points, L, in 

the example vector HL and rounded down to the nearest integer to give an index for 

HL. The value in the mapping vector, M{G|F}, at this point is the value of HL 

corresponding to the cumulative variance at the same point in H{G|F}. This provides 

us with a mapping from the input histogram to the output histogram, as per equation 

23. 

 

  ,...,J  jL)){G|T}(j)HL(floor(HM{G|F}(j) 1, =×=   (23) 

 

Using this method we also produce a twin Gaussian mapping where two HG 

vectors of length J/2 are formed; the first with a centre at 0.25 and the second with a 

centre at 0.75. These vectors are then formed into mappings using equation 23 with 

the vector HL being drawn entirely from impostors in the first instance, and entirely 

from clients for the second mapping. By concatenating these two mappings we form a 

mapping HT consisting of two Gaussians trained on client and impostor data. 

 

Again using the Notre-Dame database we performed verification between a 

gallery image of a subject and four probe images of the same subject, for each subject 

we also presented four impostor images to the system; this test was carried out across 

200 subjects in all. For each verification the posterior probability, together with the 

flat, Gaussian and twin Gaussian mapped likelihoods were obtained giving four 

measures of identity for each subject. The EERs for each of these is given in Table 

2-1 with the resultant class distributions shown in Figure 2-1. 

 

Method Equal Error Rate % 

Posterior Probability 17.2 

Uniform (Flat) Histogram 14.8 

Gaussian Histogram 14.5 

Twin Gaussian Histogram 14.9 

Table 2-1 Equal Error Rates for the Histogram Scaling Experiments 

 

From our experiment we found that the histogram techniques showed 

improvement in verification performance over the posterior probability method. The 

performances of the histogram mapped techniques are significantly better than the 
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posterior probability method at the 1% significance level using a McNemar’s test 

however the performance difference between the three histogram techniques is not 

significant. 

 

After careful consideration of our findings we decided that a direct method for 

calculating the likelihoods without any score normalisation was a more intellectually 

robust approach, therefore this work was abandoned in favour of the logistic based 

likelihood which coincidentally gave improved results. 

 

2.6 Logistic Function Based Likelihood Models 

After initial tests using Gaussian likelihood models for face recognition, we 

found that the Gaussian approach did not produce suitable probabilistic outputs for 

use in fusion. Since we had set out to construct a schema that directly produced well 

scaled probabilistic outputs suitable for use in fusion, it was clearly appropriate to 

seek an improved method for likelihood estimation that required no post processing.  

 

When dealing with two class problems, such as biometric verification, there is a 

clear advantage in following the methods of Moghaddam et al. [13] in calculating the 

evidence based on intra- and inter-class likelihoods, since this significantly simplifies 

the calculations.  

 

In keeping with our probabilistic framework we seek to find a function that 

tends to unity where the difference between the class mean and feature vector is zero 

and tends to zero as the distance between the class mean and feature vector becomes 

larger than the class variance.  

 

A suitable model for these distributions is a logistic function [36] such that: 
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Once likelihoods have been calculated for all classes we may then use equation 

4 to find the posterior probability for any given class. 

 

For a two class problem such as biometric verification we may make further 

refinements to our method. In this case, if we have a distance, d, between a new 

feature and the feature vector of a claimed identity we wish to calculate the client and 

impostor likelihoods, P(d|C), P(d|I), given measurements of the intra and inter-class 

means and variances, µC, µI, σC
2
, σI

2
. Here we wish the client likelihood to tend to one 

as the difference between the new feature and reference vector tend to zero and tend 

to zero and the difference becomes larger than the intra-class mean. Conversely we 

would wish the impostor likelihood to tend to one when the difference is larger than 

the inter-class mean, and tend to zero as the difference nears zero. If the distributions 

of d for clients and impostors are slightly overlapping then the desired behaviour of 

the function and the underlying distributions are shown in Figure 2-2. The 

overlapping area is that where client and impostor feature sets are of similar distances 

from the template; it is within this region that errors occur. The amended functions are 

shown as equations 26-28.  
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Figure 2-2 Inter and Intra Class Distributions and Likelihoods 

 

These two functions conform to our requirements set out above that they take 

into account knowledge of the variations of d, that they are well distributed and 

guaranteed to produce outputs between zero and one. 

 

Having found the intra and interclass likelihoods using equations 30 to 32 we 

may calculate the posterior probability P(C|d) from equation 6. 

 

Importance sampling [37, 38] could also be used to describe the distribution of 

data, however we found that likelihood measures were sufficient to accurately 

describe the data so felt this unnecessary. 

2.7 Dempster-Shafer Theory 

Dempster-Shafer theory [39] provides an alternative probabilistic, which is 

claimed to include Bayes’ rule as a restrictive special case. Their formulation 

considers a frame of discernment which is a finite set of all possible outcomes (or in 
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our case classes). The belief in a given possibility, Bel(C), is given by combining the 

orthogonal sums of all pieces of evidence, mx, in support of this possibility. Belief is 

described as “the degree of support a body of evidence provides for a proposition”, 

and hence is akin to our view of the posterior probability, P(C|x). Given two pieces of 

evidence, s1, s2, for a possibility C; the degree of support S(C) is given by: 

 

    ( ) ( ) ( )2121 111 ssssCS −−−−=⊕=   (33) 

 

It is also noted that n pieces of evidence may be pooled using pairwise 

orthogonal sums: 
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Should instead we have two pieces of evidence pointing to conflicting beliefs 

such as s1 pointing to outcome A and pointing to s2 outcome B, then we erode the 

belief in both outcomes: 
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By way of comparison the evidence in our formulation of Bayes rule would be 

combined as follows: 
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The authors claim that their method is preferable to Bayes rule in the case of 

conflicting evidence for mutually exclusive classes since it retains the “representation 

of ignorance” implicit in our estimates of the support for each belief. Whilst this holds 
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some sway, when compared to our formulation of Bayes rule it also confuses matters 

in marginal cases and provides the counter-intuitive situation where our belief in a 

complete set of mutually exclusive possibilities does not sum to unity.  

2.8 Conclusions 

In this chapter we have set out the role of probabilistic techniques in 

classification. We have discussed the formulation of Bayes’ rule, which we intend to 

use for our probabilistic framework, in order to yield posterior probabilities that we 

may make decisions on. We then describe various methods of data fusion, focusing 

particularly on score fusion. Having concluded that score fusion has the greatest 

potential for our applications, we expand on the use of mathematical rules for score 

combination; these rules contain the ability to weight these inputs based on classifier 

efficacy. The theoretical optimum for classifier weighting is briefly discussed. 

 

Having set out background techniques we then considered two specific 

improvements to our probabilistic framework which dealt specifically with problems 

we had identified. Firstly we looked at global covariance estimation for homogeneous 

sets of classes in order to overcome a paucity of data. Then we considered the most 

appropriate likelihood model for our framework, settling on the logistic function as 

especially suitable for the two class problem and those applications with high 

dimensional feature vectors. Finally we considered an alternative probabilistic 

framework for combining evidence, Dempster-Shafer theory, and highlighted key 

differences with our framework. 

 

In future chapters we illustrate the use of these techniques in disparate 

application domains and evaluate some of the claims and assumptions that we have 

made in this chapter. 

 

In summary our contributions to knowledge from this chapter are: 

1. The use of global variance estimation for homogeneous sets of classes; 

2. The modelling of class likelihoods by the logistic function; 

3. Formulating the verification problem as a two class problem modelled by intra 

and inter-class logistic functions. 
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Chapter 3  

Biometric Data and Systems 

3.1 Introduction 

This chapter describes a broad range of contributory methodologies, 

technologies and systems for biometric recognition that could be used in the Data 

Information Fusion, Defence Technology Centre 8.11 (DTC 8.11) contract.  Our aim 

in the DTC 8.11 contract, that has formed the basis of much of the work in this 

chapter, was to pioneer a secure access portal to improve building security by 

constructing a system for collecting multimodal biometric data from subjects and 

automatically verifying their identity.  

 

We have built a ‘tunnel’ environment to aquire multiple biometric modalities at 

a distance (at least two metres; such as face and gait, rather than fingerprint or iris). 

The tunnel is a self contained system with automatic calibration, subject enrolment, 

feature capture and extraction, storage and identification. Automation was considered 

important in order to develop a system that could be deployed in a live environment 

and also to reduce the very large human burden in collecting a very large biometric 

database. The focus on biometrics that may be used at a distance is threefold: firstly 

this reduces social factors such as contact with unfamiliar devices that others have 

used; secondly these systems may be used covertly and possibly incorporated into 

existing surveillance systems; and thirdly subject throughput should be improved 

since no interaction with the system is necessary.  
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The increased possibility of occlusion or other failures to acquire accurate data 

when capturing at a distance is a primary concern leading to the preference of 

multiple modalities. By capturing a number of biometric modes we can be more 

confident that we have useable biometric samples to identify a subject and often will 

be able to combine these to improve identification performance in addition to 

reducing failure to acquire rates. In a mass transportation system or other large public 

installation, a multi-modal system also provides us an opportunity to include users 

who would usually be unable to use a conventional unimodal system due to disability 

or cultural sensitivity; since we can select only the appropriate modalities for their use 

whilst maintaining reliability for other users.   

 

An equally important aim for this system was to collect a large scale multimodal 

database for human identification, at a distance and in a controlled environment. 

Collection of a large database of this kind is vital due to the lack of a single source of 

biometric data of this kind. This leads to poor quality evaluation data since many 

studies restrict themselves to small number of samples and subject created from 

amalgam databases where different modalities actually come from different subjects 

captured under differing conditions. This leads to myriad problems in effectively 

evaluating the data, since one cannot assume that orthogonality of data nor covariate 

factors are not artefacts of conflicting experimental protocols between the combined 

databases. Uneven protocols between merged databases also rules out many study 

types such as those of temporal or environmental effects. 

 

This system is the first multimodal biometric system in the world to be based on 

collection of modalities at a distance, there is also contemporaneous work for distance 

modalities based on ‘Iris on the Move’ being performed at Sarnoff Corp [40]. 

 

We begin this chapter by describing the modalities that are targeted by the 

system, we review the background to these modalities and common extraction 

techniques before describing in detail the extraction methods we use. We will then 

describe the collection and verification system we have developed, focusing on the 

following areas: the hardware used to construct the system, the pre-processing stages 

carried out on the captured data, and the storage solutions for the large volume of data 

collected. The collection strategy for our system is explained. We finish the chapter 
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by explaining the testing methodologies we use in the system as well as detailed 

descriptions of specific tests. 

3.2 Modalities 

This section describes the modalities that we chose to use in the tunnel. As 

explained in the introduction, all of these are capable of automatic capture and 

extraction at a distance. For each modality we give a background to the history of the 

modality before discussing the technique or techniques that we have selected.  

3.2.1 Face 

Face recognition from still images is now some 30 years old and a number of 

comprehensive review papers have been written describing various techniques to 

extract feature vectors [41, 42]. Broadly, techniques may be split into feature based 

and holistic techniques, with holistic techniques in the ascendance in recent years. The 

baseline holistic technique for face recognition is the eigenface method proposed by 

Turk and Pentland [43]. This technique, based on Principal Component Analysis, 

transforms an image (of length N
2
, in vector form), Γ, to a new lower dimensional 

vector, Ω. Given a set of M training images Γ1, Γ2, Γ3,…, ΓM, the mean face, Ψ, is 

given by equation 39, and the difference between each training example and the mean 

face is  Φi = Γi – Ψ. 
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Since the calculation of eigenvectors from a N
2
 by N

2
 matrix would be 

computationally impossible for typical image sizes, we use a reduced covariance 

matrix, A
T
A, where, A = [Φ1 Φ2 … ΦM], which is of a more manageable size of M by 

M. We then find the M eigenvectors, vi, of A
T
A. These vectors are linearly combined 

by equation 40 to form the M eigenfaces, ul, which can also be denoted as a matrix  

U = [ u1, u2,… uM]. 
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If we sort the M eigenvectors by their eigenvalues in descending order we may 

choose to only use the largest few vectors or those that account for a specified 

percentage of the variation. This provides a trade off between noise immunity, vector 

size and accurate description of the variation. When using the eigenface technique for 

recognition, it is useful to ignore the first eigenvector (i.e. that with the largest 

eigenvalue) since it typically represents variation in illumination [44]. 

 

A new image, Γ, may then be transformed to the new lower dimensional vector, 

Ω, where Ω = [ω1 ω2… ωM] and ωk is calculated by equation 41. In this case M is 

either the original number of training images or a lower number based on the choices 

set out in the proceeding paragraph. 
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The eigenface technique is by no means the most effective; in comparative tests 

it performs 5-10% worse than the best algorithm [45-47]. However it is well 

understood and useful for forming a baseline test of face recognition. The eigenface 

technique was used in Chapter 2 to test the use of Gaussian models for distribution 

estimation. Other still-image techniques of interest are those with a probabilistic or 

Bayesian element [11-13, 48-50] and some of these methods have informed our 

probabilistic techniques described in Chapter 2. 

 

Pre-processing techniques are also an important factor in face recognition 

systems and tools are available to enable this [51]. Face recognition from video is a 

more recent area, again of particular interest for our work are those using probabilistic 

or Bayesian techniques [52, 53].  

 

Having looked carefully at the eigenface technique with the publicly available 

pre-processing tools we concluded that a more robust method was required for fusion 
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with our other techniques. For this we looked to the Software Development Kit from 

OmniPerception Ltd. which grew out of work at the University of Surrey, UK.  

 

The OmniPerception code is based on client specific Fisher faces [54], which builds 

upon the work of Belhumeur [55] on Linear Discriminant Analysis for face 

recognition. After pre-processing with proprietary algorithms and PCA 

dimensionality reduction as described above, the client specific approach used by 

OmniPerception proceeds as follows: 

 

Cj is the claimed identity of client j and I is the impostor class. Whilst we are 

dealing with the verification problem with a single claimed identity, the impostor 

class is built from the other enrolled users in the system during training. If each client 

has Mj example images projected into PCA space (Ω j1, Ω j2, … Ω jMj) in the training set 

of size M, then the mean for each client Kj is given by equation 42. 
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The impostor mean KI based on client j can then be calculated using equation 

43, where Ψj is the mean vector for that client.  The impostor mean will stay close to 

the origin regardless of the client. 
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The between class scatter, Sj, for the client-impostor case is given by equation 

44. 
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The covariance of the impostor class, YI, given by equation 46 is related to the 

covariance of the client class, Yj, calculated using equation 45. 
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The within class scatter matrix, Σj, is given by equation 47. 
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The only non-zero eigenvector, v, can now be found directly from equation 48. 

 

    jjKv Σ=      (48) 

 

Therefore the overall client specific linear discriminant transformation from pre-

processed image for client j is given by equation 49, and hence is the client specific 

Fisher face, aj, for this identity is the product of the eigenvector found in equation 48 

and the matrix of eigenfaces from equation 40. 
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For a new pre-processed image, z, the similarity decision score, dj, for client j 

may be calculated by projecting it onto the Fisher face for that client and subtracting 

the weighted class mean also projected onto the client Fisher face, this is given by 

equation 50. In the case where the total number of training examples is very much 

larger than the number of client specific example then the second term will tend to 

zero and the similarity score is simply the absolute score of the image projected onto 

the Fisher face. 

 

    j

j

j

ij
MM

M
zad Ψ

−
−=    (50) 



 31 

 

This score is then transformed, again in a proprietary way, to give a well 

distributed output between zero and one; the transformed score may be used directly 

for fusion. 

3.2.2 Gait 

Gait recognition is defined as the identification of a person through the pattern 

produced by walking. This field has produced significant interest over recent years, 

and through this work it has been shown that a subject’s gait pattern is sufficiently 

unique for identification [56]. Gait has particular advantages over other biometrics: it 

can be used at a distance, uses no additional skills on the part of the subject, and may 

be performed without subjects being trained to interact with the system. All of these 

advantages make it particularly valuable in surveillance or security systems.  

 

A recent review of gait recognition techniques has been produced by Nixon et al 

[57]. Recognition methods can be broadly divided into two groups, silhouette based 

techniques and model based techniques. Silhouette based techniques [58, 59] tend to 

offer speed and simplicity, but are only indirectly linked to gait and are difficult to 

normalise for noise or variations caused by covariate factors such as clothing. Model 

based techniques [60-62] use the shape and dynamics of gait to guide the extraction of 

a feature vector. Static and dynamic measurements can be extracted directly whilst the 

constraints of the model ensure that only plausible human shape and motion is 

permitted. The constraints of the model also dramatically reduce the effects of 

variance due to clothing or noise. 

 

Veres et al [63] describes two silhouette based methods based on analysis of a 

sequence comprising one complete gait cycle. After correction for radial distortion, 

background subtraction is performed and a complete binary silhouette for each frame 

is extracted by connected component analysis and morphological operators. The 

silhouettes are then downsampled and normalised for height and location to give a 

common centre of mass. To extract a full signature the silhouettes are combined over 

the whole gait cycle. The average silhouette, Ax,y, is obtained by calculating the point 

average of the whole sequence as per equation 51: 
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Where P(i)x,y is the binary pixel value at point x,y of the i-th silhouette in a gait 

sequence t frames in length. Usually a silhouette of 64x64 pixels is used giving a 

feature vector of length 4,096.  

 

The differential silhouette, Dx,y, is formed by a differencing operation on all 

silhouettes in the sequence to capture motion and again yields a 4,096 dimensional 

vector. This is seen in equation 52. 
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Wagg and Nixon [64, 65] propose a method of model based estimation. The gait 

signature derives from bulk motion and shape characteristics of the subject, 

articulated motion estimation using an adaptive model and motion estimation using 

deformable contours. After extraction of the edge images via the Canny edge detector; 

a motion compensated temporal accumulation algorithm [66] is used to extract the 

bulk motion of the subject in the horizontal plane. This is then filtered using template 

matching, leaving only motion due to the subject. Shape estimation is then performed 

using a more accurate model of the subject’s shape. 

 

Articulated motion is estimated as sinusoidal models of hip, knee, ankle and 

pelvic rotation. These provide a starting point for model adaptation of the subject’s 

limb movements. An adaptive process for joint location is then applied to the 

sequence to form a more accurate and robust model of limb movement. This adaptive 

process is based on an iterative gradient descent model repeated until no changes 

occur over the entire sequence.  Example images for each of these processing stages 

are shown in Figure 3-1. 

 

The processes described in [64] yield 45 parameters based on joint rotation 

models for the hip, knee and ankle (e.g. rotational range and period) and 18 
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parameters describing the subject’s speed, gait frequency and body proportions (e.g. 

torso to leg ratio, stride period, heel to toe strike time). A further 10 parameters are 

extracted from the processes described in [65]. All of these parameters are normalised 

to make them size invariant. More recent experiments have found that for controlled 

environments adding height as another parameter yields an additional improvement 

over the height normalised feature vector, we will explore the options of treating the 

height parameter as an additional measure to be fused in section 3.5.2. 

 

 

 

Figure 3-1 Stages of dynamic gait extraction 

 

In our collection environment described in section 3.3 the pre-processing 

methods used to obtain fronto-parallel silhouettes vary from that described above, 

which are used for our experiments (as seen in Figure 3-2) described in section 3.5.2 

and chapter 4. These differences are due to the capture of three dimensional data and 

the methods are fully described in section 3.3.2. 

 

 

Figure 3-2 Example fronto-parallel image from a gait sequence 
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3.2.3 Ear 

Biometrics based on ears are little explored in the literature, though three 

different techniques of interest appear in a review paper by Pun and Moon [67]. The 

first, proposed by Burge and Burger [68] describes the use of edge data from still 

images of ears. Edge relaxation is used to form curve segments, which are combined 

using a Voronoi neighbourhood graph model; finally an error correcting graph 

matching algorithm performs classification. The second method described in the 

literature is an “eigen-ear” approach [17] almost identical to the eigenface method 

described in section 3.2.1.  

 

The third approach, proposed by Hurley et al. [69], uses a force field functional 

technique where based on the intensity of surrounding pixels and ellipse of test pixels 

are drawn along through a potential energy surface over the ear image until they reach 

potential wells. Though Hurley reports excellent recognition results using the force 

field functional technique, this is achieved by exhaustive template matching rather 

than a feature vector based match process. This significantly complicates the 

incorporation of this method into our probabilistic framework and so has not been 

progressed further at this stage. Hurley also proposes using the location of the 

potential wells as a feature vector, however this produces only a four dimensional 

feature vector and does not yield sufficiently high recognition rates to prove useable. 

 

Because of the difficulties with the force field functional approach, we 

considered the use of a PCA approach for feature vector extraction. The performance 

of PCA dependes strongly on accurate cropping [69]; thus following on our desire to 

have an entirely automated processing chain we sought to devise an accurate and 

timely method for cropping ear images prior to PCA. 

 

Our solution first used the Sobel edge detector to find all edges in an image 

containing an ear. Once an edge detected image has been obtained, we then use a 

Hough transform for ellipses [70] to find the ear. Since an ear in the image will 

usually be of a definable maximum and minimum size and within a small degree of 

rotation from vertical it is possible to severely constrain the search space for the 

Hough transform. This makes operating on high resolution images containing an ear a 
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tractable problem. Once the size and centre of the ellipse has been found the original 

image is cropped at that location. We then downsample the cropped image to a 

common size and perform PCA as described above. Accounting for 75% of the 

variation and removing the largest eigenvector to compensate for lighting variations 

we derive an 119 dimensional feature vector. 

 

 

Figure 3-3 Example image for ear recognition 

3.2.4 Footfall 

There is strong desire to complement the use of video based gait recognition 

with that based on gait cadence or footfall by means of a sensor floor. Indeed the 

historical justification often used for gait recognition is a reference Shakespeare 

makes to gait cadence “Great Juno, comes; I know her by her gait”
1
, which refers to a 

character offstage. A small number of sensor floor systems have been developed 

although few are specifically for identification. A key use of these systems is the 

study of pathological gait by physiologists, such as in the diagnosis of age related 

disease [71]; some commercial companies such as Tekscan (http://www.tekscan.com) 

supply systems for this end. Unfortunately these systems are prohibitively expensive 

for a large surface area and use proprietary interfaces that make adapting their use to 

                                                 

1
 Ceres in The Tempest Act 4 Scene 1 by William Shakespeare 
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recognition problematic. Also with a view to investigating pathological gait Reilly 

and Soames [72] describe a delay line based approach where a delay line lies 

orthogonal to a conductor carrying a pulsed current. Subjects wearing permeable 

shoes step on points where the delay line and conductor cross induce a large current in 

the delay line.  This solution is unsuitable for recognition for two reasons; firstly it is 

unreasonable for subjects to wear special equipment to be identified and secondly the 

authors expressed problems in producing the delay line. 

 

Recognitions systems (or those that may be adapted as such) have been partially 

developed in a research environment. Cattin uses footfall and video is his system [26]; 

this technique uses a sensor floor to measure the ground reaction force across an array 

of twelve pizeo force sensors, one at each corner of three 60cm x 60cm wooden 

plates. The feature vector is comprised of the windowed power spectral density of the 

reaction force in the range 0-20Hz. Orr [73] proposes a system based on load cells to 

measure ground reactive force of a single footstep for identification, ten features are 

extracted from the load profile and used for recognition. The ORL active floor [74] is 

also a load cell system, though this time a single large plate with load cells in the 

corner; using hidden Markov models they were also able to demonstrate recognition 

capability. Whilst each of these methods report reasonable recognition performance, 

we would also like to be able to use the sensor floor to locate the subject within the 

tunnel to aid with video processing. 

 

Non-recognition systems that can inform this aim include the MIT ‘Magic 

Carpet’ developed by Paradiso [75]. In this work, grids of piezoelectric cable 

monitored approximately 60 times per second have been used with 10cm accuracy. 

Whilst suitable for their use of tracking, this lacks sufficient information to be useful 

for recognition. The same group then developed into the z-tile design [76] which uses 

twenty force sensing hexagonal tiles with an accuracy of 40
2
mm. This group also 

examined the use of optical range finders [77] to give 40
2
mm accuracy, but this 

solution lacks the ability to sense the subject’s force profile and hence reduces the 

scope for biometric identification. 

 

In designing our system [4] we wished to have a resolution of 30mm
2
, through 

knowledge of the mechanics of gait we calculated that a minimum sample frequency 
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of 7Hz was required and hence selected a frequency significantly higher than this 

(22Hz). Using a resistive grid, N frames are captured to form a series of binary 

images, In, where n is the frame number. In(x,y) has the value 0 when the switch at 

location (x,y) is open and 1 when closed. From this image sequence we produced 

three footfall metrics. First we obtain the aggregate the aggregate image, A, through 

equation 53. This cannot be used for recognition because it is not position invariant. 

We then sum across A to give a footfall profile, f, as given by equation 54, where Y is 

the number of sensors across the width of the track; again this is not position invariant 

but is related to the force applied by the subject as they walk. 
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From the footfall profile we may then find the heelstrikes, hi, and use these to 

calculate the stride length, LS, via equation 55, where s is the sensor resolution. 
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Similarly we may find the frame at which each heelstrike first occurred and 

calculate the step time, Ts. Our final metric is the average ratio of time spent on the 

heel versus that spent on the toe, RHT, over the M strikes recorded in the sequence. 

The number of frames spent on each is given by f(hi) and f(ti), hence the ratio is given 

by equation 56. 
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3.3 Biometric Data Collection System 

In order to construct the tunnel to capture the modalities described above, a 

number of key elements needed to be completed [3]. Broadly these were: the physical 

hardware to construct the tunnel and sensors to capture the data, the software to 

aggregate the data and perform pre-processing such that the modality extraction 

techniques performed above would work, and the storage system in order that data 

would be automatically labelled and could be easily retrieved for matching or further 

study. Each of these areas is described in detail in this section and includes key design 

decisions and innovations. 

3.3.1 Physical Structure and Hardware 

The structure of the tunnel is constructed of a lightweight aluminium framework 

which allows easy mounting of cameras and backdrops. The floor space within the 

tunnel is 3m x 3m (plus a lead in and lead out area of 1m at either end), with a 70cm 

wide track running down the centre. The walls are constructed with panels of 2m high 

fibre board built on a lightweight aluminium frame. In order to aid the pre-processing 

stages described in section 3.3.2 a pseudorandom non-repeating pattern covers the 

side walls and floor; this consists of adjoining 40cm squares of three colours (blue, 

grey and green, used as standard chromakey colours). The track is coloured green to 

reduce reflection. The tunnel is lit with six standard fluorescent lighting units 

positioned to give even lighting over the entire track. The current tunnel and a 

synthetic rendering of the tunnel can be seen in Figure 3-4. 

 

 

Figure 3-4 Actual and Synthetic Views of the Tunnel 
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The tunnel contains nine firewire video cameras running at 30fps. Eight of these 

have a resolution of 640x480 and are positioned equidistantly around the tunnel to 

capture the subject’s gait, the other camera is a high resolution (1024x768) positioned 

at the end of the tunnel to record the face. All of these cameras are fully synchronised 

across multiple firewire-busses using proprietary synchronisation units 

(http://www.ptgrey.com/). The configuration of the eight gait cameras can be seen in 

Figure 3-5. 

 

 

Figure 3-5 Gait Cameras Configuration 

 

As mentioned in section 3.2.4 our sensor floor was constructed as a resistive 

grid. Basing our 30
2
mm resolution requirement over the complete track we needed 96 

by 16 sensors over the sensor floor. This is achieved by separating a grid of wires by a 

deformable material such as foam; when a force is applied at any point on the grid the 

wires at that point will come into contact, closing the switch. To read this sensor a 

voltage is scanned down the rows, with a voltage applied to a particular row it is read 

off each of the columns in turn. A microcontroller is used to control the scan and to 

transfer the results to a PC for processing. In order to avoid ghosting, where more 

than two paths could have been followed to give the same output, we used two 

techniques: firstly we used four electrically isolated grids with lower resolution so that 

multiple switches on the same grid would not be simultaneously depressed, and 

secondly we used a second offset layer to double resolution without risking ghosting. 

Fuller details may be found in [4]. 

 

Recording, processing, matching and storage of all data are performed on a 

cluster of eight modern PCs. Four of these are used for capture and initial processing 
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of gait images, one is used for the capture and processing of the facial data, one is 

interfaced with the sensor floor and triggering system, one is used as a system 

controller and server, with the final machine having been upgraded to 1.5TB of 

storage for archiving of data. 

 

In order for the tunnel to be fully automated, a simple entry and exit detection 

system has been produced based on break beam sensors. This laser based system is 

controlled and monitored through the parallel port of a PC. In the recording phase of 

this project a barcode scanner is used to allow subjects to identify themselves to the 

system for automatic data labelling.  

3.3.2 Software, Agents and Processing 

A system diagram is given by Figure 3-6; firstly calibration is performed to 

ready the system for data acquisition, and then during data capture various processing 

tasks are performed before storage occurs as described in 3.3.3. Processing tasks are 

divided into two categories, local and global. Local tasks are performed entirely on a 

single computer using only local information, global tasks by contrast use distributed 

processing and disparate data locations. In order to effectively utilise available 

processing time and to effectively manage global tasks, a distributed architecture is 

used, mediated by an agent framework [78].  

 

 

Figure 3-6 System Diagram for the Processing Stages 
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This agent framework has a number of features particularly relevant to imaging 

systems such as the tunnel environment: it is a lightweight framework, allowing the 

majority of CPU time to be utilised for image processing; the framework also permits 

locking to prevent processing from stateful devices being interrupted mid-session. It 

also has multi-language support (presently C++, Java and Python) allowing code 

reuse from previous research work. Agents are capable of automatic discovery of 

middleware components on a TCP/IP network and can query other agents to utilise 

services provided elsewhere. Agents communicate via the router which acts as a 

broker between agents requiring and providing services. In our framework an agent 

can contain one or more remote agents, allowing it to act simultaneously as both a 

client and server. Communication facilitated via the router is in the form of XML 

messaging which is used to control actions of agents and the router as well as set and 

read agents’ input and output ports. For the transfer of large amounts of data, which 

would swamp the router, direct connection between agents can be initiated via 

streamers; streamers are again mediated by the router, though with the data passing 

directly between sockets on the connected agents. Agents are implemented to perform 

each processing task described in this section as well as other administrative, control 

and display tasks. 

 

Calibration must be performed prior to any session of data collection. For 3D 

calibration it is necessary to find a model, K, pose, R, and position, t, for the camera. 

This allows the projection of 3D world space coordinates, X, into 2D image 

coordinates, x, (and vice versa) where:  

 

    [ ]XtRKx |=       (57) 

 

Additionally correction must be made for radial distortion due to curvature of 

the camera lens. The distorted coordinates, xd, are given by equation 58 and are based 

on the lens’ optical centre, xc, the distortion parameters, κi, and the distance from the 

optical centre, r.   
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Once all of the parameters for 3D calibration and radial distortion correction are 

calculated for each camera then the tunnel can be considered calibrated. Our 

calibration technique involves four steps: radial distortion parameterisation, intrinsic 

parameterisation, extrinsic parameterisation and global optimisation. 

 

From an image of the tunnel, Figure 3-7 a), we use a Hough transform [79] on 

the Canny edge detected image, Figure 3-7 b), to find all long curves. By 

straightening these we may calculate the radial distortion terms. In most cases it is 

sufficient to use a single term, κ1, for correction. Using the radially corrected image 

and the same set of lines, we use the vanishing points to calculate the intrinsic 

parameters in a manner similar to Cipolla [80]. Using knowledge of the geometric 

properties of the environment we may then calculate the extrinsic parameters. Finally 

using the spatially unique pattern on the tunnel, optimisation over all cameras may be 

performed by minimising projection errors between the known world points and 

image coordinates. Parameter extraction for single cameras are carried out by local 

agents with only global optimisation carried out remotely, therefore parallelising the 

task and reducing the load on the network. The final active volume projected onto a 

single image is shown in Figure Figure 3-7 c). 

 

 Once a recording has been made of a subject walking through the tunnel, 

background subtraction must be performed on the sequence from each camera 

(including the face camera). Because of we have computed the active volume for each 

camera during calibration, we may reduce the search space for background 

subtraction. To perform the subtraction we use a modified two step process [81]. The 

background is estimated in RGB space using the median image since this is more 

robust to moving objects and illumination variance. Once the background is estimated 

the majority of background pixels are removed by image differencing, then the 

remaining background pixels are removed by a process of shadow suppression. 

Shadow detection is performed by detecting a decrease in saturation in HSV space. 

All of these processes are performed locally on a frame by frame basis, and the 

resulting background subtracted images are sent across the network for further 

processing. 
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Figure 3-7 a) Image From Tunnel b) Edge Detected Image c) Active Volume Projected onto 

Image 

 

Once the background subtracted images have been centrally received a 3D 

reconstruction of the subject must be created for each frame. We use a method termed 

voxel-based shape from silhouette [82] which is a well established technique for 

projecting multiple 2D images into 3D space. Simply this method involves the inverse 

of equation 57, each voxel is projected into each camera’s image space. If this 

projection is within the 2D silhouette for all cameras then the voxel is accepted as a 

true point in the 3D silhouette. Obviously this is a computationally intensive task; we 

reduce the computational load by pre-computing the image coordinates and 

performing a two pass scan, one at low resolution and then another high resolution 

scan within the low resolution bounds. 

 

Face detection is performed subsequently to the background subtraction stage 

on the face camera. The head is found by searching for a step change in the silhouette 

width at the shoulders, the region above this can be assumed to be the head. Further 

checks are then carried out to ensure that the head fits the expected anatomical model 
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and is well centred and of sufficient size for a good template extraction to be 

performed. 

3.3.3 Storage 

Because of the desire to use the biometric tunnel as an ongoing collection 

environment for biometric data there is a need to be able to re-evaluate previously 

collected data in the face of new techniques for pre-processing and feature extraction. 

It is therefore necessary to store all collected data in a lossless manner, together with 

relevant biographical data of the subject. 

 

The data storage requirement per subject record is approximately 70MB for the 

eight gait cameras, another 7MB for the face camera, with an additional 15MB for 

extracted vectors and other information. This brings the total storage per run to around 

100MB. Given a server capacity of 1.5TB we can store some 15,000 records. 

 

To avoid the labelling and search problems encountered with previous databases 

[83] we use an SQL database to store biographical information about the subject and 

to point to relevant recording files and extracted templates. For the first recording of 

each subject, biographical information is entered via a web interface and the subject is 

assigned an anonymous identification number which is printed as a bar code onto a 

record card. For each subsequent recording the subject needs only to scan this record 

card to ensure that their data is correctly labelled. Run identifiers are added to file 

names and the database by the agents as processing stages are completed. This format 

may be easily exported to a flat file or XML format for distribution if necessary. 

3.4 Collection strategy 

Having previously constructed a large gait database [83], and with other large 

biometric databases having been produced [35, 84] we became interested in how 

much data we should collect to make the tunnel data collection statistically 

significant. 
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Veres has produced work giving a novel approach to the calculation of 

necessary database size which we précis here. In a database of n total samples, 

comprising of Ns subjects and ng samples per subject, the error rate per sample for a 

given individual i will be given by equation 59. Zij is a binary value representing a 

recognition error for the j-th sample of the i-th subject. 
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Therefore the total recognition error across the whole database is given by 

equation 60. 
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Assuming that the data is identical and independently distributed the recognition 

errors, Zij, can be described as Bernoulli trials. The total number of errors, s, in n trials 

is distributed according to the binomial distribution: 
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The expected value of the error rate is,
n
sp = with the empirical value of the 

error rate on the data set given by p̂ . With a certain confidence (1-α) we wish the 

expected value of the error rate, p, not to exceed a given value. 
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Where ε(n, α)=βp, hence it is fixed to a given fraction β of p. Therefore the null 

hypothesis is given by: 
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Thus with confidence (1-α) we can state: 
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We are interested in finding the values of n, Ns and ng that fulfil equation 64. 

 

Using the Chernoff bound [85] we can state that the lower bound becomes: 
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Since we stated above that we wish to have ε(n, α)=βp we can then use equation 

65 to find a value of n based on, α, and a fixed fraction, β, of, p. 
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Having obtained a new database achieving an error rate of p̂ using the best 

matcher, we wish to test the statistical significance of this result. Under small values 

of p and assuming a normal distribution, the hypothesis given in equation 63 becomes 

that of equation 67 with αα ln2−=z . 
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Solving for pp ˆ− we pass H0 with confidence (1-α) if we meet the following 

test: 
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We now calculate the number of subjects, Ns, required. We call σ
2
 the inter-

subject error variance, which is estimated by equation 69: 
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Therefore we can obtain with a confidence (1-α) equation 70. 

 

SN
zpp

σ
α=− ˆ     (70) 

 

Thus using equation 63 we can obtain the number of subjects via equation 71, 

noting that σ is largely independent of ng when ng»1/p. 
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The number of samples per subject can be expressed as a function of γ, the ratio 

between inter-subject error variance, σ
2
, and the intra-subject error variance, ω

2
, 

which can be estimated from previous data. Since γ cannot be less than unity by 

definition ( )γγ ˆ,1max≈  and since n’= γn and n’=ngNs then: 
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For collecting a new dataset we wish for the expected error rate p to be no more 

than 1.25 times the error rate of the best matcher with a confidence of 95%; we may 

use the large gait database collected at the University of Southampton [83] and 

successful gait extraction techniques [63, 65] to estimate other necessary values. The 

values needed to calculate the required size of the dataset are shown in Table 3-1. 

Using equations 66, 70 and 72 we may then find the required dataset size for various 

typical expected error rates, these are given in Table 3-2. 
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α 0.05 

β 0.2 

zα 1.65 

p̂  0.0153 

σ
2
 0.0019 

γ 3 

Table 3-1 Values Used to Calculate Dataset Size 

 

p 0.01 0.02 0.03 

n 14975 7490 5000 

Ns 1294 324 144 

ng 35 70 105 

Table 3-2 Values for Number of Samples, Number of Subjects and Number of Samples Per 

Subject for Various Expected Error Rates 

 

When collecting large numbers of samples per subject we must also take care to 

ensure that subjects do not tire during recording sessions, nor allow too much time 

(more than a couple of days) to elapse between recording sessions to ensure that our 

estimates of variance hold [86]. This presents a significant logistical challenge when 

constructing a large database, but previous experience indicates this is possible 

provided a suitable pool of volunteers is available. As mentioned in section 3.3.3 we 

have sufficient storage to accommodate all of the above scenarios. The particular size 

of the database shall be decided at a later stage and will be dependent on the 

performance of the modalities as well as the practicalities of collecting such datasets; 

in any case we will attempt to exceed the numbers given above. 

 

For situations where the size of the population being modelled, N, is of a similar 

size to the sample population, Ns; we use a corrected estimate for the number of 

subjects, Nf. This is given by equation 73 and assumes uniform sampling of the 

population. 
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3.5 Testing 

Having designed our system and chosen the algorithms we wish to use; we must 

have the capability to test whether our system performs as we would wish, and be able 

to compare these results with other techniques. In this section we discuss three topics: 

firstly we explain a number of statistical techniques that we shall use to assess the 

performance of our techniques and compare them with one another; secondly we look 

at the performance of each modality individually; and finally we look at the 

performance of the collection system. Discussion of multimodal performance is left 

until Chapter 4.  

 

In all testing we should be guided by the standard protocols developed for the 

evaluation of biometric algorithms [44, 45, 51]; of particular interest is the recently 

published ISO/IEC 19795-1 [87] which contains detailed recommendations for data 

collection, evaluation types and protocols. Some of our work in defining international 

standards is discussed in Appendix A. 

3.5.1 Statistical tests and measures 

The key metric we use in assessing performance of biometric systems is the 

Equal Error Rate. This is the value of the False Match Rate, when the acceptance 

threshold is adjusted to make the FMR equal to the False Non-Match Rate. This value 

may also be read directly from a Receiver Operator Characteristic curve. 

 

It is also of interest to consider how the various classification and fusion process 

improve the separability of the clients and impostors; this can be measured by 

Daugman’s decidability index [28] and is given by: 
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Where µ1 and µ2 are the mean values of the client and impostor posterior 

probabilities respectively, and σ
2
1 and σ

2
2 are the variances for the client and impostor 

posterior probabilities. The decidability concerns the area of overlap between the two 

distributions; if this area is large, decidability is low. It is obvious that there will be a 

strong relationship between decidability and error rate. By way of comparison the 

decidability index for an experiment with a classification rate of 99.2% on 252 

examples was 3.43 [69]. This is similar to the Fisher ratio but since we are simply 

dealing with a two class verification problem we have chosen not to consider more 

complex additions to this theory. 

 

We also need to consider our ability to evaluate our methods in relationship to 

other techniques. Beveridge et al. [88] provide a comprehensive review of those 

statistics most suited for evaluating biometric systems, especially binomial theory, 

McNemar’s tests and information about bootstrapping and sampling. Used throughout 

this work, McNemar’s test is a sign test, based on those probes where the two 

classifiers fail to agree. The output of this sign test is a p-value describing the 

likelihood of the performance of the two classifiers being identical; when this value is 

below a chosen threshold we may say the difference between the two classifiers is 

statistically significant.  

3.5.2 Modality testing 

In order to asses the performance of our biometric algorithms in advance of 

collecting a large new dataset, we evaluated them on previously collected data which 

approximated the data we would collect. In this section we discuss the performance of 

each modality individually. The performance of all of the modalities can be seen in 

Table 3-3. 

 

In assessing the face recognition algorithm we used a subset of the XM2VTS database 

of frontal face images [89] without any occlusion of the face. Using the inbuilt 

OmniPerception model for face data, together with appropriate eye spacing 

information we allowed the SDK to perform automated face location, feature 

extraction and comparison. We used four images for each of 197 subjects (listed in 
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Appendix B), from these images we cross compared all images of the same subject to 

form a client set of 1182 comparisons (six comparisons per subject excluding self-

comparisons of images). We then compared each subject with six randomly selected 

images not from the same subject; this formed our impostor set of 1182 comparisons. 

We were granted access to reconstructed feature vectors that we could use with our 

probabilistic framework, however because of the way these are constructed these 

vectors perform much more poorly than the direct method described in section 3.2.1. 

Looking at the distribution of match scores from the direct method shown in Figure 

3-8 we see that these still meet our requirements for scale and regularity (that the are 

well distributed across the full range of zero to one) and so may still be used for 

fusion in Chapter 4. 

 

 

Figure 3-8 Distribution of Client and Impostor Scores for the OmniPerception Face 

Recognition Algorithm and Matcher 

 

To assess the performance of our gait algorithms we used the Southampton HiD 

database [83] consisting of 1,079 sequences from 115 subjects walking to the left we 

were able to construct training, gallery, client and impostor sets; these sets were 

converted to the dynamic and both static feature vectors as described in section 3.2.2. 

The training set consisted of 145 sequences of 15 subjects that could be used to 

estimate the intra and inter-class mean and variance; the gallery consisted of single 

sequences from 100 subjects; the client set consisted of 834 sequences each matched 
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to a subject in the gallery set; the impostor set consisted of 834 sequences where the 

sequences were not matched to a subject in the gallery.  

 

For verification we use our probabilistic framework described in Chapter 2, we 

also performed verification using a simple Euclidean distance classifier in order to 

verify the performance improvements expected by using our method. For comparison 

the EER for the dynamic method using a Euclidean distance classifier is 5.7%; using 

the McNemar’s test we can see that the improvement due to our framework is 

statistically significant at the 95% confidence level. More importantly the distribution 

of match scores for the Euclidean distance classifier span five orders of magnitude 

and extremely poorly distributed (making setting a verification threshold extremely 

difficult). By contrast the distribution of match scores based on the probabilistic 

framework are shown in Figure 3-9 and we can see that these clearly fulfil our 

requirements set out in Chapter 2, that they span the full range and are well 

distributed. 

 

 

Figure 3-9 Client and Impostor Distributions for Dynamic and Static Gait Distributions Using 

the Probabilistic Classifer 

 

To evaluate the automated extraction and verification from our ear recognition 

algorithm we again used the XM2VTS database, this time with the left most head 

rotation image. Using four images each of 114 subjects (listed in Appendix B) we 

compile a client set of 684 comparisons and by comparing client images to random 

images selected from clients in the dataset we produce an impostor set of 684 

comparisons. The remainder of the clients are used for training. Again the 

probabilistic framework described in Chapter 2 is employed; the distributions of client 
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and impostor scores are shown in Figure 3-10. There is clearly a concern over both 

the performance of the algorithm and the resultant distribution of client scores, the 

effect of this will be considered in Chapter 4 to influence whether further work is 

expended on this modality. For the moment it is sufficient to note that after manual 

inspection of the extracted ear images, the cropping seems to be the primary difficulty 

in gaining acceptable performance levels. The PCA technique is (as noted in section 

3.2.1) is particularly sensitive to proper centring, masking and rotation; and it 

therefore seems sensible to consider either a better extraction technique or less 

sensitive algorithm. 

 

 

Figure 3-10 Distribution of Client and Impostor Scores for the Ear Modality 

 

Given the novel nature of footfall sensor there did not exist a suitably large 

database for initial evaluation. For this reason we recorded a small initial database of 

fifteen subjects with eight records each. We use five of these subjects for training and 

the remaining ten as test data. As with the other modalities we compare all records of 

a subject with their other records to produced 280 client comparisons, we then 

compare each client record with randomly selected non-client records to produce an 

impostor set of 280 comparisons. Again the probabilistic framework described in 

Chapter 2 is employed and the distribution of scores shown in Figure 3-11. The 

results of the footfall sensor are promising given such a small training population and 

limited feature vector. 
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Modality EER (%) Decidability 

Face 2.9 4.47 

Gait (Dynamic) 5.2 3.40 

Gait (Static 1) 14.2 1.86 

Gait (Static 2) 21.6 1.61 

Ear 35.4 0.87 

Footfall 22.3 1.49 

Table 3-3 Equal Error Rates and Decidability Indices for Modalities Under Test 

 

 

Figure 3-11 Distribution of Client and Impostor Scores for the Footfall Data 

 

As we can see there is a great deal of difference in the performance of the 

various modalities, the effect of this will be fully explored in Chapter 4.  

3.5.3 System testing 

Whilst we have yet to collect sufficient subject data from the tunnel for 

meaningful recognition performance evaluation, we have performed a number of 

systems tests to evaluate the throughput and quality of data we can achieve. Using 

approximately one hundred trials we have obtained the processing times required for a 

single frame of data; these are shown in Table 3-4.  
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Component Time (ms) 

Capture 33 

Background Subtraction 270 

Transmission 12 

Reconstruction 250 

Face Finding 385 

Save Image 60 

Save Voxel Data 1300 

Total 2310 

Table 3-4 Timing of System Components 

 

Given that each sequence is approximately 90 frames, this gives a processing 

time of about 3.46 minutes per run. This gives a throughput of 15 subjects per hour 

which is sufficient to record our data, alternately raw data may be saved directly to 

disk and processed offline whilst the tunnel is not being used (i.e. overnight). There is 

significant scope for more efficiency to be built into the algorithms in order to speed 

this process. 

 

In addition to throughput calculations, we have manually inspected each 

sequence at all stages in order to spot defects. We have also performed small scale 

feature extraction for all modalities in order to verify that the features are of the 

expected format and are useable for subject verification. 

3.6 Conclusions 

In this chapter we have described in detail the algorithms and processes we will 

use for biometric data collection. We have discussed each modality that we intend to 

use in our system, given an overview of that modality and then given a detailed 

description of the algorithm or algorithms that we have chosen to implement. 

 

We then explained the hardware and software decisions we have made in 

constructing our biometric collection system. Particularly we discussed the hardware 
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used, the role of the agent framework in producing a flexible processing system and 

the particular methods for pre-processing in the 3D data environment. 

 

Finally we gave results for biometric algorithms used for subject verification on 

publicly available large databases in order to asses their relative performance and 

suitability for data collection and the multimodal biometric assessments that will be 

performed in Chapter 4. We have concerns over the robustness of the ear finding 

algorithm which appear to be causing significant degradation of expected 

performance for ear recognition. In a similar manner the performance of the footfall 

sensor is not as impressive as had been hoped; this is likely due to the simplicity of 

the features extracted thus far, and the scarcity of training data. We recommend that 

these modalities are recorded and stored when the tunnel is used for collection, but 

further work is invested into producing robust algorithms that are capable of 

comparable performance to other biometric modalities. 

 

In the next chapter we discuss how these modalities may be used in multimodal 

biometrics to provide greater performance than the individual modalities. Particularly 

we look at the effect of weighting and classifier correlation, and consider how we may 

predict the benefit of fusion given the performance of the individual modalities. 

 

In summary the key contributions to knowledge from this chapter are: 

1. The demonstration of a real improvement in both equal error rate and score 

distribution by the use of our probabilistic framework; 

2. The development of an automated system for the collection and processing of 

multimodal biometric data; 

3. The examination of the use of footfall data as a viable modality for biometric 

verification. 

 



 57 

Chapter 4  

Multimodal Biometrics 

4.1 Introduction 

There are applications for biometric systems that require greater performance 

than can be achieved by a single modality system. This may be in terms of error rate, 

system accessibility, throughput, circumvention protection and others [90]. These 

various system requirements present a complex trade-off between single and multiple 

modality systems. Whilst we touch on some of these benefits and trade-offs in this 

thesis we focus primarily on the improvement in error rate that may be achieved using 

multimodal biometric systems.  

 

As discussed in Chapter 2, we feel that score fusion is the most effective method 

of biometric fusion both in terms of performance benefit and user understanding. This 

chapter focuses on evaluating score fusion as a tool for making biometric systems 

more suitable for deployment in secure environments where a single biometric offers 

insufficient performance. It is then necessary to determine under what circumstances 

score fusion may be used to deliver a performance benefit and how best to bias the 

fusion process to achieve the optimal performance. 

 

In this chapter we first examine the simple case of whether score fusion based 

on our probabilistic framework is an effective method for improvement of 

performance. We then build on this to examine whether the use of multimodal 

biometrics is an effective tool when the performance of the modalities are 



 58 

imbalanced. In using the weighted fusion schemes described in Chapter 2, we stated 

that “Equation 16 describes the optimal weights, wi, as stated in [25] where Ei is the 

error in addition to the Bayes error from classifier i.” in this chapter we will seek to 

explore whether this is indeed the optimal weight when approximated by the Equal 

Error Rate; we expand this to examine the role correlation may have on performance 

and optimal weighting. Finally in this chapter we shall consider the how we may 

predetermine any performance improvement we may see and provide a quantitative 

assessment of when score fusion is of benefit.  

 

Whilst wherever possible fusion is carried out on identical datasets (i.e. face and 

ear from XM2VTS [89] or multiple gait modalities from the Southampton Large 

Database [83]), due to the paucity of data as yet collected from our biometric tunnel 

described in Chapter 3 this has not always been possible. Where multiple datasets are 

needed in order to be able to examine combinations of multiple modalities, we have 

ensured that the same numbers of records per subject are used and these are ‘matched’ 

to create synthetic subjects based on single similar subjects in each database. This 

avoids most complications due to mixed subjects, though does not allow us to 

evaluate as entirely as we might like the effect of correlation or lack thereof between 

modalities. The problems arising from creating synthetic subjects are one of our prime 

motivations for starting to create a multimodal database as described in Chapter 3. We 

discuss the possible effects of synthetic subjects in our conclusion during Chapter 6.  

 

For the reader’s convenience when comparing performance of our multimodal 

experiments with the base performance, the performance of individual modalities is 

repeated here as Table 3-3. 

 

Modality EER (%) Decidability 

Face 2.9 4.47 

Gait (Dynamic) 5.2 3.40 

Gait (Static 1) 14.2 1.86 

Gait (Static 2) 21.6 1.61 

Ear 35.4 0.87 

Footfall 22.3 1.49 

Table 4-1 Equal Error Rates and Decidability Indices for Modalities Under Test (Repeated) 
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4.2 Fusion of face and gait 

Our first task in evaluating the fusion of biometrics within a probabilistic 

framework was to evaluate the use of score fusion in combining two similarly 

performing modalities. In this case we chose to combine face and dynamic gait, using 

684 impostor and 684 client comparisons derived from 114 synthetic subjects created 

in an amalgam of features from a subset of the XM2VTS and the Southampton Large 

databases. 

 

We evaluated the performance of the fused modalities using the weighted and 

unweighted product and sum rules; we discard the other fusion rules discussed in 

Chapter 2 since they do not have the ability to be easily weighted. The weights were 

calculated by the using equation 16 and the Equal Error Rates measured in Chapter 3. 

The EER and decidability index for each modality is shown in Table 4-2, with the 

Receiver Operator Characteristic curve shown in Figure 4-1. 

 

Fusion Method EER (%) Decidability 

Static Product 0.8% 5.66 

Static Sum 0.8% 5.60 

Weighted Product 0.9% 5.41 

Weighted Sum 0.7% 5.43 

Table 4-2 Equal Error Rates and Decidability Indices for Fusion of Face and Dynamic Gait 

Scores 

 

The improvement in EER seen over the best performing modality (Face, 2.9%) 

is statistically significant at the 5% level using McNemar’s test. There is no 

significant difference between EER for the various combination schemes. Whilst 

there is some variability in the decidability indices, where a higher value indicates 

greater noise immunity, such small differences are unlikely to prove significant. 

 

Having seen that we can see a significant improvement in performance by 

combining highly accurate sensors with static and weighted fusion rules in a 

probabilistic framework, we need to consider whether there is benefit to be seen from 

using weighted fusion with less accurate sensors. 
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Figure 4-1 Receiver Operator Characteristic Curve for Face and Dynamic Gait Fusion 

4.3 Combination of imbalanced classifiers 

Having assessed the case of balanced highly accurate classifiers, we now seek to 

evaluate the assertion made by Daugman [28] that in the case of imbalanced 

classifiers the error rate of the weaker classifier “must be smaller than twice the cross-

over [equal error] rate of the stronger test”. For this examination we use the three 

gait modalities described in Chapter 3; we use these modalities since they are 

imbalanced modalities under Daugman’s definition.  

 

In order to understand the effect of weighted and unweighted fusion on 

imbalanced modalities we combine the best performing modality (Dynamic Gait, 

5.2%) with each static modality in turn and then with both static modalities together. 

We determine the weights using equation 16 and the EERs determined in Chapter 3. 

As in section 4.2 we use 684 client and 684 impostor comparisons which are a subset 

of sequences from the Southampton Large database. 

 

As can be seen from Table 4-3 the performance of fusion of highly imbalanced 

modalities is somewhat confused, with some fusion methods reducing the 

performance in certain situations. What is clear is that as the imbalance grows, or 

becomes more complex, the greatest benefit can then be achieved through weighting 
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the fusion schemes. The improvement seen in using weighted fusion is statistically 

significant at the 5% level for both the Dynamic & Static 2 combination and the 

Dynamic & Static 1 & 2 combination.  Whilst these improvements seem small, we 

must remember that we are dealing with already effective classifiers and a reasonably 

large number of tests; hence this improvement is unlikely to have come from feature 

space noise. 

 

 Static Product Static Sum Weighted 

Product 

Weighted Sum 

Combination EER d’ EER d’ EER d’ EER d’ 

Dynamic &  

Static 1 

4.2 3.65 4.0 3.67 4.1 3.64 3.7 3.67 

Dynamic &  

Static 2 

6.0 3.17 6.2 3.15 4.7 3.54 4.7 3.54 

Dynamic &  

Static 1 & 2 

4.2 3.44 4.3 3.44 3.6 3.74 3.4 3.76 

Table 4-3 Equal Error Rates and Decidability Indices for Combination of All Gait Modalities 

 

This shows that the claim Daugman makes in reference to imbalanced 

classifiers does not hold when examining imbalanced modalities in a weighted 

probabilistic fusion scenario. It is likely that this claim is invalid for our experiments 

due to the increased flexibility of the score fusion methods we are using. We can also 

see proof of our claim in Chapter 3 that decidability is obviously closely linked with 

the error rate. From our measurements in Table 4-3 we may calculate the correlation 

between the decidability and EER as -0.94 which is strongly inversely correlated. This 

is intuitive since greater class separation gives greater noise immunity to the system. 

 

From this experiment we can draw the clear conclusion that when fusing 

imbalanced classifiers it is beneficial to use our weighted probabilistic framework. 

We now need to determine what the optimal settings for these weights are, and 

whether they can be determined easily in advance. 

4.4 Optimal weighting 

Having shown that there is a clear benefit to using weighted combinations of 

modalities during score fusion of imbalanced classifiers, we now consider what the 



 62 

optimal weighting scheme is for classifiers combined using the weighted sum rule. 

We have chosen to illustrate the weighting calculations with this rule because it 

performed marginally better in the previous experiment, however our tests have 

shown that very similar outcomes are observed using the Weighted Product rule, with 

very marginally higher observed EERs. 

 

In order to asses the effect of weighting on performance we cross combined 

each modality in our test set creating ten separate fusion experiments. As with the 

experiments above we created 114 synthetic subjects that became 684 client and 684 

impostor comparisons. Match scores were generated using the methods described in 

Chapter 3 and our probabilistic framework discussed in Chapter 2. 

 

Using the weighted sum rule, we heuristically found the lowest EER, associated 

decidability index and the weighting of the strongest modality that would achieve that 

performance. We also found the EER and decidability at the weighing calculated 

using equation 16 and the EERs found in Chapter 3. These results are shown in Table 

4-4. For comparison the weighting if the decidability indices were used is also shown; 

this is calculated using equation 75. In both cases this data is found from a training set 

and the tested on a separate set of subject features. 
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Considering the results in Table 4-4 it is clear that whilst the weights calculated 

using equation 16 are often of similar performance to the optimal weight, there is 

some difference between the two. There are insufficient results to determine if these 

are statistically significant, however we can make some observations. Firstly we 

should note that (unsurprisingly) the performance of the static sum rule is better than 

using the calculated weight in the four cases where the optimal weight is close to 0.5. 

We also note that in the cases where the calculated weight performs better than the 

static rule the advantage gained is twice that of the converse situation. 
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It would appear that in the majority of cases the optimal weight biases the 

fusion in favour of the least accurate modality, this result can be partially achieved 

through the use of the decidability index for weighting as shown in equation 74. This 

would increase the advantage over the static rule by a further 10% whilst still 

retaining the principled method of pre-calculating weights, we return to the 

consideration of the decidability index in section 4.6. 

 

Combination 

EER 

(Opt) 

d' 

(Opt) 

Weight 

(Opt) 

EER 

(Calc) 

d' 

(Calc) 

Weight 

(Calc) 

Weight 

(d') 

Face &  

Gait (Dynamic) 0.7 5.46 0.64 0.7 5.44 0.64 0.56 

Face &  

Gait (Static 1) 1.5 4.80 0.50 2.2 4.64 0.83 0.70 

Face &  

Gait (Static 2) 1.7 4.72 0.63 2.3 4.63 0.88 0.73 

Face & 

Ear 2.4 4.31 0.53 2.7 4.50 0.92 0.83 

Gait (Dynamic) 

& Gait (Static 1) 3.6 3.71 0.57 3.9 3.67 0.72 0.64 

Gait (Dynamic) 

& Gait (Static 2) 4.3 3.52 0.73 4.7 3.54 0.80 0.67 

Gait (Dynamic) 

& Ear 4.3 3.48 0.67 4.8 3.48 0.86 0.79 

Gait (Static 1) & 

Gait (Static 2) 10.6 2.3 0.70 11.3 2.29 0.60 0.53 

Gait (Static 1) & 

Ear 11.8 2.03 0.75 12.3 2.03 0.71 0.68 

Gait (Static 2) & 

Ear 18.8 1.8 0.53 18.9 1.8 0.62 0.64 

Table 4-4 Equal Error Rates and Decidability Indices for Optimal and Calculated Weights 

4.5 Classifier Correlation 

We also wish to consider how the correlation of additional modalities affects the 

performance of the fused modalities. We calculate the correlation using the 

methodology described in [91]. The correlation ρnc is given by: 
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Where n is the number of classifiers under test, N is the total number of 

sequences (1,368), NC
f
 is the number of sequences where all classifiers have an 

incorrect output at threshold C, and NC
t
 is the number of sequences where all 

classifiers have a correct output at a threshold C. The paper proposes adding 

additional modalities in descending order of accuracy, calculating the correlation each 

time; only if the correlation is reduced is it acceptable to add this modality. 

 

We chose to sequentially fuse each modality and at each point calculate optimal 

performance and the correlation. We also highlight the optimal and calculated 

weights. The results of the fusion of the 684 client and 684 impostor match scores for 

each modality are shown in Table 4-5. 

 

We can see from Table 4-5 that the proposal in [91] of only adding modalities 

that reduce the correlation is borne out. Other smaller initial experiments performed 

fusing the less accurate modalities also anecdotally support these results. What is 

notable again is that the optimal weights for the fusion strongly bias the fusion 

towards the weaker classifier. Unfortunately there is not sufficient data to 

methodically examine the interrelation between the correlation of modalities and the 

optimal weighting. 

 

Combination EER % d' Correlation 

Optimal 

Weight 

Calculated 

Weight 

Face & Gait (Dyn) 0.7 5.46 0.047 0.63 0.64 

& Gait (Stat 1) 0.4 5.48 0.011 0.55 0.88 

& Gait (Stat 2) 0.4 5.49 0.024 0.99 0.92 

& Ear 0.2 5.30 0.003 0.73 0.95 

Table 4-5 Equal Error Rates, Decidability Indices and Weightings for the Correlation 

Experiment 

4.6 Prediction of performance 

It is useful in a fusion environment to be able to a priori predict the performance 

of the fused system. We feel that this is most achievable by predicting the decidability 

index. The reason for targeting the decidability index is twofold; firstly we are 

convinced by experiments above that it is a good analogue for the Equal Error Rate, 
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secondly as we shall see below, it is trivial to predict the decidability index given 

good measures or estimates of the class distributions. Whilst the EER should also 

succumb to similar analysis, efforts thus far have been disappointing; this has 

generally been due to the tails of the distributions being not quite Gaussian. 

 

Given the decidability index, equation 74, is predicated on the client and 

impostor match scores we can substitute for the means and variances as follows: 
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where l = C|I. 

 

Hence we can find the decidability index based upon the weighted fusion of the 

two modalities. This also provides a possible solution to our discussion on optimal 

weighting in section 4.4, since it is very simple to find the maximum decidability 

index for given client and impostor distributions across the range of possible weights. 

We can then choose the weight that provides the maximum decidability index as the 

optimal weight for fusion. 

 

To test the accuracy of the prediction of the decidability index and the 

suitability of this for providing optimal fusion weights, we repeated the experiment 

described in section 4.4; however this time we predicted the maximum decidability 

index and used this to weight our fusion. The results of this experiment together with 

a reminder of the value of the optimal EER based on heuristic methods are shown in 

Table 4-6. 

 

As can be seen there is no significant difference between the optimal and 

decidability weighted performance metrics. This method would be especially useful, 

and more efficient, if we could predict the client and impostor means and variances 
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for each modality directly from the probabilistic framework rather than having to 

produce an example set of match scores. This step is an area of ongoing research.  

 

Combination EER % 

d’ 

(Measured) 

d’ 

(Predicted) Weight 

EER % 

(Optimal) 

Face & 

Gait (Dynamic) 0.8 5.60 5.61 0.5 0.7 

Face & 

Gait (Static 1) 1.5 4.82 4.83 0.57 1.5 

Face & 

Gait (Static 2) 1.8 4.76 4.74 0.71 1.7 

Face & 

Ear 2.7 4.54 4.55 0.76 2.4 

Gait (Dynamic) 

& Gait (Static 1) 3.7 3.71 3.87 0.56 3.6 

Gait (Dynamic) 

& Gait (Static 2) 4.3 3.51 3.76 0.71 4.3 

Gait (Dynamic) 

& Ear 4.4 3.51 3.51 0.76 4.3 

Gait (Static 1) 

& Gait (Static 2) 10.8 2.31 2.45 0.66 10.6 

Gait (Static 1) 

& Ear 12.3 2.03 2.05 0.71 11.8 

Gait (Static 2) 

& Ear 18.9 1.80 1.83 0.56 18.8 

Table 4-6 Equal Error Rates and Decidability Indices for Weights Determined by Predicted 

Decidability 

4.7 Conclusions 

This chapter has examined the role of score fusion in multimodal biometrics. 

We have looked at two cases to prove the value of fusion: the case of balanced 

modalities to illustrate that highly performing classifiers benefit from fusion; and the 

case of highly imbalanced classifiers to show that weighting is necessary to achieve 

continued improvements. Having shown the value of weighted fusion we then 

continued to consider the optimal weighting using the sum rule. We showed that the 

proposal illustrated by equation 16 is not optimal but is on balance preferable to static 

fusion.  

 

We then discussed the effect of correlation on fusion of modalities. We found 

that as expected, the reduction in correlation was a good indicator of performance 
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improvement. We note that there should be some attempt at examining the 

interrelation between correlation and optimal weighting with a larger collection of 

subjects and modalities.  

 

Finally in this chapter we have discussed the prediction of performance for 

fused modalities. We tackle the prediction of decidability index since this is a more 

tractable problem. We show that the prediction from pre-calculated class means and 

variances is simple and accurate. Further we demonstrate how we may pre-compute 

optimal weights for fusion by maximising the predicted decidability. 

 

In summary the key contributions to knowledge from this chapter are: 

1. Demonstration of performance improvements using weighted fusion on highly 

imbalanced classifiers; 

2. Indication that the optimal weights are not given by equation 16 as stated in 

[25]; 

3. Examination of the effect of modality correlation on biometric fusion, and the 

conclusion that reduction in correlation is a good indicator of improvement in 

performance; 

4. Demonstration that the decidability index after fusion may be accurately be 

predicted, and further more that calculating the maximal decidability provides 

an optimal weighing scheme. 
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Chapter 5  

Ophthalmic Lens Inspection 

5.1 Introduction 

As part of the Engineering Doctorate’s focus on industrially relevant research 

outcomes, we sought to expand the use of our probabilistic methods to other areas of 

interest to commercial organisations. In the work in this chapter we apply modern 

computing vision techniques to a computer vision application domain that has not as 

yet benefited from such improvements; we more importantly examine the use of our 

probabilistic method in an N class classification problem, showing applicability to 

another novel domain. 

 

Industrial inspection is a vital part of the manufacturing process, especially in 

safety critical products such as medical devices. We have implemented a novel 

system for the inspection of ophthalmic contact lenses in a time constrained 

production line environment. Ophthalmic contact lenses are formed by injecting a 

monomer into a single use hard plastic mould which has been formed to give the 

required lens curvature. Once the monomer had been cured in an oven, a 

manufacturing machine breaks open the moulds and separates the lens from the mould 

base. It is then transferred to an individual window for inspection before packaging, 

as shown in Figure 5-1. 

 

Due to the mechanical nature of the removal from the mould, together with 

occasional defects in the moulding process, lenses are prone to a number of 
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manufacturing defects. These include: bubbles within the monomer, splits or chips in 

the lens due to poor forming or damage in removal from the mould, attached 

monomer or rough edge due to poor removal from the mould, and contamination with 

particles of dust or debris. Since ophthalmic contact lenses are medical devices, the 

size and number of these defects must be strictly monitored and controlled. These 

inspection standards are laid down by government regulators and vary depending on 

the type and envisaged longevity of the lens. 

 

We seek to produce a system that will perform automated inspection of 

ophthalmic contact lenses in a manufacturing environment. It is required to perform 

this inspection task at the accuracy level of a trained human operator whilst 

maintaining production line speeds. There have been a number of partial contact lens 

inspection or characterisation systems described in the literature [92-94], as well as 

fault detection systems for other lens types [95]. However none of the systems 

described in the literature report the accurate fault detection and performance required 

for this system. Additionally we could find no published ophthalmic inspection 

systems using probabilistic classification techniques or complex image processing 

methods. 

 

 

Figure 5-1 An Example Lens Image From the Inspection System 

 

This chapter firstly provides an overview of the developed system including its 

interaction with the manufacturing equipment and human operators. This high level 
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overview describes both the inspection system and allied control and monitoring 

software. We then describe in detail the methods used for processing the lens image, 

extracting relevant feature metrics, classifying fault types and comparing these 

classified features with the customer’s inspection standards. Finally the testing regime 

that has been implemented is discussed both with reference to the accuracy of the 

algorithms and the performance of the system as a whole. 

5.2 System overview 

The system is divided into two distinct processes designed to be run on separate 

machines. This allows monitoring and reporting to be separated from inspection; 

enabling remote working and multiple inspections to be running in parallel. The 

image processor contains modules to perform the full range of inspection activity and 

a separate process is instigated for each camera. On a single manufacturing line it is 

anticipated that there will be multiple cameras (and hence image processors) 

inspecting lenses in parallel. Provided there is sufficient processing power it is not 

necessary that this translates into a one image processor per CPU requirement; this 

decision would be taken after fully considering both the desired performance of the 

software and the hardware specification of the servers available. These multiple image 

processors are designed to be under the control of a single workstation process, run on 

a separate machine. The workstation process is responsible for set-up, display and 

reporting for the system.  This workstation connects to the image processors remotely 

via TCP/IP and hence those deploying or monitoring the system do not need to be co-

located with the manufacturing line. 

 

This chapter focuses primarily on the function of the image processor software; 

however we believe it is useful for the reader to understand the operation of the full 

system and its interaction with the wider manufacturing environment. A system 

diagram for our working prototype system is shown in Figure 5-2. 
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Figure 5-2 System Diagram for Inspection System 

 

Before a new ‘batch’ of lenses is to be inspected, the user must initialise the 

system. This involves firstly choosing which process modules are to be used, 

adjusting the settings for each module, loading stored initialisation files and creating 

the inspection standards for the lenses to be compared against. In the first instance 

these setups will be created by a supervisor and on subsequent runs the operator will 

simply select the appropriate setup for the type of lens on the manufacturing line.  

 

Once the system has been set up it may begin inspecting lenses. On the 

manufacturing line, once the lenses have been removed from their moulds but prior to 

being placed into packaging, they pass below high resolution grey-scale cameras 

where an image of the lens is captured for inspection. The timing of this process is 

synchronised with the production process and is controlled by a Commercial Off The 

Shelf (COTS) process control device. This device tells the servers when a lens is 

under the camera and ready to be inspected, triggering the image processor to acquire 

the image and begin inspection. Whilst the image processor is inspecting the acquired 

image the process controller monitors the elapsed inspection time to avoid schedule 

overrun, should an overrun occur a signal is sent to abort the inspection of that image 

and reject the lens (in these cases the image would be queued for an offline inspection 

to diagnose the system fault that may have occurred). In the typical case where 

inspection is successfully completed within the stipulated time, the process controller 

is informed of the pass/fail decision and the lens is either transferred to packaging or 

rejected as appropriate. The pass/fail decision as well as relevant statistics (feature 

counts and sizes etc) are passed via XML to the workstation for collation and 

reporting. A flow diagram of the system is shown in Figure 5-3. 
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Figure 5-3 Flow Diagram of Inspection System 

 

After a run is completed, the operator can use the workstation to review the fault 

profile for that run and may reprocess any images that timed out in order to diagnose 

the system fault that caused this. During the run the workstation can be used to 

monitor the current and historic yield and identify recurring faults that may be 

indicative of a systemic manufacturing problem. 

5.3 Modules 

In order to maximise future flexibility the image processor is divided into 

separate modules. Each module typically implements one task or algorithm with a 

well defined set of inputs and outputs. This design methodology allows new 

techniques or additional functionality to be quickly added to the system. Each of the 

modules developed for the current system are described in this section. 

5.3.1 Image and lens pre-processing 

This module comprises of a number of algorithms which must be performed 

immediately after image acquisition to make the lens image ready for feature 

detection and further processing. Before processing of the lens occurs a check is made 

on the image at a number of points where clear background is expected to be visible. 

The mean intensity and standard deviation for each patch is calculated and compared 

to standard values. If these patches diverge from expected values then this highlights 

either an obstructed view (i.e. debris on the window) or a failing illumination source 

or camera. Should more than one patch fail this check then the processing line is 

halted and the operator is warned of this problem. 
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The initial processing step is calculating the centre of the lens. This is achieved 

by detecting the edge transition at spaced points around the lens. Once a number of 

points have been found then the centre may be converged upon in an iterative process 

using simple trigonometry. If no centre can be reliably found the software concludes 

that the lens is either not present or is suffering from some gross defect; in either case 

the steps described in below and in sections 5.3.2 through 5.3.6 are not performed and 

instead the algorithm described in section 5.3.7 is invoked. 

 

Having detected an accurate centre for the lens it is now necessary to fit 

appropriate ellipse parameters to describe the edge. Initially we considered using an 

active contour approach [96], however this proved overly complex for the regular 

shape of the lens. Direct fitting [97] and Constrained Hough Transforms [98, 99] were 

also judged computationally inefficient. The method found to be both sufficiently 

accurate and efficient was the Randomised Hough Transform which has been 

variously described [100, 101]. Since the normal size and shape of the lens will be 

known for any given batch of lenses and given that the centre has already been 

accurately calculated, it is possible to strongly constrain the RHT to converge on 

accurate parameters very rapidly. 

 

 

Figure 5-4 Intensity Profile for a Lens Edge 

 

Once the centre and ellipse parameters have been accurately estimated, the real 

outer and inner edges of the lens are extracted. This is achieved by finding the 

transition from the darker edge to the lighter inner lens (the inner edge) and from the 
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darker edge to the much lighter background (the outer edge); a likely edge intensity 

profile can be seen in Figure 5-4. 

5.3.2 Surface feature detection 

The system defines the surface area as a circular region covering the centre 90% 

of the lens. It is in this region that surface features are searched for, the special case 

where a feature extends between the surface and edge region is dealt with as part of 

section 5.3.3. 

 

To find surface features of interest, a modified Canny operator [102] with a 5x5 

window is run over the entire surface region. In order to prevent small gaps creating 

multiple features out of a single poorly defined feature, the hysteresis thresholding 

stage is allowed to consider pixels in a 5x5 neighbourhood rather than simply 

adjoining pixels. The Canny operator produces a binary image of feature points that 

may be of interest. 

 

 

Figure 5-5 Bubble in Monomer Before and After Extraction 

 

Once the Canny operator has been used; spatially separate features are extracted 

for feature description. Starting with the uppermost pixel in the surface region we 

scan left to right working progressively downwards until we find a pixel that has been 

marked by the Canny operator as a feature pixel. This then becomes a seed point for a 

new feature. Any feature points within a 5x5 neighbourhood of this pixel are also 

added as seed points for the feature and their neighbourhood is examined. This 

neighbourhood search continues iteratively until no neighbouring pixels remain. The 
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scan for feature pixels then continues until a new feature pixel is found and the 

extraction of neighbours is repeated to yield another feature. This is repeated until all 

surface features have been extracted into separate array lists containing the pixel 

locations. An example of a found feature (bubble in the monomer) before and after 

processing, as described in this section and in section 5.3.4, can be seen in Figure 5-5. 

5.3.3 Edge feature extraction 

The edge region of the lens is defined as an annulus covering the outer 10% of 

the lens and for our purposes we also consider a small region outside of the outer edge 

to search for debris attached to the lens edge. 

 

Using the extracted ellipse parameters we ‘unwrap’ the annulus to form a 

rectangular image. This is achieved by mapping the ellipse points onto the midline of 

a rectangular image and work (radially) outwards and inwards from this line to 

translate the remainder of the edge region. Pixels with insufficient resolution to be 

uniquely translated are interpolated from neighbouring pixels. Having formed the 

unwrapped image we then perform checks along the outer and inner edge to find 

small edge faults. These tests look for trends in the spacing between the outer and 

inner edges, absolute deviation of the edge from the fitted ellipse and variations in 

intensity within the region bordered by the outer and inner edges. For illustration 

Figure 5-6(a) shows an edge fault in the original image and Figure 5-6(b) shows the 

same edge fault after extraction in the unwrapped edge image. 

 

 

 

Figure 5-6 Edge Fault (a) Before Extraction (b) After Extraction 
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Rule based heuristic checks for faults are performed; subsequently features in 

the edge band are extracted in the same manner as described in section 5.3.2 with one 

important exception. If a feature extends into the surface the edge feature extractor 

searches the interface region for connecting features and merges these into one, this is 

done in an iterative manner to ensure that large features are fully connected rather 

than appearing as several smaller features.  

5.3.4 Feature description 

Once we have a set of features, all stored as ordered array lists of pixels we 

process each feature to extract mathematical descriptors for classification.  

 

We first extract the perimeter of the feature (i.e. identify those pixels that fully 

enclose the feature). We achieve this by starting with the upper left pixel of the 

feature and progressing in a clockwise direction to find the next neighbouring pixel. 

By structuring our neighbour search in a clockwise direction we can guarantee that we 

always find the outermost neighbouring pixel. 

 

Having extracted the perimeter of the feature we then fill it for use in further 

mathematical descriptors. The fill is performed by working clockwise and filling 

between the perimeter in either an upwards or downward direction as appropriate. 

Checks are made to ensure the perimeter is not a single line at this point to ensure that 

the fill does not escape the feature perimeter. 

 

Given two collections of pixels, one representing the perimeter and another 

representing the filled feature we can then extract mathematical measures of the shape 

for classification. We firstly calculate gross shape measures: perimeter length (P), 

area (A), maximum chord (Rmax), minimum chord (Rmin), dispersion (IR) and 

compactness (C) [103]. Where: 

 

min

max

R

R
IR =       (79) 

 



 77 

2

4

P

A
C

π
=      (80) 

 

Perimeter and area are simply the size of the relevant array lists, with the 

maximum and minimum chords quickly determined by simple geometric operations. 

Compactness (80) is a measure of the perimeter relative to the area and dispersion 

(79) is the ratio of the largest circle enclosed by the feature to the smallest circle 

enclosing the feature. 

 

More complex measures are produced by calculating the first four rotation 

invariant moments (M1-M4) [104] given by equations 81-84, with ηpq is given by 

equation 85. These moments are invariant to position, size and rotation. 
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In equation 86, Pxy is a binary value denoting the presence of a feature pixel at 

position x,y with x and y being the centre of mass of the feature on the respective axes. 

 

We also extract information about the grey-scale intensity of the feature; mean 

intensity and standard deviation. Additionally features in the edge region have 
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Boolean information appended to describe their position in the region and whether 

they extend outside of the lens or into the surface region. 

5.3.5 Feature classification 

Once we have extracted mathematical information to describe our feature we 

then must classify which fault type the feature most closely resembles. To simplify 

this we split the features into three types based on their location within the lens: 

surface feature, edge feature, and surface features in edge band. We do this in order to 

remove implausible classification possibilities from the set of outcomes and because 

the surface and edge features have different feature vectors due to additional Boolean 

tests on the edge. The list of fault types is shown in Table 5-1. 

 

Edge Faults Surface Faults Non-Fault 

Particle Surface Split Particle in Saline 

Hole Particle  

Flash Hole  

Rough Edge Blemish  

Edge Chip Scratch  

Edge Particle Distorted  

Edge Split   

Blemish   

Scratch   

Distorted   

Thick or Thin   

Table 5-1 Fault Types for Edge and Surface Classification 

 

The two groups of surface features are classified using the probabilistic 

framework described in Chapter 2. This is modified to perform a classification task 

rather than a verification task as described in the previous chapters. Given a feature 

vector of a suspected fault, d, we model the likelihood for each class, P(d | Ci), using 

the logistic function given by equation 87. 
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Once all class likelihoods have been calculated we then combine these 

likelihoods using equation 88 to yield posterior probabilities for each class. It would 

be possible to include prior probabilities in equation 88 to take into account the 

frequency of observed faults, though we have not done so in our prototype system. 
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The fault classification is then determined by equation 89. 
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This classification system provides a probabilistic method for determining fault 

types and indicating to the system the confidence in the decision. The probabilistic 

outputs can be used to identify uncertain classifications which may require manual 

intervention or increased training. 

 

The edge classifier is implemented as a C4.5 decision tree [105] trained to 

identify those faults that may be found in the edge region and other non-fault artefacts 

that may also be detected. A different implementation to the surface classifier was 

used due to the Boolean values in the edge feature vectors, making a Bayesian 

classifier unsuitable. The classifier is implemented as a java bean from Neuscience’s 

NeuJDesk range, and is trained offline using hand labelled faults that have been 

extracted in the manner described in sections 5.3.1 through 5.3.4. 

5.3.6 Inspection standards comparison 

As discussed in section 5.1 there exist strict criteria for the size and number of 

defects that may be present in any ophthalmic contact lens and as with most other 

medical regulations the outcome of these comparisons must be deterministic, strictly 

adhered to and carefully documented.  
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Having determined the fault type of each feature, as described in section 5.3.5, 

and the size of the feature, from calculations described in section 5.3.4, we may then 

compare each feature against the predefined inspection standard for the lens type 

under examination. Every feature is recorded according to whether it causes an 

outright failure, whether it could contribute to a cumulative failure, or whether it is of 

a type or size to not be significant for our decision. 

 

Once every feature has been compared against the standard, the whole standard 

is checked to see if any failures have been recorded; either cumulative or outright. If 

there are one or more failures then the COTS process controller is instructed to reject 

the lens and the major failure mode is recorded; otherwise then the COTS process 

controller is instructed to pass the lens for packaging and an entry of ‘no failure’ is 

entered into the system logs. 

 

We have also made it possible that inspections against multiple standards are 

possible for regulatory or commercial reasons, however only the primary standard is 

used to instruct the COTS process controller. It is conceived that this information 

could be used to instruct a more complex COTS process controller to allow multiple 

packaging decisions to be made from the multiple standard decisions. 

5.3.7 Gross fault detection 

Should a valid lens centre or ellipse not be detected as described in section 

5.3.1, rather than processing the lens in a way which is likely to fail in a catastrophic 

manner, we instead perform a high level examination of the image in order to 

determine one of three gross failure modes: no lens present, lens fragment, or 

shattered lens. There is also the possibility that large debris could have obscured the 

window though this would likely cause the illumination check to fail. An example of 

a lens suffering from a gross failure can be seen in Figure 5-7. 

 

To perform this check we accumulate pixels over the entire image into three 

‘bins’. These are: pixels of about background intensity, pixels of about lens surface 

intensity, and pixels of about lens edge intensity. By comparing these with the number 

expected of a complete lens we can judge how much of a lens is present. Furthermore 
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by comparing the ratio of edge intensity to surface intensity pixels we can determine 

the extent to the deformation of the lens. 

 

In any case the COTS processor is instructed to reject the lens and the type of 

lens deformation is recorded as the major failure mode in the system log. 

 

 

Figure 5-7 Shattered Lens 

5.4 Testing 

In evaluating the system against the requirements of the project we have 

considered a number of tests both at the module and system level. 

5.4.1 Module tests 

We have tested each module sequentially and compared the outputs with expert 

opinion and the performance of other systems. In the pre-processing stage we 

compared the extracted centre coordinates and ellipse parameters with hand marked 

lenses to ensure pixel level accuracy in the extraction. For feature extraction steps we 

have consulted widely with experts in the field to ensure that the system detects all 

features and artefacts that are detected by a human expert.  

 

The classifiers have been trained and tested on separate hand-labelled features 

and perform at a very high level of accuracy. We have also ensured that the feature 
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extraction and inspection standards processes perform as intended by careful 

comparison with reference implantations. 

5.4.2 System tests 

Having ensured that all system components are performing as expected we have 

performed tests on the whole system to ensure that timing and yields are as expected. 

In initial tests on a few thousand images we can achieve correct reject/accept 

decisions on 100% of lenses including classifying the correct largest failure mode. 

Current trials indicate that processing times of approximately one second are 

achievable on standard Pentium D 3.00 GHz, 2 GB RAM, Windows 2003 Enterprise 

Server and there is scope for further compiler optimisation. Process timings for a lens 

with five faults is shown in Table 5-1.  The use of comparable exhaustive established 

techniques for feature detection would fail to meet these time constraints. 

 

Process Timing (seconds) 

Pre-processing 0.141 

Surface 0.047 

Edge 0.328 

Feature Description 0.514 

Feature Classification 0.016 

Standard Comparison 0.009 

Total 1.055 

Table 5-2 Timings for Lens Inspection Processing Steps 

5.5 Conclusions 

In this chapter we have described a novel method for the industrial inspection of 

ophthalmic contact lenses in a time constrained production line environment. In 

describing this system we have discussed the requirement for a fast an accurate 

inspection system for fault detection in regulated medical devices. We have given an 

overview of the system including interfaces to other systems and with operators. We 

also have described in detail the modules that comprise the inspection system and the 

tests that these modules have undergone. Finally we briefly describe the full system 

tests we have performed to establish that our system meets the specifications laid 

down. 
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Further this work has applicability to a wider field than inspection of 

ophthalmic contact lenses; there are many products that need rapid and accurate fault 

detection with similar fault profiles to those seen in this work. This is especially 

relevant to those situations where immediate feedback of such results can be used to 

adjust process parameters. Additionally the processes developed here may find uses in 

non industrial inspection applications, such as pathological screening applications and 

object recognition systems. 

 

In summary our contributions to knowledge from this chapter are: 

1. Development of a system for automatically inspecting medical devices within 

a time-constrained environment. 

2. Application of complex image processing techniques to ophthalmic lens 

inspection; 

3. Demonstration of the reliability of our probabilistic classification framework 

for classifying faults in medical devices. 
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Chapter 6  

Conclusions and Future Work 

6.1 Conclusions 

This thesis has shown the application of probabilistic methods to two distinct 

areas of computer vision. In this section we discuss the findings from each chapter 

and relate these to the more general premise of the thesis. We also highlight 

shortcomings and new avenues in our work which will inform our description of 

future work in section 6.3. 

6.1.1 Probabilistic Methods 

Chapter 2 sets out the role of probabilistic techniques in classification and laid 

the baseline techniques for us to build upon during the remainer of this thesis. To 

achieve this we discussed the formulation of Bayes’ rule, which forms the bedrock for 

our probabilistic framework; yielding posterior probabilities that we may make 

decisions on. We then described various methods of data fusion, focusing particularly 

on score fusion methods since this combination level is most appropriate for a 

probabilistic approach to object description and classification. Having concluded that 

score fusion has the greatest potential for our applications, we expanded on the use of 

mathematical rules for score combination; these rules contain the ability to weight 

inputs based on classifier efficacy. The theoretical optimum for classifier weighting is 

discussed before testing on this assertion is performed in Chapter 4. 
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Having set out background techniques we then considered two specific 

improvements to our probabilistic framework which dealt specifically with problems 

in probabilistic classification which we had identified. Firstly we looked at global 

covariance estimation for homogeneous sets of classes in order to overcome a paucity 

of data. Then we considered the most appropriate likelihood model for our 

framework, settling on the logistic function as especially suitable for the two class 

problem and also for those applications with high dimensional feature vectors. Finally 

we considered an alternative probabilistic framework for combining evidence, 

Dempster-Shafer theory, and highlighted key differences with our framework. 

 

Our key contributions to knowledge from Chapter 2 are summarised below: 

 

We described the use of global variance estimation for homogeneous sets of 

classes, allowing accurate estimation of class means and variances from small 

datasets, especially those datasets with few examples per subject though with many 

subjects. 

 

The modelling of class likelihoods by the logistic function is a significant 

improvement over Gaussian based likelihood models in the two class problem and 

when using high dimensional feature vectors. The better distributed outputs provide a 

more scaled response allowing the resultant scores to span the whole output range of 

zero to one. Appendix B discusses the problems with Gaussian likelihoods in more 

detail. 

 

By formulating the verification problem as a two class problem modelled by 

intra and inter-class logistic functions we were able to greatly diminish the amount of 

training data required and reduce the size of the classification models. Additional 

processing benefits are achieved by removing the necessity to perform comparison 

with all known subjects and removing the need to retrain the classifier when a new 

subject is added to the population. 

 



 86 

6.1.2 Biometric Data and Systems 

In Chapter 3 we described in detail the algorithms and processes used for 

biometric data collection. We discussed each modality used in our system, giving an 

overview of that modality and a detailed description of the algorithm or algorithms 

that we have chosen to implement. 

 

We then explained the hardware and software decisions made in constructing 

our biometric collection system. Particularly we discussed the hardware used, the role 

of the agent framework in producing a flexible processing system and the particular 

methods for pre-processing in the 3D data environment. 

 

Finally we gave results for biometric algorithms used for subject verification on 

publicly available large databases in order to asses their relative performance and their 

suitability for both data collection and the multimodal biometric assessments 

performed in Chapter 4. We expressed concerns over the robustness of the ear finding 

algorithm which appear to be causing significant degradation of the expected 

performance for ear recognition. In a similar manner the performance of the footfall 

sensor is not as impressive as had been hoped; this is likely due to the simplicity of 

the features extracted thus far, and the scarcity of training data. We recommended that 

these modalities are recorded and stored when the tunnel is used for collection, but 

further work is invested into producing robust algorithms that are capable of 

comparable performance to the other biometric modalities. 

 

Our key contributions to knowledge from Chapter 3 are summarised below: 

 

We demonstrated a real improvement in both equal error rate and score 

distribution by the use of our probabilistic framework. The improvement in 

performance through more efficient classification techniques is of obvious benefit; 

however in our opinion the demonstration of a robust probabilistic classifier is of 

more significance in the context of using biometrics in a multimodal environment. 

 

We describe the development of an automated system for the collection and 

processing of multimodal biometric data. This is important for the progress of 
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biometric research which has suffered from insufficiently large datasets to properly 

evaluate multimodal biometrics on fully contemporaneous subjects. This lack of 

suitable datasets has been especially apparent in ‘at a distance’ modalities and for 

studies involving covariates such as time, clothing, race or gender. 

 

Our introduction of the use of footfall data as a viable modality for biometric 

verification is a significant expansion of the gait modality, allowing the use of data 

that should be less correlated than parallel processing of video to multiple gait 

features. The method shows a good deal of promise and is an area that warrants much 

greater investigation. 

 

6.1.3 Multimodal Biometrics 

Chapter 4 examined the role of probabilistic score fusion in multimodal 

biometrics. We considered two cases to prove the value of fusion: the case of 

balanced modalities to illustrate that highly performing classifiers benefit from fusion; 

and the case of highly imbalanced classifiers to show that weighting is necessary to 

achieve continued improvements in this situation. Having shown the value of fusion 

we then continued to consider the optimal weighting for score fusion. We showed that 

the proposal illustrated by equation 16 is not optimal but is on balance preferable to 

static fusion.  

 

We then discussed the effect of correlation on fusion of modalities. We found 

that as expected, the reduction in correlation was a good indicator of performance 

improvement. We noted that there should be some attempt at examining the 

interrelation between correlation and optimal weighting with a larger collection of 

modalities.  

 

Finally we discussed the prediction of performance for fused modalities. We 

tackle the prediction of decidability index since this is a more tractable problem. Here 

we show that the prediction from pre-calculated class means and variances is simple 

and accurate. Further we demonstrate how we may pre-compute optimal weights for 

fusion by maximising the predicted decidability. 
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Our key contributions to knowledge from Chapter 4 are summarised below: 

 

The demonstration of performance improvements using weighted fusion on 

highly imbalanced classifiers demonstrates the robustness of the score fusion 

techniques used, and show that assertions made by others over the limitations of 

biometrics fusion are inaccurate. 

 

We have given and indication that the optimal weights are not given by equation 

16 as stated in [25] and that the optimal weighting tends to be more skewed to the 

weaker classifier than would be expected. 

 

Our examination of the effect of modality correlation on biometric fusion has 

led to the conclusion that reduction in correlation is a good indicator of improvement 

in performance for biometric fusion. This is significant in deciding which modalities 

will be most appropriate to fuse. Further consideration needs to be given to correlation 

once sufficiently large contemporaneous datasets have been produced.  

 

We have demonstrated that the decidability index after fusion may be accurately 

be predicted from pre-fusion data, and further more that calculating the maximal 

decidability index achievable from a given combination of modalities provides an 

optimal weighing scheme for fusion. 

6.1.4 Ophthalmic Lens Inspection 

In Chapter 5 we described a novel method for the industrial inspection of 

ophthalmic contact lenses in a time constrained production line environment. In 

describing this system we discussed the requirement for a fast and accurate inspection 

system for fault detection in regulated medical devices. We gave an overview of the 

system including interfaces to other systems and with system operators. We also have 

described in detail the modules that comprise the inspection system and the tests that 

these modules have undergone. Finally we briefly describe the full system tests we 

have performed to establish that our system meets the specifications laid down by the 

customer. 
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Our key contributions to knowledge from Chapter 5 are summarised below: 

 

We have developed a system for automatically inspecting medical devices 

within a time-constrained environment. This is a important contribution to the field 

and the reduction in wastage due to increased accuracy will provide a significant cost 

saving to manufacturers. 

 

The application of complex image processing techniques to ophthalmic lens 

inspection is a new use of these techniques. We have found that these techniques have 

improved the performance over previous systems both in terms of accuracy and 

speed. 

 

In demonstrating of the reliability of our probabilistic classification framework 

for determining fault types in medical devices, we have show the applicability of 

probabilistic methods to new fields and in particular demonstrated the strength of our 

probabilistic framework across diverse application areas. 

6.1.5 General Findings 

By demonstrating the utility of probabilistic methods, and particularly of our 

probabilistic framework, across disparate application areas we strengthen the case for 

more widespread adoption of probabilistic classifiers. They are most suited to areas 

where fusion or operator feedback may utilise the probabilistic output, however 

examination of this output will also provide feedback that may guide optimal 

thresholds or indicate insufficient training. 

 

We have also developed in Chapter 3 a system architecture that may be well 

suited to other fields such as medical or behavioural analysis. Additionally data from 

this system will be available to guide the improvement of biometric processing and 

related techniques. 

 

The conclusions drawn in Chapter 4 equally have wider ramifications in that 

these results should be applicable to the output of any set of probabilistic data that one 
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may wish to fuse. Whilst biometrics is one of the fastest growing area for the use of 

fusion; one can easily envisage applicability in the military, medical, information 

management and financial spheres. 

 

The work in Chapter 5 has applicability to a wider field than inspection of 

ophthalmic contact lenses; there are many products that need rapid accurate fault 

detection with similar fault profiles to those seen in this work. This is especially 

relevant to those situations where immediate feedback of such results can be used to 

adjust process parameters. Additionally the processes developed here may find uses in 

non-industrial inspection applications, such as pathological screening applications and 

object recognition systems. 

6.2 Critical Appraisal 

This section discusses briefly reviews the full scope of work undertaken in the 

preparation of this thesis in order to critically appraise the effort and draw lessons 

from those activities.  

 

In the area of probabilistic methods although we feel we have strongly 

contributed to the field, we spent too much time examining the use of Gaussian 

methods and attempting to correct their shortcomings rather than seeking other 

avenues which ultimately proved the successful course of action. Dempster-Shafer 

theory also proved a distraction which although useful to provide a contrast to our 

approach did not yield particularly useful results. 

 

In constructing the biometric collection system, we did not allow sufficient time 

to construct both the physical tunnel and the software. Primarily this was due to an 

underestimation of the complexity of this task. We also undertook a great deal of 

prototyping work and investigated simpler solutions for many tasks, such as naïve two 

dimensional image stitching, which proved unsuccessful. Future projects in this area 

would be well advised to exclude the development of complex engineering systems 

from the scope of the doctoral work and plan such systems more carefully.  
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Because of the length of time taken in this doctorate to complete the 

construction of the tunnel, other research activities had to be curtailed. Details of 

further work that would have been performed are discussed in section 6.3. The work 

on biometrics also could have made earlier use of others techniques and software 

giving more rapid access to data that could be used for data fusion. 

 

Our work on multimodal biometrics also suffered from the lateness of the tunnel 

and lack of available multimodal data. This required synthetic subjects to be 

constructed from available unimodal datasets, and will require further work to 

validate on true multimodal data in order to safeguard against correlation effects. It 

would also have been advantageous to have a larger more diverse subject population 

to examine multimodal biometrics across a more representative group. 

 

The ophthalmic lens inspection, whilst strongly in the spirit of the Engineering 

Doctorate and valuable work, does make this thesis somewhat fragmented and 

prevented much further work from occurring in multimodal biometrics. This also 

delayed the overall progress due to the requirement of getting up to speed in a second 

(albeit related) field. Our final concern, which was noted elsewhere, is that the 

commercial nature of this work prevents as much disclosure of the system and results 

as one would like. 

 

Overall this thesis is an accurate summary of the work undertaken during this 

Engineering Doctorate, and whilst there are a number of areas where one may wish to 

revaluate the decisions made in order to maximise progress, it is nevertheless a 

valuable contribution to the field.  

6.3 Future work 

This section briefly discusses issues that have not been addressed in the main 

body of the thesis or remain to be completed. In this section we also discuss possible 

extensions to this work and expectations for the direction these diverse topics will 

take. 
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6.3.1 Probabilistic Methods 

Whilst our work on probabilistic methods is reasonably complete, there remains 

some work where it would be prudent to re-examine our assumptions or explore 

theories in greater depth. We would find it useful to consider again Dempster-Shafer 

theory and particularly consider any extension that would make this more compatible 

with our casting of the fusion problem. We should also consider more complex or 

hierarchical fusion rules that could provide benefit in terms of performance or 

processing speed.  

 

The largest theoretical topic still to be considered is that of class distribution and 

its effect on performance prediction. If this topic could be more rigorously examined 

it is likely that we would find two benefits: firstly we should be able to more 

intimately examine the relationship between EER and decidability and hence predict 

both from our current understanding; secondly we may be able to predict performance 

and optimal weighting directly from training vectors, in advance of modality 

evaluation tests. 

6.3.2 Biometric Data and Systems 

The key task still to be performed on the system is the collection of data across 

a sufficiently large populous and over a significant period of time. This collection is 

likely to take at least six months, though thanks to the automated nature of the system 

should not be too laborious. Such collection should begin as soon as a suitable cohort 

of subjects has been recruited; this is unlikely to be possible before October 2006 

since undergraduate students will be required to get sufficient subject numbers. 

 

There remains work to be carried out on full automation of the system, 

particularly allowing automation of the verification and fusion process as well as 

automatic collection. The requirement for more efficient processing and data transfer 

techniques are also necessary in order to ease collection and allow for real time 

verification to be performed by the system. 
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Finally for the system, improvements are still necessary in the extraction of the 

various modalities; this is particularly important in the newer modalities of footfall 

and ear recognition. Whilst these tasks are both substantial research topics in their 

own right, some progress is being made and this will be greatly aided by the large 

volume of high quality data to be collected by our system. In ear recognition Arbab-

Zavar [106] is undertaking promising work on the XM2VTS database, examining 

feature set selection using the SIFT algorithm [107]. This is significant both in terms 

of good performance and because, unlike Force Field Functionals [69], this technique 

produces feature vectors that may be used in our probabilistic framework. There 

exists a great deal of work to be done on the footfall data, both as a modality in its 

own right and as an adjuvant to improve localisation for video based gait recognition. 

 

There exists opportunity for much of the work in sensor rich environments such 

as the tunnel to cross-over into other fields e.g. medical, smart rooms and behavioural 

sensing. A wealth of work seems apparent in bringing Human Computer Interaction 

research into the field of biometric systems such as the one developed in this thesis. 

6.3.3 Multimodal Biometrics 

Our work on multimodal biometrics is reasonably complete, however it would 

be worth re-performing the tests we have undertaken (especially those involving 

correlation) with the larger contemporaneous dataset collected by the biometric 

tunnel. This would have two benefits: firstly it would ensure that none of the results 

are affected by unexpected interactions between templates of the synthetic subjects; 

secondly it would serve to reinforce the statistical significance of our results and 

clarify those results on the edge of our significance tests. 

 

Building on our ideas in section 6.3.1 we should seek to exploit the better 

understanding of class distribution and performance prediction and evaluate this on 

larger databases. We may also wish to expand on this evaluation to explore more 

complex interactions within and between modalities; especially those based on 

covariates such as time, clothing, race and sex. More complex impostor profiles may 

also be built to distinguish between active and passive impostor attacks.  
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Finally we must consider improving the flexibility of our fusion scheme, since 

this is one of the key drivers of multimodal biometrics. This would involve the 

investigation of techniques such as: personalised fusion profiles describing 

individualised weights and modality selection; the use of soft fusion to incorporate 

other detail that may be extracted during profile such as sex, height, weight or other 

characteristics; and the introduction of trust ontologies to provide more 

understandable decisions with influence from other information such as access time, 

behaviour, or previous verification attempts. 

6.3.4 Ophthalmic Lens Inspection 

The most pressing remaining task for ophthalmic lens inspection is the 

deployment of the system into the production environment and the integration with 

the customer’s batch control and reporting systems. In addition we would like to 

continue work on the understanding of fault types and their location and occurrence 

profiles; this would allow ‘on the fly’ adjustment of class weighting to produce more 

accurate classification of faults. 

 

As mentioned in section 6.1.5 there is significant applicability of our system and 

algorithms to other medical and non-medical inspection tasks. It is desirable that some 

effort is expended in producing a generic object inspection system for sale to other 

manufacturing customers which could be rapidly adapted to their needs. Indeed the 

flexibility of our system and the ability to rapidly switch algorithms within the system 

would provide a useful framework for computer vision research since researchers 

could quickly develop and test new algorithms without the need to design and build 

an entirely new processing chain. 
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Appendix A  

Biometric Standardisation 

A.1 Introduction 

As the field of biometrics has matured and become commercially viable there 

has been an increasing need for interoperability between the systems and subsystems 

of various vendors, as well as defined testing schemes, language definitions and usage 

scenarios. In order to facilitate these aims the International Organisation for 

Standardisation formed a subcommittee to examine the possible scope for 

standardisation in biometrics. This committee met for the first time in 2003 as 

ISO/IEC JTC1/SC37; shortly before this first meeting, the British Standards Institute 

formed the IST/44 to coordinate United Kingdom input into the standardisation 

process. SC37 now consists of twenty-four member countries, with a further six 

observer countries and six international liaison organisations. 

 

The working groups of the committees focus on six distinct areas of 

standardisation interest: 

1. Harmonised Biometric Vocabulary 

2. Biometric Technical Interfaces 

3. Biometric Data Interchange Formats 

4. Biometric Functional Architecture and Related Profiles 

5. Biometric Testing and Reporting 

6. Cross-Jurisdictional and Societal Aspects 
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Currently there are nine published standards, with twenty-eight projects at 

various stages of completion. The most well known uses of these standards are the 

Biometric Interchange Formats [108] being used in the new International Civil 

Aviation Organisation e-Passports which are currently under adoption by countries, 

and the International Labour Organisation’s Identity Document for Seafarers, for 

which a biometric profile is being developed [109]. 

 

We have become involved as a UK expert within IST/44 and to SC37 focusing 

on the standardisation effort of multimodal biometrics. This has taken place primarily 

within working groups 1 and 2, discussing standardised definitions for multimodal 

biometrics [110] and producing a technical report on multimodal biometrics [111]. 

A.2 Vocabulary Harmonisation 

Whilst in this thesis we have used the phrase multimodal biometric to 

generically refer to all combinations of biometrics, as is the current academic 

tradition, we have become aware of the shortfall this contains in properly describing 

biometric systems utilising fusion techniques. The need to settle on a fully descriptive 

set of terms is of paramount importance for the progress of the technical report 

described in section A.3 and further standardisation work mapped out in A.4. 

 

Key amongst this work has been the decision to move to the descriptor 

Multibiometric to describe a biometric system containing any form of data fusion. 

This is then further divided into five categories: 

1. Multimodal – The combination of two or more independent biometric 

characteristics (e.g. face and gait) irrespective of sensor type or processing 

method; 

2. Multisensoral – The combination of biometric data from two or more sensors, 

all examining the same modality; 

3. Multialgorithmic – The combination of biometric data extracted using 

different algorithms, but having been obtained from a single sensor and hence 

single biometric characteristic; 
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4. Multiinstance – The combination of multiple instances of the same biometric 

characteristic obtained by identical sensor types and processed by identical 

algorithims (e.g. the combination of right and left iris images); 

5. Multipresentational – The combination of repeated presentation of the same 

instance of a biometric characteristic obtained by a single sensor type (e.g. 

multiple face images). 

 

Similar work has been performed in harmonising the vocabulary describing the 

levels of biometric fusion. The development of these concepts, although in the early 

stage of adoption by the community, allows much greater precision when describing 

and evaluating multibiometric systems. This process ensures that ambiguity is 

removed from the standardisation process, which is of great importance for successful 

deployment of international standards. 

A.3 Technical Report on Multimodal and Other Multibiometric Fusion 

We have had responsibility for preparing the United Kingdom position on this 

technical report [111]. The technical report contains descriptions of current practice 

on multimodal and other multibiometric fusion systems focusing on possible 

standardisation activities for these systems.  

 

The report discusses various possible architectures and levels for the fusion of 

multiple biometrics. It particularly focuses on decision and score level fusion, since 

these are the more popular techniques and are believed to be the most effective. 

Various score normalisation and fusion techniques are described in detail to aid the 

readers understanding of the field. The report also contains information on 

terminology as discussed in A.2 and an extensive bibliography of related literature to 

introduce the reader to the topic. Finally the report attempts to identify possible areas 

for standardization, these include: further work in the area of record formats for 

multibiometric systems; development of suitable frameworks and Application 

Programming Interfaces; application profiles to describe appropriate uses of 

multibiometrics; and testing methodologies for performance evaluation and standards 

compliance. 
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This technical report has recently been submitted for publication ballot, and is 

expected to be published by ISO/IEC JTC1 early in 2007. 

A.4 Progress towards standards 

As discussed in section A.3 many areas of standardisation are possible for 

multibiometric systems. At present two projects are in their formative stages with 

input from the US and UK national bodies; these relate to interchange formats and 

APIs. 

 

There exists a number of interchange formats for single biometric modalities, 

with four published and seven more in progress. These formats allow systems from 

various vendors to properly interpret and process the biometric data contained therein, 

leading to interoperable systems such as the e-Passport application.  It is considered 

that this type of format would also be important for allowing multibiometric systems 

to exchange data with subsystems or other systems. Current ideas focus on the 

packaging of statistical information on score distribution, performance information, 

fusion level and method etc to ensure sufficient data is accrued to enable the proper 

functioning of multibiometric systems containing components from different vendors. 

 

SC37 have developed a successful API for use in biometrics, known as BioAPI 

[112]. Currently this is only suitable for use in single biometric application, though 

does support components from multiple vendors. It is thought likely that amendments 

to BioAPI could be made to enable multibiometric operation. These amendments will 

focus on introducing new primitive functions and Biometric Information Records to 

enable the processing, fusion, verification and decision making on multiple biometric 

records, collected in so called Auxiliary BIRs. Such amendments would allow 

developers to produce interoperable multibiometric systems or system components 

without revealing proprietary techniques or worrying about unexpected interaction 

between components. 

 

Both of these activities are likely to be introduced to SC37 during the latter half 

of 2007. 
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Appendix B  

Lists of Subjects 

B.1 Face Recognition 

000 030 059 084 115 153 188 221 256 287 

001 031 060 085 116 155 190 222 257 288 

002 032 061 086 122 158 192 223 258 291 

003 033 062 088 124 159 193 225 259 293 

004 034 063 089 126 160 194 226 259 295 

008 035 064 091 128 162 198 227 261 297 

009 036 066 092 129 163 201 229 262 298 

010 037 067 093 130 166 203 231 263 299 

012 038 069 096 131 171 204 233 265 304 

014 039 070 097 132 174 205 237 266 310 

015 045 071 101 137 175 206 238 267 311 

016 046 072 102 138 177 208 239 269 314 

018 047 073 105 142 178 209 242 271 320 

019 048 074 106 143 179 211 243 274 324 

021 049 076 107 145 180 212 245 275 360 

022 053 078 111 147 181 213 246 279 361 

024 054 080 111 149 182 214 248 281 371 

026 055 081 112 150 184 216 249 282  

028 056 082 114 151 185 217 251 285  

029 057 083 114 152 187 218 254 286  
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B.2 Ear Recognition 

000 022 045 067 105 142 179 216 251 297 

001 024 046 071 106 149 181 217 254 304 

002 026 048 074 111 151 182 218 256 324 

003 028 053 078 111 152 188 221 257 360 

004 029 054 080 114 155 190 222 259 361 

008 030 055 082 114 159 193 225 261 371 

012 031 056 083 115 160 194 226 263  

014 032 057 084 116 162 201 231 266  

015 033 059 085 126 171 205 233 274  

018 034 060 091 129 174 206 243 281  

019 036 063 092 132 177 209 245 287  

021 038 064 093 138 178 213 248 288  

 

 



 101 

References  

[1] A. I. Bazin, et al. "An Automated System for Contact Lens Inspection", Proc. 

2nd Int'l Symposium on Visual Computing (ISVC), In Press, (2006) 

[2] L. Middleton, et al. "A smart environment for biometric capture", Proc. IEEE 

Conf. Automation Science and Engineering, In Press, (2006) 

[3] L. Middleton, et al. "Developing a non-intrusive biometric environment", 

Proc. IEEE/RSJ Int'l Conf. Intelligent Robots and Systems (IROS), In Press, (2006) 

[4] L. Middleton, et al. "A Floor Sensor System for Gait Recognition", Proc. 4th 

IEEE Workshop Automatic Identification Advanced Technologies (AutoID 05), 171-

176, (2005) 

[5] A. I. Bazin, L. Middleton, M. S. Nixon. "Probabilistic fusion of gait features 

for biometric verification", Proc 8th Int'l Conf. Information Fusion, 2, 124-131, 

(2005) 

[6] A. I. Bazin, M. S. Nixon. "Probabilistic combination of static and dynamic 

gait features for verification", Proc. SPIE Biometric Technology for Human 

Identification II, 5779, 23-30, (2005) 

[7] A. I. Bazin, M. S. Nixon. "Gait Verification Using Probabilistic Methods", 

Proc. 7th IEEE Workshop on Applications of Computer Vision (WACV/MOTION '05), 

60-65, (2005) 

[8] A. I. Bazin, M. S. Nixon. "Facial Verification Using Probabilistic Methods", 

Proc. British Machine Vision Association Workshop on Biometrics, (2004) 

[9] P. Langley, W. Iba, K. Thompson. "Analysis of Bayesian classifiers", 

National Conf. Artificial Intelligence, 223-228, (1992) 

[10] G. H. John, P. Langley. "Estimating continuous distributions in Bayesian 

classifiers", Proc. 11th Conf. Uncertainty in Artificial Intelligence, 338-345, (1995) 



 102 

[11] L. Chengjun. "A Bayesian discriminating features method for face detection", 

IEEE Trans. Pattern Analysis and Machine Intelligence, 25, 725-740, (2003) 

[12] C. Liu, H. Wechsler. "Probabilistic reasoning models for face recognition", 

Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, 827-

832, (1998) 

[13] B. Moghaddam, T. Jebara, A. Pentland. "Bayesian face recognition", Pattern 

Recognition, 33, 1771-1782, (2000) 

[14] P. Verlinde, et al. "Applying Bayes based classifiers for decision fusion in a 

multi-modal identity verification system", Int'l Symposium In Memoriam Pierre 

Devijver, (1999) 

[15] S. Eickeler, M. Jabs, G. Rigoll. "Comparison of confidence measures for face 

recognition", Proc. 4th Int'l Conf. Automatic Face and Gesture Recognition, 257-262, 

(2000) 

[16] A. Ross, A. K. Jain. "Multimodal Biometrics: An Overview", Proc. 12th 

European Signal Processing Conference (EUSIPCO'04), 1221-1224, (2004) 

[17] C. Kyong, et al. "Comparison and combination of ear and face images in 

appearance-based biometrics", IEEE Trans. Pattern Analysis and Machine 

Intelligence, 25, 1160-1165, (2003) 

[18] A. Ross, R. Govindarajan. "Feature level fusion using hand and face 

biometrics", Proc. of SPIE Biometric Technology for Human Identification II, 5779, 

196-204, (2005) 

[19] B. Achermann, H. Bunke, Combination of Classifiers at the Decision Level for 

Face Recognition, Insitut fur Informatik und angewandte Mathematik, Universitat 

Bern, (1996) 

[20] S. Ben-Yacoub, Y. Abdeljaoued, E. Mayoraz. "Fusion of face and speech data 

for person identity verification", IEEE Trans. Neural Networks, 10, 1065-1074, 

(1999) 

[21] R. Brunelli, D. Falavigna. "Person identification using multiple cues", IEEE 

Trans. Pattern Analysis and Machine Intelligence, 17, 955-966, (1995) 

[22] J. Kittler, et al. "On combining classifiers", IEEE Trans. Pattern Analysis and 

Machine Intelligence, 20, 226-239, (1998) 

[23] A. Josang. "The consensus operator for combining beliefs", Artificial 

Intelligence, 141, 157-170, (2002) 



 103 

[24] N. Poh, S. Bengio, J. Korczak. "A multi-sample multi-source model for 

biometric authentication", Proc. IEEE Signal Processing Society Workshop Neural 

Networks for Signal Processing XII, 375-384, (2002) 

[25] F. Roli, G. Fumera, J. Kittler. "Fixed and trained combiners for fusion of 

imbalanced pattern classifiers", Proc. 5th Int'l Conf. Information Fusion, vol.1, 278-

284, (2002) 

[26] P. C. Cattin, D. Zlatnik, R. Borer. "Sensor fusion for a biometric system using 

gait", Proc. Int'l Conf. Multisensor Fusion and Integration for Intelligent Systems, 

233-238, (2001) 

[27] N. Cuntoor, A. Kale, R. Chellappa. "Combining multiple evidences for gait 

recognition", IEEE Int'l Conf. Accoustics, Speech, and Signal Processing (ICASSP 

2003), 3, 33-36, (2003) 

[28] J. Daugman, Biometric decision landscapes, University of Cambridge 

Computer Laboratory, (1999) 

[29] G. Shakhnarovich, T. Darrell. "On probabilistic combination of face and gait 

cues for identification", Proc. 5th IEEE Int'l Conf. Automatic Face and Gesture 

Recognition, 169-174, (2002) 

[30] L. Wang, et al. "Fusion of static and dynamic body biometrics for gait 

recognition", IEEE Trans. Circuits and Systems for Video Technology, 14, 149-158, 

(2004) 

[31] Y. S. Huang, C. Y. Suen. "A method of combining multiple experts for the 

recognition of unconstrained handwritten numerals", IEEE Trans. Pattern Analysis 

and Machine Intelligence, 17, 90-94, (1995) 

[32] J. A. Benediktsson, P. H. Swain. "Consensus theoretic classification methods", 

IEEE Trans. Systems, Man and Cybernetics, 22, 688-704, (1992) 

[33] L. I. Kuncheva. "Switching between selection and fusion in combining 

classifiers: an experiment", IEEE Trans. Systems, Man and Cybernetics B, 32, 146-

156, (2002) 

[34] A. L. Magnus, M. E. Oxley. "Fusing and filtering arrogant classifiers", Proc. 

5th Int'l Conf. Information Fusion, vol.1, 388-395, (2002) 

[35] P. J. Flynn, K. W. Bowyer, P. J. Phillips. "Assessment of Time Dependency in 

Face Recognition: An Initial Study", Proc. Audio- and Video-Based Biometric Person 

Authentication (AVBPA 03), 44-51, (2003) 

[36] D. von Seggern. "CRC Standard Curves and Surfaces", 250, (1992) 



 104 

[37] J. Cheng, M. J. Druzdzel. "AIS-BN: an adaptive importance sampling 

algorithm for evidential reasoning in large Bayesian networks", Journal of Artificial 

Intelligence Research, 13, 155-188, (2000) 

[38] P. H. Borcherds. "Importance sampling: an illustrative introduction", 

European Journal of Physics, 21, 405-411, (2000) 

[39] G. Shafer. "A Mathematical Theory of Evidence", Princeton University Press, 

(1976) 

[40] J. R. Matey. "Iris on the Move ", Proc. IEEE, (2006) 

[41] W. Zhao, et al. "Face recognition: A literature survey", ACM Computing 

Surveys, 35, 399-459, (2003) 

[42] R. Chellappa, C. L. Wilson, S. Sirohey. "Human and machine recognition of 

faces:  a survey", Proceedings of the IEEE, 83, 705-740, (1995) 

[43] M. Turk, A. Pentland. "Eigenfaces for Recognition", Journal of Cognitive 

Neuroscience, 3, 71-86, (1991) 

[44] P. J. Phillips, et al. "The FERET evaluation methodology for face-recognition 

algorithms", IEEE Trans. Pattern Analysis and Machine Intelligence, 22, 1090-1104, 

(2000) 

[45] P. Grother, R. J. Micheals, P. J. Phillips. "Face recognition vendor test 2002 

performance metrics", 937-945, (2003) 

[46] M. Sadeghi, et al. "A comparative study of automatic face verification 

algorithms on the BANCA database", Proc. Audio- and Video-Based Biometric 

Person Authentication (AVBPA 03), 2688, 35-43, (2003) 

[47] S. A. Rizvi, P. J. Phillips, H. Moon. "Verification protocol and statistical 

performance analysis for face recognition algorithms", Proc. IEEE Computer Society 

Conf. Computer Vision and Pattern Recognition, 833-838, (1998) 

[48] A. Colmenarez, B. Frey, T. S. Huang. "A probabilistic framework for 

embedded face and facial expression recognition", Proc. IEEE Computer Society 

Conf. Computer Vision and Pattern Recognition (CVPR 99), Vol. 1, 592-597, (1999) 

[49] B. Moghaddam, A. Pentland. "Probabilistic visual learning for object 

representation", IEEE Trans. Pattern Analysis and Machine Intelligence, 19, 696-710, 

(1997) 

[50] B. Moghaddam, W. Wahid, A. Pentland. "Beyond eigenfaces: probabilistic 

matching for face recognition", Proc. 3rd IEEE Int'l Conf. Automatic Face and 

Gesture Recognition, 30-35, (1998) 



 105 

[51] D. S. Bolme, et al. "The CSU face identification evaluation system: its 

purpose, features, and structure", Proc. 3rd Int'l Conf. Computer Vision Systems 

(ICVS 03), 304-313, (2003) 

[52] G. Shakhnarovich, J. W. Fisher, T. Darrell. "Face recognition from long-term 

observations", Proc. 7th European Conf. Computer Vision Computer Vision (ECCV 

2002), 3, 851-865, (2002) 

[53] R. Chellappa, S. Zhou, B. Li. "Bayesian methods for face recognition from 

video", Proc. Int'l Conf. Acoustics, Speech and Signal Processing (CASSP 02), vol.4, 

4068-4071, (2002) 

[54] J. Kittler, Y. P. Li, J. Matas. "Face verification using client specific fisher 

faces", Statistics of Directions, Shapes and Images, 63-66, (2000) 

[55] P. N. Belhumeur, J. P. Hespanha, D. J. Kriegman. "Eigenfaces vs. Fisherfaces: 

recognition using class specific linear projection", IEEE Trans. Pattern Analysis and 

Machine Intelligence, 19, 711-720, (1997) 

[56] M. S. Nixon, et al. "Automatic recognition by gait", Sensor Review, 23, 323-

331, (2003) 

[57] M. S. Nixon, T. Tan, R. Chellappa. "Human Identification Based on Gait", 

Springer, (2005) 

[58] J. B. Hayfron-Acquah, M. S. Nixon, J. N. Carter. "Automatic gait recognition 

by symmetry analysis", Pattern Recognition Letters, 24, 2175-2183, (2003) 

[59] R. T. Collins, R. Gross, J. Shi. "Silhouette-based human identification from 

body shape and gait", Proc. 5th IEEE Int'l Conf. Automatic Face Gesture 

Recognition, 366-371, (2002) 

[60] H. Ning, et al. "Articulated model based people tracking using motion 

models", Proc. 4th IEEE Int'l Conf. Multimodal Interfaces, 383-388, (2002) 

[61] D. Meyer, J. Posl, H. Niemann. "Gait classification with HMMs for 

trajectories of body parts extracted by mixture densities", Proc. British Machine 

Vision Conf. (BMVC 98), vol.2, 459-468, (1998) 

[62] D. Cunado, M. S. Nixon, J. N. Carter. "Automatic extraction and description 

of human gait models for recognition purposes", Computer Vision and Image 

Understanding, 90, 1-41, (2003) 

[63] G. V. Veres, et al. "What image information is important in silhouette-based 

gait recognition?" Proc. IEEE Computer Society Conf. Computer Vision and Pattern 

Recognition (CVPR 2004), 2, 776-782, (2004) 



 106 

[64] D. K. Wagg, M. S. Nixon. "On automated model-based extraction and analysis 

of gait", Proc. 6th IEEE Int'l Conf. Automatic Face and Gesture Recognition., 11-16, 

(2004) 

[65] D. K. Wagg, M. S. Nixon. "Automated markerless extraction of walking 

people using deformable contour models", Computer Animation and Virtual Worlds, 

15, 399-406, (2004) 

[66] D. K. Wagg, M. S. Nixon. "Model-Based Gait Enrolment in Real-World 

Imagery", Proc. Multimodal User Authentication, 189-195, (2003) 

[67] K. H. Pun, Y. S. Moon. "Recent advances in ear biometrics", Proc. 6th IEEE 

Int'l Conf. Automatic Face and Gesture Recognition, 164 - 170, (2004) 

[68] M. Burge, W. Burger. "Ear biometrics in computer vision", Proc. 15th Int'l 

Conf. Pattern Recognition, vol.2, 822-826, (2000) 

[69] D. J. Hurley, M. S. Nixon, J. N. Carter. "Force field feature extraction for ear 

biometrics", Computer Vision and Image Understanding, Accepted, (2004) 

[70] A. S. Aguado, M. E. Montiel, M. S. Nixon. "On using Directional Information 

for Parameter Space Decomposition in Ellipse Detection", Pattern Recognition, 29, 

369-381, (1996) 

[71] J. Perry. "Gait analysis: Normal and pathalogical function", SLACK Inc., 

(1992) 

[72] R. E. Reilly, R. W. Soames. "An imaging walkway for gait analysis", IEE 

Colloquium on `Medical Imaging: Transduction and Parallel Processing' (Digest 

No.050), 5-1, (1992) 

[73] R. J. Orr, G. D. Abowd. "The smart floor: A mechanism for natural user 

system identification and tracking", Proc. Conf. Human Factors in Computing 

Systems, (2000) 

[74] M. D. Addlesee, et al. "The ORL active floor [sensor system]", IEEE Personal 

Communications, 4, 35-41, (1997) 

[75] J. A. Paradiso, et al. "Sensor systems for interactive surfaces", IBM Systems 

Journal, 39, 892-914, (2000) 

[76] L. McElligott, et al. "ForSe FIElds - force sensors for interactive 

environments", Proc. 4th Int'l Conf. Ubiquitous Computing (UbiComp 02), 168-175, 

(2002) 

[77] M. Fernstrom, N. Griffith. "LiteFoot-auditory display of footwork", Proc. 5th 

Int'l Conf. Auditory Display (ICAD 98), 16, (1998) 



 107 

[78] L. Middleton, et al. "Lightweight agent framework for camera array 

applications", Proc. 9th Int'l Conf. Knowledge-Based Intelligent Information and 

Engineering Systems (KES 2005), Part IV, LNCS 3684, 150-156, (2005) 

[79] M. S. Nixon, A. S. Aguado. "Feature Extraction & Image Processing", 

Newnes, (2002) 

[80] R. Cipolla, T. Drummond, D. Robertson. "Camera calibration from vanishing 

points in images of architectural scenes", Proc. 10th British Machine Vision 

Conference, vol.2, 382-391, (1999) 

[81] G. K. M. Cheung, et al. "Real time system for robust 3D voxel reconstruction 

of human motions", Proc. IEEE Computer Society Conf. Computer Vision and 

Pattern Recognition, 2, 714-720, (2000) 

[82] N. Ahuja, J. Veenstra. "Generating octrees from object silhouettes in 

orthographic views", IEEE Trans. Pattern Analysis and Machine Intelligence, 11, 

137-149, (1989) 

[83] J. D. Shutler, et al. "On a Large Sequence-based Human Gait Database", Proc. 

4th Int'l Conf. Recent Advances in Soft Computing, 66-71, (2002) 

[84] R. Kumar, et al. "Representation of scenes from collections of images", 

Proceedings of the 1995 IEEE Workshop on Representation of Visual Scenes, Jun 24 

1995, 10-17, (1995) 

[85] H. Chernoff. "A Measure of Asymptotic Efficiency for Tests of a Hypothesis 

Based on the Sums of Observations", Annals of Mathematical Statistics, 23, 493-509, 

(1952) 

[86] G. V. Veres, M. S. Nixon, J. N. Carter. "Modelling the Time-Variant 

Covariates for Gait Recognition", Proceedings of 5th International Conference on 

Audio- and Video-Based Biometric Person Authentication (AVBPA), 3546, 597-606, 

(2005) 

[87] ISO/IEC19795-1, Information Technology - Biometric Performance Testing 

and Reporting - Part 1: Principles and Framwork, (2006) 

[88] J. R. Beveridge, et al. "Parametric and nonparametric methods for the 

statistical evaluation of human id algorithms", Proc. 3rd Workshop on the Empirical 

Evaluation of Computer Vision Systems, (2001) 

[89] K. Messer, et al. "XM2VTS: The Extended M2VTS Database", Proc. 2nd 

Conf. on Audio- and Video-based Person Authentication (AVBPA '99), 72--77, (1999) 



 108 

[90] H. Korves, et al. "Multibiometric Fusion: From Reseach to Operations", 39-

48, (2005) 

[91] K. Goebel, Y. Weizhong, W. Cheetham. "A method to calculate classifier 

correlation for decision fusion", Information, Decision and Control, 135-140, (2002) 

[92] C. J. Elliott. "Automatic optical measurement of contact lenses", Proc. SPIE 

Automatic Optical Inspection, 654, 125-129, (1986) 

[93] J. M. Pladellorens, et al. "Analysis and characterization of surface defects in 

ophthalmic lenses", Proc. SPIE Surface Scattering and Diffraction for Advanced 

Metrology II, 4780, 99-106, (2002) 

[94] P. C. D. Hobbs. "Ideas for fast and cheap object capture", Proc. SPIE Three-

Dimensional Imaging, Optical Metrology, and Inspection IV, 3520, 133-137, (1998) 

[95] J. H. Cho, M. W. Cho, M. K. Kim. "Computer-aided design, manufacturing 

and inspection system integration for optical lens production", International Journal 

of Production Research, 40, 4271-4283, (2002) 

[96] S. R. Gunn, M. S. Nixon. "A robust snake implementation; a dual active 

contour", IEEE Trans. Pattern Analysis and Machine Intelligence, 19, 63-68, (1997) 

[97] A. Fitzgibbon, M. Pilu, R. B. Fisher. "Direct least square fitting of ellipses", 

IEEE Trans. Pattern Analysis and Machine Intelligence, 21, 476-480, (1999) 

[98] C. E. Olson. "Constrained Hough transforms for curve detection", Computer 

Vision and Image Understanding, 73, 329-345, (1999) 

[99] Y. Xie, Q. Ji. "A new efficient ellipse detection method", Proc. 16th Int'l 

Conf. Pattern Recognition, 2, 957-960 BN  - 950 7695 1695 X, (2002) 

[100] Z. Cheng, Y. Liu. "Efficient technique for ellipse detection using restricted 

randomized Hough transform", Proc.. Int'l Conf. Information Technology: Coding 

and Computing (ITCC 04), 2, 714-718 BN  - 710 7695 2108 7698, (2004) 

[101] R. A. McLaughlin. "Randomized Hough transform: improved ellipse detection 

with comparison", Pattern Recognition Letters, 19, 299-305, (1998) 

[102] J. Canny. "A computational approach to edge detection", IEEE Trans. Pattern 

Analysis and Machine Intelligence, 8, 679-698, (1986) 

[103] D. J. Hurley, M. S. Nixon, J. N. Carter. "Force field energy functionals for 

image feature extraction", Image and Vision Computing, 20, 311-317, (2002) 

[104] M. K. Hu. "Visual Pattern Recognition by Moment Invariants", IRE Trans. 

Information Theory, 8, 179-187, (1962) 



 109 

[105] J. R. Quinlan. "Simplifying decision trees", Int'l Journal of Man-Machine 

Studies, 27, 221-234, (1987) 

[106] B. Arbab-Zavar, A Model-Based Analysis of Ear Biometrics, School of 

Electronics and Computer Science, University of Southampton, (2006) 

[107] D. G. Lowe. "Distinctive image features from scale-invariant keypoints", Int'l 

Journal of Computer Vision, 60, 91-110, (2004) 

[108] ISO/IEC-19794, Information technology - Biometric data interchange 

formats, (2006) 

[109] ISO/IEC-24713-3, Information technology - Biometric Profiles for 

Interoperability and Data Interchange - Part 3: Biometric Based Verification and 

Identification of Seafarers, (2006) 

[110] ISO/IEC JTC1/SC37 Standing Document 2, version 5 – Harmonized Biometric 

Vocabulary, (2006) 

[111] ISO/IEC-24722, Information technology - Technical Report on Multimodal 

and Other Multibiometric Fusion, (2006) 

[112] ISO/IEC-19784-1, Information technology - Biometric application 

programming interface - Part 1: BioAPI specification, (2006) 

 

 


