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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Engineering
ON PROBABILISTIC METHODS FOR OBJECT DESCRIPTION AND
CLASSIFICATION

by Alexander lan Bazin

This thesis extends the utility of probabilistic methods in two diverse domains:
multimodal biometrics and machine inspection. The attraction for this approach is that
it is easily understood by those using such a system; however the advantages extend
beyond the ease of human utility. Probabilistic measures are ideal for combination
since they are guaranteed to be within a fixed range and are generally well scaled.

We describe the background to probabilistic techniques and critique common
implementations used by practitioners. We then set out our novel probabilistic
framework for classification and verification, discussing the various optimisations and
placing this framework within a data fusion context.

Our work on biometrics describes the complex system we have developed for
collection of multimodal biometrics, including collection strategies, system
components and the modalities employed. We further examine the performance of
multimodal biometrics; particularly examining performance prediction, modality
correlation and the use of imbalanced classifiers. We show the benefits from score
fused multimodal biometrics, even in the imbalanced case and how the decidability
index may be used for optimal weighting and performance prediction.

In examining machine inspection we describe in detail the development of a
complex system for the automated examination of ophthalmic contact lenses. We
demonstrate the performance of this system and describe the benefits that complex
image processing techniques and probabilistic methods can bring to this field.

We conclude by drawing these two areas together, critically evaluating the work

and describing further work that we feel is necessary in the field.
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Definitions and Abbreviations Used

Biometrics Identification of a person by an observed biological or
behavioural characteristic.

Posterior P(C|x) Probability of data coming from a particular class in
light of all data.

Likelihood P(x|C) Probability of observing the data given that the data
belongs to the specified class.

Evidence P(x) Probability of observing data irrespective of the data’s
class.

Prior P(C) Probability of observing a particular class irrespective
of the data obtained.

Intra-class variance Variance between recorded data belonging to the same
class.

Inter-class variance Variance between recorded data belonging to differing
classes.

Data fusion Combination of multiple sources of information in order
to make a more accurate or more robust decision.

Feature fusion Combination of data sources at the feature level, i.e.
before classification.

Score fusion Combination of data sources at the score level, i.e. after
classification with classifiers providing continuous outputs.

Decision fusion Combination of data sources at the decision level, i.e.
after each piece of information has had a classification assigned.

Balanced classifiers Two or more classifiers where the performance of the
worst classifier is no more than half that of the best classifier.

Imbalanced classifiers Two or more classifiers that do not fulfil the
definition of balanced classifiers.

Score transformation Process of altering scores from disparate classifiers such
that all conform to the same range and distribution.

False match rate Percentage of those impostors who are falsely matched

to a client at a given threshold, also known as a false acceptance.
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False non-match rate Percentage of genuine clients who are falsely identified
as impostors at a given threshold, also known as a false rejection.

Equal error rate Percentage value at which the false match rate and false
non-match rate become equal whilst varying the threshold.

Client Genuine enrolled user of a biometric system attempting
to gain authorised access.

Impostor Malicious user of a biometric system attempting to gain
access despite not having permission to do so.

Gait Unique, repeatable, observable pattern produced by a
subject as they walk.

Modality Single biometric method used for identification.

Agent Part of a system that performs information preparation
and exchange on behalf of a client or server.

Voxel Volume pixel, the smallest distinguishable box-shaped
part of a three-dimensional space.

SQL Structured query language.

XML Extendable mark-up language.

Industrial inspection Visual based task of determining faults in manufactured
goods in a production environment.

Commerecial of the shelf process control device Device for interfacing

industrial inspection system with the production line.



Symbols Used

Chapter 2 (First Use)
P(C|x), P(C|d) Posterior probability given x or d
Px|C), P(d|C) Class likelihood based on x or d

P(x), P(d)
(@

o =

G

~oa

~

Evidence of x or d

Prior probability of class C

Number of classes

Classiorj

The client class

The impostor class

Threshold for a verification decision
Number of classifiers under combination
Weight of classifier i

Error rate of classifier i

Covariance of feature vectors

Length of feature vector (also number of training examples in

eigenface technique leading to feature of length M)

S(©)

Si

Variance of feature

Feature vector from eigenface technique

Mean of feature

Distance between new measured feature and reference vector
Number of example images per class

Number of likelihoods produced in training set

Vector of example likelihoods from training set
Mapping vector to a flat histogram of likelihoods
Mapping vector to a Gaussian histogram of likelihoods
Degree of support to a proposition C

Evidence in support of S(C)

Chapter 3 (First Use)

I

Face image
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v Average (mean) face

D Difference between face image and average (mean) face
A Matrix of training examples

u Eigenface

U Matrix of all eigenfaces

w; Component of feature vector

K; LDA client mean

S LDA between class scatter

Y; LDA class covariance

Py LDA within class scatter

a; Client specific Fisher face

p Measurand error

n Total number of samples

N, Number of subjects

Ng Number of samples per subject

Zj Binary error value

p Expected or desired error value

a Confidence level

d’ Decidability index

Chapter 5 (First Use)

IR Dispersion

R Maximum chord across feature

R Minimum chord across feature
MI1-M4 Hu rotation invariant moments (1-4)
Npq Scale invariant moment order pg
Upg Location invariant moment order pg
Py Binary pixel value at location xy
X,y Centre of mass of feature in direction x or y
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Chapter 1

Context and Contributions

1.1 Overview of Research

Probabilistic methods are a group of classification techniques marked by the
fact that their output is a probabilistic measure of similarity between the object under
test and some hypothesised class or classes. The output of this kind of measure
compared with a hard decision or unconstrained score has numerous advantages
explained here. Initially the attraction for such a measure is that it is easily understood
by those using such a system; however the advantages extend beyond the ease of
human utility. For example probabilistic measures are ideal for combination with
other probabilistic outputs since they are guaranteed to be within a fixed range and are
generally well scaled, in certain formulations we may also transparently bias the
classification in favour of certain outcomes. We are interested in examining the utility
of probabilistic methods in two diverse computer vision application domains:

multimodal biometrics and machine inspection.

Biometrics in the automated recognition of a subject by biological or
behavioural characteristics; whilst the field is over fifty years old the majority of this
work has focused on the use of single biological traits, usually termed modalities,
captured in a controlled environment at short range. Recently interest has turned both
to recognition at a distance and the concurrent use of multiple modalities, so called
multimodal biometrics. Recognition at a distance is of obvious benefit in the era of

CCTYV surveillance and for covert identification; it also has significant benefits in



terms of throughput and of user acceptance where contact devices have proven
unpopular for hygiene and other health related fears. However identification at a
distance often suffers from occlusion and hence strengthens the case for multimodal
biometrics.  Investigators of multimodal biometrics have claimed significant
performance improvements over individual modalities in addition to their greater
flexibility. Probabilistic methods are well suited to the combination techniques used in
multimodal biometrics; and in this thesis we examine the utility of these techniques,
the range of their use, technical issues with their implementation and the prediction of
when such techniques should be employed. In order to perform such analysis we have
constructed an automated system for the collection of multimodal biometric data, this
is a highly complex system incorporating significant technical challenges and
considerable research effort. We describe the system, the processing algorithms used,
and the modalities employed; we also describe the collection methodology and the

statistical basis for these decisions.

In comparison with biometrics, machine inspection is a relatively mature field;
however we have examined the sub-field of ophthalmic contact lens inspection at the
request of a commercial organisation. This is field that has had little to no intervention
from complex image processing techniques nor from probabilistic methods.
Ophthalmic contact lens inspection involves the examination of images of contact
lenses on a production line for detection and classification of any faults on the lenses.
Since contact lenses are classified as medical devices the standards for fault tolerance
are very tightly controlled by medical regulators and all decision must be carefully
recorded for subsequent auditing; in addition since inspection takes place in a
production environment processing time is strongly constrained. In this thesis we
develop an automated contact lens inspection system that is suitable for use in a
production environment, we demonstrate the performance of this system and describe
the benefits that complex image processing techniques and probabilistic methods can

bring to this field.

1.2 Contributions

This thesis documents several key contributions made to the fields of

probabilistic methods, biometrics and machine inspection.



In the field of probabilistic methods these contributions may be summarised as:

The use of global variance estimation for homogeneous sets of classes;

The modelling of class likelihoods by a logistic function;

The formulation of the verification problem as a two class problem modelled
by intra and inter-class logistic functions;

The demonstration of a real improvement in both equal error rate and score
distribution by the use of our probabilistic framework;

Examination of claims of optimal weighting for probabilistic fusion.

In the field of biometrics these contributions may be summarised as:

The development of an automated system for the collection and processing of
multimodal biometric data;

The examination of the use of footfall data as a viable modality for biometric
verification;

The demonstration of performance improvements using weighted fusion on
highly imbalanced modalities;

The examination of the effect of modality correlation on biometric fusion, and
the conclusion that reduction in correlation is a good indicator of improvement
in performance;

The demonstration that the decidability index after fusion may be accurately
be predicted, and further more that calculating the maximal decidability

provides an optimal weighing scheme in multimodal biometrics.

In the field of machine inspection these contributions may be summarised as:

l.

The development of a system for automatically inspecting medical devices
within a time-constrained environment.

The application of complex image processing techniques to ophthalmic lens
inspection;

The demonstration of the reliability of our probabilistic classification

framework for classifying faults in medical devices.



1.3 Document Structure

The overall structure separates the industrial inspection application from the
biometrics application, starting with basic probabilistic tenets common to both

application domains.

Chapter 2 provides a background to popular probabilistic techniques and
methods of combining probabilistic confidence measures for different sources. It also
details the theoretical background behind the probabilistic framework we have
developed, which forms an underpinning for the work in the remainder of this thesis.
In the final section of this chapter we perform a comparison between our probabilistic

formulation and Dempster-Shafer theory.

Chapter 3 describes a broad range of novel contributory methodologies,
technologies and systems for biometric recognition that have been used in the Data
Information Fusion, Defence Technology Centre 8.11 (DTC 8.11) contract. Our aim
in the DTC 8.11 contract, that forms the basis of much of the work in this Chapter 3,
was to construct a system for collecting multimodal biometric data from subjects and
automatically verify their identity. Chapter 3 explains the modalities that are targeted
by the system, reviews the background to these modalities and common extraction
techniques before describing in detail the extraction methods we use. It then describes
the collection and verification system we have developed, focusing on the following
areas: the hardware used to construct the system, the pre-processing stages carried out
on the captured data, and the storage solutions for the large volume of data collected.
The collection strategy for our system 1is explained along with the testing

methodologies we use in the system, as well as detailed descriptions of specific tests.

Chapter 4 examines the simple case of whether score fusion based on our
probabilistic framework is an effective method for improvement of performance. It
then continues, to examine whether multimodal biometrics are an effective tool when
the performance of the modalities are imbalanced. In using the weighted fusion
schemes described in Chapter 2, we state that “Equation 16 describes the optimal

weights, w;, ... where E; is the error in addition to the Bayes error from classifier i.’

in Chapter 4 we seek to explore whether this is the optimal weight when



approximated by the Equal Error Rate; we expand this to examine the role correlation
may have on performance and optimal weighting. Finally Chapter 4 considers the
how we may predetermine any performance improvement we may see and provide a

quantitative assessment of when score fusion is of benefit.

Chapter 5 provides an overview of our developed ophthalmic lens inspection
system including its interaction with the manufacturing equipment and human
operators. This is more industrial in nature than the other work described in this thesis
and fulfils much of the commercial focus elements of the Engineering Doctorate
scheme. This high level overview describes both the inspection system and allied
control and monitoring software. We then describe in detail the methods used for
processing the lens image, extracting relevant feature metrics, classifying fault types
and comparing these classified features with the customer’s inspection standards.
Finally the testing regime that has been implemented is discussed both with reference

to the accuracy of the algorithms and the performance of the system as a whole.

Chapter 6 summarises the findings and contributions made in this thesis. It then
discusses the further work that is desirable to complete outstanding tasks in this thesis

or to provide further development of our key work.

1.4 Publications

The following publications by have ensued from this research programme:

[1] Bazin, A.L, Cole, T., Kett, B., Nixon, M.S. (2006) An Automated System
for Contact Lens Inspection. In Proceedings of 2" International Symposium on Visual

Computing (ISVC), In Press, Lake Tahoe, NV, USA.

[2] Middleton, L., Wagg, D. K., Bazin, A. I, Carter, J. N. and Nixon, M. S.
(2006) A smart environment for biometric capture. In Proceedings of IEEE

Conference on Automation Science and Engineering, In Press, Shanghai, China.

[3] Middleton, L., Wagg, D. G., Bazin, A. L., Carter, J. N., and Nixon, M. S.

(2006) Developing a non-intrusive biometric environment. In Proceedings of



IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), In
Press, Beijing, China.

[4] Middleton, L., Buss, A. A., Bazin, A. I. and Nixon, M. S. (2005) A floor
sensor system for gait recognition. In Proceedings of Fourth IEEE Workshop on
Automatic Identification Advanced Technologies, pp. 171-176, Buffalo, New York,
USA.

[5] Bazin, A. 1., Middleton, L. and Nixon, M. S. (2005) Probabilistic Fusion of
Gait Features for Biometric Verification. In Proceedings of Eighth International

Conference of Information Fusion, pp. 124-131, Philadelphia, PA, USA.

[6] Bazin, A. 1. and Nixon, M. S. (2005) Probabilistic combination of static and
dynamic gait features for verification. In Proceedings of Biometric Technology for
Human Identification II, SPIE Defense and Security Symposium 5779, pp.23-30,
Orlando (Kissimmee), Florida USA.

[7] Bazin, A. I. and Nixon, M. S. (2005) Gait Verification Using Probabilistic
Methods. In Proceedings of 7th IEEE Workshop on Applications of Computer Vision,
pp. 60-65, Breckenridge, CO.

[8] Bazin, A. 1. and Nixon, M. S. (2004) Facial Verification Using Probabilistic
Methods. In Proceedings of British Machine Vision Association Workshop on

Biometrics, London.

The work in [8] describes our initial attempts at constructing a novel
probabilistic framework and this work is described in Appendix B. In [7] we explain
our novel probabilistic framework based on logistic functions, the first such use of
logistic functions in this manner, we demonstrate the performance of this approach on
the gait verification task. Our work in [5, 6] extend our novel probabilistic method
into multimodal biometrics, including the consideration of decidability and correlation
as measures of efficacy; this is the first application directly combining the output of

probabilistic classifiers for biometric verification.



We describe in [4] a new biometric modality, footfall, and the construction of a
suitable sensor system. The work in [2, 3] explains our work in constructing the first
system for multimodal biometric capture at a distance. Finally [1] gives an overview
of our innovative industrial inspection system utilising modern computer vision

techniques combined with our novel probabilistic framework.

The following publications were also produced by the author during the course
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Chapter 2
Probabilistic Methods

2.1 Introduction

Probabilistic methods are a group of classification techniques that, when
comparing a piece of query data to a set of possible classifications, produce a
probabilistic measurement of similarity between the query data and each class. This
can be contrasted with the distance based (dissimilarity) metrics or hard classification
(decision) based produced by many other popular classification schemes. There are a
number of obvious advantages with the use of probabilistic methods which return
class assignment with accompanying measures of class certainty, especially in areas
where one may wish to combine disparate sources of data or where one would like

further understanding as the confidence in a classification decision.

This chapter provides a background to popular probabilistic techniques and
methods of combining probabilistic confidence measures for different sources. It also
details the theoretical background behind the probabilistic framework we have
developed, which forms an underpinning for the work in the remainder of this thesis.
In the final section of this chapter we perform a comparison between our probabilistic

formulation and Dempster-Shafer theory.



2.2 Bayesian Classification

Bayesian classifiers are perhaps the best known method of obtaining a
probabilistic output from a classifier. The naive Bayesian classifier and its variants [9,
10] have gained interest for use in face recognition [11-15]. The Bayesian classifier
calculates the posterior probability, P(Cl|x), of a class, C, given data, x. This is based
on the likelihood of the data given the class, P(x|C), the evidence of the data, P(x),
and the prior probability of the class, P(C), as shown in equation 1.

P(x|C)P(C)

P(C|x)= P

(1)

The prior probability, P(C), is usually assigned such that all classes are
equiprobable; and the evidence is taken as the weighted sum of the likelihoods over

all classes:

H@=% @)

P() =Y. P(C))P(x|C)) 3)

where i is the number of classes. By combining equations 1, 2 and 3, this leads

to:

P(C,|x) =2 C) 4
Zp(x\cj)

Here, x will be a feature vector describing an unclassified object and C; will be
one possible class identity. In the classification task we assign the data from an
unknown object to the identity C; if the posterior probability for that class is

maximum:



assign x = C, if
P(C | x)= max P(C, | x) 5)

It also aids our future work to consider the more restricted verification problem,
which is more typically used in biometrics. In this problem one already has a claimed
class identity for an object descriptor. Here the object descriptor is an extraction of
measurements of the subject and the class claim provides a claim for the identity of a
single subject. This makes the process somewhat simplified with two possible classes,
either: Client, C, where the individual subject is who they claim to be or Impostor, 7,
where they are not. The two classes can be assumed to be equally likely (in the
absence of other evidence) and are mutually exclusive, P(C|x) = I - P(I|x). Hence

simplifying equation 4 we obtain:

P(x|C)

eI = 5 10+ P 1D

(6)

We would then accept the individual identity claim if P(C|x) > t where ¢ is a

threshold that may be chosen based on the desired security of the system.

The likelihood, P(x|C), will be estimated from the distribution of x for each
subject; in many examples [12, 13] this is assumed to be Gaussian distributed. The
multivariate Gaussian for likelihood estimation is given in equation 7; where y; and 4;

are the values for the mean and covariance of the feature vectors of class C;.

1 _
—;x—m)TA e-)

P(x|C)=— — (7)
@)

Moghadden et al. [13] argue for two global distributions; one to describe the
distribution of variance between measurements of the same subject (intra-class
variation) and another to describe variation between subjects (inter-class variation).
Liu and Wechsler’s work [12] describes only intra-class variation but hypothesises
that this variance is consistent across subjects, leading to the ability to estimate

variance globally. In section 2.4 we evaluate the use of global covariance estimation
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and the suitability of Gaussian likelihood estimation. We also investigated the
statement by Liu and Wechsler that the posterior probability is not a significantly
better metric than the likelihood.

2.3 Data Fusion

Data fusion may be defined as the combination of two or more feature vectors,
classification schemes or identification decisions with the aim of providing a more
robust estimate of class identity. Fusion may occur on one of three levels [16]:
feature, score or decision. This section will give a brief overview of all methods but

shall focus primarily on score fusion in a probabilistic environment.

For fusion at the feature level, combinations of feature vectors are usually
produced by simple vector concatenation before being passed to a classifier of choice
(usually a simple Euclidean distance classifier), this type of fusion is exemplified by
Kyong’s work on combining face and ears [17]. Whilst this method is simple and
when used with sufficient training data should be optimal, given the usual paucity of
data it is unlikely to be as effective as late fusion. This is especially true if simple
classifiers are used which do not take into account the varying performance of the
modalities being fused. More complex methods may involve the use of feature set
selection or transformation after combination to yield the most discriminant feature
vector [18]. In practice good results from feature level fusion are difficult to achieve
due to incompatible feature types or unknown relationships between feature spaces.
Additionally this technique does not scale well due to increasing demands for more
complex classifiers and increased storage to deal with rapidly expanding

dimensionality.

Decision fusion methods are attractive since they need little or no training and
so cope well with the lack of data often available. Simple decision fusion rules are
merely logical functions such as AND or OR, slightly more complex rules may also
include weighted voting algorithms. Rank based rules [19] such as rank summation,
Borda count or minimum rank can also considered decision fusion schemes. These
methods are simple but do not take into account the scores underlying the initial

decisions; voting rules are also prone to ambiguity especially when there are few
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inputs or classes. The output of these rules is a hard classification and hence

unappealing in a probabilistic framework or if further analysis may be needed.

Score fusion schemes are broadly of two types: those that regard the output of
the initial classifiers as feature vectors that may be used as inputs to further classifiers
[20, 21]; and those that treat the outputs of the initial classifiers as scores that may be

combined using mathematical rules [19, 22-28].

Many classifiers have been used in score fusion (e.g. support vector machines,
multilayer perceptrons, Bayesian classifiers, Fisher’s linear discriminant analysis
based classifiers and C4.5 decision trees); with Ben-Yacoub et al. [20] claiming that
Bayesian classifiers or support vector machines give the greatest improvement. The
major drawback of using a classifier based fusion scheme is the requirement for
training; in many tasks data is at a premium, especially where many examples of one
class are needed. This lack of training data makes a classifier based fusion scheme

unsuitable for the applications envisaged in this thesis.

Kittler et al. [22] propose a common theoretical framework for the combination
of scores based on the Bayesian decision rule (equation 5), this assumes the
combination of posterior probabilities (or approximations thereof). The rules
described by Kittler are shown in equations 8-12; where P(Clx;) is the posterior
probability from a signal classifier and P(C|x,...,xg) is the posterior probability from
the R fused classifiers.

R
Sum rule: P(C X xp) =D P(C|x,) (8)
R
Product rule: P(C|x,exp) = [ P(C| x,) 9)
R
Minimum rule: P(C|x,,...;xp)=min P(C | x,) (10)
R
Maximum rule: P(C|x,,...,xp) =max P(C| x,) (11)
R
Median rule: P(C|x,,...,xz) =med P(C|x,) (12)
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The minimum and maximum rules are approximations to the product and sum
rules respectively; the median rule considers that the sum rule can be considered as
computing the mean posterior probability and hence approximates this behaviour

using the median as a robust estimate of the mean.

The assumption of posterior probabilities poses problems for non-Bayesian
classifiers, especially when attempting to combine classifiers with disparate
distributions of ranges and scores. Where fusion of non-Bayesian classifiers has been
attempted then score transformation techniques have been proposed [19, 21, 29, 30] to
allow these classifiers to fit into the framework proposed by Kittler. It was the
intention of our research to provide a probabilistic framework for data fusion where
score transformation is not necessary; for this reason these methods will not be
discussed further, other than to note that this transformation may introduce further

errors into the classification process.

These rules work well in the case where classifiers are balanced (the error rates
from each classifier are approximately equal); however when classifiers are
imbalanced, use of the sum or product rules can lead to performance that is worse
than the best individual classifier [25]. One solution is the use of Behaviour-
Knowledge Space as proposed by Huang and Suen [31] which formulates a look-up
table to translate classifier outputs to a class label with attached confidence. This
again reduces the fusion to a rank rather than score based system, and requires a very
large training set to populate the knowledge space. A more straightforward solution is
the use of weighted sum and product rules (Linear and Logistic Opinion Pools)
proposed by Benediktsson and Swain [32], these rules are shown in equations 13 and

14.

R
Weighted sum: P(C| x50 x5) = D WP(C | x,) (13)

W,

R i
Weighted product: P(C|x,,...x,) = [P(C|x) (14)
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where: ZW. =1 (15)

The setting of the weights, w;, still represents a training requirement but a very
much smaller requirement than other trained methods discussed above. Equation 16
describes the optimal weights, w;, as stated in [25] where E; is the error in addition to

the Bayes error from classifier i.

oY
(23] % 1o

7

Other methods [33, 34] base the decision to fuse on the perceived expertise of a
given classifier for a given situation. If the classifier is considered an expert then the
decision of that classifier is used, otherwise fusion rules are used that reflect the
confusion over the classification. “Arrogant” classifiers (those that tend towards a
certain decision regardless of collaborating evidence) as described in [34] may be

discounted since they do not yield outputs suitable for combination.

Also of interest are papers describing those situations where classifiers are

suitable for fusion, some interesting rules of thumb appear [19]:

“1. Combining data from multiple inaccurate sensors (having an individual
probability of correct inference of less than 0.5) does not provide a significant overall

advantage.

2. Combining data from multiple highly accurate sensors (having an individual
probability of correct inference of more than 0.95) does not provide a significant

increase in inference accuracy.
3. When the number of sensors becomes large (e.g., greater than 8 to 10),

adding additional identical sensors does not provide a significant improvement in

inference accuracy. Note, however, that adding a new sensor type may have a very
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significant impact in inference capability, because of an added dimensionality of

observational data.

4. The greatest marginal improvement in sensor fusion occurs for a moderate
number of sensors (i.e., one to seven), each having a reasonable probability of correct

’

identification.’

In addition Daugman [28] states that in the case of imbalanced classifiers the
error rate of the weaker classifier “must be smaller than twice the cross-over [equal
error] rate of the stronger test’. However Roli et al. [25] have demonstrated that the
use of the weighted sum rule does give an improvement in performance when fusing
imbalanced classifiers in face recognition. We will seek to explore the accuracy of
these assertions in Chapter 4 since we have the means to test these in a probabilistic

multimodal setting.

2.4 Global Variance Estimation

As described in section 2.2, obtaining accurate likelihoods is dependent on
good estimates of the mean and variance of class data. We are often very constrained
on the availability of data, particularly multiple examples of the same class. Given a
set of M dimensional feature vectors 2 from class C;, it is trivial to calculate the mean
vector, u;, even from small numbers of examples. However when we attempt to
calculate the covariance matrix of the feature vectors A; we find that unless the
number of examples used to calculate A; is greater than M, the covariance matrix is
likely to be singular and hence unsuitable for use in calculations. Where there can be a
reasonable assumption that classes have similar distributions such as in the case of
biometrics; we considered the proposal by Liu and Wechsler [12] that the covariance
could be assumed to be uniform across all classes and further that the covariance

could be considered as a diagonal matrix of the M variances, o°,0f the elements in Q.

A =diag{c},03 ,....00 )} (17)
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For a training set T consisting of K examples from N classes we estimate the
variance by subtracting the class mean, u;, from each training vector belonging to

class C,.

dy =|Qk —H;

, k=1,.,K, QeC,

(18)
This forms a set of differences D = {d,,d,,..,d,} and hence:
K
f:izwf,hd ..... K
K= (19)

This then yields a non-singular outcome. Tests on the validity of these
assumptions may be found in the chapter describing biometric data and systems
(Chapter 3). This method would clearly be inappropriate in circumstances where both
the location (mean) and structure (variance) of the data differ greatly between each

class.

2.5 GGaussian Based Likelihood Models

In this section we examine the use of Gaussian based likelihood models for
classification in high dimensional feature space. The multivariate Gaussian likelihood

is given by equation 20:

L) A )
e 2
P(x|C)=

m - (20)
27) 2| |

We further found that with no loss of performance we may approximate the

covariance matrix with the diagonal variance matrix as described in 2.4.
In order to test the use of this Gaussian probabilistic frame work, we used the

Principal Component Analysis technique to extract facial feature vectors from a data

set of the Notre-Dame HID database [35]. Having pre-processed the images by

16



centring and cropping to uniform size, transforming to 8-bit greyscale and reducing
them to a 78-dimensional feature space we then constructed training, gallery and
probe sets. We trained the global covariance estimate using 595 images from 119
subjects. We approximated the class means, y;, using a gallery of single images of 200

subjects not used in training the covariance matrix.

From equation 20 we estimated the likelihoods for 200 probe images of the
subjects in the gallery using both the local and global covariance estimates. We then
used equation 4 to calculate the posterior probabilities of each probe image over all
classes and formed an identification decision using equation 5. For comparison we
also used a Euclidean distance classifier for subject identification using the same

probe and gallery sets.

The rank one recognition rate of the Bayesian classifier using a global
estimation of the covariance matrix was 78%; this compares favourably with the
Euclidian distance classifier with a rank one recognition rate of 61%. However,
looking at the probabilistic outputs we realised that there appeared to be a significant
difficulty with Bayesian classifiers that had not been reported in the biometrics
literature. It appears that the likelihoods derived from the PCA data are badly scaled,
spanning fifty or more orders of magnitude, due to the Gaussian functions becoming
very narrow in high dimensions. Likewise the posterior probabilities from Bayes rule
tend to cluster near 0 or 1. These properties could make it difficult to obtain a
reasonable threshold for verification and may reduce the effectiveness of the proposed
data fusion algorithms; they also remove much of the intuitive nature of probabilistic
recognition. This problem appears to be not yet covered in the literature; we suspect
since there has as yet been no consideration of subsequent use of the classification

data, research performance has been satisfied by recognition performance alone.

2.5.1 Histogram Scaling

In order to rectify the problem of poorly scaled outputs we propose a new
method for scaling the likelihoods such that they are well distributed between 0 and 1
[8]. This method is based on using histogram equalisation to map the likelihoods

obtained through the multivariate Gaussian to one of three histograms: a uniform
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histogram, a Gaussian histogram with a centre at 0.5, and a twin Gaussian histogram

with one centre at 0.25 for impostors and another at 0.75 for clients.

Histogram of Flat Mapped Likelihoods Histogram of Gaussian Mapped Likelihoods
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Figure 2-1 Results of Histogram Scaling of Likelihoods

Using likelihoods from clients and impostors we form an input vector of length
L, HL, ranked in ascending order. We create two ordered output vectors drawn from
flat, HF, and Gaussian distributions, HG. For the Gaussian distribution the mean, v, is
chosen as 0.5 with a variance, s, of 0.25; the length of these two vectors, J, is set so
that there may be a unique mapping between the input vector and both of the output

vectors, these are constructed according to equations 21 and 22.

HFU):%j, =1 21)

HG(/):% 1+erf(£;§vj j=loJ (22)
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Each point in vectors HF and HG is multiplied by the number of points, L, in
the example vector HL and rounded down to the nearest integer to give an index for
HL. The value in the mapping vector, M{G|F}, at this point is the value of HL
corresponding to the cumulative variance at the same point in H{G|F}. This provides
us with a mapping from the input histogram to the output histogram, as per equation

23.

M{G|F}(j) = HL(floor(H{G|T}(j)x L)), j=1,..J (23)

Using this method we also produce a twin Gaussian mapping where two HG
vectors of length J/2 are formed; the first with a centre at 0.25 and the second with a
centre at 0.75. These vectors are then formed into mappings using equation 23 with
the vector HL being drawn entirely from impostors in the first instance, and entirely
from clients for the second mapping. By concatenating these two mappings we form a

mapping HT consisting of two Gaussians trained on client and impostor data.

Again using the Notre-Dame database we performed verification between a
gallery image of a subject and four probe images of the same subject, for each subject
we also presented four impostor images to the system; this test was carried out across
200 subjects in all. For each verification the posterior probability, together with the
flat, Gaussian and twin Gaussian mapped likelihoods were obtained giving four
measures of identity for each subject. The EERs for each of these is given in Table

2-1 with the resultant class distributions shown in Figure 2-1.

Method Equal Error Rate %
Posterior Probability 17.2
Uniform (Flat) Histogram 14.8
Gaussian Histogram 14.5
Twin Gaussian Histogram 14.9

Table 2-1 Equal Error Rates for the Histogram Scaling Experiments

From our experiment we found that the histogram techniques showed
improvement in verification performance over the posterior probability method. The

performances of the histogram mapped techniques are significantly better than the
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posterior probability method at the 1% significance level using a McNemar’s test
however the performance difference between the three histogram techniques is not

significant.

After careful consideration of our findings we decided that a direct method for
calculating the likelihoods without any score normalisation was a more intellectually
robust approach, therefore this work was abandoned in favour of the logistic based

likelihood which coincidentally gave improved results.

2.6 Logistic Function Based Likelihood Models

After initial tests using Gaussian likelihood models for face recognition, we
found that the Gaussian approach did not produce suitable probabilistic outputs for
use in fusion. Since we had set out to construct a schema that directly produced well
scaled probabilistic outputs suitable for use in fusion, it was clearly appropriate to

seek an improved method for likelihood estimation that required no post processing.

When dealing with two class problems, such as biometric verification, there is a
clear advantage in following the methods of Moghaddam et al. [13] in calculating the
evidence based on intra- and inter-class likelihoods, since this significantly simplifies

the calculations.

In keeping with our probabilistic framework we seek to find a function that
tends to unity where the difference between the class mean and feature vector is zero
and tends to zero as the distance between the class mean and feature vector becomes

larger than the class variance.

A suitable model for these distributions is a logistic function [36] such that:

1
P(d|ci):T

Hc;

be.
l+e ©

(24)
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(25)

Once likelihoods have been calculated for all classes we may then use equation

4 to find the posterior probability for any given class.

For a two class problem such as biometric verification we may make further
refinements to our method. In this case, if we have a distance, d, between a new
feature and the feature vector of a claimed identity we wish to calculate the client and
impostor likelihoods, P(d|C), P(d|l), given measurements of the intra and inter-class
means and variances, uc, Uy, o , of. Here we wish the client likelihood to tend to one
as the difference between the new feature and reference vector tend to zero and tend
to zero and the difference becomes larger than the intra-class mean. Conversely we
would wish the impostor likelihood to tend to one when the difference is larger than
the inter-class mean, and tend to zero as the difference nears zero. If the distributions
of d for clients and impostors are slightly overlapping then the desired behaviour of
the function and the underlying distributions are shown in Figure 2-2. The
overlapping area is that where client and impostor feature sets are of similar distances
from the template; it is within this region that errors occur. The amended functions are

shown as equations 26-28.

1

Pd|C)=—5 (26)
l+e '
1
Pd|1)= ) (27)
l+e ”
30,
b, = — where/=C|I (28)
r
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Figure 2-2 Inter and Intra Class Distributions and Likelihoods

These two functions conform to our requirements set out above that they take
into account knowledge of the variations of d, that they are well distributed and

guaranteed to produce outputs between zero and one.

Having found the intra and interclass likelihoods using equations 30 to 32 we

may calculate the posterior probability P(C|d) from equation 6.

Importance sampling [37, 38] could also be used to describe the distribution of
data, however we found that likelihood measures were sufficient to accurately

describe the data so felt this unnecessary.

2.7 Dempster-Shafer Theory

Dempster-Shafer theory [39] provides an alternative probabilistic, which is
claimed to include Bayes’ rule as a restrictive special case. Their formulation

considers a frame of discernment which is a finite set of all possible outcomes (or in
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our case classes). The belief in a given possibility, Bel(C), is given by combining the
orthogonal sums of all pieces of evidence, m,, in support of this possibility. Belief is
described as “the degree of support a body of evidence provides for a proposition”,
and hence is akin to our view of the posterior probability, P(C|x). Given two pieces of

evidence, s;, 52, for a possibility C; the degree of support S(C) is given by:
S(C)=5 @5, =1-(1-5)-(1-5,) (33)

It is also noted that n pieces of evidence may be pooled using pairwise

orthogonal sums:
(s, ®s5,)®5,)..) @35, (34)

Should instead we have two pieces of evidence pointing to conflicting beliefs
such as s; pointing to outcome A and pointing to s, outcome B, then we erode the

belief in both outcomes:

s()=10) (39)
s(3)=) (36)

By way of comparison the evidence in our formulation of Bayes rule would be

combined as follows:

S

S(4)= —— (37)
S,
S(B)= —y (38)

The authors claim that their method is preferable to Bayes rule in the case of
conflicting evidence for mutually exclusive classes since it retains the “representation

of ignorance” implicit in our estimates of the support for each belief. Whilst this holds
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some sway, when compared to our formulation of Bayes rule it also confuses matters
in marginal cases and provides the counter-intuitive situation where our belief in a

complete set of mutually exclusive possibilities does not sum to unity.

2.8 Conclusions

In this chapter we have set out the role of probabilistic techniques in
classification. We have discussed the formulation of Bayes’ rule, which we intend to
use for our probabilistic framework, in order to yield posterior probabilities that we
may make decisions on. We then describe various methods of data fusion, focusing
particularly on score fusion. Having concluded that score fusion has the greatest
potential for our applications, we expand on the use of mathematical rules for score
combination; these rules contain the ability to weight these inputs based on classifier

efficacy. The theoretical optimum for classifier weighting is briefly discussed.

Having set out background techniques we then considered two specific
improvements to our probabilistic framework which dealt specifically with problems
we had identified. Firstly we looked at global covariance estimation for homogeneous
sets of classes in order to overcome a paucity of data. Then we considered the most
appropriate likelihood model for our framework, settling on the logistic function as
especially suitable for the two class problem and those applications with high
dimensional feature vectors. Finally we considered an alternative probabilistic
framework for combining evidence, Dempster-Shafer theory, and highlighted key

differences with our framework.

In future chapters we illustrate the use of these techniques in disparate
application domains and evaluate some of the claims and assumptions that we have

made in this chapter.

In summary our contributions to knowledge from this chapter are:
1. The use of global variance estimation for homogeneous sets of classes;
2. The modelling of class likelihoods by the logistic function;
3. Formulating the verification problem as a two class problem modelled by intra

and inter-class logistic functions.
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Chapter 3

Biometric Data and Systems

3.1 Introduction

This chapter describes a broad range of contributory methodologies,
technologies and systems for biometric recognition that could be used in the Data
Information Fusion, Defence Technology Centre 8.11 (DTC 8.11) contract. Our aim
in the DTC 8.11 contract, that has formed the basis of much of the work in this
chapter, was to pioneer a secure access portal to improve building security by
constructing a system for collecting multimodal biometric data from subjects and

automatically verifying their identity.

We have built a ‘tunnel’ environment to aquire multiple biometric modalities at
a distance (at least two metres; such as face and gait, rather than fingerprint or iris).
The tunnel is a self contained system with automatic calibration, subject enrolment,
feature capture and extraction, storage and identification. Automation was considered
important in order to develop a system that could be deployed in a live environment
and also to reduce the very large human burden in collecting a very large biometric
database. The focus on biometrics that may be used at a distance is threefold: firstly
this reduces social factors such as contact with unfamiliar devices that others have
used; secondly these systems may be used covertly and possibly incorporated into
existing surveillance systems; and thirdly subject throughput should be improved

since no interaction with the system is necessary.
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The increased possibility of occlusion or other failures to acquire accurate data
when capturing at a distance is a primary concern leading to the preference of
multiple modalities. By capturing a number of biometric modes we can be more
confident that we have useable biometric samples to identify a subject and often will
be able to combine these to improve identification performance in addition to
reducing failure to acquire rates. In a mass transportation system or other large public
installation, a multi-modal system also provides us an opportunity to include users
who would usually be unable to use a conventional unimodal system due to disability
or cultural sensitivity; since we can select only the appropriate modalities for their use

whilst maintaining reliability for other users.

An equally important aim for this system was to collect a large scale multimodal
database for human identification, at a distance and in a controlled environment.
Collection of a large database of this kind is vital due to the lack of a single source of
biometric data of this kind. This leads to poor quality evaluation data since many
studies restrict themselves to small number of samples and subject created from
amalgam databases where different modalities actually come from different subjects
captured under differing conditions. This leads to myriad problems in effectively
evaluating the data, since one cannot assume that orthogonality of data nor covariate
factors are not artefacts of conflicting experimental protocols between the combined
databases. Uneven protocols between merged databases also rules out many study

types such as those of temporal or environmental effects.

This system is the first multimodal biometric system in the world to be based on
collection of modalities at a distance, there is also contemporaneous work for distance

modalities based on ‘Iris on the Move’ being performed at Sarnoff Corp [40].

We begin this chapter by describing the modalities that are targeted by the
system, we review the background to these modalities and common extraction
techniques before describing in detail the extraction methods we use. We will then
describe the collection and verification system we have developed, focusing on the
following areas: the hardware used to construct the system, the pre-processing stages
carried out on the captured data, and the storage solutions for the large volume of data

collected. The collection strategy for our system is explained. We finish the chapter
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by explaining the testing methodologies we use in the system as well as detailed

descriptions of specific tests.

3.2 Modalities

This section describes the modalities that we chose to use in the tunnel. As
explained in the introduction, all of these are capable of automatic capture and
extraction at a distance. For each modality we give a background to the history of the

modality before discussing the technique or techniques that we have selected.
3.2.1 Face

Face recognition from still images is now some 30 years old and a number of
comprehensive review papers have been written describing various techniques to
extract feature vectors [41, 42]. Broadly, techniques may be split into feature based
and holistic techniques, with holistic techniques in the ascendance in recent years. The
baseline holistic technique for face recognition is the eigenface method proposed by
Turk and Pentland [43]. This technique, based on Principal Component Analysis,
transforms an image (of length N°, in vector form), I', to a new lower dimensional
vector, Q. Given a set of M training images [, I, I5,..., Iy, the mean face, ¥, is
given by equation 39, and the difference between each training example and the mean

faceis @, =1;- Y.

Y=—>T, (39)

Since the calculation of eigenvectors from a N° by N’ matrix would be
computationally impossible for typical image sizes, we use a reduced covariance
matrix, 4’4, where, A = [®; @, ... $y,], which is of a more manageable size of M by
M. We then find the M eigenvectors, v;, of ATA. These vectors are linearly combined

by equation 40 to form the M eigenfaces, u;, which can also be denoted as a matrix

U=/[uyj uy,... uyf.
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M
u =y v ®@,, I=1..,.M (40)
k=1

If we sort the M eigenvectors by their eigenvalues in descending order we may
choose to only use the largest few vectors or those that account for a specified
percentage of the variation. This provides a trade off between noise immunity, vector
size and accurate description of the variation. When using the eigenface technique for
recognition, it is useful to ignore the first eigenvector (i.e. that with the largest

eigenvalue) since it typically represents variation in illumination [44].

A new image, /', may then be transformed to the new lower dimensional vector,
Q, where Q = [w; w;... wy] and wy is calculated by equation 41. In this case M is
either the original number of training images or a lower number based on the choices

set out in the proceeding paragraph.
o, =u (T=¥) (41)

The eigenface technique is by no means the most effective; in comparative tests
it performs 5-10% worse than the best algorithm [45-47]. However it is well
understood and useful for forming a baseline test of face recognition. The eigenface
technique was used in Chapter 2 to test the use of Gaussian models for distribution
estimation. Other still-image techniques of interest are those with a probabilistic or
Bayesian element [11-13, 48-50] and some of these methods have informed our

probabilistic techniques described in Chapter 2.

Pre-processing techniques are also an important factor in face recognition
systems and tools are available to enable this [51]. Face recognition from video is a
more recent area, again of particular interest for our work are those using probabilistic

or Bayesian techniques [52, 53].

Having looked carefully at the eigenface technique with the publicly available

pre-processing tools we concluded that a more robust method was required for fusion
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with our other techniques. For this we looked to the Software Development Kit from

OmniPerception Ltd. which grew out of work at the University of Surrey, UK.

The OmniPerception code is based on client specific Fisher faces [54], which builds
upon the work of Belhumeur [55] on Linear Discriminant Analysis for face
recognition. After pre-processing with proprietary algorithms and PCA
dimensionality reduction as described above, the client specific approach used by

OmniPerception proceeds as follows:

C; 1s the claimed identity of client j and / is the impostor class. Whilst we are
dealing with the verification problem with a single claimed identity, the impostor
class is built from the other enrolled users in the system during training. If each client
has M; example images projected into PCA space (2;;, 2>, ... 2 u) in the training set

of size M, then the mean for each client Kj is given by equation 42.
1
K,=—2>Q, (42)

The impostor mean K; based on client j can then be calculated using equation
43, where ¥, is the mean vector for that client. The impostor mean will stay close to

the origin regardless of the client.

K =l (43)

44,

S, =~ LK K" (44)

The covariance of the impostor class, Y}, given by equation 46 is related to the

covariance of the client class, Y}, calculated using equation 45.
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M
j:MLz}(Qn—Kj)(Qn—Kj)TQnecj (45)

MM,
Y= | MY-MY,———L K KT (46)
M—-M. MM,

The within class scatter matrix, 2, is given by equation 47.

> =Y-S, (47)

J J
The only non-zero eigenvector, v, can now be found directly from equation 48.

v=3 K, (48)

J

Therefore the overall client specific linear discriminant transformation from pre-
processed image for client j is given by equation 49, and hence is the client specific
Fisher face, a;, for this identity is the product of the eigenvector found in equation 48

and the matrix of eigenfaces from equation 40.

a.=Uv (49)

J

For a new pre-processed image, z, the similarity decision score, d;, for client j
may be calculated by projecting it onto the Fisher face for that client and subtracting
the weighted class mean also projected onto the client Fisher face, this is given by
equation 50. In the case where the total number of training examples is very much
larger than the number of client specific example then the second term will tend to
zero and the similarity score is simply the absolute score of the image projected onto

the Fisher face.

(50)




This score is then transformed, again in a proprietary way, to give a well
distributed output between zero and one; the transformed score may be used directly

for fusion.

3.2.2 Gait

Gait recognition is defined as the identification of a person through the pattern
produced by walking. This field has produced significant interest over recent years,
and through this work it has been shown that a subject’s gait pattern is sufficiently
unique for identification [56]. Gait has particular advantages over other biometrics: it
can be used at a distance, uses no additional skills on the part of the subject, and may
be performed without subjects being trained to interact with the system. All of these

advantages make it particularly valuable in surveillance or security systems.

A recent review of gait recognition techniques has been produced by Nixon et al
[57]. Recognition methods can be broadly divided into two groups, silhouette based
techniques and model based techniques. Silhouette based techniques [58, 59] tend to
offer speed and simplicity, but are only indirectly linked to gait and are difficult to
normalise for noise or variations caused by covariate factors such as clothing. Model
based techniques [60-62] use the shape and dynamics of gait to guide the extraction of
a feature vector. Static and dynamic measurements can be extracted directly whilst the
constraints of the model ensure that only plausible human shape and motion is
permitted. The constraints of the model also dramatically reduce the effects of

variance due to clothing or noise.

Veres et al [63] describes two silhouette based methods based on analysis of a
sequence comprising one complete gait cycle. After correction for radial distortion,
background subtraction is performed and a complete binary silhouette for each frame
is extracted by connected component analysis and morphological operators. The
silhouettes are then downsampled and normalised for height and location to give a
common centre of mass. To extract a full signature the silhouettes are combined over
the whole gait cycle. The average silhouette, A4,,, is obtained by calculating the point

average of the whole sequence as per equation 51:
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1< .
A, =;§P(z>x,y (51)

Where P(i),, is the binary pixel value at point x,y of the i-th silhouette in a gait
sequence ¢ frames in length. Usually a silhouette of 64x64 pixels is used giving a

feature vector of length 4,096.

The differential silhouette, D,,, is formed by a differencing operation on all
silhouettes in the sequence to capture motion and again yields a 4,096 dimensional

vector. This is seen in equation 52.
D, =P@®),,—-Pt-1),,—.—P0O),, (52)

Wagg and Nixon [64, 65] propose a method of model based estimation. The gait
signature derives from bulk motion and shape characteristics of the subject,
articulated motion estimation using an adaptive model and motion estimation using
deformable contours. After extraction of the edge images via the Canny edge detector;
a motion compensated temporal accumulation algorithm [66] is used to extract the
bulk motion of the subject in the horizontal plane. This is then filtered using template
matching, leaving only motion due to the subject. Shape estimation is then performed

using a more accurate model of the subject’s shape.

Articulated motion is estimated as sinusoidal models of hip, knee, ankle and
pelvic rotation. These provide a starting point for model adaptation of the subject’s
limb movements. An adaptive process for joint location is then applied to the
sequence to form a more accurate and robust model of limb movement. This adaptive
process is based on an iterative gradient descent model repeated until no changes
occur over the entire sequence. Example images for each of these processing stages

are shown in Figure 3-1.

The processes described in [64] yield 45 parameters based on joint rotation

models for the hip, knee and ankle (e.g. rotational range and period) and 18
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parameters describing the subject’s speed, gait frequency and body proportions (e.g.
torso to leg ratio, stride period, heel to toe strike time). A further 10 parameters are
extracted from the processes described in [65]. All of these parameters are normalised
to make them size invariant. More recent experiments have found that for controlled
environments adding height as another parameter yields an additional improvement
over the height normalised feature vector, we will explore the options of treating the

height parameter as an additional measure to be fused in section 3.5.2.

Figure 3-1 Stages of dynamic gait extraction

In our collection environment described in section 3.3 the pre-processing
methods used to obtain fronto-parallel silhouettes vary from that described above,
which are used for our experiments (as seen in Figure 3-2) described in section 3.5.2
and chapter 4. These differences are due to the capture of three dimensional data and

the methods are fully described in section 3.3.2.

Figure 3-2 Example fronto-parallel image from a gait sequence
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3.2.3 Ear

Biometrics based on ears are little explored in the literature, though three
different techniques of interest appear in a review paper by Pun and Moon [67]. The
first, proposed by Burge and Burger [68] describes the use of edge data from still
images of ears. Edge relaxation is used to form curve segments, which are combined
using a Voronoi neighbourhood graph model; finally an error correcting graph
matching algorithm performs classification. The second method described in the
literature is an “eigen-ear” approach [17] almost identical to the eigenface method

described in section 3.2.1.

The third approach, proposed by Hurley et al. [69], uses a force field functional
technique where based on the intensity of surrounding pixels and ellipse of test pixels
are drawn along through a potential energy surface over the ear image until they reach
potential wells. Though Hurley reports excellent recognition results using the force
field functional technique, this is achieved by exhaustive template matching rather
than a feature vector based match process. This significantly complicates the
incorporation of this method into our probabilistic framework and so has not been
progressed further at this stage. Hurley also proposes using the location of the
potential wells as a feature vector, however this produces only a four dimensional

feature vector and does not yield sufficiently high recognition rates to prove useable.

Because of the difficulties with the force field functional approach, we
considered the use of a PCA approach for feature vector extraction. The performance
of PCA dependes strongly on accurate cropping [69]; thus following on our desire to
have an entirely automated processing chain we sought to devise an accurate and

timely method for cropping ear images prior to PCA.

Our solution first used the Sobel edge detector to find all edges in an image
containing an ear. Once an edge detected image has been obtained, we then use a
Hough transform for ellipses [70] to find the ear. Since an ear in the image will
usually be of a definable maximum and minimum size and within a small degree of
rotation from vertical it is possible to severely constrain the search space for the

Hough transform. This makes operating on high resolution images containing an ear a
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tractable problem. Once the size and centre of the ellipse has been found the original
image is cropped at that location. We then downsample the cropped image to a
common size and perform PCA as described above. Accounting for 75% of the
variation and removing the largest eigenvector to compensate for lighting variations

we derive an 119 dimensional feature vector.

Figure 3-3 Example image for ear recognition

3.2.4 Footfall

There is strong desire to complement the use of video based gait recognition
with that based on gait cadence or footfall by means of a sensor floor. Indeed the
historical justification often used for gait recognition is a reference Shakespeare

”1, which refers to a

makes to gait cadence “Great Juno, comes, I know her by her gait
character offstage. A small number of sensor floor systems have been developed
although few are specifically for identification. A key use of these systems is the
study of pathological gait by physiologists, such as in the diagnosis of age related
disease [71]; some commercial companies such as Tekscan (http://www.tekscan.com)
supply systems for this end. Unfortunately these systems are prohibitively expensive

for a large surface area and use proprietary interfaces that make adapting their use to

! Ceres in The Tempest Act 4 Scene 1 by William Shakespeare
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recognition problematic. Also with a view to investigating pathological gait Reilly
and Soames [72] describe a delay line based approach where a delay line lies
orthogonal to a conductor carrying a pulsed current. Subjects wearing permeable
shoes step on points where the delay line and conductor cross induce a large current in
the delay line. This solution is unsuitable for recognition for two reasons; firstly it is
unreasonable for subjects to wear special equipment to be identified and secondly the

authors expressed problems in producing the delay line.

Recognitions systems (or those that may be adapted as such) have been partially
developed in a research environment. Cattin uses footfall and video is his system [26];
this technique uses a sensor floor to measure the ground reaction force across an array
of twelve pizeo force sensors, one at each corner of three 60cm x 60cm wooden
plates. The feature vector is comprised of the windowed power spectral density of the
reaction force in the range 0-20Hz. Orr [73] proposes a system based on load cells to
measure ground reactive force of a single footstep for identification, ten features are
extracted from the load profile and used for recognition. The ORL active floor [74] is
also a load cell system, though this time a single large plate with load cells in the
corner; using hidden Markov models they were also able to demonstrate recognition
capability. Whilst each of these methods report reasonable recognition performance,
we would also like to be able to use the sensor floor to locate the subject within the

tunnel to aid with video processing.

Non-recognition systems that can inform this aim include the MIT ‘Magic
Carpet’ developed by Paradiso [75]. In this work, grids of piezoelectric cable
monitored approximately 60 times per second have been used with 10cm accuracy.
Whilst suitable for their use of tracking, this lacks sufficient information to be useful
for recognition. The same group then developed into the z-tile design [76] which uses
twenty force sensing hexagonal tiles with an accuracy of 40’mm. This group also
examined the use of optical range finders [77] to give 40°mm accuracy, but this
solution lacks the ability to sense the subject’s force profile and hence reduces the

scope for biometric identification.

In designing our system [4] we wished to have a resolution of 30mm?, through

knowledge of the mechanics of gait we calculated that a minimum sample frequency
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of 7Hz was required and hence selected a frequency significantly higher than this
(22Hz). Using a resistive grid, N frames are captured to form a series of binary
images, I,, where n is the frame number. /,(x,y) has the value 0 when the switch at
location (x,y) is open and 1 when closed. From this image sequence we produced
three footfall metrics. First we obtain the aggregate the aggregate image, A4, through
equation 53. This cannot be used for recognition because it is not position invariant.
We then sum across 4 to give a footfall profile, £, as given by equation 54, where Y is
the number of sensors across the width of the track; again this is not position invariant

but is related to the force applied by the subject as they walk.

A, 9) = 2, (59) (53)
£ =Y Ax, ) (54)

From the footfall profile we may then find the heelstrikes, /;, and use these to

calculate the stride length, Lg, via equation 55, where s is the sensor resolution.
=y —hy)s (55)

Similarly we may find the frame at which each heelstrike first occurred and
calculate the step time, 7;. Our final metric is the average ratio of time spent on the
heel versus that spent on the toe, Ry, over the M strikes recorded in the sequence.
The number of frames spent on each is given by f(%;) and f(t;), hence the ratio is given

by equation 56.

S (h)
56
Zf(t) )
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3.3 Biometric Data Collection System

In order to construct the tunnel to capture the modalities described above, a
number of key elements needed to be completed [3]. Broadly these were: the physical
hardware to construct the tunnel and sensors to capture the data, the software to
aggregate the data and perform pre-processing such that the modality extraction
techniques performed above would work, and the storage system in order that data
would be automatically labelled and could be easily retrieved for matching or further
study. Each of these areas is described in detail in this section and includes key design

decisions and innovations.
3.3.1 Physical Structure and Hardware

The structure of the tunnel is constructed of a lightweight aluminium framework
which allows easy mounting of cameras and backdrops. The floor space within the
tunnel is 3m x 3m (plus a lead in and lead out area of Im at either end), with a 70cm
wide track running down the centre. The walls are constructed with panels of 2m high
fibre board built on a lightweight aluminium frame. In order to aid the pre-processing
stages described in section 3.3.2 a pseudorandom non-repeating pattern covers the
side walls and floor; this consists of adjoining 40cm squares of three colours (blue,
grey and green, used as standard chromakey colours). The track is coloured green to
reduce reflection. The tunnel is lit with six standard fluorescent lighting units
positioned to give even lighting over the entire track. The current tunnel and a

synthetic rendering of the tunnel can be seen in Figure 3-4.

Figure 3-4 Actual and Synthetic Views of the Tunnel
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The tunnel contains nine firewire video cameras running at 30fps. Eight of these
have a resolution of 640x480 and are positioned equidistantly around the tunnel to
capture the subject’s gait, the other camera is a high resolution (1024x768) positioned
at the end of the tunnel to record the face. All of these cameras are fully synchronised
across multiple firewire-busses using proprietary synchronisation  units
(http://www.ptgrey.com/). The configuration of the eight gait cameras can be seen in

Figure 3-5.
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Figure 3-5 Gait Cameras Configuration

As mentioned in section 3.2.4 our sensor floor was constructed as a resistive
grid. Basing our 30°mm resolution requirement over the complete track we needed 96
by 16 sensors over the sensor floor. This is achieved by separating a grid of wires by a
deformable material such as foam; when a force is applied at any point on the grid the
wires at that point will come into contact, closing the switch. To read this sensor a
voltage is scanned down the rows, with a voltage applied to a particular row it is read
off each of the columns in turn. A microcontroller is used to control the scan and to
transfer the results to a PC for processing. In order to avoid ghosting, where more
than two paths could have been followed to give the same output, we used two
techniques: firstly we used four electrically isolated grids with lower resolution so that
multiple switches on the same grid would not be simultaneously depressed, and
secondly we used a second offset layer to double resolution without risking ghosting.

Fuller details may be found in [4].

Recording, processing, matching and storage of all data are performed on a

cluster of eight modern PCs. Four of these are used for capture and initial processing
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of gait images, one is used for the capture and processing of the facial data, one is
interfaced with the sensor floor and triggering system, one is used as a system
controller and server, with the final machine having been upgraded to 1.5TB of

storage for archiving of data.

In order for the tunnel to be fully automated, a simple entry and exit detection
system has been produced based on break beam sensors. This laser based system is
controlled and monitored through the parallel port of a PC. In the recording phase of
this project a barcode scanner is used to allow subjects to identify themselves to the

system for automatic data labelling.

3.3.2  Software, Agents and Processing

A system diagram is given by Figure 3-6; firstly calibration is performed to
ready the system for data acquisition, and then during data capture various processing
tasks are performed before storage occurs as described in 3.3.3. Processing tasks are
divided into two categories, local and global. Local tasks are performed entirely on a
single computer using only local information, global tasks by contrast use distributed
processing and disparate data locations. In order to effectively utilise available
processing time and to effectively manage global tasks, a distributed architecture is

used, mediated by an agent framework [78].
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Figure 3-6 System Diagram for the Processing Stages



This agent framework has a number of features particularly relevant to imaging
systems such as the tunnel environment: it is a lightweight framework, allowing the
majority of CPU time to be utilised for image processing; the framework also permits
locking to prevent processing from stateful devices being interrupted mid-session. It
also has multi-language support (presently C++, Java and Python) allowing code
reuse from previous research work. Agents are capable of automatic discovery of
middleware components on a TCP/IP network and can query other agents to utilise
services provided elsewhere. Agents communicate via the router which acts as a
broker between agents requiring and providing services. In our framework an agent
can contain one or more remote agents, allowing it to act simultaneously as both a
client and server. Communication facilitated via the router is in the form of XML
messaging which is used to control actions of agents and the router as well as set and
read agents’ input and output ports. For the transfer of large amounts of data, which
would swamp the router, direct connection between agents can be initiated via
streamers; streamers are again mediated by the router, though with the data passing
directly between sockets on the connected agents. Agents are implemented to perform
each processing task described in this section as well as other administrative, control

and display tasks.

Calibration must be performed prior to any session of data collection. For 3D
calibration it is necessary to find a model, K, pose, R, and position, ¢, for the camera.
This allows the projection of 3D world space coordinates, X, into 2D image

coordinates, x, (and vice versa) where:
x=K[R|t]x (57)
Additionally correction must be made for radial distortion due to curvature of
the camera lens. The distorted coordinates, x,, are given by equation 58 and are based
on the lens’ optical centre, x., the distortion parameters, x;, and the distance from the

optical centre, 7.

X, =X, +(1+K1r+1c2r2 +)x (58)
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Once all of the parameters for 3D calibration and radial distortion correction are
calculated for each camera then the tunnel can be considered calibrated. Our
calibration technique involves four steps: radial distortion parameterisation, intrinsic

parameterisation, extrinsic parameterisation and global optimisation.

From an image of the tunnel, Figure 3-7 a), we use a Hough transform [79] on
the Canny edge detected image, Figure 3-7 b), to find all long curves. By
straightening these we may calculate the radial distortion terms. In most cases it is
sufficient to use a single term, x;, for correction. Using the radially corrected image
and the same set of lines, we use the vanishing points to calculate the intrinsic
parameters in a manner similar to Cipolla [80]. Using knowledge of the geometric
properties of the environment we may then calculate the extrinsic parameters. Finally
using the spatially unique pattern on the tunnel, optimisation over all cameras may be
performed by minimising projection errors between the known world points and
image coordinates. Parameter extraction for single cameras are carried out by local
agents with only global optimisation carried out remotely, therefore parallelising the
task and reducing the load on the network. The final active volume projected onto a

single image is shown in Figure Figure 3-7 ¢).

Once a recording has been made of a subject walking through the tunnel,
background subtraction must be performed on the sequence from each camera
(including the face camera). Because of we have computed the active volume for each
camera during calibration, we may reduce the search space for background
subtraction. To perform the subtraction we use a modified two step process [81]. The
background is estimated in RGB space using the median image since this is more
robust to moving objects and illumination variance. Once the background is estimated
the majority of background pixels are removed by image differencing, then the
remaining background pixels are removed by a process of shadow suppression.
Shadow detection is performed by detecting a decrease in saturation in HSV space.
All of these processes are performed locally on a frame by frame basis, and the
resulting background subtracted images are sent across the network for further

processing.
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Figure 3-7 a) Image From Tunnel b) Edge Detected Image ¢) Active Volume Projected onto

Image

Once the background subtracted images have been centrally received a 3D
reconstruction of the subject must be created for each frame. We use a method termed
voxel-based shape from silhouette [82] which is a well established technique for
projecting multiple 2D images into 3D space. Simply this method involves the inverse
of equation 57, each voxel is projected into each camera’s image space. If this
projection is within the 2D silhouette for all cameras then the voxel is accepted as a
true point in the 3D silhouette. Obviously this is a computationally intensive task; we
reduce the computational load by pre-computing the image coordinates and
performing a two pass scan, one at low resolution and then another high resolution

scan within the low resolution bounds.

Face detection is performed subsequently to the background subtraction stage
on the face camera. The head is found by searching for a step change in the silhouette
width at the shoulders, the region above this can be assumed to be the head. Further

checks are then carried out to ensure that the head fits the expected anatomical model
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and is well centred and of sufficient size for a good template extraction to be

performed.

3.3.3 Storage

Because of the desire to use the biometric tunnel as an ongoing collection
environment for biometric data there is a need to be able to re-evaluate previously
collected data in the face of new techniques for pre-processing and feature extraction.
It is therefore necessary to store all collected data in a lossless manner, together with

relevant biographical data of the subject.

The data storage requirement per subject record is approximately 70MB for the
eight gait cameras, another 7MB for the face camera, with an additional 15MB for
extracted vectors and other information. This brings the total storage per run to around

100MB. Given a server capacity of 1.5TB we can store some 15,000 records.

To avoid the labelling and search problems encountered with previous databases
[83] we use an SQL database to store biographical information about the subject and
to point to relevant recording files and extracted templates. For the first recording of
each subject, biographical information is entered via a web interface and the subject is
assigned an anonymous identification number which is printed as a bar code onto a
record card. For each subsequent recording the subject needs only to scan this record
card to ensure that their data is correctly labelled. Run identifiers are added to file
names and the database by the agents as processing stages are completed. This format

may be easily exported to a flat file or XML format for distribution if necessary.

3.4 Collection strategy

Having previously constructed a large gait database [83], and with other large
biometric databases having been produced [35, 84] we became interested in how
much data we should collect to make the tunnel data collection statistically

significant.
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Veres has produced work giving a novel approach to the calculation of
necessary database size which we précis here. In a database of n total samples,
comprising of N, subjects and n, samples per subject, the error rate per sample for a
given individual i will be given by equation 59. Z; is a binary value representing a

recognition error for the j-th sample of the i-th subject.
. 1 &
b= _zzg/ (59)
ng J

Therefore the total recognition error across the whole database is given by

equation 60.

&
h=—Sh 60
p NSZP, (60)

i

Assuming that the data is identical and independently distributed the recognition
errors, Z;, can be described as Bernoulli trials. The total number of errors, s, in 7 trials

is distributed according to the binomial distribution:
n s n—s
P, (s)=|  |p*(1-p) (61)

The expected value of the error rate is, p = A with the empirical value of the

error rate on the data set given by p. With a certain confidence (7-a) we wish the

expected value of the error rate, p, not to exceed a given value.
p<p+ena) (62)

Where e(n, a)=pp, hence it is fixed to a given fraction S of p. Therefore the null
hypothesis is given by:

H,:p-p<pp (63)
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Thus with confidence (7-a) we can state:

Prob(p > p+&(n,a))= ZPW (s)<a (64)

np—szén
We are interested in finding the values of n, N, and n, that fulfil equation 64.

Using the Chernoff bound [85] we can state that the lower bound becomes:

g(n,a)=+-2Ina £ (65)

n

Since we stated above that we wish to have g(n, a)=fp we can then use equation

65 to find a value of n based on, a, and a fixed fraction, f, of, p.

n:—2lna (66)

p’p

Having obtained a new database achieving an error rate of p using the best

matcher, we wish to test the statistical significance of this result. Under small values

of p and assuming a normal distribution, the hypothesis given in equation 63 becomes

that of equation 67 withz, =+v-2Ilne .

p-p=2z, f (67)

Solving for p — p we pass Hy with confidence (7-a) if we meet the following

2 ~
Z—a[u I+ 4”21’ j < By (68)
2n z,
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We now calculate the number of subjects, N, required. We call o the inter-

subject error variance, which is estimated by equation 69:

ol r v (69)

(70)

Thus using equation 63 we can obtain the number of subjects via equation 71,

noting that o is largely independent of n, when ng»1/p.

N = ﬂjz 71
’ (ﬂp )

The number of samples per subject can be expressed as a function of y, the ratio
between inter-subject error variance, o, and the intra-subject error variance, o,
which can be estimated from previous data. Since y cannot be less than unity by

definition y = max(l, 7?) and since n’= yn and n'=n,N; then:

_m
I’lg —VS (72)

For collecting a new dataset we wish for the expected error rate p to be no more
than 1.25 times the error rate of the best matcher with a confidence of 95%; we may
use the large gait database collected at the University of Southampton [83] and
successful gait extraction techniques [63, 65] to estimate other necessary values. The
values needed to calculate the required size of the dataset are shown in Table 3-1.
Using equations 66, 70 and 72 we may then find the required dataset size for various

typical expected error rates, these are given in Table 3-2.
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a | 0.05
B 02
z, | 1.65
p 10.0153
o | 0.0019
Y 3

Table 3-1 Values Used to Calculate Dataset Size

p | 0.01 | 0.02 ] 0.03
n | 14975 | 7490 | 5000
N; | 1294 | 324 | 144
ng | 35 70 | 105

Table 3-2 Values for Number of Samples, Number of Subjects and Number of Samples Per

Subject for Various Expected Error Rates

When collecting large numbers of samples per subject we must also take care to
ensure that subjects do not tire during recording sessions, nor allow too much time
(more than a couple of days) to elapse between recording sessions to ensure that our
estimates of variance hold [86]. This presents a significant logistical challenge when
constructing a large database, but previous experience indicates this is possible
provided a suitable pool of volunteers is available. As mentioned in section 3.3.3 we
have sufficient storage to accommodate all of the above scenarios. The particular size
of the database shall be decided at a later stage and will be dependent on the
performance of the modalities as well as the practicalities of collecting such datasets;

in any case we will attempt to exceed the numbers given above.

For situations where the size of the population being modelled, N, is of a similar
size to the sample population, Ns; we use a corrected estimate for the number of
subjects, N This is given by equation 73 and assumes uniform sampling of the

population.
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N, =—"x (73)

3.5 Testing

Having designed our system and chosen the algorithms we wish to use; we must
have the capability to test whether our system performs as we would wish, and be able
to compare these results with other techniques. In this section we discuss three topics:
firstly we explain a number of statistical techniques that we shall use to assess the
performance of our techniques and compare them with one another; secondly we look
at the performance of each modality individually; and finally we look at the
performance of the collection system. Discussion of multimodal performance is left

until Chapter 4.

In all testing we should be guided by the standard protocols developed for the
evaluation of biometric algorithms [44, 45, 51]; of particular interest is the recently
published ISO/IEC 19795-1 [87] which contains detailed recommendations for data
collection, evaluation types and protocols. Some of our work in defining international

standards is discussed in Appendix A.
3.5.1 Statistical tests and measures

The key metric we use in assessing performance of biometric systems is the
Equal Error Rate. This is the value of the False Match Rate, when the acceptance
threshold is adjusted to make the FMR equal to the False Non-Match Rate. This value

may also be read directly from a Receiver Operator Characteristic curve.

It is also of interest to consider how the various classification and fusion process
improve the separability of the clients and impostors; this can be measured by

Daugman’s decidability index [28] and is given by:

I
d

) \/%(af +022)
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Where u; and u, are the mean values of the client and impostor posterior
probabilities respectively, and o°; and ¢ are the variances for the client and impostor
posterior probabilities. The decidability concerns the area of overlap between the two
distributions; if this area is large, decidability is low. It is obvious that there will be a
strong relationship between decidability and error rate. By way of comparison the
decidability index for an experiment with a classification rate of 99.2% on 252
examples was 3.43 [69]. This is similar to the Fisher ratio but since we are simply
dealing with a two class verification problem we have chosen not to consider more

complex additions to this theory.

We also need to consider our ability to evaluate our methods in relationship to
other techniques. Beveridge et al. [88] provide a comprehensive review of those
statistics most suited for evaluating biometric systems, especially binomial theory,
McNemar’s tests and information about bootstrapping and sampling. Used throughout
this work, McNemar’s test is a sign test, based on those probes where the two
classifiers fail to agree. The output of this sign test is a p-value describing the
likelihood of the performance of the two classifiers being identical; when this value is
below a chosen threshold we may say the difference between the two classifiers is

statistically significant.
3.5.2 Modality testing

In order to asses the performance of our biometric algorithms in advance of
collecting a large new dataset, we evaluated them on previously collected data which
approximated the data we would collect. In this section we discuss the performance of
each modality individually. The performance of all of the modalities can be seen in

Table 3-3.

In assessing the face recognition algorithm we used a subset of the XM2VTS database
of frontal face images [89] without any occlusion of the face. Using the inbuilt
OmniPerception model for face data, together with appropriate eye spacing
information we allowed the SDK to perform automated face location, feature

extraction and comparison. We used four images for each of 197 subjects (listed in
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Appendix B), from these images we cross compared all images of the same subject to
form a client set of 1182 comparisons (six comparisons per subject excluding self-
comparisons of images). We then compared each subject with six randomly selected
images not from the same subject; this formed our impostor set of 1182 comparisons.
We were granted access to reconstructed feature vectors that we could use with our
probabilistic framework, however because of the way these are constructed these
vectors perform much more poorly than the direct method described in section 3.2.1.
Looking at the distribution of match scores from the direct method shown in Figure
3-8 we see that these still meet our requirements for scale and regularity (that the are
well distributed across the full range of zero to one) and so may still be used for

fusion in Chapter 4.
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Figure 3-8 Distribution of Client and Impostor Scores for the OmniPerception Face

Recognition Algorithm and Matcher

To assess the performance of our gait algorithms we used the Southampton HiD
database [83] consisting of 1,079 sequences from 115 subjects walking to the left we
were able to construct training, gallery, client and impostor sets; these sets were
converted to the dynamic and both static feature vectors as described in section 3.2.2.
The training set consisted of 145 sequences of 15 subjects that could be used to
estimate the intra and inter-class mean and variance; the gallery consisted of single

sequences from 100 subjects; the client set consisted of 834 sequences each matched

51



to a subject in the gallery set; the impostor set consisted of 834 sequences where the

sequences were not matched to a subject in the gallery.

For verification we use our probabilistic framework described in Chapter 2, we
also performed verification using a simple Euclidean distance classifier in order to
verify the performance improvements expected by using our method. For comparison
the EER for the dynamic method using a Euclidean distance classifier is 5.7%; using
the McNemar’s test we can see that the improvement due to our framework is
statistically significant at the 95% confidence level. More importantly the distribution
of match scores for the Euclidean distance classifier span five orders of magnitude
and extremely poorly distributed (making setting a verification threshold extremely
difficult). By contrast the distribution of match scores based on the probabilistic
framework are shown in Figure 3-9 and we can see that these clearly fulfil our
requirements set out in Chapter 2, that they span the full range and are well

distributed.
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To evaluate the automated extraction and verification from our ear recognition
algorithm we again used the XM2VTS database, this time with the left most head
rotation image. Using four images each of 114 subjects (listed in Appendix B) we
compile a client set of 684 comparisons and by comparing client images to random
images selected from clients in the dataset we produce an impostor set of 684
comparisons. The remainder of the clients are used for training. Again the

probabilistic framework described in Chapter 2 is employed; the distributions of client
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and impostor scores are shown in Figure 3-10. There is clearly a concern over both
the performance of the algorithm and the resultant distribution of client scores, the
effect of this will be considered in Chapter 4 to influence whether further work is
expended on this modality. For the moment it is sufficient to note that after manual
inspection of the extracted ear images, the cropping seems to be the primary difficulty
in gaining acceptable performance levels. The PCA technique is (as noted in section
3.2.1) is particularly sensitive to proper centring, masking and rotation; and it
therefore seems sensible to consider either a better extraction technique or less

sensitive algorithm.
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Figure 3-10 Distribution of Client and Impostor Scores for the Ear Modality

Given the novel nature of footfall sensor there did not exist a suitably large
database for initial evaluation. For this reason we recorded a small initial database of
fifteen subjects with eight records each. We use five of these subjects for training and
the remaining ten as test data. As with the other modalities we compare all records of
a subject with their other records to produced 280 client comparisons, we then
compare each client record with randomly selected non-client records to produce an
impostor set of 280 comparisons. Again the probabilistic framework described in
Chapter 2 is employed and the distribution of scores shown in Figure 3-11. The
results of the footfall sensor are promising given such a small training population and

limited feature vector.
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Modality EER (%) | Decidability
Face 2.9 4.47
Gait (Dynamic) 5.2 3.40
Gait (Static 1) 14.2 1.86
Gait (Static 2) 21.6 1.61
Ear 354 0.87
Footfall 22.3 1.49

Table 3-3 Equal Error Rates and Decidability Indices for Modalities Under Test
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Figure 3-11 Distribution of Client and Impostor Scores for the Footfall Data
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As we can see there is a great deal of difference in the performance of the

various modalities, the effect of this will be fully explored in Chapter 4.

3.5.3 System testing

Whilst we have yet to collect sufficient subject data from the tunnel for
meaningful recognition performance evaluation, we have performed a number of
systems tests to evaluate the throughput and quality of data we can achieve. Using
approximately one hundred trials we have obtained the processing times required for a

single frame of data; these are shown in Table 3-4.
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Component Time (ms)
Capture 33
Background Subtraction 270
Transmission 12
Reconstruction 250
Face Finding 385
Save Image 60
Save Voxel Data 1300
Total 2310

Table 3-4 Timing of System Components

Given that each sequence is approximately 90 frames, this gives a processing
time of about 3.46 minutes per run. This gives a throughput of 15 subjects per hour
which is sufficient to record our data, alternately raw data may be saved directly to
disk and processed offline whilst the tunnel is not being used (i.e. overnight). There is
significant scope for more efficiency to be built into the algorithms in order to speed

this process.

In addition to throughput calculations, we have manually inspected each
sequence at all stages in order to spot defects. We have also performed small scale
feature extraction for all modalities in order to verify that the features are of the

expected format and are useable for subject verification.

3.6 Conclusions

In this chapter we have described in detail the algorithms and processes we will
use for biometric data collection. We have discussed each modality that we intend to
use in our system, given an overview of that modality and then given a detailed

description of the algorithm or algorithms that we have chosen to implement.

We then explained the hardware and software decisions we have made in

constructing our biometric collection system. Particularly we discussed the hardware
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used, the role of the agent framework in producing a flexible processing system and

the particular methods for pre-processing in the 3D data environment.

Finally we gave results for biometric algorithms used for subject verification on
publicly available large databases in order to asses their relative performance and
suitability for data collection and the multimodal biometric assessments that will be
performed in Chapter 4. We have concerns over the robustness of the ear finding
algorithm which appear to be causing significant degradation of expected
performance for ear recognition. In a similar manner the performance of the footfall
sensor is not as impressive as had been hoped; this is likely due to the simplicity of
the features extracted thus far, and the scarcity of training data. We recommend that
these modalities are recorded and stored when the tunnel is used for collection, but
further work is invested into producing robust algorithms that are capable of

comparable performance to other biometric modalities.

In the next chapter we discuss how these modalities may be used in multimodal
biometrics to provide greater performance than the individual modalities. Particularly
we look at the effect of weighting and classifier correlation, and consider how we may

predict the benefit of fusion given the performance of the individual modalities.

In summary the key contributions to knowledge from this chapter are:
1. The demonstration of a real improvement in both equal error rate and score
distribution by the use of our probabilistic framework;
2. The development of an automated system for the collection and processing of
multimodal biometric data;
3. The examination of the use of footfall data as a viable modality for biometric

verification.
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Chapter 4

Multimodal Biometrics

4.1 Introduction

There are applications for biometric systems that require greater performance
than can be achieved by a single modality system. This may be in terms of error rate,
system accessibility, throughput, circumvention protection and others [90]. These
various system requirements present a complex trade-off between single and multiple
modality systems. Whilst we touch on some of these benefits and trade-offs in this
thesis we focus primarily on the improvement in error rate that may be achieved using

multimodal biometric systems.

As discussed in Chapter 2, we feel that score fusion is the most effective method
of biometric fusion both in terms of performance benefit and user understanding. This
chapter focuses on evaluating score fusion as a tool for making biometric systems
more suitable for deployment in secure environments where a single biometric offers
insufficient performance. It is then necessary to determine under what circumstances
score fusion may be used to deliver a performance benefit and how best to bias the

fusion process to achieve the optimal performance.

In this chapter we first examine the simple case of whether score fusion based
on our probabilistic framework is an effective method for improvement of
performance. We then build on this to examine whether the use of multimodal

biometrics is an effective tool when the performance of the modalities are

57



imbalanced. In using the weighted fusion schemes described in Chapter 2, we stated
that “Equation 16 describes the optimal weights, w;, as stated in [25] where E; is the
error in addition to the Bayes error from classifier i.” in this chapter we will seek to
explore whether this is indeed the optimal weight when approximated by the Equal
Error Rate; we expand this to examine the role correlation may have on performance
and optimal weighting. Finally in this chapter we shall consider the how we may
predetermine any performance improvement we may see and provide a quantitative

assessment of when score fusion is of benefit.

Whilst wherever possible fusion is carried out on identical datasets (i.e. face and
ear from XM2VTS [89] or multiple gait modalities from the Southampton Large
Database [83]), due to the paucity of data as yet collected from our biometric tunnel
described in Chapter 3 this has not always been possible. Where multiple datasets are
needed in order to be able to examine combinations of multiple modalities, we have
ensured that the same numbers of records per subject are used and these are ‘matched’
to create synthetic subjects based on single similar subjects in each database. This
avoids most complications due to mixed subjects, though does not allow us to
evaluate as entirely as we might like the effect of correlation or lack thereof between
modalities. The problems arising from creating synthetic subjects are one of our prime
motivations for starting to create a multimodal database as described in Chapter 3. We

discuss the possible effects of synthetic subjects in our conclusion during Chapter 6.

For the reader’s convenience when comparing performance of our multimodal
experiments with the base performance, the performance of individual modalities is

repeated here as Table 3-3.

Modality EER (%) | Decidability
Face 2.9 4.47
Gait (Dynamic) 5.2 3.40
Gait (Static 1) 14.2 1.86
Gait (Static 2) 21.6 1.61
Ear 35.4 0.87
Footfall 22.3 1.49

Table 4-1 Equal Error Rates and Decidability Indices for Modalities Under Test (Repeated)
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4.2 Fusion of face and gait

Our first task in evaluating the fusion of biometrics within a probabilistic
framework was to evaluate the use of score fusion in combining two similarly
performing modalities. In this case we chose to combine face and dynamic gait, using
684 impostor and 684 client comparisons derived from 114 synthetic subjects created
in an amalgam of features from a subset of the XM2VTS and the Southampton Large

databases.

We evaluated the performance of the fused modalities using the weighted and
unweighted product and sum rules; we discard the other fusion rules discussed in
Chapter 2 since they do not have the ability to be easily weighted. The weights were
calculated by the using equation 16 and the Equal Error Rates measured in Chapter 3.
The EER and decidability index for each modality is shown in Table 4-2, with the

Receiver Operator Characteristic curve shown in Figure 4-1.

Fusion Method | EER (%) | Decidability
Static Product 0.8% 5.66
Static Sum 0.8% 5.60
Weighted Product 0.9% 5.41
Weighted Sum 0.7% 5.43

Table 4-2 Equal Error Rates and Decidability Indices for Fusion of Face and Dynamic Gait

Scores

The improvement in EER seen over the best performing modality (Face, 2.9%)
is statistically significant at the 5% level using McNemar’s test. There is no
significant difference between EER for the various combination schemes. Whilst
there is some variability in the decidability indices, where a higher value indicates

greater noise immunity, such small differences are unlikely to prove significant.

Having seen that we can see a significant improvement in performance by
combining highly accurate sensors with static and weighted fusion rules in a
probabilistic framework, we need to consider whether there is benefit to be seen from

using weighted fusion with less accurate sensors.
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Figure 4-1 Receiver Operator Characteristic Curve for Face and Dynamic Gait Fusion

4.3 Combination of imbalanced classifiers

Having assessed the case of balanced highly accurate classifiers, we now seek to
evaluate the assertion made by Daugman [28] that in the case of imbalanced
classifiers the error rate of the weaker classifier “must be smaller than twice the cross-
over [equal error] rate of the stronger test”. For this examination we use the three
gait modalities described in Chapter 3; we use these modalities since they are

imbalanced modalities under Daugman’s definition.

In order to understand the effect of weighted and unweighted fusion on
imbalanced modalities we combine the best performing modality (Dynamic Gait,
5.2%) with each static modality in turn and then with both static modalities together.
We determine the weights using equation 16 and the EERs determined in Chapter 3.
As in section 4.2 we use 684 client and 684 impostor comparisons which are a subset

of sequences from the Southampton Large database.

As can be seen from Table 4-3 the performance of fusion of highly imbalanced
modalities is somewhat confused, with some fusion methods reducing the
performance in certain situations. What is clear is that as the imbalance grows, or

becomes more complex, the greatest benefit can then be achieved through weighting
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the fusion schemes. The improvement seen in using weighted fusion is statistically
significant at the 5% level for both the Dynamic & Static 2 combination and the
Dynamic & Static 1 & 2 combination. Whilst these improvements seem small, we
must remember that we are dealing with already effective classifiers and a reasonably
large number of tests; hence this improvement is unlikely to have come from feature

space noise.

Static Product | Static Sum Weighted Weighted Sum
Product

Combination | EER d’ EER| d° |EER d’ EER d

Dynamic & 4.2 3.65 40 | 3.67 | 4.1 3.64 3.7 3.67
Static 1

Dynamic & 6.0 3.17 6.2 | 3.15 | 47 3.54 4.7 3.54
Static 2

Dynamic & 4.2 3.44 4.3 344 | 3.6 3.74 3.4 3.76
Static 1 & 2

Table 4-3 Equal Error Rates and Decidability Indices for Combination of All Gait Modalities

This shows that the claim Daugman makes in reference to imbalanced
classifiers does not hold when examining imbalanced modalities in a weighted
probabilistic fusion scenario. It is likely that this claim is invalid for our experiments
due to the increased flexibility of the score fusion methods we are using. We can also
see proof of our claim in Chapter 3 that decidability is obviously closely linked with
the error rate. From our measurements in Table 4-3 we may calculate the correlation
between the decidability and EER as -0.94 which is strongly inversely correlated. This

is intuitive since greater class separation gives greater noise immunity to the system.

From this experiment we can draw the clear conclusion that when fusing
imbalanced classifiers it is beneficial to use our weighted probabilistic framework.
We now need to determine what the optimal settings for these weights are, and

whether they can be determined easily in advance.

4.4 Optimal weighting

Having shown that there is a clear benefit to using weighted combinations of

modalities during score fusion of imbalanced classifiers, we now consider what the
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optimal weighting scheme is for classifiers combined using the weighted sum rule.
We have chosen to illustrate the weighting calculations with this rule because it
performed marginally better in the previous experiment, however our tests have
shown that very similar outcomes are observed using the Weighted Product rule, with

very marginally higher observed EERs.

In order to asses the effect of weighting on performance we cross combined
each modality in our test set creating ten separate fusion experiments. As with the
experiments above we created 114 synthetic subjects that became 684 client and 684
impostor comparisons. Match scores were generated using the methods described in

Chapter 3 and our probabilistic framework discussed in Chapter 2.

Using the weighted sum rule, we heuristically found the lowest EER, associated
decidability index and the weighting of the strongest modality that would achieve that
performance. We also found the EER and decidability at the weighing calculated
using equation 16 and the EERs found in Chapter 3. These results are shown in Table
4-4. For comparison the weighting if the decidability indices were used is also shown;
this is calculated using equation 75. In both cases this data is found from a training set

and the tested on a separate set of subject features.

w, = d (75)

i N

!’

2.4;
Jj=0

Considering the results in Table 4-4 it is clear that whilst the weights calculated
using equation 16 are often of similar performance to the optimal weight, there is
some difference between the two. There are insufficient results to determine if these
are statistically significant, however we can make some observations. Firstly we
should note that (unsurprisingly) the performance of the static sum rule is better than
using the calculated weight in the four cases where the optimal weight is close to 0.5.
We also note that in the cases where the calculated weight performs better than the

static rule the advantage gained is twice that of the converse situation.
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It would appear that in the majority of cases the optimal weight biases the
fusion in favour of the least accurate modality, this result can be partially achieved
through the use of the decidability index for weighting as shown in equation 74. This
would increase the advantage over the static rule by a further 10% whilst still
retaining the principled method of pre-calculating weights, we return to the

consideration of the decidability index in section 4.6.

EER d' Weight | EER d' Weight | Weight
Combination | (Opt) | (Opt) | (Opt) | (Cale) | (Cale) | (Calc) (d")
Face &
Gait (Dynamic) 0.7 5.46 0.64 0.7 5.44 0.64 0.56
Face &
Gait (Static 1) 1.5 4.80 0.50 2.2 4.64 0.83 0.70
Face &
Gait (Static 2) 1.7 4.72 0.63 2.3 4.63 0.88 0.73
Face &
Ear 2.4 431 0.53 2.7 4.50 0.92 0.83
Gait (Dynamic)
& Gait (Static 1) | 3.6 3.71 0.57 3.9 3.67 0.72 0.64
Gait (Dynamic)
& Gait (Static2) | 4.3 3.52 0.73 4.7 3.54 0.80 0.67
Gait (Dynamic)
& Ear 4.3 3.48 0.67 4.8 3.48 0.86 0.79
Gait (Static 1) &
Gait (Static 2) 10.6 2.3 0.70 11.3 2.29 0.60 0.53
Gait (Static 1) &
Ear 11.8 | 2.03 0.75 12.3 2.03 0.71 0.68
Gait (Static 2) &
Ear 18.8 1.8 0.53 18.9 1.8 0.62 0.64

Table 4-4 Equal Error Rates and Decidability Indices for Optimal and Calculated Weights

4.5 Classifier Correlation

We also wish to consider how the correlation of additional modalities affects the
performance of the fused modalities. We calculate the correlation using the

methodology described in [91]. The correlation p, is given by:

_ nN/!
N-N'-N/+nN/

Pac (76)
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Where n is the number of classifiers under test, N is the total number of
sequences (1,368), N¢ is the number of sequences where all classifiers have an
incorrect output at threshold C, and N¢' is the number of sequences where all
classifiers have a correct output at a threshold C. The paper proposes adding
additional modalities in descending order of accuracy, calculating the correlation each

time; only if the correlation is reduced is it acceptable to add this modality.

We chose to sequentially fuse each modality and at each point calculate optimal
performance and the correlation. We also highlight the optimal and calculated
weights. The results of the fusion of the 684 client and 684 impostor match scores for

each modality are shown in Table 4-5.

We can see from Table 4-5 that the proposal in [91] of only adding modalities
that reduce the correlation is borne out. Other smaller initial experiments performed
fusing the less accurate modalities also anecdotally support these results. What is
notable again is that the optimal weights for the fusion strongly bias the fusion
towards the weaker classifier. Unfortunately there is not sufficient data to
methodically examine the interrelation between the correlation of modalities and the

optimal weighting.

Optimal | Calculated
Combination EER % | d' | Correlation | Weight Weight

Face & Gait (Dyn) 0.7 5.46 0.047 0.63 0.64
& Gait (Stat 1) 0.4 548 0.011 0.55 0.88
& Gait (Stat 2) 0.4 5.49 0.024 0.99 0.92

& Ear 0.2 5.30 0.003 0.73 0.95

Table 4-5 Equal Error Rates, Decidability Indices and Weightings for the Correlation

Experiment

4.6 Prediction of performance

It is useful in a fusion environment to be able to a priori predict the performance
of the fused system. We feel that this is most achievable by predicting the decidability
index. The reason for targeting the decidability index is twofold; firstly we are

convinced by experiments above that it is a good analogue for the Equal Error Rate,
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secondly as we shall see below, it is trivial to predict the decidability index given
good measures or estimates of the class distributions. Whilst the EER should also
succumb to similar analysis, efforts thus far have been disappointing; this has

generally been due to the tails of the distributions being not quite Gaussian.

Given the decidability index, equation 74, is predicated on the client and

impostor match scores we can substitute for the means and variances as follows:

Hy = D Wiy (77)
i=0
O',2 = /waof (78)
i=0
where / = C|I.

Hence we can find the decidability index based upon the weighted fusion of the
two modalities. This also provides a possible solution to our discussion on optimal
weighting in section 4.4, since it is very simple to find the maximum decidability
index for given client and impostor distributions across the range of possible weights.
We can then choose the weight that provides the maximum decidability index as the

optimal weight for fusion.

To test the accuracy of the prediction of the decidability index and the
suitability of this for providing optimal fusion weights, we repeated the experiment
described in section 4.4; however this time we predicted the maximum decidability
index and used this to weight our fusion. The results of this experiment together with
a reminder of the value of the optimal EER based on heuristic methods are shown in

Table 4-6.

As can be seen there is no significant difference between the optimal and
decidability weighted performance metrics. This method would be especially useful,

and more efficient, if we could predict the client and impostor means and variances
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for each modality directly from the probabilistic framework rather than having to

produce an example set of match scores. This step is an area of ongoing research.

d’ d’ EER %
Combination EER % | (Measured) | (Predicted) | Weight | (Optimal)
Face &
Gait (Dynamic) 0.8 5.60 5.61 0.5 0.7
Face &
Gait (Static 1) 1.5 4.82 4.83 0.57 1.5
Face &
Gait (Static 2) 1.8 4.76 4.74 0.71 1.7
Face &
Ear 2.7 4.54 4.55 0.76 2.4
Gait (Dynamic)
& Gait (Static 1) 3.7 3.71 3.87 0.56 3.6
Gait (Dynamic)
& Gait (Static 2) 4.3 3.51 3.76 0.71 4.3
Gait (Dynamic)
& Ear 4.4 3.51 3.51 0.76 4.3
Gait (Static 1)
& Gait (Static 2) 10.8 2.31 2.45 0.66 10.6
Gait (Static 1)
& Ear 12.3 2.03 2.05 0.71 11.8
Gait (Static 2)
& Ear 18.9 1.80 1.83 0.56 18.8

Table 4-6 Equal Error Rates and Decidability Indices for Weights Determined by Predicted
Decidability

4.7 Conclusions

This chapter has examined the role of score fusion in multimodal biometrics.
We have looked at two cases to prove the value of fusion: the case of balanced
modalities to illustrate that highly performing classifiers benefit from fusion; and the
case of highly imbalanced classifiers to show that weighting is necessary to achieve
continued improvements. Having shown the value of weighted fusion we then
continued to consider the optimal weighting using the sum rule. We showed that the
proposal illustrated by equation 16 is not optimal but is on balance preferable to static

fusion.

We then discussed the effect of correlation on fusion of modalities. We found

that as expected, the reduction in correlation was a good indicator of performance
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improvement. We note that there should be some attempt at examining the
interrelation between correlation and optimal weighting with a larger collection of

subjects and modalities.

Finally in this chapter we have discussed the prediction of performance for
fused modalities. We tackle the prediction of decidability index since this is a more
tractable problem. We show that the prediction from pre-calculated class means and
variances is simple and accurate. Further we demonstrate how we may pre-compute

optimal weights for fusion by maximising the predicted decidability.

In summary the key contributions to knowledge from this chapter are:

1. Demonstration of performance improvements using weighted fusion on highly
imbalanced classifiers;

2. Indication that the optimal weights are not given by equation 16 as stated in
[25];

3. Examination of the effect of modality correlation on biometric fusion, and the
conclusion that reduction in correlation is a good indicator of improvement in
performance;

4. Demonstration that the decidability index after fusion may be accurately be
predicted, and further more that calculating the maximal decidability provides

an optimal weighing scheme.

67



Chapter 5
Ophthalmic Lens Inspection

5.1 Introduction

As part of the Engineering Doctorate’s focus on industrially relevant research
outcomes, we sought to expand the use of our probabilistic methods to other areas of
interest to commercial organisations. In the work in this chapter we apply modern
computing vision techniques to a computer vision application domain that has not as
yet benefited from such improvements; we more importantly examine the use of our
probabilistic method in an N class classification problem, showing applicability to

another novel domain.

Industrial inspection is a vital part of the manufacturing process, especially in
safety critical products such as medical devices. We have implemented a novel
system for the inspection of ophthalmic contact lenses in a time constrained
production line environment. Ophthalmic contact lenses are formed by injecting a
monomer into a single use hard plastic mould which has been formed to give the
required lens curvature. Once the monomer had been cured in an oven, a
manufacturing machine breaks open the moulds and separates the lens from the mould
base. It is then transferred to an individual window for inspection before packaging,

as shown in Figure 5-1.

Due to the mechanical nature of the removal from the mould, together with

occasional defects in the moulding process, lenses are prone to a number of
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manufacturing defects. These include: bubbles within the monomer, splits or chips in
the lens due to poor forming or damage in removal from the mould, attached
monomer or rough edge due to poor removal from the mould, and contamination with
particles of dust or debris. Since ophthalmic contact lenses are medical devices, the
size and number of these defects must be strictly monitored and controlled. These
inspection standards are laid down by government regulators and vary depending on

the type and envisaged longevity of the lens.

We seek to produce a system that will perform automated inspection of
ophthalmic contact lenses in a manufacturing environment. It is required to perform
this inspection task at the accuracy level of a trained human operator whilst
maintaining production line speeds. There have been a number of partial contact lens
inspection or characterisation systems described in the literature [92-94], as well as
fault detection systems for other lens types [95]. However none of the systems
described in the literature report the accurate fault detection and performance required
for this system. Additionally we could find no published ophthalmic inspection
systems using probabilistic classification techniques or complex image processing

methods.

Figure 5-1 An Example Lens Image From the Inspection System

This chapter firstly provides an overview of the developed system including its

interaction with the manufacturing equipment and human operators. This high level
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overview describes both the inspection system and allied control and monitoring
software. We then describe in detail the methods used for processing the lens image,
extracting relevant feature metrics, classifying fault types and comparing these
classified features with the customer’s inspection standards. Finally the testing regime
that has been implemented is discussed both with reference to the accuracy of the

algorithms and the performance of the system as a whole.

5.2 System overview

The system is divided into two distinct processes designed to be run on separate
machines. This allows monitoring and reporting to be separated from inspection;
enabling remote working and multiple inspections to be running in parallel. The
image processor contains modules to perform the full range of inspection activity and
a separate process is instigated for each camera. On a single manufacturing line it is
anticipated that there will be multiple cameras (and hence image processors)
inspecting lenses in parallel. Provided there is sufficient processing power it is not
necessary that this translates into a one image processor per CPU requirement; this
decision would be taken after fully considering both the desired performance of the
software and the hardware specification of the servers available. These multiple image
processors are designed to be under the control of a single workstation process, run on
a separate machine. The workstation process is responsible for set-up, display and
reporting for the system. This workstation connects to the image processors remotely
via TCP/IP and hence those deploying or monitoring the system do not need to be co-

located with the manufacturing line.

This chapter focuses primarily on the function of the image processor software;
however we believe it is useful for the reader to understand the operation of the full
system and its interaction with the wider manufacturing environment. A system

diagram for our working prototype system is shown in Figure 5-2.
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Figure 5-2 System Diagram for Inspection System

Before a new ‘batch’ of lenses is to be inspected, the user must initialise the
system. This involves firstly choosing which process modules are to be used,
adjusting the settings for each module, loading stored initialisation files and creating
the inspection standards for the lenses to be compared against. In the first instance
these setups will be created by a supervisor and on subsequent runs the operator will

simply select the appropriate setup for the type of lens on the manufacturing line.

Once the system has been set up it may begin inspecting lenses. On the
manufacturing line, once the lenses have been removed from their moulds but prior to
being placed into packaging, they pass below high resolution grey-scale cameras
where an image of the lens is captured for inspection. The timing of this process is
synchronised with the production process and is controlled by a Commercial Off The
Shelf (COTS) process control device. This device tells the servers when a lens is
under the camera and ready to be inspected, triggering the image processor to acquire
the image and begin inspection. Whilst the image processor is inspecting the acquired
image the process controller monitors the elapsed inspection time to avoid schedule
overrun, should an overrun occur a signal is sent to abort the inspection of that image
and reject the lens (in these cases the image would be queued for an offline inspection
to diagnose the system fault that may have occurred). In the typical case where
inspection is successfully completed within the stipulated time, the process controller
is informed of the pass/fail decision and the lens is either transferred to packaging or
rejected as appropriate. The pass/fail decision as well as relevant statistics (feature
counts and sizes etc) are passed via XML to the workstation for collation and

reporting. A flow diagram of the system is shown in Figure 5-3.
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Figure 5-3 Flow Diagram of Inspection System

After a run is completed, the operator can use the workstation to review the fault
profile for that run and may reprocess any images that timed out in order to diagnose
the system fault that caused this. During the run the workstation can be used to
monitor the current and historic yield and identify recurring faults that may be

indicative of a systemic manufacturing problem.

5.3 Modules

In order to maximise future flexibility the image processor is divided into
separate modules. Each module typically implements one task or algorithm with a
well defined set of inputs and outputs. This design methodology allows new
techniques or additional functionality to be quickly added to the system. Each of the

modules developed for the current system are described in this section.

5.3.1 Image and lens pre-processing

This module comprises of a number of algorithms which must be performed
immediately after image acquisition to make the lens image ready for feature
detection and further processing. Before processing of the lens occurs a check is made
on the image at a number of points where clear background is expected to be visible.
The mean intensity and standard deviation for each patch is calculated and compared
to standard values. If these patches diverge from expected values then this highlights
either an obstructed view (i.e. debris on the window) or a failing illumination source
or camera. Should more than one patch fail this check then the processing line is

halted and the operator is warned of this problem.
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The initial processing step is calculating the centre of the lens. This is achieved
by detecting the edge transition at spaced points around the lens. Once a number of
points have been found then the centre may be converged upon in an iterative process
using simple trigonometry. If no centre can be reliably found the software concludes
that the lens is either not present or is suffering from some gross defect; in either case
the steps described in below and in sections 5.3.2 through 5.3.6 are not performed and

instead the algorithm described in section 5.3.7 is invoked.

Having detected an accurate centre for the lens it is now necessary to fit
appropriate ellipse parameters to describe the edge. Initially we considered using an
active contour approach [96], however this proved overly complex for the regular
shape of the lens. Direct fitting [97] and Constrained Hough Transforms [98, 99] were
also judged computationally inefficient. The method found to be both sufficiently
accurate and efficient was the Randomised Hough Transform which has been
variously described [100, 101]. Since the normal size and shape of the lens will be
known for any given batch of lenses and given that the centre has already been
accurately calculated, it is possible to strongly constrain the RHT to converge on

accurate parameters very rapidly.

Lens Edge

j Lens Surface

Distance

Intensity

Background S/

Figure 5-4 Intensity Profile for a Lens Edge

Once the centre and ellipse parameters have been accurately estimated, the real
outer and inner edges of the lens are extracted. This is achieved by finding the

transition from the darker edge to the lighter inner lens (the inner edge) and from the
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darker edge to the much lighter background (the outer edge); a likely edge intensity

profile can be seen in Figure 5-4.

5.3.2  Surface feature detection

The system defines the surface area as a circular region covering the centre 90%
of the lens. It is in this region that surface features are searched for, the special case
where a feature extends between the surface and edge region is dealt with as part of

section 5.3.3.

To find surface features of interest, a modified Canny operator [102] with a 5x5
window 1is run over the entire surface region. In order to prevent small gaps creating
multiple features out of a single poorly defined feature, the hysteresis thresholding
stage is allowed to consider pixels in a 5x5 neighbourhood rather than simply
adjoining pixels. The Canny operator produces a binary image of feature points that

may be of interest.

Figure 5-5 Bubble in Monomer Before and After Extraction

Once the Canny operator has been used; spatially separate features are extracted
for feature description. Starting with the uppermost pixel in the surface region we
scan left to right working progressively downwards until we find a pixel that has been
marked by the Canny operator as a feature pixel. This then becomes a seed point for a
new feature. Any feature points within a 5x5 neighbourhood of this pixel are also
added as seed points for the feature and their neighbourhood is examined. This

neighbourhood search continues iteratively until no neighbouring pixels remain. The
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scan for feature pixels then continues until a new feature pixel is found and the
extraction of neighbours is repeated to yield another feature. This is repeated until all
surface features have been extracted into separate array lists containing the pixel
locations. An example of a found feature (bubble in the monomer) before and after

processing, as described in this section and in section 5.3.4, can be seen in Figure 5-5.

5.3.3 Edge feature extraction

The edge region of the lens is defined as an annulus covering the outer 10% of
the lens and for our purposes we also consider a small region outside of the outer edge

to search for debris attached to the lens edge.

Using the extracted ellipse parameters we ‘unwrap’ the annulus to form a
rectangular image. This is achieved by mapping the ellipse points onto the midline of
a rectangular image and work (radially) outwards and inwards from this line to
translate the remainder of the edge region. Pixels with insufficient resolution to be
uniquely translated are interpolated from neighbouring pixels. Having formed the
unwrapped image we then perform checks along the outer and inner edge to find
small edge faults. These tests look for trends in the spacing between the outer and
inner edges, absolute deviation of the edge from the fitted ellipse and variations in
intensity within the region bordered by the outer and inner edges. For illustration
Figure 5-6(a) shows an edge fault in the original image and Figure 5-6(b) shows the

same edge fault after extraction in the unwrapped edge image.

e
=

g S

Figure 5-6 Edge Fault (a) Before Extraction (b) After Extraction
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Rule based heuristic checks for faults are performed; subsequently features in
the edge band are extracted in the same manner as described in section 5.3.2 with one
important exception. If a feature extends into the surface the edge feature extractor
searches the interface region for connecting features and merges these into one, this is
done in an iterative manner to ensure that large features are fully connected rather

than appearing as several smaller features.
5.3.4 Feature description

Once we have a set of features, all stored as ordered array lists of pixels we

process each feature to extract mathematical descriptors for classification.

We first extract the perimeter of the feature (i.e. identify those pixels that fully
enclose the feature). We achieve this by starting with the upper left pixel of the
feature and progressing in a clockwise direction to find the next neighbouring pixel.
By structuring our neighbour search in a clockwise direction we can guarantee that we

always find the outermost neighbouring pixel.

Having extracted the perimeter of the feature we then fill it for use in further
mathematical descriptors. The fill is performed by working clockwise and filling
between the perimeter in either an upwards or downward direction as appropriate.
Checks are made to ensure the perimeter is not a single line at this point to ensure that

the fill does not escape the feature perimeter.

Given two collections of pixels, one representing the perimeter and another
representing the filled feature we can then extract mathematical measures of the shape
for classification. We firstly calculate gross shape measures: perimeter length (P),
area (A), maximum chord (R,.), minimum chord (R,;,), dispersion (/R) and

compactness (C) [103]. Where:

R
IR =~mex 79
2 (79)

min
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(80)

Perimeter and area are simply the size of the relevant array lists, with the
maximum and minimum chords quickly determined by simple geometric operations.
Compactness (80) is a measure of the perimeter relative to the area and dispersion
(79) is the ratio of the largest circle enclosed by the feature to the smallest circle

enclosing the feature.

More complex measures are produced by calculating the first four rotation
invariant moments (M/-M4) [104] given by equations 81-84, with #,, is given by

equation 85. These moments are invariant to position, size and rotation.

M1=1n,+n, (1)

M2 = (17, =115 + 4007, (82)

M3 =5 =31, ) + (31, =15 )’ (83)

M4=(3+1, )" + (21 +715)" (84)

um :Z—zwherey:pTJqurl (85)
N M

My = 2;()6 -X)"(y=-»)'P, (86)

In equation 86, P,, is a binary value denoting the presence of a feature pixel at

position x,y with x and y being the centre of mass of the feature on the respective axes.

We also extract information about the grey-scale intensity of the feature; mean

intensity and standard deviation. Additionally features in the edge region have
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Boolean information appended to describe their position in the region and whether

they extend outside of the lens or into the surface region.

5.3.5 Feature classification

Once we have extracted mathematical information to describe our feature we
then must classify which fault type the feature most closely resembles. To simplify
this we split the features into three types based on their location within the lens:
surface feature, edge feature, and surface features in edge band. We do this in order to
remove implausible classification possibilities from the set of outcomes and because
the surface and edge features have different feature vectors due to additional Boolean

tests on the edge. The list of fault types is shown in Table 5-1.

Edge Faults | Surface Faults Non-Fault
Particle Surface Split | Particle in Saline
Hole Particle
Flash Hole
Rough Edge Blemish
Edge Chip Scratch
Edge Particle Distorted
Edge Split
Blemish
Scratch
Distorted
Thick or Thin

Table 5-1 Fault Types for Edge and Surface Classification

The two groups of surface features are classified using the probabilistic
framework described in Chapter 2. This is modified to perform a classification task
rather than a verification task as described in the previous chapters. Given a feature
vector of a suspected fault, d, we model the likelihood for each class, P(d | C;), using

the logistic function given by equation 87.

1
P|C) =

—Hg;
be,

(87)

l+e
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Once all class likelihoods have been calculated we then combine these
likelihoods using equation 88 to yield posterior probabilities for each class. It would
be possible to include prior probabilities in equation 88 to take into account the

frequency of observed faults, though we have not done so in our prototype system.

P(x|C,
P(C, | x) =) (88)
2 P(x|C))
j
The fault classification is then determined by equation 89.
assign x = C, if
(89)

P(C | x)= max P(C, | x)

This classification system provides a probabilistic method for determining fault
types and indicating to the system the confidence in the decision. The probabilistic
outputs can be used to identify uncertain classifications which may require manual

intervention or increased training.

The edge classifier is implemented as a C4.5 decision tree [105] trained to
identify those faults that may be found in the edge region and other non-fault artefacts
that may also be detected. A different implementation to the surface classifier was
used due to the Boolean values in the edge feature vectors, making a Bayesian
classifier unsuitable. The classifier is implemented as a java bean from Neuscience’s
NeulJDesk range, and is trained offline using hand labelled faults that have been

extracted in the manner described in sections 5.3.1 through 5.3.4.
5.3.6 Inspection standards comparison

As discussed in section 5.1 there exist strict criteria for the size and number of
defects that may be present in any ophthalmic contact lens and as with most other
medical regulations the outcome of these comparisons must be deterministic, strictly

adhered to and carefully documented.
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Having determined the fault type of each feature, as described in section 5.3.5,
and the size of the feature, from calculations described in section 5.3.4, we may then
compare each feature against the predefined inspection standard for the lens type
under examination. Every feature is recorded according to whether it causes an
outright failure, whether it could contribute to a cumulative failure, or whether it is of

a type or size to not be significant for our decision.

Once every feature has been compared against the standard, the whole standard
is checked to see if any failures have been recorded; either cumulative or outright. If
there are one or more failures then the COTS process controller is instructed to reject
the lens and the major failure mode is recorded; otherwise then the COTS process
controller is instructed to pass the lens for packaging and an entry of ‘no failure’ is

entered into the system logs.

We have also made it possible that inspections against multiple standards are
possible for regulatory or commercial reasons, however only the primary standard is
used to instruct the COTS process controller. It is conceived that this information
could be used to instruct a more complex COTS process controller to allow multiple

packaging decisions to be made from the multiple standard decisions.

5.3.7 Gross fault detection

Should a valid lens centre or ellipse not be detected as described in section
5.3.1, rather than processing the lens in a way which is likely to fail in a catastrophic
manner, we instead perform a high level examination of the image in order to
determine one of three gross failure modes: no lens present, lens fragment, or
shattered lens. There is also the possibility that large debris could have obscured the
window though this would likely cause the illumination check to fail. An example of

a lens suffering from a gross failure can be seen in Figure 5-7.

To perform this check we accumulate pixels over the entire image into three
‘bins’. These are: pixels of about background intensity, pixels of about lens surface
intensity, and pixels of about lens edge intensity. By comparing these with the number

expected of a complete lens we can judge how much of a lens is present. Furthermore
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by comparing the ratio of edge intensity to surface intensity pixels we can determine

the extent to the deformation of the lens.

In any case the COTS processor is instructed to reject the lens and the type of

lens deformation is recorded as the major failure mode in the system log.

y N

Figure 5-7 Shattered Lens

5.4 Testing

In evaluating the system against the requirements of the project we have

considered a number of tests both at the module and system level.

5.4.1 Module tests

We have tested each module sequentially and compared the outputs with expert
opinion and the performance of other systems. In the pre-processing stage we
compared the extracted centre coordinates and ellipse parameters with hand marked
lenses to ensure pixel level accuracy in the extraction. For feature extraction steps we
have consulted widely with experts in the field to ensure that the system detects all

features and artefacts that are detected by a human expert.

The classifiers have been trained and tested on separate hand-labelled features

and perform at a very high level of accuracy. We have also ensured that the feature
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extraction and inspection standards processes perform as intended by careful

comparison with reference implantations.

5.4.2 System tests

Having ensured that all system components are performing as expected we have
performed tests on the whole system to ensure that timing and yields are as expected.
In initial tests on a few thousand images we can achieve correct reject/accept
decisions on 100% of lenses including classifying the correct largest failure mode.
Current trials indicate that processing times of approximately one second are
achievable on standard Pentium D 3.00 GHz, 2 GB RAM, Windows 2003 Enterprise
Server and there is scope for further compiler optimisation. Process timings for a lens
with five faults is shown in Table 5-1. The use of comparable exhaustive established

techniques for feature detection would fail to meet these time constraints.

Process Timing (seconds)
Pre-processing 0.141
Surface 0.047
Edge 0.328
Feature Description 0.514
Feature Classification 0.016
Standard Comparison 0.009
Total 1.055

Table 5-2 Timings for Lens Inspection Processing Steps

5.5 Conclusions

In this chapter we have described a novel method for the industrial inspection of
ophthalmic contact lenses in a time constrained production line environment. In
describing this system we have discussed the requirement for a fast an accurate
inspection system for fault detection in regulated medical devices. We have given an
overview of the system including interfaces to other systems and with operators. We
also have described in detail the modules that comprise the inspection system and the
tests that these modules have undergone. Finally we briefly describe the full system
tests we have performed to establish that our system meets the specifications laid

down.
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Further this work has applicability to a wider field than inspection of
ophthalmic contact lenses; there are many products that need rapid and accurate fault
detection with similar fault profiles to those seen in this work. This is especially
relevant to those situations where immediate feedback of such results can be used to
adjust process parameters. Additionally the processes developed here may find uses in
non industrial inspection applications, such as pathological screening applications and

object recognition systems.

In summary our contributions to knowledge from this chapter are:
1. Development of a system for automatically inspecting medical devices within
a time-constrained environment.
2. Application of complex image processing techniques to ophthalmic lens
inspection;
3. Demonstration of the reliability of our probabilistic classification framework

for classifying faults in medical devices.

83



Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis has shown the application of probabilistic methods to two distinct
areas of computer vision. In this section we discuss the findings from each chapter
and relate these to the more general premise of the thesis. We also highlight
shortcomings and new avenues in our work which will inform our description of

future work in section 6.3.
6.1.1 Probabilistic Methods

Chapter 2 sets out the role of probabilistic techniques in classification and laid
the baseline techniques for us to build upon during the remainer of this thesis. To
achieve this we discussed the formulation of Bayes’ rule, which forms the bedrock for
our probabilistic framework; yielding posterior probabilities that we may make
decisions on. We then described various methods of data fusion, focusing particularly
on score fusion methods since this combination level is most appropriate for a
probabilistic approach to object description and classification. Having concluded that
score fusion has the greatest potential for our applications, we expanded on the use of
mathematical rules for score combination; these rules contain the ability to weight
inputs based on classifier efficacy. The theoretical optimum for classifier weighting is

discussed before testing on this assertion is performed in Chapter 4.
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Having set out background techniques we then considered two specific
improvements to our probabilistic framework which dealt specifically with problems
in probabilistic classification which we had identified. Firstly we looked at global
covariance estimation for homogeneous sets of classes in order to overcome a paucity
of data. Then we considered the most appropriate likelihood model for our
framework, settling on the logistic function as especially suitable for the two class
problem and also for those applications with high dimensional feature vectors. Finally
we considered an alternative probabilistic framework for combining evidence,

Dempster-Shafer theory, and highlighted key differences with our framework.

Our key contributions to knowledge from Chapter 2 are summarised below:

We described the use of global variance estimation for homogeneous sets of
classes, allowing accurate estimation of class means and variances from small
datasets, especially those datasets with few examples per subject though with many

subjects.

The modelling of class likelihoods by the logistic function is a significant
improvement over Gaussian based likelihood models in the two class problem and
when using high dimensional feature vectors. The better distributed outputs provide a
more scaled response allowing the resultant scores to span the whole output range of
zero to one. Appendix B discusses the problems with Gaussian likelihoods in more

detail.

By formulating the verification problem as a two class problem modelled by
intra and inter-class logistic functions we were able to greatly diminish the amount of
training data required and reduce the size of the classification models. Additional
processing benefits are achieved by removing the necessity to perform comparison
with all known subjects and removing the need to retrain the classifier when a new

subject is added to the population.
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6.1.2 Biometric Data and Systems

In Chapter 3 we described in detail the algorithms and processes used for
biometric data collection. We discussed each modality used in our system, giving an
overview of that modality and a detailed description of the algorithm or algorithms

that we have chosen to implement.

We then explained the hardware and software decisions made in constructing
our biometric collection system. Particularly we discussed the hardware used, the role
of the agent framework in producing a flexible processing system and the particular

methods for pre-processing in the 3D data environment.

Finally we gave results for biometric algorithms used for subject verification on
publicly available large databases in order to asses their relative performance and their
suitability for both data collection and the multimodal biometric assessments
performed in Chapter 4. We expressed concerns over the robustness of the ear finding
algorithm which appear to be causing significant degradation of the expected
performance for ear recognition. In a similar manner the performance of the footfall
sensor is not as impressive as had been hoped; this is likely due to the simplicity of
the features extracted thus far, and the scarcity of training data. We recommended that
these modalities are recorded and stored when the tunnel is used for collection, but
further work is invested into producing robust algorithms that are capable of

comparable performance to the other biometric modalities.

Our key contributions to knowledge from Chapter 3 are summarised below:

We demonstrated a real improvement in both equal error rate and score
distribution by the use of our probabilistic framework. The improvement in
performance through more efficient classification techniques is of obvious benefit;
however in our opinion the demonstration of a robust probabilistic classifier is of

more significance in the context of using biometrics in a multimodal environment.

We describe the development of an automated system for the collection and

processing of multimodal biometric data. This is important for the progress of
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biometric research which has suffered from insufficiently large datasets to properly
evaluate multimodal biometrics on fully contemporaneous subjects. This lack of
suitable datasets has been especially apparent in ‘at a distance’ modalities and for

studies involving covariates such as time, clothing, race or gender.

Our introduction of the use of footfall data as a viable modality for biometric
verification is a significant expansion of the gait modality, allowing the use of data
that should be less correlated than parallel processing of video to multiple gait
features. The method shows a good deal of promise and is an area that warrants much

greater investigation.

6.1.3 Multimodal Biometrics

Chapter 4 examined the role of probabilistic score fusion in multimodal
biometrics. We considered two cases to prove the value of fusion: the case of
balanced modalities to illustrate that highly performing classifiers benefit from fusion;
and the case of highly imbalanced classifiers to show that weighting is necessary to
achieve continued improvements in this situation. Having shown the value of fusion
we then continued to consider the optimal weighting for score fusion. We showed that
the proposal illustrated by equation 16 is not optimal but is on balance preferable to

static fusion.

We then discussed the effect of correlation on fusion of modalities. We found
that as expected, the reduction in correlation was a good indicator of performance
improvement. We noted that there should be some attempt at examining the
interrelation between correlation and optimal weighting with a larger collection of

modalities.

Finally we discussed the prediction of performance for fused modalities. We
tackle the prediction of decidability index since this is a more tractable problem. Here
we show that the prediction from pre-calculated class means and variances is simple
and accurate. Further we demonstrate how we may pre-compute optimal weights for

fusion by maximising the predicted decidability.
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Our key contributions to knowledge from Chapter 4 are summarised below:

The demonstration of performance improvements using weighted fusion on
highly imbalanced classifiers demonstrates the robustness of the score fusion
techniques used, and show that assertions made by others over the limitations of

biometrics fusion are inaccurate.

We have given and indication that the optimal weights are not given by equation
16 as stated in [25] and that the optimal weighting tends to be more skewed to the

weaker classifier than would be expected.

Our examination of the effect of modality correlation on biometric fusion has
led to the conclusion that reduction in correlation is a good indicator of improvement
in performance for biometric fusion. This is significant in deciding which modalities
will be most appropriate to fuse. Further consideration needs to be given to correlation

once sufficiently large contemporaneous datasets have been produced.

We have demonstrated that the decidability index after fusion may be accurately
be predicted from pre-fusion data, and further more that calculating the maximal
decidability index achievable from a given combination of modalities provides an

optimal weighing scheme for fusion.

6.1.4 Ophthalmic Lens Inspection

In Chapter 5 we described a novel method for the industrial inspection of
ophthalmic contact lenses in a time constrained production line environment. In
describing this system we discussed the requirement for a fast and accurate inspection
system for fault detection in regulated medical devices. We gave an overview of the
system including interfaces to other systems and with system operators. We also have
described in detail the modules that comprise the inspection system and the tests that
these modules have undergone. Finally we briefly describe the full system tests we
have performed to establish that our system meets the specifications laid down by the

customer.
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Our key contributions to knowledge from Chapter 5 are summarised below:

We have developed a system for automatically inspecting medical devices
within a time-constrained environment. This is a important contribution to the field
and the reduction in wastage due to increased accuracy will provide a significant cost

saving to manufacturers.

The application of complex image processing techniques to ophthalmic lens
inspection is a new use of these techniques. We have found that these techniques have
improved the performance over previous systems both in terms of accuracy and

speed.

In demonstrating of the reliability of our probabilistic classification framework
for determining fault types in medical devices, we have show the applicability of
probabilistic methods to new fields and in particular demonstrated the strength of our

probabilistic framework across diverse application areas.

6.1.5 General Findings

By demonstrating the utility of probabilistic methods, and particularly of our
probabilistic framework, across disparate application areas we strengthen the case for
more widespread adoption of probabilistic classifiers. They are most suited to areas
where fusion or operator feedback may utilise the probabilistic output, however
examination of this output will also provide feedback that may guide optimal

thresholds or indicate insufficient training.

We have also developed in Chapter 3 a system architecture that may be well
suited to other fields such as medical or behavioural analysis. Additionally data from
this system will be available to guide the improvement of biometric processing and

related techniques.

The conclusions drawn in Chapter 4 equally have wider ramifications in that

these results should be applicable to the output of any set of probabilistic data that one
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may wish to fuse. Whilst biometrics is one of the fastest growing area for the use of
fusion; one can easily envisage applicability in the military, medical, information

management and financial spheres.

The work in Chapter 5 has applicability to a wider field than inspection of
ophthalmic contact lenses; there are many products that need rapid accurate fault
detection with similar fault profiles to those seen in this work. This is especially
relevant to those situations where immediate feedback of such results can be used to
adjust process parameters. Additionally the processes developed here may find uses in
non-industrial inspection applications, such as pathological screening applications and

object recognition systems.

6.2 Critical Appraisal

This section discusses briefly reviews the full scope of work undertaken in the
preparation of this thesis in order to critically appraise the effort and draw lessons

from those activities.

In the area of probabilistic methods although we feel we have strongly
contributed to the field, we spent too much time examining the use of Gaussian
methods and attempting to correct their shortcomings rather than seeking other
avenues which ultimately proved the successful course of action. Dempster-Shafer
theory also proved a distraction which although useful to provide a contrast to our

approach did not yield particularly useful results.

In constructing the biometric collection system, we did not allow sufficient time
to construct both the physical tunnel and the software. Primarily this was due to an
underestimation of the complexity of this task. We also undertook a great deal of
prototyping work and investigated simpler solutions for many tasks, such as naive two
dimensional image stitching, which proved unsuccessful. Future projects in this area
would be well advised to exclude the development of complex engineering systems

from the scope of the doctoral work and plan such systems more carefully.
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Because of the length of time taken in this doctorate to complete the
construction of the tunnel, other research activities had to be curtailed. Details of
further work that would have been performed are discussed in section 6.3. The work
on biometrics also could have made earlier use of others techniques and software

giving more rapid access to data that could be used for data fusion.

Our work on multimodal biometrics also suffered from the lateness of the tunnel
and lack of available multimodal data. This required synthetic subjects to be
constructed from available unimodal datasets, and will require further work to
validate on true multimodal data in order to safeguard against correlation effects. It
would also have been advantageous to have a larger more diverse subject population

to examine multimodal biometrics across a more representative group.

The ophthalmic lens inspection, whilst strongly in the spirit of the Engineering
Doctorate and valuable work, does make this thesis somewhat fragmented and
prevented much further work from occurring in multimodal biometrics. This also
delayed the overall progress due to the requirement of getting up to speed in a second
(albeit related) field. Our final concern, which was noted elsewhere, is that the
commercial nature of this work prevents as much disclosure of the system and results

as one would like.

Overall this thesis is an accurate summary of the work undertaken during this
Engineering Doctorate, and whilst there are a number of areas where one may wish to
revaluate the decisions made in order to maximise progress, it is nevertheless a

valuable contribution to the field.

6.3 Future work

This section briefly discusses issues that have not been addressed in the main
body of the thesis or remain to be completed. In this section we also discuss possible
extensions to this work and expectations for the direction these diverse topics will

take.
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6.3.1 Probabilistic Methods

Whilst our work on probabilistic methods is reasonably complete, there remains
some work where it would be prudent to re-examine our assumptions or explore
theories in greater depth. We would find it useful to consider again Dempster-Shafer
theory and particularly consider any extension that would make this more compatible
with our casting of the fusion problem. We should also consider more complex or
hierarchical fusion rules that could provide benefit in terms of performance or

processing speed.

The largest theoretical topic still to be considered is that of class distribution and
its effect on performance prediction. If this topic could be more rigorously examined
it is likely that we would find two benefits: firstly we should be able to more
intimately examine the relationship between EER and decidability and hence predict
both from our current understanding; secondly we may be able to predict performance
and optimal weighting directly from training vectors, in advance of modality

evaluation tests.

6.3.2 Biometric Data and Systems

The key task still to be performed on the system is the collection of data across
a sufficiently large populous and over a significant period of time. This collection is
likely to take at least six months, though thanks to the automated nature of the system
should not be too laborious. Such collection should begin as soon as a suitable cohort
of subjects has been recruited; this is unlikely to be possible before October 2006

since undergraduate students will be required to get sufficient subject numbers.

There remains work to be carried out on full automation of the system,
particularly allowing automation of the verification and fusion process as well as
automatic collection. The requirement for more efficient processing and data transfer
techniques are also necessary in order to ease collection and allow for real time

verification to be performed by the system.
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Finally for the system, improvements are still necessary in the extraction of the
various modalities; this is particularly important in the newer modalities of footfall
and ear recognition. Whilst these tasks are both substantial research topics in their
own right, some progress is being made and this will be greatly aided by the large
volume of high quality data to be collected by our system. In ear recognition Arbab-
Zavar [106] is undertaking promising work on the XM2VTS database, examining
feature set selection using the SIFT algorithm [107]. This is significant both in terms
of good performance and because, unlike Force Field Functionals [69], this technique
produces feature vectors that may be used in our probabilistic framework. There
exists a great deal of work to be done on the footfall data, both as a modality in its

own right and as an adjuvant to improve localisation for video based gait recognition.

There exists opportunity for much of the work in sensor rich environments such
as the tunnel to cross-over into other fields e.g. medical, smart rooms and behavioural
sensing. A wealth of work seems apparent in bringing Human Computer Interaction

research into the field of biometric systems such as the one developed in this thesis.

6.3.3 Multimodal Biometrics

Our work on multimodal biometrics is reasonably complete, however it would
be worth re-performing the tests we have undertaken (especially those involving
correlation) with the larger contemporaneous dataset collected by the biometric
tunnel. This would have two benefits: firstly it would ensure that none of the results
are affected by unexpected interactions between templates of the synthetic subjects;
secondly it would serve to reinforce the statistical significance of our results and

clarify those results on the edge of our significance tests.

Building on our ideas in section 6.3.1 we should seek to exploit the better
understanding of class distribution and performance prediction and evaluate this on
larger databases. We may also wish to expand on this evaluation to explore more
complex interactions within and between modalities; especially those based on
covariates such as time, clothing, race and sex. More complex impostor profiles may

also be built to distinguish between active and passive impostor attacks.
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Finally we must consider improving the flexibility of our fusion scheme, since
this is one of the key drivers of multimodal biometrics. This would involve the
investigation of techniques such as: personalised fusion profiles describing
individualised weights and modality selection; the use of soft fusion to incorporate
other detail that may be extracted during profile such as sex, height, weight or other
characteristics; and the introduction of trust ontologies to provide more
understandable decisions with influence from other information such as access time,

behaviour, or previous verification attempts.

6.3.4 Ophthalmic Lens Inspection

The most pressing remaining task for ophthalmic lens inspection is the
deployment of the system into the production environment and the integration with
the customer’s batch control and reporting systems. In addition we would like to
continue work on the understanding of fault types and their location and occurrence
profiles; this would allow ‘on the fly’ adjustment of class weighting to produce more

accurate classification of faults.

As mentioned in section 6.1.5 there is significant applicability of our system and
algorithms to other medical and non-medical inspection tasks. It is desirable that some
effort is expended in producing a generic object inspection system for sale to other
manufacturing customers which could be rapidly adapted to their needs. Indeed the
flexibility of our system and the ability to rapidly switch algorithms within the system
would provide a useful framework for computer vision research since researchers
could quickly develop and test new algorithms without the need to design and build

an entirely new processing chain.
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Appendix A

Biometric Standardisation

A.1 Introduction

As the field of biometrics has matured and become commercially viable there
has been an increasing need for interoperability between the systems and subsystems
of various vendors, as well as defined testing schemes, language definitions and usage
scenarios. In order to facilitate these aims the International Organisation for
Standardisation formed a subcommittee to examine the possible scope for
standardisation in biometrics. This committee met for the first time in 2003 as
ISO/IEC JTC1/SC37; shortly before this first meeting, the British Standards Institute
formed the IST/44 to coordinate United Kingdom input into the standardisation
process. SC37 now consists of twenty-four member countries, with a further six

observer countries and six international liaison organisations.

The working groups of the committees focus on six distinct areas of
standardisation interest:
1. Harmonised Biometric Vocabulary
Biometric Technical Interfaces
Biometric Data Interchange Formats
Biometric Functional Architecture and Related Profiles

Biometric Testing and Reporting

A

Cross-Jurisdictional and Societal Aspects
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Currently there are nine published standards, with twenty-eight projects at
various stages of completion. The most well known uses of these standards are the
Biometric Interchange Formats [108] being used in the new International Civil
Aviation Organisation e-Passports which are currently under adoption by countries,
and the International Labour Organisation’s Identity Document for Seafarers, for

which a biometric profile is being developed [109].

We have become involved as a UK expert within IST/44 and to SC37 focusing
on the standardisation effort of multimodal biometrics. This has taken place primarily
within working groups 1 and 2, discussing standardised definitions for multimodal

biometrics [110] and producing a technical report on multimodal biometrics [111].

A.2  Vocabulary Harmonisation

Whilst in this thesis we have used the phrase multimodal biometric to
generically refer to all combinations of biometrics, as is the current academic
tradition, we have become aware of the shortfall this contains in properly describing
biometric systems utilising fusion techniques. The need to settle on a fully descriptive
set of terms is of paramount importance for the progress of the technical report

described in section A.3 and further standardisation work mapped out in A.4.

Key amongst this work has been the decision to move to the descriptor
Multibiometric to describe a biometric system containing any form of data fusion.
This is then further divided into five categories:

1. Multimodal — The combination of two or more independent biometric
characteristics (e.g. face and gait) irrespective of sensor type or processing
method;

2. Multisensoral — The combination of biometric data from two or more sensors,
all examining the same modality;

3. Multialgorithmic — The combination of biometric data extracted using
different algorithms, but having been obtained from a single sensor and hence

single biometric characteristic;
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4. Multiinstance — The combination of multiple instances of the same biometric
characteristic obtained by identical sensor types and processed by identical
algorithims (e.g. the combination of right and left iris images);

5. Multipresentational — The combination of repeated presentation of the same
instance of a biometric characteristic obtained by a single sensor type (e.g.

multiple face images).

Similar work has been performed in harmonising the vocabulary describing the
levels of biometric fusion. The development of these concepts, although in the early
stage of adoption by the community, allows much greater precision when describing
and evaluating multibiometric systems. This process ensures that ambiguity is
removed from the standardisation process, which is of great importance for successful

deployment of international standards.

A.3  Technical Report on Multimodal and Other Multibiometric Fusion

We have had responsibility for preparing the United Kingdom position on this
technical report [111]. The technical report contains descriptions of current practice
on multimodal and other multibiometric fusion systems focusing on possible

standardisation activities for these systems.

The report discusses various possible architectures and levels for the fusion of
multiple biometrics. It particularly focuses on decision and score level fusion, since
these are the more popular techniques and are believed to be the most effective.
Various score normalisation and fusion techniques are described in detail to aid the
readers understanding of the field. The report also contains information on
terminology as discussed in A.2 and an extensive bibliography of related literature to
introduce the reader to the topic. Finally the report attempts to identify possible areas
for standardization, these include: further work in the area of record formats for
multibiometric systems; development of suitable frameworks and Application
Programming Interfaces; application profiles to describe appropriate uses of
multibiometrics; and testing methodologies for performance evaluation and standards

compliance.
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This technical report has recently been submitted for publication ballot, and is

expected to be published by ISO/IEC JTC1 early in 2007.

A.4 Progress towards standards

As discussed in section A.3 many areas of standardisation are possible for
multibiometric systems. At present two projects are in their formative stages with
input from the US and UK national bodies; these relate to interchange formats and

APIs.

There exists a number of interchange formats for single biometric modalities,
with four published and seven more in progress. These formats allow systems from
various vendors to properly interpret and process the biometric data contained therein,
leading to interoperable systems such as the e-Passport application. It is considered
that this type of format would also be important for allowing multibiometric systems
to exchange data with subsystems or other systems. Current ideas focus on the
packaging of statistical information on score distribution, performance information,
fusion level and method etc to ensure sufficient data is accrued to enable the proper

functioning of multibiometric systems containing components from different vendors.

SC37 have developed a successful API for use in biometrics, known as BioAPI
[112]. Currently this is only suitable for use in single biometric application, though
does support components from multiple vendors. It is thought likely that amendments
to BioAPI could be made to enable multibiometric operation. These amendments will
focus on introducing new primitive functions and Biometric Information Records to
enable the processing, fusion, verification and decision making on multiple biometric
records, collected in so called Auxiliary BIRs. Such amendments would allow
developers to produce interoperable multibiometric systems or system components
without revealing proprietary techniques or worrying about unexpected interaction

between components.

Both of these activities are likely to be introduced to SC37 during the latter half
of 2007.
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Appendix B
Lists of Subjects

B.1  Face Recognition

000 030 059 084 115 153 188 221 256 287
001 031 060 085 116 155 190 222 257 288
002 032 061 086 122 158 192 223 258 291
003 033 062 088 124 159 193 225 259 293
004 034 063 089 126 160 194 226 259 295
008 035 064 091 128 162 198 227 261 297
009 036 066 092 129 163 201 229 262 298
010 037 067 093 130 166 203 231 263 299
012 038 069 096 131 171 204 233 265 304
014 039 070 097 132 174 205 237 266 310
015 045 071 101 137 175 206 238 267 311
016 046 072 102 138 177 208 239 269 314
018 047 073 105 142 178 209 242 271 320
019 048 074 106 143 179 211 243 274 324
021 049 076 107 145 180 212 245 275 360
022 053 078 111 147 181 213 246 279 361
024 054 080 111 149 182 214 248 281 371
026 055 081 112 150 184 216 249 282

028 056 082 114 151 185 217 251 285

029 057 083 114 152 187 218 254 286
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B.2  Ear Recognition

000 022 045 067 105 142 179 216 251 297
001 024 046 071 106 149 181 217 254 304
002 026 048 074 111 151 182 218 256 324
003 028 053 078 111 152 188 221 257 360
004 029 054 080 114 155 190 222 259 361
008 030 055 082 114 159 193 225 261 371
012 031 056 083 115 160 194 226 263
014 032 057 084 116 162 201 231 266
015 033 059 085 126 171 205 233 274
018 034 060 091 129 174 206 243 281
019 036 063 092 132 177 209 245 287
021 038 064 093 138 178 213 248 288
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