Semiometrics. Applying Ontologies across L arge-Scale
Digital Libraries

Duncan M. McRae-SpendeNigel R. Shadbott

1 School of Electronics and Computer Science, Higfisouthampton, SO17 1BJ, UK
{dmmsO03r, nrs}@ecs.soton.ac.uk

Abstract. As large-scale digital libraries become more adé and complete,
not to mention more numerous, it is clear thera rseed for services that can
draw together and perform inference calculationstten metadata produced.
However, the traditional Relational Database Managensystem (RDBMS)
model, while efficiently constructed and optimiskd many business struc-
tures, does not necessarily cope well with issfie®iocurrent data updates and
retrieval at the scale of hundreds of thousandsapkrs. At the same time the
growth of RDF and the increasing interest in SensaWteb technologies per-
haps begins to present a viable alternative adkalsie, practical level. This pa-
per considers a specific application of large-scagtadata analysis and con-
ducts scalability tests using real-world data.oih@dudes that RDF technologies
are both a scalable and performance-realisticredtame to traditional RDBMS
approaches. It also shows that for relationshigtagueries on large-scale
metadata stores, RDF technologies can significaotiitperform traditional
RDBMS approaches by allowing both retrieval and updadf data in a timely
manner.

1 Introduction

The emergence of large-scale online digital libsargea feature largely welcomed
by the academic scientific community. While systemesh as Citeseer[1] and Google
Scholar[2] crawl the web searching for papers,daasingly online institutional re-
positories are being created, exposing their pagiismetadata in a standard format.
These systems are sufficiently successful to hasedahe expectations of the user
community: it is now the case that people expeatlamic papers to be findable and
downloadable, fully indexed and searchable in ‘Geogtyle; citations to other
documents should be rendered as hyperlinks; metesfaduld be searchable and
services summarising the work of an author, instituor journal/conference should
be made available. While the various digital liearattempt to meet some or all of
these expectations, it remains the case that theuof papers indexed and stored
by these libraries is in the order of hundredshafusands and will only increase as
the move towards more open archiving[3] continued enore metadata becomes
available. Producing services that run over thédwmaries, and perhaps even across
multiple libraries, is therefore a challenge whemsidering the issues of search
speed and query complexity.

At the same time, the growth of Semantic Web teldgies may provide an an-
swer to at least some of the questions raised abithes push towards more intelli-
gent, computer-readable websites has brought tdotieethe use of ontologies as a
means of data manipulation and integration, and B®& format for data storage and
transfer. While much semantic web research focosethe development of storage
techniques such as 3Store[4] and Jena[5] as welifaence-based language stan-
dards such as OWL, it is clear that RDF-based siptes, along with the query lan-
guage SPARQL, allow a different approach to be takemata storage and searching
than that which is provided in more traditional RId8 models. This paper details
the theory and practice of applying the RDF techeitp large-scale digital libraries
and shows how, for many more complex queries deethbyg the raised expectations
of services described above, data storage in ROFgarrying by the standard RDF
query language SPARQL provides a level of performaaicleast as useful as stan-
dard SQL approaches, and fast and flexible enoughazide a real option for use in
online digital library services.

2 Motivation

The relational database model, queried by SQL, has aestandard model for data
storage for many years. While optimisation and xuig techniques have boosted the
efficiency of this model, it remains the case tbame queries on multi-table data-
bases remain complex even though they are eagilessible in plain language. For
example, given a simple database schema for a taegadata repository, some valid
queries might be: ‘how many distinct authors aexdhin this system’, ‘which papers
cite papers by this author’ and ‘what are theditéé the articles has this author writ-
ten since 2002'. In SQL, these could be respectierfyressed as:

1. SELECT COUNT(*) FROM authors;

2. SELECT DISTINCT bibliographies.MasterArticle,
bibliographies.ArticleCited

FROM bibliographies INNER JOIN author

ON bibliographies.ArticleCited = author.documentID
WHERE author.AuthorID = 'P123';

3.SELECT DISTINCT articles.Title, articles.articlelD
FROM articles INNER JOIN authors

ON articles.articleID = authors.ArticleAuthored
WHERE authors.acmID = 'P123'

AND articles.Year > 2002;

While the first of these queries is relatively sleyphe second and third both in-
volve inner joins, the third on a potentially vdayge table ‘articles’, raising query
complexity and potentially increasing the time take produce a result, depending
on the indexing techniques used. By contrast, thesequeries can be expressed
relatively simply in SPARQL, given a suitable ongyo(in our case, we used a stan-
dard academic papers-and-people ontology creatéKpy6]).

2. SELECT distinct ?p ?c
WHERE

?p akt:has-author <http://citeseer.ecs.soton.ac. uk/#P123> .
?¢ akt:cites-publication-reference ?p .

3.SELECT distinct ?p ?t
WHERE

?p akt:has-author <http://citeseer.ecs.soton.ac. uk/#P123> .
?p akt:has-title ?t .

?p akt:has-date ?2d .

2d support:year-of ?y .

FILTER (?y > 2002)

While these queries may appear similar in termswhber of lines, the actual
logic involved is far simpler in the SPARQL queriesd as will be shown in this
paper, response times are greatly reduced. Howdvés, wrong to suggest that
SPARQL is simply better than SQL: the first queradsually far better in SQL than
in SPARQL:

1. SELECT distinct ?a
WHERE

?p akt:has-author ?a.

}

Despite the relative simplicity of the statemehgre are two major problems with
this query. Firstly, the query itself doesn’t adtyiaanswer the question of ‘how
many’ — SPARQL does not contain an equivalent of $Qidunt(*) operation, and
so the user (or the program making the call) wdnalde to do the summation calcula-
tion separately. Secondly, and more importantig, 8PARQL statement has to query
the entire Knowledge Base, finding all instanceshef ‘has-author’ predicate, then
creating a distinct list of the subjects of thagglés. This is an extremely inefficient
way to simply count all the instances of authotseowever the nature of RDF means
that we need to count the instances of the relsttipnin order to discover the identity
of the URIs concerned: they are defined as beitigoasi because they are subjects of
triples whose predicate is ‘has-author’.

3 Data Storage Models and Purpose

The essential difference between the RDBMS and ogyebased data models are
their respective purposes. This section discusgedédhign rationales behind the two
approaches and where the essential differences lie.

Relational databases typically deal with questiofgdentity, including if that
identity involves calculations across tables. RDBMiBe optimised to allow efficient
querying of data, data which is itemised in talaled columns according to identity.

This means that in practice, queries such as ratgethe total number of authors is
straightforward — it is simply a summation of thember of distinct rows in the ‘au-
thors’ table. However, queries based around relghigpps between data are more
complex — although the relational model makes tlhyemzies possible, for large-scale
databases with complex tables containing sevenatited thousand rows it can be
very time-consuming to perform the required JOINagions.

To overcome this problem, RDBMSs typically offer tssthe opportunity to per-
form indexing operations on their data. User-chaselices allow storing of sorted
columns (or column combinations) meaning a vasticgédn in search time, particu-
larly when performing the more complex relationpémtions. The down-side of this
is an increase in the time taken to perform insand updates to the system, as the
indices associated will have to be updated. Adaditily, for large multiple-indexed
tables, the index files often grow to the extesat they become bigger than the actual
database files they are indexing. For most systanide-off can be made between
the amount of indexing and the need to keep thé&esysopen’ so additions and
changes can be made as well as efficient queryiogrever, as described below, as
systems become larger, the trade-offs become htrdeake.

In contrast to the ‘identity’ model of tradition®DBMS databases, ontology-
based data is designed to deal primarily with qoestof relationships, where the
predicates are the focus of the query. The emergefROF as a standard format for
data description, coupled with the developmentcafable triplestore solutions (such
as 3Store in our case), has allowed the creatiGgeafchable knowledge bases where
relationship-based queries can be easily frameniged the ontology concerned is
sufficiently engineered to allow for such querikspractice, therefore, queries such
as retrieving the titles of all documents a pafticauthor has written since 2002 is
straightforward the system just needs to look fbthee predicate-subject combina-
tions where the has-author predicate is followedHhsy particular URI representing
the given author, then filter out all results fr@®02 and before. As we are essentially
searching for a relationship rather than a setnsfnv@rs from a table, the ontology
model is suited to allow us to search for suchrimgation.

As a side-note, it is important to remember thatarneath triplestores is usually a
database of some description — indeed 3Store lisdsutop of the relational database
MySQL, optimised with its own indexing. The variougperiments described in the
following section compare the relative efficienciesthe SQL and SPARQL ap-
proaches — but it is important to note that the Sfatabase used by 3Store and the
one used in the experiments was the same MySQLUlatgia on the same computer:
the tests therefore were focusing not on the k&lgierformances of databases, but on
the differences between the two data models.

4 Practical Usage: Semantic Web Services and Semiometrics

The initial motivation for storing large-scale docemrepository metadata in RDF
format came from the desire to produce usablegieffily searchable services based
on metadata from two computer science centric litgrees:; Citeseer and the ACM
Digital Library. While straightforward searching atowsing facilities are fully
implemented on the respective websites of thesesipies, the desire was to pro-
vide more in-depth services based on data reldtipassuch as ‘influence’ scores for
papers, authors and institutions based on moreghealy citation counting alone. To
this end, the raw metadata (essentially Dublin {Znalus citations) was taken from
the two sources and put into two different databagth identical schemas, as shown
in figure 1. This schema, while containing a numbietables, was optimised to give
the simplest possible view of the data in the sesalhumber of tables possible, while
adhering to the basic relational database models Thare are three main tables:
articles, authors and bibliographies, with a fouftAnonindex) introduced to help
speed up certain author-based queries, even thbiggmeans a duplication of author
data. Note: throughout these experiments therenwatempt to merge the two data-
sets as it was considered most useful to see hoilasiresults would be across two
completely distinct, although similarly sized, dsdts.

Initially questions of indexing were answered byemipting to find a sensible
trade-off between the need for indexing and thedniee flexibility in terms of
amending and, particularly, adding data. Howeuequickly became apparent that
while indexing allowed for quick searches, the etk column and table became
difficult to update with new and amended data iliva environment, even if such
updates were stored up and scheduled for a loweugagod. The more indices, the
slower the updates, even if the tables were otlserwptimised and non-essential
features (such as foreign key constraints and dastactions) were removed from
the database and handled at the application I®rela small subset of Citeseer data,
containing roughly 12,000 papers, a compromise ma@s possible containing a
degree of indexing while still allowing for changesbe made to the database. For
the full datasets, however, containing metadatthoaand bibliography information
for over half a million papers, no such compromises possible: either the unique
columns in the tables were indexed, effectivelwpnging regular updating, or they
were not indexed, dramatically slowing search tifBeentually two models were
chosen for the system: a ‘closed’ system with Hgamdexed tables that would not
be updateable in a ‘live’ setting and an ‘open’tegs with minimal indexing where
updates could be made at the expense of search time

B¥ acm_divbook running on localhost - phpMyAdmin 2.5.6 - Mozilla

File Edit Wew Go Bookmarks Tools Window Help
L RS - TR N yree—"— =
- php Search
Back : Reload |¢ | 2 Print
7k Home 'ﬂ!Boolunarks J‘mozilla.org 4LahestBuiIds IAKT: WUN Aktive Sp.., >
Ll
'H.,,u..;.. Database acm_divbook running on /ocalhost
Home "
: articles
| acm_divbook {5) Vl
Field Type Null Default
ena ik k AutolD int{11} No
i EI_E:IE_ Articlell varchar{255 Yes NULL
H aaibor Title text Yes MNULL
M bibliographics ear varchar(255) s NULL
I n e e citecount int(11} Yes 0
[l category authority double ez 0
centrality double ez 0
authors
Field Type Null Default
acmil warchar(255) No
Articlesuthored wvarchar(255) Mo
Author varchar(255) No
surnams warchari255) No
affiliation text Es MULL
bibliographies
Field Type Null Default
MasterArticle 'varchar(255) No
ArticleCied varchar(255) Mo
canonindex
Field Type Null Default =
canenindexiD int{11) Mo
authorindexID warchari250}) fes MULL
canenicallndexMams varchar250} fes NULL
paperCount int(11) es MNULL
surnamelndex varchar(250) ez MNULL
citecount int{11) fes NULL
Que window meanauthority double fes MNULL
meancentrality double fes NULL
-
B [|~ o

Fig. 1. The database schema for the MySQL sources fo€ifeseer and ACM datasets. Note
that ‘canonindex’ is a short-cut index table farrstg pre-calculated information on authors to
speed up query times.

Using these models the metadata, along with a fetheomore in-depth results,
were exposed through a number of web services tligkd by two separate client
systems. The first of these was a set of web pageke ravailable via a local server
alongside a mirror of the existing Citeseer systgrayided by Penn State University.
These pages utilised many of the web services teigeoa coherent set of results
users would be able to search and browse. Initialliemented using the Citeseer
data subset of 12,000 papers held in the ‘compmmmslex model described above
and shown in fig. 2, the system was expanded tduhelataset using the ‘closed’
model described above after the ‘open’ system dechdre time-outs than actual re-
sults being displayed. While the ‘closed’ systenswafficiently quick to respond to
queries, and thus useful for demonstration purpasesas clear that in practice a
system that was effectively ‘frozen’ would not bgeful in anything other than the
very short term. For the remainder of this papeg, will use the terms open and
closed SQL databases to refer to the databasesqgaduith minimal and heavy
indexing respectively.

[Southampton Citeseer Mirror: Statistics - Mozilla

T Ble Edit Yew @o Bockmads Took Window Heb
T4 .9 .23 @ r— % . .|
2 3 U (s S -
-: “Hriome | Wb Bockmarks A moziaorg 4 Latest udds 4 AKT: WLRN Aktve Sp... »
Author Ratings: Ordered by citecount, offset 0 =
Showing results 1 to 20
Ratin Canomical Paper Number e SuSntn e
Fusiﬁng; Name El:a: o Aathonty L entralitv {out
; = citations [out of 100) of 100}
Brian M
et 2 2 g 3
1 Ber<had 20 o1 13.758 83130
2 Henry M Levy 20 263 8.9365 52137
Thomas E = =5
3 Py 13 236 16.130 7.3611
4 Oren Etriond 19 208 0.0383 20847
5 Van Jacobson 15 208 43889 4.9828
John K
e z 2 9923
& = 14 208 0.684 1.99
e T -

Fig. 2. Screenshot showing the semantic web servicestghages running on a sub-set of
Citeseer data.

At this point the direction of the work was switch#® see if the RDF/ontology
model would provide any answers. Although theoadliic as described above, it was
clear that a SPARQL-based set of queries to aesipte would provide a different
set of response times for the same results, itumkmown whether the increase in
efficiency over the ‘open’ SQL model would prove f&iént to be able to offer the
services we wanted in a reasonable timescale. &lyilt was unclear whether
SPARQL alone would be able to provide all the ansygiven the examples in sec-
tion 2 of this paper which showed the clear advgaiaf SQL in identity-based que-
ries: would a combination of SPARQL and SQL be better

The first client, the set of web pages parallel tocal Citeseer mirror, were there-
fore re-written to utilise (also re-written) SPAR@sed web services. With paper
metadata populating the AKT Reference Ontology[7dl avith the Citeseer data
augmented by our automated disambiguation tool AEAihor [8], the services
were able to query the data asserted in a 3Storeirv@ing a number of other KBs,
and on a server running numerous other web apjgiaincluding the Citeseer mir-
ror.

The results were encouraging: for the majority ofrekes translated into
SPARQL, the searches completed in a suitable timade in web services. The few
that were too slow matched the few that SQL quédréesproved capable of respond-
ing to in a reasonable timeframe from the opentiesa. Therefore overall success of
the SPARQL semantic web service querying model, aostbwith a small number
of SQL queries to an open database, allowed thdaw®went of the next stage of the
process: the creation of a Semiometric viewer apptin.

The SemioViewer application uses, as described abaveeombination of
SPARQL and SQL queries, calculating influence sctaepapers and authors on the
fly, producing summary data for selected paperfuytbearch interface and browsing
of neighbouring papers/authors (citations for papand co-authors for authors),
whose influence scores are also shown. The prota@gpkcation (shown in fig. 3) is
written in Java and calls a variety of SPARQL quenga HTTP, as well as the
equivalent SQL queries directly to MySQL (queryinthei the open or closed data-
base). The overall purpose of the application, injuaction with the web services
described above, is to allow the browsing and dafig of influence scores at vari-
ous levels of granularity — papers, authors, imstihs, disciplines and others. While
the theory and results of that work is discussedvethere[9], the SemioViewer pro-
vides a platform for comparing the SQL and SPARQLragphes. As it contains
equivalent queries in both languages, and as tpkcapon is designed to be used as
a practical interface to large-scale metadata stdteproved to be an ideal ‘test
ground’ to compare equivalent SQL and SPARQL querits data stores dealing
with several hundred thousand papers.

¥ Sermometiic Viewer Elﬁi@l

File Help

ﬁr'm x Dl woimce: ® ACW Cllusees Saichc rl|l||'|-|:d_.'g Rato by | Ciiatlon v Rashority | 1 facios
Aock | [zsomimn foomosd Cusresd zoone LGEE
: £
yusi] 1005 2000 0
AUTHOR =
i

u Budan
Mame: Jon Kleinberg

Papers authored: 50

hEan

Impn:rt Seores:

P
' /
\mﬂgmmu / 3P i lkamaon Total ritations: 943
- Mean citations: 11.7H
Highest aathority: 3,93

-"__'_'_'___.--"'" _‘1". et Mean authority: 0.169
7 >N : T atal weighted combination: 1967,
/ “_ Aean weighted combination: 2459 |
pe

N H-Factor: 3
e S Modified H-Factor: 5

14

Tardha

LT

Fig. 3. Screenshot of SemioViewer application showing gdeam ACM dataset, revealing
impact scores for Jon Kleinberg and the relatives@hess and impact of his co-authorship
community.

5 Reaults

The purpose of this paper (and of these experimestspt to see how good
Semiometrics are: instead the purpose here iskttnaskey questions: (1) is it useful
to replace open SQL queries with SPARQL for somefadries, particularly where
SQL is very slow and (2) is it a realistic hope toguce a system that works in real
time while remaining open to new data being added?

The results in Table 1 show the response times ¢b af gjueries performed on the
full ACM metadata set of 700,000 papers, with &4 conducted on the three meth-
ods of data storage/retrieval described above:pam alatabase queried by SQL, a
closed heavily-indexed database queried by SQL &8fstare Knowledge Base que-
ried by SPARQL. The thirteen tests conducted werdasded on queries that either
the web services or the SemioViewer applicationrdneeask at some point in their
execution.

Table 1. Results of experiments performed on ACM dataseguS@L and SPARQL

Test# | Test Closed SQL| Open SQL SPARQI
1|Search for paper givgrd.83s 1.04s 23s
incomplete title string
(‘AKTive").
2| Search for author givgr2.02s 2.03s 32s
incomplete name string
(‘Keller’).
3| Search for author givgr2.04s 2.04s 52s
incomplete name string
(‘Johnson’).
4| Get paper details (title0.02s 1.28s <0.5s
year) given paper ID.
5| Get paper details (titlgR2.06s 3.40s <0.5s
year, authors)given paper
ID.
6| Get paper details (titlelm 34.97s 4m 0.566s Times out.
year, authors) given in-
complete search string for
title.
7| Get paper’s top 15 cital.27s Times oytConsis-
tions and relative impagt (>30 mins) | tently <10s,
scores (cite count, authar- typically
ity, combination) giver <4s.
paper ID.
8| Get details of authqr0.03s 0.87s ~1.5s
given author ID.
9| Get all papers (paper I[.01s 2.04s ~2s
only) by a particular ay-
thor given author ID.
10| Get all papers (paper I[PQ.78s 1m 4.03s ~3s
title, year) by a particulgr
author given author ID.
11| Get impacts of all papefd.32s ~0.5s par<i5s
from previous test and individual
thus calculate auth@r query, 375
impact (author has 71 total; times
papers) out (>30
mins) if done
as one query
12| Get impacts of all papef9.51s ~0.5s par<5s
from previous test and individual
thus calculate author query, 63
impact (author has 10 total; times
papers). out (>30

mins) if done
as one query
13| Get closest 15 co-authdr$ypically Times ouf <15s for
and calculate their relatiye<10s. Maxi-{ (>30 mins) | typical
impact given author 10.mum ob- author.
(Tested on various authpserved for Maximum
IDs). complex observed
author 19s. for complex
author 27s.

The most noticeable results is the general speeansatye of the closed database:
this significantly out-performs either the openatatse or the SPARQL triplestore
queries in most cases. However realistically, while important for the purposes of
fairness to MySQL to show the advantages of headgximg, the comparison in
results that needs to be made is between the oRénsgstem and the SPARQL-
based KB. There are four types of results reporieitié above section: those where
SQL on the open database was substantially fastarSPARQL (tests 1, 2, 3), those
where open SQL and SPARQL were roughly the same atidusable (tests 4, 8, 9),
those where SPARQL was substantially faster tham &L (tests 5, 7, 10, 11, 12,
13) and those where neither open SQL nor SPARQL gk enough to be useful
(test 6). We now consider each type of resultin.tu

Open SQL faster than SPARQL

These are queries dealing with questions of ide(gitygle table information gath-
ering): string matching within a particular field something SQL is heavily opti-
mised for, even without multiple indexing. SPARQlongersely, does not contain a
‘LIKE’ function and instead relies on searching aitords for subjects in triples with
the predicate ‘has-title’ or ‘full-name’ and theiftefring on a regular expression — a
much more time-consuming process. Therefore for tenls queries, typically
searches, it is clear that SQL is superior and shbelused in a practical, real-world
system. Also note that test 8 produced a margimplligker result for open SQL than
SPARQL: this is due to an optimised RDBMS searchiisg a single table for more
identity information about a given author ID, whasethe SPARQL query has to
search through a few triples to get the requiréarimation.

Open SQL and SPARQL similar

These tended to be simple queries where open SQtohady look in a single ta-
ble and SPARQL had to only find a small number @&dprate-subject combinations.
In practice, either query type may be used fordlmseries and equally good results
may be expected.

SPARQL faster than open SQL

The nature of the SemioViewer application meansiththe largest group of re-
sults: calculating impacts and co-authorship conitiesnrequires a more intense
study of relationships between data. For SPARQIs, ithideal: it has been optimised
for searching object-predicate or predicate-subjectbinations. For open SQL, the

Relational Database model allows for joins betwtaes but the queries quickly
become complex (see examples in section 2, abovkjom tables containing several
hundred thousand rows, joins can be particulanhe{tonsuming unless the multiple
indexes in the closed system are applied. Testsnd113 show that performing nu-
merous individual queries rather than a single,eremmplex join operation can be
more time-efficient, even if the end result is itlesd. However, this is programmati-
cally more complex as it requires tailored scrijpte generated, and even then the
SPARQL queries are generally quicker, particuladg {est 12 shows) for authors
who have written a larger volume of papers.

Neither SPARQL nor SQL quick enough

This was a single, complex test which involved isstiet lead to a struggle for
both SPARQL (incomplete string querying) and oper. $Qulti-table joins on large
tables). Even the closed SQL system struggled with thultiple indexing did not
help with the ‘like’ query to the extent that itddiith the other queries. In practice,
the SemioViewer application breaks this query damto two stages: perform a
search to get a paper ID (best performed using &fgin) and get the details of that
paper and its authors (best performed using SPAR®LS. important to note that
queries like this will exist when constructing apgtions for large-scale metadata
stores, and the solution is to break it down imsslcomplex queries and perform
them sequentially using a suitable approach foh eme.

Analysis

It is important to again point out that these eikpents were performed on a single
server using a particular instance of MySQL, on Wwhice 3Store was built. The
differences therefore can not be put down to sopésardware or database perform-
ance, but to the design differences between the M®Bind RDF models of data
representation. While it can be argued that thetiptellindexing of the closed data-
base provide better results for the SQL queries,dfill leaves us with complex SQL
statements performing JOIN operations on largeetalds well as the inherent prob-
lem of performing updates on what needs to bee frequently-updated system.

The results therefore show that in practice, the oaalistic way for the Semio-
Viewer application to work is to have both open S&id SPARQL queries. While
not typical Semantic Web applications, both the iB&ewer and the SPARQL-
based web services and client pages described abquiee both SQL and SPARQL
queries in order to perform effectively, if theyean remain open to having regular
data updates. This is partly due to the design &REPL (certain features present in
SQL are not included in SPARQL, such as there bemmgaunt(*) function and no
‘like’ facility within SPARQL) and partly due to nate of SPARQL and SQL: as
suggested above, SQL is better at ‘identity’ quer&RARQL superior at ‘relation-
ship’ queries. With metadata for ~700,000 papets@million triples, the only prac-
tical approach when creating live, updateable ‘semeirics’ applications is to use
both: open SQL for initial searching and SPARQL fettigg more in-depth data for
each paper or author, including information neddedfluence analysis.

6 Conclusion

While the statistics produced of the SemioViewepligption are interesting in
themselves, the main conclusion to be drawn inghjger is that the RDF/SPARQL
approach, along with a scalable triplestore sofytigresents a viable alternative to
SQL for large-scale metadata stores, particulartygiceries based around relation-
ship rather than identity. We have shown in thipgraexamples from a working
application where SPARQL out-performs open SQL ot ltieé theoretical and em-
pirical level, as well as examples of SQL out-perfimg SPARQL. We have also
shown that while a few simpler queries can be paréa well using both approaches,
there are very few that neither approach can haind& reasonable time-frame: in
these cases, simplifying queries provides the moluin addition, we have shown
that for systems that do not require frequent wgsjad closed, heavily-indexed is
preferable as it requires only one data sourceS@h database) rather than both a
database and RDF KB; however, it has also beenrshioat for large-scale metadata
stores requiring frequent updating, a closed sysseimpractical. It is therefore rea-
sonable to conclude that when dealing with largdesclatasets featuring complex
relationships and queries, RDF and SPARQL can peowidiramatically improved
performance over the conventional RDBMS/SQL apprdeackertain queries.

Future work planned in this area includes lookihgrawing two data sources to-
gether using the RDBMS and RDF approaches: for pl@npining the ACM and
Citeseer datasets currently held in distinct KBsperhaps the merging of different
EPrints archives. While useful and theoreticallyirin RDF (just put the resources
in the same Knowledge Base) it raises the ongoiemadtic Web issue of co-
reference resolution and duplicate records, andgthestion of whether RDBMS,
RDF or both types of solution are necessary toestilis problem.

Acknowledgements

This work is supported under the Advanced Knowle@igehnologies (AKT) Inter-
disciplinary Research Collaboration (IRC), whictsgonsored by the UK Engineer-
ing and Physical Sciences Research Council undet gumber GR/N15764/01.

We would like to thank Professor C. Lee Giles arahtsCouncill of Penn State
University for the provision of Citeseer and forgoimg helpful comments.

References

1. Lawrence, S., Bollacker, K., Giles, C.L., "Digitabraries and Autonomous Citation Index-
ing" IEEE Computer, 32(6), (1999). 67-71.

2. http://scholar.google.com

3. Lagoze, C., Van de Sompel, H.: The Open Archinggtive: Building a low-barrier inter-
operability frameworkProceedings of the ACM/IEEE Joint Conference on Bidiibrar-
ies, Roanoke VA, USA (2001). 54-62.

. Harris, S., Gibbins, N.: 3store: Efficient Bulk R[Btorage. Proceedings 1st International
Workshop on Practical and Scalable Semantic WekeByss Sanibel Island, Florida, USA.
(2003)

. Mc Bride, B.: Jena: Implementing the RDF Model &ydtax Specification, Proceedings of
the Second International Workshop on the Semangb {2001).

. The AKT Reference Ontology. http://www.aktors/pighlications/ontology/, (2002).

. Weibel, S., The Dublin Core: A simple contentaiggion format for electronic resources.
NFAIS Newsletter: 40(7), (1998). 117-119.

. McRae-Spencer, D. M., Shadbolt, N. R., "Also By Bame Author: AKTive Author, A
Citation-Graph Approach to Name Disambiguation"Pioceedings 6th ACM/IEEE Joint
Conference on Digital Libraries, (2006), pp. 53-55.

. McRae-Spencer, D. M., Shadbolt, N. R., "SemiorgtiProducing a Compositional View
of Influence” (Preprint) (2006).

