
Semiometrics: Applying Ontologies across Large-Scale
Digital Libraries

Duncan M. McRae-Spencer1, Nigel R. Shadbolt1

1 School of Electronics and Computer Science, Highfield, Southampton, SO17 1BJ, UK
{dmms03r, nrs}@ecs.soton.ac.uk

Abstract. As large-scale digital libraries become more available and complete,
not to mention more numerous, it is clear there is a need for services that can
draw together and perform inference calculations on the metadata produced.
However, the traditional Relational Database Management System (RDBMS)
model, while efficiently constructed and optimised for many business struc-
tures, does not necessarily cope well with issues of concurrent data updates and
retrieval at the scale of hundreds of thousands of papers. At the same time the
growth of RDF and the increasing interest in Semantic Web technologies per-
haps begins to present a viable alternative at a scalable, practical level. This pa-
per considers a specific application of large-scale metadata analysis and con-
ducts scalability tests using real-world data. It concludes that RDF technologies
are both a scalable and performance-realistic alternative to traditional RDBMS
approaches. It also shows that for relationship-based queries on large-scale
metadata stores, RDF technologies can significantly out-perform traditional
RDBMS approaches by allowing both retrieval and updating of data in a timely
manner.

1 Introduction

The emergence of large-scale online digital libraries is a feature largely welcomed
by the academic scientific community. While systems such as Citeseer[1] and Google
Scholar[2] crawl the web searching for papers, increasingly online institutional re-
positories are being created, exposing their papers and metadata in a standard format.
These systems are sufficiently successful to have raised the expectations of the user
community: it is now the case that people expect academic papers to be findable and
downloadable, fully indexed and searchable in ‘Google’ style; citations to other
documents should be rendered as hyperlinks; metadata should be searchable and
services summarising the work of an author, institution or journal/conference should
be made available. While the various digital libraries attempt to meet some or all of
these expectations, it remains the case that the number of papers indexed and stored
by these libraries is in the order of hundreds of thousands and will only increase as
the move towards more open archiving[3] continues and more metadata becomes
available. Producing services that run over these libraries, and perhaps even across
multiple libraries, is therefore a challenge when considering the issues of search
speed and query complexity.

At the same time, the growth of Semantic Web technologies may provide an an-
swer to at least some of the questions raised above. The push towards more intelli-
gent, computer-readable websites has brought to the fore the use of ontologies as a
means of data manipulation and integration, and RDF as a format for data storage and
transfer. While much semantic web research focuses on the development of storage
techniques such as 3Store[4] and Jena[5] as well as inference-based language stan-
dards such as OWL, it is clear that RDF-based triplestores, along with the query lan-
guage SPARQL, allow a different approach to be taken to data storage and searching
than that which is provided in more traditional RDBMS models. This paper details
the theory and practice of applying the RDF technique to large-scale digital libraries
and shows how, for many more complex queries demanded by the raised expectations
of services described above, data storage in RDF and querying by the standard RDF
query language SPARQL provides a level of performance at least as useful as stan-
dard SQL approaches, and fast and flexible enough to provide a real option for use in
online digital library services.

2 Motivation

The relational database model, queried by SQL, has been a standard model for data
storage for many years. While optimisation and indexing techniques have boosted the
efficiency of this model, it remains the case that some queries on multi-table data-
bases remain complex even though they are easily expressible in plain language. For
example, given a simple database schema for a large metadata repository, some valid
queries might be: ‘how many distinct authors are there in this system’, ‘which papers
cite papers by this author’ and ‘what are the titles of the articles has this author writ-
ten since 2002’. In SQL, these could be respectively expressed as:

1. SELECT COUNT(*) FROM authors;

2. SELECT DISTINCT bibliographies.MasterArticle,
 bibliographies.ArticleCited
FROM bibliographies INNER JOIN author
ON bibliographies.ArticleCited = author.documentID
WHERE author.AuthorID = 'P123';

3. SELECT DISTINCT articles.Title, articles.articleID
FROM articles INNER JOIN authors
ON articles.articleID = authors.ArticleAuthored
WHERE authors.acmID = 'P123'
AND articles.Year > 2002;

While the first of these queries is relatively simple, the second and third both in-

volve inner joins, the third on a potentially very large table ‘articles’, raising query
complexity and potentially increasing the time taken to produce a result, depending
on the indexing techniques used. By contrast, these two queries can be expressed
relatively simply in SPARQL, given a suitable ontology (in our case, we used a stan-
dard academic papers-and-people ontology created by AKT[6]).

2. SELECT distinct ?p ?c
WHERE
 {
 ?p akt:has-author <http://citeseer.ecs.soton.ac. uk/#P123> .
 ?c akt:cites-publication-reference ?p .
 }

3. SELECT distinct ?p ?t
WHERE
 {
 ?p akt:has-author <http://citeseer.ecs.soton.ac. uk/#P123> .
 ?p akt:has-title ?t .
 ?p akt:has-date ?d .
 ?d support:year-of ?y .
 FILTER (?y > 2002)
 }

While these queries may appear similar in terms of number of lines, the actual

logic involved is far simpler in the SPARQL queries, and as will be shown in this
paper, response times are greatly reduced. However, it is wrong to suggest that
SPARQL is simply better than SQL: the first query is actually far better in SQL than
in SPARQL:

1. SELECT distinct ?a
WHERE
 {
 ?p akt:has-author ?a .
 }

Despite the relative simplicity of the statement, there are two major problems with
this query. Firstly, the query itself doesn’t actually answer the question of ‘how
many’ – SPARQL does not contain an equivalent of SQL’s count(*) operation, and
so the user (or the program making the call) would have to do the summation calcula-
tion separately. Secondly, and more importantly, this SPARQL statement has to query
the entire Knowledge Base, finding all instances of the ‘has-author’ predicate, then
creating a distinct list of the subjects of those triples. This is an extremely inefficient
way to simply count all the instances of authors – however the nature of RDF means
that we need to count the instances of the relationship in order to discover the identity
of the URIs concerned: they are defined as being authors because they are subjects of
triples whose predicate is ‘has-author’.

3 Data Storage Models and Purpose

The essential difference between the RDBMS and ontology-based data models are
their respective purposes. This section discusses the design rationales behind the two
approaches and where the essential differences lie.

Relational databases typically deal with questions of identity, including if that

identity involves calculations across tables. RDBMSs are optimised to allow efficient
querying of data, data which is itemised in tables and columns according to identity.

This means that in practice, queries such as retrieving the total number of authors is
straightforward – it is simply a summation of the number of distinct rows in the ‘au-
thors’ table. However, queries based around relationships between data are more
complex – although the relational model makes these queries possible, for large-scale
databases with complex tables containing several hundred thousand rows it can be
very time-consuming to perform the required JOIN operations.

To overcome this problem, RDBMSs typically offer users the opportunity to per-

form indexing operations on their data. User-chosen indices allow storing of sorted
columns (or column combinations) meaning a vast reduction in search time, particu-
larly when performing the more complex relational operations. The down-side of this
is an increase in the time taken to perform inserts and updates to the system, as the
indices associated will have to be updated. Additionally, for large multiple-indexed
tables, the index files often grow to the extent that they become bigger than the actual
database files they are indexing. For most systems, a trade-off can be made between
the amount of indexing and the need to keep the system ‘open’ so additions and
changes can be made as well as efficient querying: however, as described below, as
systems become larger, the trade-offs become harder to make.

In contrast to the ‘identity’ model of traditional RDBMS databases, ontology-

based data is designed to deal primarily with questions of relationships, where the
predicates are the focus of the query. The emergence of RDF as a standard format for
data description, coupled with the development of scalable triplestore solutions (such
as 3Store in our case), has allowed the creation of searchable knowledge bases where
relationship-based queries can be easily framed, provided the ontology concerned is
sufficiently engineered to allow for such queries. In practice, therefore, queries such
as retrieving the titles of all documents a particular author has written since 2002 is
straightforward the system just needs to look for all the predicate-subject combina-
tions where the has-author predicate is followed by the particular URI representing
the given author, then filter out all results from 2002 and before. As we are essentially
searching for a relationship rather than a set of answers from a table, the ontology
model is suited to allow us to search for such information.

As a side-note, it is important to remember that underneath triplestores is usually a

database of some description – indeed 3Store is built on top of the relational database
MySQL, optimised with its own indexing. The various experiments described in the
following section compare the relative efficiencies of the SQL and SPARQL ap-
proaches – but it is important to note that the SQL database used by 3Store and the
one used in the experiments was the same MySQL installation on the same computer:
the tests therefore were focusing not on the relative performances of databases, but on
the differences between the two data models.

4 Practical Usage: Semantic Web Services and Semiometrics

The initial motivation for storing large-scale document repository metadata in RDF
format came from the desire to produce usable, efficiently searchable services based
on metadata from two computer science centric repositories: Citeseer and the ACM
Digital Library. While straightforward searching and browsing facilities are fully
implemented on the respective websites of these repositories, the desire was to pro-
vide more in-depth services based on data relationships, such as ‘influence’ scores for
papers, authors and institutions based on more than purely citation counting alone. To
this end, the raw metadata (essentially Dublin Core[7] plus citations) was taken from
the two sources and put into two different databases with identical schemas, as shown
in figure 1. This schema, while containing a number of tables, was optimised to give
the simplest possible view of the data in the smallest number of tables possible, while
adhering to the basic relational database model. Thus there are three main tables:
articles, authors and bibliographies, with a fourth (canonindex) introduced to help
speed up certain author-based queries, even though this means a duplication of author
data. Note: throughout these experiments there was no attempt to merge the two data-
sets as it was considered most useful to see how similar results would be across two
completely distinct, although similarly sized, datasets.

Initially questions of indexing were answered by attempting to find a sensible

trade-off between the need for indexing and the need for flexibility in terms of
amending and, particularly, adding data. However, it quickly became apparent that
while indexing allowed for quick searches, the indexed column and table became
difficult to update with new and amended data in a live environment, even if such
updates were stored up and scheduled for a low-usage period. The more indices, the
slower the updates, even if the tables were otherwise optimised and non-essential
features (such as foreign key constraints and cascade functions) were removed from
the database and handled at the application level. On a small subset of Citeseer data,
containing roughly 12,000 papers, a compromise model was possible containing a
degree of indexing while still allowing for changes to be made to the database. For
the full datasets, however, containing metadata, author and bibliography information
for over half a million papers, no such compromise was possible: either the unique
columns in the tables were indexed, effectively preventing regular updating, or they
were not indexed, dramatically slowing search time. Eventually two models were
chosen for the system: a ‘closed’ system with heavily-indexed tables that would not
be updateable in a ‘live’ setting and an ‘open’ system with minimal indexing where
updates could be made at the expense of search time.

Fig. 1. The database schema for the MySQL sources for the Citeseer and ACM datasets. Note
that ‘canonindex’ is a short-cut index table for storing pre-calculated information on authors to
speed up query times.

Using these models the metadata, along with a few of the more in-depth results,
were exposed through a number of web services and utilised by two separate client
systems. The first of these was a set of web pages made available via a local server
alongside a mirror of the existing Citeseer system, provided by Penn State University.
These pages utilised many of the web services to provide a coherent set of results
users would be able to search and browse. Initially implemented using the Citeseer
data subset of 12,000 papers held in the ‘compromise’ index model described above
and shown in fig. 2, the system was expanded to the full dataset using the ‘closed’
model described above after the ‘open’ system led to more time-outs than actual re-
sults being displayed. While the ‘closed’ system was sufficiently quick to respond to
queries, and thus useful for demonstration purposes, it was clear that in practice a
system that was effectively ‘frozen’ would not be useful in anything other than the
very short term. For the remainder of this paper, we will use the terms open and
closed SQL databases to refer to the databases produced with minimal and heavy
indexing respectively.

Fig. 2. Screenshot showing the semantic web services client pages running on a sub-set of
Citeseer data.

At this point the direction of the work was switched to see if the RDF/ontology
model would provide any answers. Although theoretically, as described above, it was
clear that a SPARQL-based set of queries to a triplestore would provide a different
set of response times for the same results, it was unknown whether the increase in
efficiency over the ‘open’ SQL model would prove sufficient to be able to offer the
services we wanted in a reasonable timescale. Similarly it was unclear whether
SPARQL alone would be able to provide all the answers, given the examples in sec-
tion 2 of this paper which showed the clear advantage of SQL in identity-based que-
ries: would a combination of SPARQL and SQL be better?

The first client, the set of web pages parallel to a local Citeseer mirror, were there-

fore re-written to utilise (also re-written) SPARQL-based web services. With paper
metadata populating the AKT Reference Ontology[7] and with the Citeseer data
augmented by our automated disambiguation tool AKTiveAuthor [8], the services
were able to query the data asserted in a 3Store v3 running a number of other KBs,
and on a server running numerous other web applications including the Citeseer mir-
ror.

The results were encouraging: for the majority of searches translated into

SPARQL, the searches completed in a suitable time for use in web services. The few
that were too slow matched the few that SQL queries had proved capable of respond-
ing to in a reasonable timeframe from the open database. Therefore overall success of
the SPARQL semantic web service querying model, combined with a small number
of SQL queries to an open database, allowed the development of the next stage of the
process: the creation of a Semiometric viewer application.

The SemioViewer application uses, as described above, a combination of

SPARQL and SQL queries, calculating influence scores for papers and authors on the
fly, producing summary data for selected paper/author, search interface and browsing
of neighbouring papers/authors (citations for papers and co-authors for authors),
whose influence scores are also shown. The prototype application (shown in fig. 3) is
written in Java and calls a variety of SPARQL queries via HTTP, as well as the
equivalent SQL queries directly to MySQL (querying either the open or closed data-
base). The overall purpose of the application, in conjunction with the web services
described above, is to allow the browsing and calculating of influence scores at vari-
ous levels of granularity – papers, authors, institutions, disciplines and others. While
the theory and results of that work is discussed elsewhere[9], the SemioViewer pro-
vides a platform for comparing the SQL and SPARQL approaches. As it contains
equivalent queries in both languages, and as the application is designed to be used as
a practical interface to large-scale metadata stores, it proved to be an ideal ‘test
ground’ to compare equivalent SQL and SPARQL queries into data stores dealing
with several hundred thousand papers.

Fig. 3. Screenshot of SemioViewer application showing search on ACM dataset, revealing
impact scores for Jon Kleinberg and the relative closeness and impact of his co-authorship
community.

5 Results

The purpose of this paper (and of these experiments) is not to see how good
Semiometrics are: instead the purpose here is to ask two key questions: (1) is it useful
to replace open SQL queries with SPARQL for some/all queries, particularly where
SQL is very slow and (2) is it a realistic hope to produce a system that works in real
time while remaining open to new data being added?

The results in Table 1 show the response times to a set of queries performed on the

full ACM metadata set of 700,000 papers, with the tests conducted on the three meth-
ods of data storage/retrieval described above: an open database queried by SQL, a
closed heavily-indexed database queried by SQL and a 3Store Knowledge Base que-
ried by SPARQL. The thirteen tests conducted were all based on queries that either
the web services or the SemioViewer application need to ask at some point in their
execution.

Table 1. Results of experiments performed on ACM dataset using SQL and SPARQL

Test # Test Closed SQL Open SQL SPARQL
1 Search for paper given

incomplete title string
(‘AKTive’).

0.83s 1.04s 23s

2 Search for author given
incomplete name string
(‘Keller’).

2.02s 2.03s 32s

3 Search for author given
incomplete name string
(‘Johnson’).

2.04s 2.04s 52s

4 Get paper details (title,
year) given paper ID.

0.02s 1.28s <0.5s

5 Get paper details (title,
year, authors)given paper
ID.

2.06s 3.40s <0.5s

6 Get paper details (title,
year, authors) given in-
complete search string for
title.

1m 34.97s 4m 0.566s Times out.

7 Get paper’s top 15 cita-
tions and relative impact
scores (cite count, author-
ity, combination) given
paper ID.

1.27s Times out
(>30 mins)

Consis-
tently <10s,
typically
<4s.

8 Get details of author
given author ID.

0.03s 0.87s ~1.5s

9 Get all papers (paper ID
only) by a particular au-
thor given author ID.

0.01s 2.04s ~2s

10 Get all papers (paper ID,
title, year) by a particular
author given author ID.

0.78s 1m 4.03s ~3s

11 Get impacts of all papers
from previous test and
thus calculate author
impact (author has 71
papers)

1.32s ~0.5s per
individual
query, 37s
total; times
out (>30
mins) if done
as one query.

<15s

12 Get impacts of all papers
from previous test and
thus calculate author
impact (author has 10
papers).

0.51s ~0.5s per
individual
query, 6s
total; times
out (>30

<5s

mins) if done
as one query.

13 Get closest 15 co-authors
and calculate their relative
impact given author ID.
(Tested on various author
IDs).

Typically
<10s. Maxi-
mum ob-
served for
complex
author 19s.

Times out
(>30 mins)

<15s for
typical
author.
Maximum
observed
for complex
author 27s.

The most noticeable results is the general speed advantage of the closed database:

this significantly out-performs either the open database or the SPARQL triplestore
queries in most cases. However realistically, while it is important for the purposes of
fairness to MySQL to show the advantages of heavy indexing, the comparison in
results that needs to be made is between the open SQL system and the SPARQL-
based KB. There are four types of results reported in the above section: those where
SQL on the open database was substantially faster than SPARQL (tests 1, 2, 3), those
where open SQL and SPARQL were roughly the same and both usable (tests 4, 8, 9),
those where SPARQL was substantially faster than open SQL (tests 5, 7, 10, 11, 12,
13) and those where neither open SQL nor SPARQL were quick enough to be useful
(test 6). We now consider each type of result in turn.

Open SQL faster than SPARQL
These are queries dealing with questions of identity (single table information gath-

ering): string matching within a particular field is something SQL is heavily opti-
mised for, even without multiple indexing. SPARQL, conversely, does not contain a
‘LIKE’ function and instead relies on searching all records for subjects in triples with
the predicate ‘has-title’ or ‘full-name’ and then filtering on a regular expression – a
much more time-consuming process. Therefore for substring queries, typically
searches, it is clear that SQL is superior and should be used in a practical, real-world
system. Also note that test 8 produced a marginally quicker result for open SQL than
SPARQL: this is due to an optimised RDBMS searching just a single table for more
identity information about a given author ID, whereas the SPARQL query has to
search through a few triples to get the required information.

Open SQL and SPARQL similar
These tended to be simple queries where open SQL had to only look in a single ta-

ble and SPARQL had to only find a small number of predicate-subject combinations.
In practice, either query type may be used for these queries and equally good results
may be expected.

SPARQL faster than open SQL
The nature of the SemioViewer application means this is the largest group of re-

sults: calculating impacts and co-authorship communities requires a more intense
study of relationships between data. For SPARQL, this is ideal: it has been optimised
for searching object-predicate or predicate-subject combinations. For open SQL, the

Relational Database model allows for joins between tables but the queries quickly
become complex (see examples in section 2, above) and for tables containing several
hundred thousand rows, joins can be particularly time-consuming unless the multiple
indexes in the closed system are applied. Tests 11 and 12 show that performing nu-
merous individual queries rather than a single, more complex join operation can be
more time-efficient, even if the end result is identical. However, this is programmati-
cally more complex as it requires tailored scripts to be generated, and even then the
SPARQL queries are generally quicker, particularly (as test 12 shows) for authors
who have written a larger volume of papers.

Neither SPARQL nor SQL quick enough
This was a single, complex test which involved issues that lead to a struggle for

both SPARQL (incomplete string querying) and open SQL (multi-table joins on large
tables). Even the closed SQL system struggled with this: multiple indexing did not
help with the ‘like’ query to the extent that it did with the other queries. In practice,
the SemioViewer application breaks this query down into two stages: perform a
search to get a paper ID (best performed using open SQL) and get the details of that
paper and its authors (best performed using SPARQL). It is important to note that
queries like this will exist when constructing applications for large-scale metadata
stores, and the solution is to break it down into less complex queries and perform
them sequentially using a suitable approach for each one.

Analysis
It is important to again point out that these experiments were performed on a single

server using a particular instance of MySQL, on which the 3Store was built. The
differences therefore can not be put down to superior hardware or database perform-
ance, but to the design differences between the RDBMS and RDF models of data
representation. While it can be argued that the multiple indexing of the closed data-
base provide better results for the SQL queries, this still leaves us with complex SQL
statements performing JOIN operations on large tables, as well as the inherent prob-
lem of performing updates on what needs to be a live, frequently-updated system.

The results therefore show that in practice, the only realistic way for the Semio-
Viewer application to work is to have both open SQL and SPARQL queries. While
not typical Semantic Web applications, both the SemioViewer and the SPARQL-
based web services and client pages described above require both SQL and SPARQL
queries in order to perform effectively, if they are to remain open to having regular
data updates. This is partly due to the design of SPARQL (certain features present in
SQL are not included in SPARQL, such as there being no count(*) function and no
‘like’ facility within SPARQL) and partly due to nature of SPARQL and SQL: as
suggested above, SQL is better at ‘identity’ queries, SPARQL superior at ‘relation-
ship’ queries. With metadata for ~700,000 papers and 9 million triples, the only prac-
tical approach when creating live, updateable ‘semiometrics’ applications is to use
both: open SQL for initial searching and SPARQL for getting more in-depth data for
each paper or author, including information needed for influence analysis.

6 Conclusion

While the statistics produced of the SemioViewer application are interesting in
themselves, the main conclusion to be drawn in this paper is that the RDF/SPARQL
approach, along with a scalable triplestore solution, presents a viable alternative to
SQL for large-scale metadata stores, particularly for queries based around relation-
ship rather than identity. We have shown in this paper examples from a working
application where SPARQL out-performs open SQL on both the theoretical and em-
pirical level, as well as examples of SQL out-performing SPARQL. We have also
shown that while a few simpler queries can be performed well using both approaches,
there are very few that neither approach can handle in a reasonable time-frame: in
these cases, simplifying queries provides the solution. In addition, we have shown
that for systems that do not require frequent updates, a closed, heavily-indexed is
preferable as it requires only one data source (an SQL database) rather than both a
database and RDF KB; however, it has also been shown that for large-scale metadata
stores requiring frequent updating, a closed system is impractical. It is therefore rea-
sonable to conclude that when dealing with large-scale datasets featuring complex
relationships and queries, RDF and SPARQL can provide a dramatically improved
performance over the conventional RDBMS/SQL approach for certain queries.

Future work planned in this area includes looking at drawing two data sources to-
gether using the RDBMS and RDF approaches: for example, joining the ACM and
Citeseer datasets currently held in distinct KBs, or perhaps the merging of different
EPrints archives. While useful and theoretically simple in RDF (just put the resources
in the same Knowledge Base) it raises the ongoing Semantic Web issue of co-
reference resolution and duplicate records, and the question of whether RDBMS,
RDF or both types of solution are necessary to solve this problem.

Acknowledgements

This work is supported under the Advanced Knowledge Technologies (AKT) Inter-
disciplinary Research Collaboration (IRC), which is sponsored by the UK Engineer-
ing and Physical Sciences Research Council under grant number GR/N15764/01.

We would like to thank Professor C. Lee Giles and Isaac Councill of Penn State
University for the provision of Citeseer and for ongoing helpful comments.

References

1. Lawrence, S., Bollacker, K., Giles, C.L., "Digital Libraries and Autonomous Citation Index-
ing" IEEE Computer, 32(6), (1999). 67-71.

2. http://scholar.google.com
3. Lagoze, C., Van de Sompel, H.: The Open Archives Initiative: Building a low-barrier inter-

operability framework. Proceedings of the ACM/IEEE Joint Conference on Digital Librar-
ies, Roanoke VA, USA (2001). 54-62.

4. Harris, S., Gibbins, N.: 3store: Efficient Bulk RDF Storage. Proceedings 1st International
Workshop on Practical and Scalable Semantic Web Systems, Sanibel Island, Florida, USA.
(2003)

5. Mc Bride, B.: Jena: Implementing the RDF Model and Syntax Specification, Proceedings of
the Second International Workshop on the Semantic Web (2001).

6. The AKT Reference Ontology. http://www.aktors.org/publications/ontology/, (2002).
7. Weibel, S., The Dublin Core: A simple content description format for electronic resources.

NFAIS Newsletter: 40(7), (1998). 117-119.
8. McRae-Spencer, D. M., Shadbolt, N. R., "Also By The Same Author: AKTive Author, A

Citation-Graph Approach to Name Disambiguation", In Proceedings 6th ACM/IEEE Joint
Conference on Digital Libraries, (2006), pp. 53-55.

9. McRae-Spencer, D. M., Shadbolt, N. R., "Semiometrics: Producing a Compositional View
of Influence” (Preprint) (2006).

