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1 Introduction and problem statement

In this paper we consider some issues related to the following problem:

Let N distinct points λi in the open right-half plane be given, together with N
subspaces Vi ⊂ Cm+p, and let

J :=
[

Im 0
0 −Ip

]
(1)

Find the smallest k ∈ N and Y ∈ Rp×p[ξ], U ∈ Rp×m[ξ] such that

(a) U , Y are left coprime;

(b)
[

U(λi) −Y (λi)
]
v = 0, for all v ∈ Vi, 1 ≤ i ≤ N ;

(c) ‖Y −1U‖∞ < 1;

(d) Y has k singularities in the right half-plane.

This problem is a generalization of the tangential Takagi interpolation prob-
lem with simple multiplicities (in the following abbreviated with TIP), which
was first studied in [20] as an extension of the well-known Nevanlinna-Pick
interpolation problem (see [4, 14, 16, 18]). The TIP and the closely related
Nudel‘man problem have been posed and solved following various approaches:
in the discrete-time case (see [20] and [15]), in the context of interpolation with
rational matrix functions in continuous-time as reported in the book [4], and
with the generalized Beurling-Lax approach introduced in [5].

This paper examines some issues related to the existence and characteriza-
tion of solutions of the TIP, following an approach based on the exact modeling
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of vector-exponential time-series illustrated in [1, 3, 11, 24, 25]. We state an
algorithm which computes a special kernel representation of the MPUM of the
data {(λi,Vi), 1 ≤ i ≤ N , and of their “duals” (see [2] for the first use of
the dualization technique, and [11, 18] for further applications in the context
of exact identification). We also investigate several properties of this special
representation of the MPUM, some of which are related to the signature of the
so-called Pick matrix of the data introduced in [18]. The special representation
of the MPUM obtained by our algorithm is used in the main result of this paper
in order to characterize all solutions to the TIP. An important original aspect
of the material illustrated here with respect to that present in [11, 18] is the
development of specific intermediate results that connect in a novel way the
signature of the Pick matrix with the location of the roots of the determinant
of certain subblocks of the MPUM representation computed by the algorithm.

The authors assume that the reader is familiar with the behavioral approach
to systems and control (see [17] for a thorough introduction) and, at least for
some detail of the proofs, with quadratic differential forms (for more information
on this subject, see [27]). In order to make the paper as self-contained as pos-
sible, the basics of exact modeling and the notion of Most Powerful Unfalsified
Model (MPUM) are introduced in section 2. The main results of this paper are
illustrated in section 3. Finally, in section 4 we discuss some further research
topics stemming from the work presented here.
Notation. In this paper we denote the sets of real numbers with R, and the set
of complex numbers with C. The space of n dimensional real vectors is denoted
by Rn, and the space of m× n real matrices, by Rm×n. The set of all maps from
X to Y is denoted with (Y )X . The powerset of X is denoted with 2X .

If A ∈ Rm×n, then AT ∈ Rn×m denotes its transpose. Whenever one of the
two dimensions is not specified, a bullet • is used; so that for example, C•×n

denotes the set of complex matrices with n columns and an unspecified number
of rows. In order to enhance readability, when dealing with a vector space R•
whose elements are commonly denoted with w, we use the notation Rw (note
the typewriter font type!); similar considerations hold for matrices representing
linear operators on such spaces. If Ai ∈ R•×•, i = 1, . . . , r have the same number
of columns, col(Ai)i=1,...,r denotes the matrix obtained by stacking the Ai on top
of each other. If H ∈ Cw×w is an Hermitian matrix, i.e. H∗ := H̄T = H,then we
define its signature to be the ordered triple sign(H) = (ν−(H), ν0(H), ν+(H)),
where ν−(H) is the number (counting multiplicities) of negative eigenvalues of
H, ν0(H) is the multiplicity of the zero eigenvalue of H, and ν+(H) is the
number (counting multiplicities) of positive eigenvalues of H.

The ring of polynomials with real coefficients in the indeterminate ξ is de-
noted by R[ξ]; the set of two-variable polynomials with real coefficients in the
indeterminates ζ and η is denoted by R[ζ, η]. The space of all n× m polynomial
matrices in the indeterminate ξ is denoted by Rn×m[ξ], and that consisting of all
n× m polynomial matrices in the indeterminates ζ and η by Rn×m[ζ, η]. Given a
matrix R ∈ Rn×m[ξ], we define R∗(ξ) := RT (−ξ) ∈ Rm×n[ξ]. If R(ξ) has complex
coefficients, then R∗(ξ) denotes the matrix obtained from R by substituting −ξ
in place of ξ, transposing, and conjugating.
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We denote with C∞(R, Rq) the set of infinitely often differentiable functions
from R to Rq.

2 The Most Powerful Unfalsified Model

In this paper, we denote with Lw ⊆ 2C∞(R,Rw) the set of linear differential behav-
iors, consisting of elements B ⊆ C∞(R, Rw) for which there exists R ∈ R•×w[ξ]
such that B = kerR( d

dt ). The representation

R(
d

dt
)w = 0 (2)

is called a kernel representation of the behavior B.
Now let wi ∈ C∞(R, Rw), i = 1, . . . , N , be polynomial vector exponential

functions, i.e.

wi(t) =
ki∑

j=1

vi,j
tj

j!
expλi

(t)

where vi,j ∈ Cw, and λi ∈ C, i =, . . . , N , j = 1, . . . , ki. B ∈ Lw is an unfalsified
model for the data set {wi}i=1,...,N if wi ∈ B for i = 1, . . . , N . We call a
behavior B∗ the Most Powerful Unfalsified Model (MPUM ) in Lw for the given
data set, if it is unfalsified and moreover

[wi ∈ B′, I = 1, . . . , N, B′ ∈ Lw] =⇒ [B∗ ⊆ B′]

i.e. if it is the smallest behavior in Lw containing the data. It can be shown
that the MPUM always exists and that it is unique (see [3]). Indeed, define

B∗ := span{wi}, (3)

and observe that B∗ contains all trajectories wi, 1 ≤ i ≤ N . On the other hand,
any other unfalsified model in Lw for the data must contain their linear span,
and therefore it must contain B∗.

Observe that the MPUM B∗ of a finite set of polynomial vector exponential
trajectories is always autonomous, i.e. it is a finite dimensional subspace of
Lw. Equivalently, B∗ can be represented as the kernel of a matrix polynomial
differential operator R( d

dt ), with the property that R is square and nonsingular
as a polynomial matrix (see [17]).

We now show how to compute a kernel representation of the MPUM B∗

for a given set of vector-exponential trajectories {vi expλit}i=1,...,N (see [26]).
Define R−1 := Iq and proceed iteratively as follows for k = 0, 1, . . . , N . At step
k, define the k-th error trajectory

εk := Rk−1(
d

dt
)vk expλkt = Rk−1(λkt)vk︸ ︷︷ ︸

:=ek

expλkt = ek expλkt
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Now compute the polynomial matrix corresponding to a kernel representation
Ek of the MPUM for εk, i.e. Ek( d

dt )εk = 0; one possible choice for Ek is:

Ek(
d

dt
) =

d

dt
Iw − λk

ekeT
k

‖ek‖2

and define Rk := EkRk−1. After N + 1 steps such algorithm produces a w × w
polynomial matrix RN such that RN ( d

dt )wi = 0 for i = 1, . . . , N , and moreover

B∗ = ker RN (
d

dt
)

In the next section we show that the algorithm illustrated above can be adapted
to work in the case when the data trajectories need to be “explained” by a model
having specific metric- and stability constraints.

3 Main result

We begin by showing that the Takagi interpolation problem can be cast in the
framework of exact modeling developed in [24, 25] and sketched in the previous
section.

We associate to the data {(λi,Vi)}i=1,...,N of the TIP the set of vector-
exponential trajectories Vi expλit := {v expλit | v ∈ Vi}i=1,...,N . We now
show that any controllable, unfalsified model for Vi expλit := {v expλit | v ∈
Vi}i=1,...,N with p rows satisfies the constraints (a) and (b). Indeed, if the be-
havior ker

[
U( d

dt ) −Y ( d
dt )
]
, with Y ∈ Rp×p[ξ] and U ∈ Rp×m[ξ], represents an

unfalsified model for the data, it holds that[
U( d

dt ) −Y ( d
dt )
]
Vi expλit =

[
U(λi) −Y (λi)

]
Vi expλit = 0

and consequently
[
U(λi) −Y (λi)

]
v = 0 for all v ∈ Vi, i.e. U and Y satisfy the

interpolation constraint (b). It is easy to see that requirement (a) is equivalent
to ker

[
U( d

dt ) −Y ( d
dt )

]
being controllable.

In order to accommodate in the MPUM framework the metric- and root
location aspects of the solution to the TIP represented by the conditions (c)
and (d) in section 1, we use the concept of dualization of the data, which we
now introduce.

We define from the interpolation data {(λi,Vi)}i=1,...,N the set

V⊥i := {v ∈ Cm+p | v∗JVi = 0}

and the dual of Vi expλit as

V⊥i exp−λ̄it := {v exp−λ̄it | v ∈ V
⊥
i }

We also define the dualized data D as

D := ∪i=1,...,N{Vi expλit,V
⊥
i exp−λ̄it} (4)
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Finally, we define the notion of Pick matrix associated with the data {(λi,Vi)}1≤i≤N .
Let Vi ∈ R(m+p)×dim(Vi) be a (full column-rank) matrix such that Im(Vi) = Vi,
i = 1, . . . , N . The Pick matrix associated with {(λi,Vi)}1≤i≤N is the Hermitian
block-matrix

T{(λi,Vi)}1≤i≤N
:=
[

V ∗
i JVj

λ̄i + λj

]
1≤i,j≤N

(5)

Observe that the matrix defined in this way depends on the particular choice of
the basis matrices Vi; however, its signature does not, and since the latter will
be the only feature relevant for the purposes of this paper, in the rest of this
paper we will continue to call T{(λi,Vi)}1≤i≤N

the Pick matrix of the data.
Often in the following, when the interpolation data {(λi, Vi)}1≤i≤N is as-

sumed fixed, we will drop the notation T{(λi,Vi)}1≤i≤N
for the svelter one T1≤i≤N .

Now consider the following procedure:

Algorithm T

Input: {(λi, Vi)}1≤i≤N

Output: A kernel representation of the MPUM for D

Define R0 := Ip+m;

For i = 1, . . . , N

V ′
i := Ri−1(λi)Vi;

Ri(ξ) :=
[
(ξ + λ̄i)Ip+m − V ′

i T−1
{(λi,V ′i )}(V

′
i )∗J

]
Ri−1(ξ);

end;

We following result shows that the matrix RN produced by this algorithm pro-
duces a representation of the MPUM for the dualized data D, and relates some
properties of that representation to those of the Pick matrix of the data.

Theorem 1 Assume that the Pick matrix (5) is invertible, and denote its sig-
nature with (ν−(T ), 0, ν+(T )). Assume that p ≥ ki, 1 ≤ i ≤ N . Then the
following statements are equivalent:

1. The Pick matrix (5) has ν−(T ) negative eigenvalues;

2. Algorithm T produces a kernel representation of the MPUM for the dual-
ized data set D defined in (4) induced by a matrix of the form

R :=
[
−D∗ N∗

Q −P

]
(6)

where D ∈ Rm×m[ξ], N ∈ Rm×p[ξ], Q ∈ Rp×m[ξ], P ∈ Rp×p[ξ] satisfy the
following properties:

(a) D, P are nonsingular;
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(b) QD − PN = 0;

(c) det(P ) has ν−(T ) roots in the right-half plane;

(d) RJR∗ = R∗JR = pp∗J with p(ξ) = ΠN
i=1(ξ + λ̄i);

(e) ‖P−1Q‖∞ < 1;

(f) ‖QD∗−1‖∞ < 1;

(g) ‖N∗P−1‖∞ < 1.

Proof. Let us first prove (1) ⇒ (2). We will prove this by induction on the
number N of subspaces Vi.

For N = 1, partition the basis matrix V1 as V1 = col(V11, V12) with V11 ∈
Cm×k1 and V12 ∈ Cp×k1 , and consider the model B1 represented in kernel form
by

R1(ξ) := (ξ + λ̄1)Ip+m − V1T
−1
{V1}V

∗
1 J (7)

Note that for every α ∈ Ck1×1 it holds that

(
d

dt
+ λ̄1)V1α expλ1t−V1T

−1
{V1}V

∗
1 JV1α expλ1t =

(λ1 + λ̄1)V1α expλ1t−V1(
V ∗

1 JV1

λ1 + λ̄1
)−1(V ∗

1 JV1)α expλ1t = 0.

Note also that if V ⊥
1 is a (m+ p)× (m+ p− k1) matrix such that Im(V ⊥

1 ) = V⊥1 ,
and β ∈ C(m+p−k1)×1, it holds that

(
d

dt
+ λ̄1)V ⊥

1 β exp−λ̄1t−V1T
−1
{V1}V

∗
1 JV ⊥

1 β exp−λ̄1t = 0.

Consequently, V1 expλ1t ⊆ B1 and B1 ⊇ V⊥1 exp−λ̄1t. In order to prove that B1

is the MPUM, observe that the determinant of (7) has degree p+m, and therefore
B1 contains p+m independent trajectories. Since dim(V1 expλ1t⊕V⊥1 exp−λ̄1t) =
m + p, the claim is proved.

In order to prove that (7) satisfies (2a)− (2f), partition it according to the
partition of V1 = col(V11, V12) as

R1(ξ) :=
(
−D∗

1(ξ) N∗
1 (ξ)

Q1(ξ) −P1(ξ)

)
:=

(
(ξ + λ̄1)Im − V11T

−1
{V1}V

∗
11 V11T

−1
{V1}V

∗
12

−V12T
−1
{V1}V

∗
11 (ξ + λ̄1)Ip + V12T

−1
{V1}V

∗
12

)
(8)

Observe that D1 and P1 in (8) are row proper, and consequently nonsingular.
Q1D1 − P1N1 = 0 follows from straightforward manipulations. This proves
claims (a) and (b).

The claim (2c) on the number of zeros of det(P1) in the right half-plane
follows from the following result.
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Lemma 2 det(P1) has at least p− k1 roots in −λ1. Of the remaining k1 roots,
ν+(T{V1}) are in the left-half plane, and ν−(T{V1}) are in the right-half plane.
Among those in the left half-plane, k1 − rank(V12) are in −λ1.

Proof. The proof of this claim is articulated in a series of intermediate
results of independent interest. The first one is the following.

Lemma 3 Denote k′1 := rank(V12); then there exists a nonsingular C ∈ Ck1×k1

such that

V1C =
[

V11C
V12C

]
=
[

V a
11 V b

11

V a
12 0

]
. (9)

with V a
12 and V b

11 of full column rank k′1 and k1 − k′1, respectively. Define

V̂1 := V a∗
11 V a

11 − V a∗
12 V a

12 − V a∗
11 V b

11(V
b∗
11 V b

11)
−1V b∗

11 V a
11;

then

P1(ξ) = −(ξ + λ1)Ip − V a
12

(
V̂1

λ1 + λ1

)−1

V a∗
12

Proof. The existence of a nonsingular C ∈ Ck1×k1 such that (9) holds
follows from elementary linear algebra considerations. The fact that V b

11 ∈
Cm×(k1−k′1) and V a

12 ∈ Cp×k′1 are full column rank follows from the fact that the
columns of V1 are linearly independent.

Observe that

V12T
−1
1 V ∗

12 = V12CC−1T−1
1 C∗−1C∗V ∗

12

=
[

V a
12 0

]
C−1T−1

1 C∗−1

[
V a∗

12

0

]
(10)

Observe also that

C−1T−1
1 C∗−1 = (λ1 + λ̄1)C−1 {V ∗

11V11 − V ∗
12V12}−1

C∗−1

= (λ1 + λ̄1) {C∗ (V ∗
11V11 − V ∗

12V12) C}−1

= (λ1 + λ̄1) {C∗V ∗
11V11C − C∗V ∗

12V12C}−1

= (λ1 + λ̄1)
[

V a∗
11 V a

11 − V a∗
12 V a

12 V a∗
11 V b

11

V b∗
11 V a

11 V b∗
11 V b

11

]−1

︸ ︷︷ ︸
=:V̂ −1

. (11)

Observe that V b∗
11 V b

11 ∈ C(k1−k′1)×(k1−k′1) is positive definite, since V b
11 is full

column rank. Define the nonsingular matrix

S :=
[

Ik′1
0

S21 I(k1−k′1)×(k1−k′1)

]
:=
[

Ik′1
0

−(V b∗
11 V b

11)
−1V b∗

11 V a
11 I(k1−k′1)×(k1−k′1)

]
(12)
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and observe that

V̂ −1 =
{

S∗−1S∗V̂ SS−1
}−1

= S
{

S∗V̂ S
}−1

S∗

=
[

I 0
S21 I

] [
V̂ −1

1 0
0 (V b∗

11 V b
11)

−1

] [
I S∗21
0 I

]
(13)

where V̂1 := V a∗
11 V a

11 − V a∗
12 V a

12 − V a∗
11 V b

11(V
b∗
11 V b

11)
−1V b∗

11 V a
11. Now using (13) and

(11) we rewrite (10) as

V12T
−1
1 V ∗

12 = (λ1 + λ̄1)
[

V a
12 0

]
V̂ −1

[
V a∗

12

0

]
= (λ1 + λ̄1)

[
V a

12 0
] [ V̂ −1

1 0
0 (V b∗

11 V b
11)

−1

] [
V a∗

12

0

]

= V a
12

(
V̂1

λ1 + λ1

)−1

V a∗
12

which yields the claim of the Lemma.
From Lemma 3 it follows that det(P1) has p − k′1 roots in −λ1. Indeed,

P1(−λ1) = −V a
12T

−1
1 V a∗

12 , and consequently P1(−λ1)v = 0 for all directions
v ∈ Va⊥

12 := {v ∈ Cm|V a∗
12 v = 0}; note that this subspace has dimension p− k′1.

In the following we show that the location in the complex plane of the remaining
k′1 roots is associated with the signature of the “modified Pick matrix”

T ′1 :=
V̂1

λ1 + λ1

∈ Rk′1×k′1 (14)

In order to do this, we first prove the following result concerning the prop-
erties of the directions associated with a singularity µ 6= λ1 of det(D1).

Lemma 4 Define the set

S := {v ∈ Cp | ∃µ ∈ C, µ 6= −λ1 s.t. P1(µ)v = 0}

Then

1. v ∈ S if and only if v is an eigenvector of −(λ1Im − V a
12T

′−1
1 V a∗

12 );

2. If v ∈ S then there exists α ∈ Ck′1 such that v = V a
12α;

3. S is a set of linearly independent vectors, and so is

S ′ := {α ∈ Ck′1 | ∃v ∈ S s.t. v = V a
12α}

Proof. We use the result of Lemma 3. Statement (1) follows from[
P1(µ)v = −(µ + λ1)v − V a

12T
−1
1 V a∗

12 v = 0
]
⇐⇒

[
µv = −

(
λ1Ip + V a

12T
−1
1 V a∗

12

)
v
]
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Statement (2) follows from the fact that P1(µ)v = 0 if and only if (µ+λ1)v =
V a

12T
′−1
1 V a∗

12 v = V a
12

(
T ′−1

1 V a∗
12 v

)
, and defining α := 1

µ+λ1
T ′−1

1 V a∗
12 v.

In order to prove statement (3), observe that λ1Ip + V a
12T

′−1
1 V a∗

12 is an Her-
mitian matrix, and consequently it has a basis of eigenvectors. The first part
of the claim follows then from part (1) of this Lemma. The second part of
statement (3) follows from the fact that V a

12 has full column rank.
We proceed to state a property of the modified Pick matrix T ′1 defined in

equation (14).

Lemma 5 Let µ 6= −λ1, and let v = V a
11α be such that P1(µ)v = 0. Then

[α∗T ′1α > 0] ⇐⇒ [Re(µ) < 0]

Proof. From

P1(µ)v = (µ + λ1)v + V a
12T

′−1
1 V a∗

12 v = (µ + λ1)V a
12α + V a

12T
′−1
1 V a∗

12 V a
12α

= V a
12

(
(µ + λ1)α + T ′−1

1 V a∗
12 V a

12α
)

= 0

and the fact that V a
12 has full column rank we conclude that (µ + λ1)α +

T ′−1
1 V a∗

12 V a
12α = 0. Rewrite this equality as (µ + λ1)T ′1α + V a∗

12 V a
12α = 0, and

substitute the expression (14) in order to arrive at

(µ+λ1)
(
V a∗

11 V a
11 − V a∗

12 V a
12 − V a∗

11 V b
11(V

b∗
11 V b

11)
−1V b∗

11 V a
11

)
α+
(
λ1 + λ1

)
V a∗

12 V a
12α = 0

Multiply this equality on the left by α∗ in order to conclude that

µα∗
(
V a∗

11 V a
11 − V a∗

12 V a
12 − V a∗

11 V b
11(V

b∗
11 V b

11)
−1V b∗

11 V a
11

)
α

= −λ1α
∗V a∗

12 V a
12α− λ1α

∗ (V a∗
11 V a

11 − V a∗
11 V b

11(V
b∗
11 V b

11)
−1V b∗

11 V a
11

)
α (15)

Now observe that

V a∗
11 V a

11 − V a∗
11 V b

11(V
b∗
11 V b

11)
−1V b∗

11 V a
11 = V a∗

11

(
Ip − V b

11(V
b∗
11 V b

11)
−1V b∗

11

)
V a

11 ≥ 0

where the last inequality follows from the fact that Ip−V b
11(V

b∗
11 V b

11)
−1V b∗

11 is the
orthogonal projection of Cp on the subspace orthogonal to the columns of V b

11,
and consequently is nonnegative definite. Taking the real part of both sides of
(15) it follows from this argument that

Re(µ) α∗
(
V a∗

11 V a
11 − V a∗

12 V a
12 − V a∗

11 V b
11(V

b∗
11 V b

11)
−1V b∗

11 V a
11

)
α

= −Re(λ1) α∗V a∗
12 V a

12α︸ ︷︷ ︸
>0

− Re(λ1) α∗
(
V a∗

11 V a
11 − V a∗

11 V b
11(V

b∗
11 V b

11)
−1V b∗

11 V a
11

)
α︸ ︷︷ ︸

≥0

where the strict inequality on α∗V a∗
12 V a

12α follows from the fact that V a
12 has

full column rank. Now observe that the right-hand side of the last equality is
negative, and consequently that the claim is true.

The next result is instrumental in associating the number of negative eigen-
values of the modified Pick matrix T ′1 with the number of roots of det(P1) in
the right-half plane.
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Lemma 6 Let Q = Q∗ ∈ C•×• be nonsingular, and define

N+ := {x ∈ C• | x∗Qx > 0}
N− := {x ∈ C• | x∗Qx < 0}

Then dim(N+) = ν+(Q) (respectively, dim(N−) = ν−(Q)).

Proof. Let ν+(Q), respectively ν−(Q), be the number of positive, respectively
negative, eigenvalues of Q, and denote with n+, respectively n−, the maximal
number of linearly independent vectors in N+, respectively N−. Observe that
n+ ≥ ν+(Q), and that n− ≥ ν−(Q). Assume by contradiction that n+ > ν+(Q);
then n+ + n− > ν+(Q) + ν−(Q), which by the assumption of nonsingularity of
Q equals the dimension of the space on which Q acts. Since N+ ∩ N− = {0},
this leads to a contradiction. The case n− > ν−(Q) is treated analogously.

We are now in the position to prove our statement about the number of
roots of det(P1) in the right-half plane.

From Lemma 5 it follows that if µ ∈ C− is such that µ 6= −λ1 and det(P1(µ)) =
0, then for the corresponding α ∈ S ′ it holds that α∗T ′1α > 0; and that if µ ∈ C+

is such that det(P1(µ)) = 0, then for the corresponding α ∈ S ′ it holds that
α∗T ′1α < 0. From statement (3) of Lemma 4 it follows that each one of the sets
{α ∈ S ′ | α∗T ′1α < 0} and {α ∈ S ′ | α∗T ′1α > 0} consists of linearly independent
vectors. Notice that in total there are k′1 elements in the union of these two
sets, since each element corresponds to a root µ 6= −λ1 of det(P1).

Now apply Lemma 6 in order to conclude that the number of elements in
{α ∈ S ′ | α∗T ′1α < 0} equals the number of negative eigenvalues of T ′1. In order
to conclude the proof of the Lemma, observe that ν+(T1) = ν+(T ′1) and that
ν−(T1) = ν−(T ′1) + k1 − k′1.

Having proved property (2c), we now prove (2d). Observe that

R1(ξ)JR1(ξ)∗ = [(ξ + λ̄1)Ip+m − V1T
−1
{V1}V

∗
1 J ]J [(−ξ + λ1)Ip+m − JV1T

−1
{V1}V

∗
1 ] =

(ξ + λ̄1)(−ξ + λ1)J − (λ1 + λ̄1)V1T
−1
{V1}V

∗
1 + (λ1 + λ̄1)V1T

−1
{V1}V

∗
1 =

(ξ + λ̄1)(−ξ + λ1)J (16)

The second equality of (2d) can be proved analogously.
In order to prove (2e), observe that from (2a) and (2b) follows that P−1

1 Q1 =
N1D

−1
1 . Consequently, in order to prove ‖P−1

1 Q1‖∞ < 1, it will suffice to prove
that D∗

1(iω)D1(iω) − N∗
1 (iω)N1(iω) > 0 for every ω ∈ R. Note that D∗

1D1 −
N∗

1 N1 is the (1, 1)-block of R1JR∗
1 and, by property (2e), on the imaginary axis

it equals
(−iω + λ̄1)(iω + λ1)Im,

which is positive definite for every ω ∈ R. This implies det(D(iω)) 6= 0 ∀ ω ∈ R
and consequently ‖P−1

1 Q1‖∞ < 1.
In order to prove claim (2f), note that D1(iω)D∗

1(iω)−Q∗
1(iω)Q1(iω) is the

(1, 1) block of R1(iω)∗JR1(iω) and that by property (2d) this block is positive
definite for all ω ∈ R. In order to prove claim (2g), note that N1(iω)N∗

1 (iω)−

10



P ∗
1 (iω)P1(iω) is the (2, 2) block of R1(iω)∗JR1(iω) and that by (2d) this block

is negative definite for all ω ∈ R.
This concludes the proof of (2a) − (2g) for the representation (7) of the

MPUM for N = 1.
Let us now assume that the claim (1) ⇒ (2) holds for a number j of subspaces

to interpolate, 1 ≤ j ≤ N − 1. In order to prove the claim for N subspaces, we
proceed as follows. We have shown above that there exists a representation R1

of the MPUM for V1 expλ1t⊕V⊥1 exp−λ̄1t that satisfies (2a)− (2g). We proceed
now by first determining a congruence transformation on the Pick matrix of
the data which will make it easier to apply the inductive assumption. Then we
will apply the inductive assumption and conclude that a representation R′ of
the MPUM for the error subspaces satisfying (2a)− (2f) exists. Combining the
representations of the two MPUMs as R′R1 we obtain a representation of the
MPUM for D, and we will show that it satisfies (2a)− (2g).

Assume now that a representation (8) of the MPUM for V1 expλ1t⊕V⊥1 exp−λ̄1t

has been computed, satisfying (2a) − (2f). The i-th error subspace associated
to this model is V ′i expλit := R(λi)Vi expλit, 2 ≤ i ≤ N and has a basis matrix

V ′
i := (λi + λ̄1)Vi − V1T

−1
1 V ∗

1 JVi, 2 ≤ i ≤ N

We now investigate the relationship of the signature of the Pick matrix T ′2≤i≤N :=
T{(λi,V ′i )} associated with V ′i expλit, 2 ≤ i ≤ N , with the signature of the matrix
T1≤i≤N . Note first that for 2 ≤ i, j ≤ N , the (i − 1, j − 1)-th block element of
T ′2≤i≤N is

V ′∗
i JV ′

j

λ̄i + λj
=

1
λj + λ̄i

[(λ̄i + λ1)V ∗
i − V ∗

i JV1T
−1
1 V ∗

1 ]J [(λj + λ̄1)Vj − V1T
−1
1 V ∗

1 JVj ].

(17)
Easy computations show that (17) equals

(λ̄i + λ1)(λj + λ̄1)
λ̄i + λj

V ∗
i JVj − V ∗

i JV1T
−1
1 V ∗

1 JVj . (18)

Partition now T1≤i≤N as (
T1 b̄T

b T2≤i≤N

)
with b := col(V ∗i JV1

λ̄i+λ1
)2≤i≤N , and define ∆ := diag((λ̄i + λ1))2≤i≤N . Observe

that(
1 0

−∆bT−1
1 ∆

)
T1≤i≤N

(
1 −T−1

1 b̄T ∆̄
0 ∆̄

)
=
(

T1 0
0 ∆T2≤i≤N ∆̄−∆bT−1

1 b̄T ∆̄

)
(19)

We prove now that the (2, 2) block of (19) coincides with T ′2≤i≤N . In fact, the
(i, j)-th block of ∆T2≤i≤N ∆̄−∆bT−1

1 b̄T ∆̄ equals

(λ̄i + λ1)(λj + λ̄1)
λ̄i + λj

V ∗
i JVj − V ∗

i JV1T
−1
1 V ∗

1 JVj ,

11



and, since the (i, j)-th block of T ′2≤i≤N is given by (18), this proves the claim.
Observe that from (19) it follows that

sign(T1≤i≤N ) = sign(T ′2≤i≤N ) + sign(T1)

and consequently that, ν−(T ′2≤i≤N ) = ν−(T1≤i≤N )− ν−(T1).
By inductive assumption we conclude that there exists a kernel representa-

tion R′ ∈ R2×2[ξ] of the MPUM for {V ′i expλit,V
′⊥
i exp−λ̄it}2≤i≤N of the form

R′ =
(
−D′∗ N ′∗

Q′ −P ′

)
satisfying the properties (2a)− (2g) of the Theorem.

It is easily verified that the MPUM for D is represented by(
−D∗ N∗

Q −P

)
:=
(
−D′∗ N ′∗

Q′ −P ′

)(
−D∗

1 N∗
1

Q1 −P1

)
(20)

We now show that (20) satisfies (2a)− (2g).
In order to prove (2a), we first show that P is nonsingular. From (20) it

follows that
−P = Q′N∗

1 + P ′P1 (21)

By inductive assumption, P ′ and P1 are nonsingular, and consequently

−(P ′)−1PP−1
1 = (P ′)−1Q′ ·N∗

1 P−1
1 + Ip

Conclude from the inductive assumption that ‖(P ′)−1Q′‖∞ < 1 and that ‖N∗
1 P−1

1 ‖∞ <
1. It follows that (P ′)−1PP−1

1 is nonsingular on the imaginary axis, and conse-
quently P is also nonsingular on the imaginary axis, and a fortiori nonsingular
in Rp×p[ξ].

We now show that D is nonsingular. Note from (20) that D = D1D
′+Q∗

1N
′.

Observe from the formula (8) that Q1 = −N1, and consequently D = D1D
′ −

N∗
1 N ′. Now use the contractivity of N1D

−1
1 and of N ′(D′)−1 to show in a

manner analogous to that used for the proof of the nonsingularity of P , that D
is also nonsingular. This concludes the proof of (2a).

Claim (2b) can be proved by a straightforward computation, using equation
(20) and the inductive assumption.

We now prove (2c), the claim regarding the number of roots of det(P ) in
C+. Conclude from (20) that

−P−1 = P−1
1 (Ip + P ′−1Q′ ·N∗

1 P−1
1 )−1P ′−1

and consequently that

− 1
det(P )

=
1

det(P ′)
1

det(Ip + P ′−1Q′ ·N∗
1 P−1

1 )
1

det(P1)
(22)

12



Now recall that the winding number wno(·) of a function f defined on the
imaginary axis and admitting a meromorphic continuation in C+ satisfies

wno(f) = (# zeros of f in C+)− (# poles of f in C+)

Observe that

wno
(

1
det(Ip + αP ′−1Q′ ·N∗

1 P−1
1 )

)
for 0 ≤ α ≤ 1 is a continuous function of α taking integer values, and conse-
quently its value is independent of α. This fact, together with the contractivity
of N ′D′−1 and Q1D

∗−1
1 , implies that

wno
(

1
det(Ip + P ′−1Q′ ·N∗

1 P−1
1 )

)
= wno(det(Ip)) = 0

Now apply the logarithmic property of wno(·) to both sides of (22) and obtain

wno
(
− 1

det(P )

)
= wno

(
1

det(P1)

)
+ wno

(
1

det(P ′)

)
(23)

From the inductive assumption it follows that

wno
(

1
det(P1)

)
= −ν−(T1))

wno
(

1
det(P ′)

)
= −ν−(T ′2≤i≤N )

Consequently, wno
(
− 1

det(P )

)
= −ν−(T1)) − ν−(T ′2≤i≤N ); from equation (19)

and the following discussion, it follows that wno
(
− 1

det(P )

)
= −ν−(T ) and claim

(2c) is proved.
Claim (2d) follows easily from (20) and the inductive assumption.
In order to prove (2e), we show that P ∗P −Q∗Q > 0 on the imaginary axis.

Note that P ∗P − Q∗Q is the (2, 2) block-element of R∗′R∗
1JR1R

′. Using (2d),
it is easily seen that this element equals −p(iω)p∗(iω) < 0 for all ω ∈ R. This
implies ‖P−1Q‖∞ < 1. The proofs of (2f) and (2g) follow a similar argument.

This concludes the proof of (1) ⇒ (2).
In order to prove the converse implication, we proceed by induction on the

number N of subspaces to be interpolated, using property (2c) of the special
MPUM representation resulting from Algorithm T.

For N = 1, use the expression

P1(ξ) = −(ξ + λ1)Ip − V a
12

(
V̂1

λ1 + λ1

)−1

V a∗
12

obtained in Lemma 3 in order to conclude that det(P1) has n− roots in C+ if
and only if n− = ν−(T1). The claim is thus proved for N = 1.

13



We now assume the claim is true for all 1 ≤ j ≤ N − 1 and we prove it for
j = N . In order to do this, consider first that the special representation R for
the model for N trajectories is obtained from the model R1 for v1 expλ1t and
the model R′ for the error trajectories R1(λi)vi expλit, 2 ≤ i ≤ N as R = R′R1.
Observe that by inductive assumption, the Pick matrix of the error subspaces
has as many negative eigenvalues as the number of right half-plane singularities
of the (2, 2) block-element of R′.

It follows from equation (23) that the number of right half-plane singularities
of P , the (2, 2) block-element of R, equals the number of such singularities of
the corresponding block-element of R′ plus the number of such singularities of
P1. Now observe that T{vi}1≤i≤N

, the Pick matrix of the data, is congruent to
the matrix on the right-hand side of (19). The signature of this block-diagonal
matrix equals the sum of the signature of the Pick matrix T{v1}, and that of
the Pick matrix T ′2≤i≤N associated to the error trajectories. This completes the
proof of (2) =⇒ (1).

We now give two examples of the application of the algorithm.

Example 7 Consider the (frequency, vector) pairs

(λ1, v1) =
(

4,

[
6
−7

])
(λ2, v2) =

(
5,

[
12
−9

])
(λ3, v3) =

(
5,

[
20
−11

])
corresponding to the Pick matrix − 13

8 1 43
10

1 63
10

141
11

43
10

141
11

93
4


whose eigenvalues are 30.7039, −2.78503, 0.00614669. We conclude that there
exists a representation of the MPUM for the dualized data whose (2, 2)-element
has a determinant with 1 root in C+.

The model for the first point is

R1(ξ) :=
[

340
13 + ξ 336

13
− 336

13 ξ − 340
13

]
As was to be expected from the fact that the Pick matrix corresponding to
(λ1, v1) is negative definite, the (2, 2) entry has a singularity in C+.

The vector corresponding to the first error trajectory is v′2 := R1(5)v2 =[
1836
13

− 1557
13

]
, with corresponding kernel representation

R′
2(ξ) :=

[
− 357725

11687 + ξ − 352920
11687

352920
11687

357725
11687 + ξ

]
Conclude that a kernel representation of the MPUM for the first two trajectories
and their duals is

R2(ξ) = R′
2(ξ)R1(ξ) =

[
− 18020

899 − 4005
899 ξ + ξ2 − 24

899 (50 + 163ξ)
24
899 (−50 + 163ξ) − 18020

899 + 4005
899 ξ + ξ2

]

14



Observe that the (2, 2) entry of R2 has a positive and a negative real root, as
was to be expected from the fact that the 2× 2 principal submatrix of the Pick
matrix has one negative and one positive eigenvalue.

The third error trajectory is associated with the vector v′3 :=
[

77672
899

23326
899

]
.

It can be shown that a kernel representation corresponding to this vector is
induced by

R′
3(ξ) :=

[
− 3288520930

457403109 + ξ 1811777072
457403109

− 1811777072
457403109

3288520930
457403109 + ξ

]
Conclude that a kernel representation of the MPUM for the given data is
R′

3(ξ)R2(ξ), given by[
70632200+14867334ξ−5924615ξ2+508791ξ3

508791
−40(887836−605418ξ+4967ξ2)

508791
40(887836−605418ξ+4967ξ2)

508791
−70632200+14867334ξ+5924615ξ2+508791ξ3

508791

]
Observe that the roots of the (2, 2) element of R3 are 2.27811, −6.9613 ±
3.53247i.

Example 8 We solve a problem with m = 1 and p = 2. Consider the (frequency,
vector) pairs

(λ1, v1) =

4,

 6
−7
−11

 (λ2, v2) =

5,

 12
−9
−14

 (λ3, v3) =

5,

 20
−11
−17


which correspond to the Pick matrix − 67

4 − 145
9 − 72

5
− 145

9 − 133
10 − 97

11
− 72

5 − 97
11 − 5

6


This matrix has eigenvalues −38.5789, 7.69355, 0.0020285. Consequently, we
expect a representation of the MPUM with a (2, 2) block element having one
singularity in C+.

The kernel representation corresponding to the first trajectory and its dual
is  412

67 + ξ 168
67

264
67

− 168
67

72
67 + ξ − 308

67
− 264

67 − 308
67 − 216

67 + ξ


Proceeding with the application of Algorithm T, we obtain as kernel represen-
tation of the MPUM a matrix whose (2, 2) block-element is[

−1721350920+3763007528ξ+607391445ξ2+35405647ξ3

35405647
330(−31781032+4310493ξ+289807ξ2)

35405647
330(−26518552+4320147ξ+289807ξ2)

35405647
−11040998520+4339543928ξ+647295195ξ2+35405647ξ3

35405647

]
The determinant of such matrix is

−58053.9− 17244.7ξ + 6638.14ξ2 + 3467.99ξ3 + 535.189ξ4 + 35.4375ξ5 + ξ6
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which has roots in
−6,−5,−4,−11.3835± 8.83631i

and one in 2.32962.

The special kernel representation of the MPUM for D described in Theorem
1 allows us to characterize the solutions of the TIP as follows.

Theorem 9 Assume that the Pick matrix T{(λi,Vi)}1≤i≤N
:=
[

V ∗i JVj

λ̄i+λj

]
i,j=1,...,N

is invertible and has ν− negative eigenvalues, and let (6) be the representation
of the MPUM for D computed with Algorithm T .

Let U ∈ Rp×m[ξ], Y ∈ Rp×p[ξ] be left coprime. Then
[

U −Y
]
∈ Rp×(p+m)[ξ]

is a solution to the TIP with det(Y ) having ν− roots in C+ if and only if there
exist Π,Φ, F ∈ R•×•[ξ], with Φ, F Hurwitz, and ‖Φ−1Π‖∞ < 1, such that

F
[

U −Y
]

=
[

Π −Φ
] [ −D∗ N∗

Q −P

]
(24)

Proof. We first prove sufficiency. Let U ∈ Rp×m[ξ], Y ∈ Rp×p[ξ] be given such
that they are left coprime, and (24) holds for some Π ∈ Rp×m[ξ], Φ ∈ Rp×p[ξ],
F ∈ Rp×p[ξ] such that ‖Φ−1Π‖∞ < 1 and Φ, F are Hurwitz. Consider that
F
[

U −Y
]

is a left multiple of a kernel representation of the MPUM for D,
and consequently it is unfalsified on D. It follows that

F (λi)
[

U(λi) −Y (λi)
]
Vi expλit = 0,

1 ≤ i ≤ N . Conclude from the fact that F is Hurwitz that this implies[
U(λi) −Y (λi)

]
Vi expλit = 0, 1 ≤ i ≤ N , and consequently that

[
U −Y

]
is an unfalsified model for Vi expλit, 1 ≤ i ≤ N . The fact that ‖Y −1U‖∞ < 1 fol-
lows from the J-unitariness of R and from the assumption that ‖Φ−1Π‖∞ < 1.
Finally, the claim on the number of roots of Y in C+ can be proved by observing
that

−FY = ΠN∗ + ΦP = Φ(Φ−1ΠN∗P−1 + Ip)P

or equivalently

−Y −1F−1 = P−1(Φ−1ΠN∗P−1 + Ip)−1Φ−1

and consequently

− 1
det(F )

1
det(Y )

=
1

det(Φ)
1

det(P )
1

det(Φ−1ΠN∗P−1 + Ip)

It follows from the fact that Φ and F are Hurwitz that wno( 1
det(F ) ) = 0 =

wno( 1
det(Φ) ). It follows from the fact that ‖Φ−1Π‖∞ < 1 and that ‖P−1N∗‖∞ <

1, that wno( 1
det(Φ−1ΠN∗P−1+Ip)

) = 0. Conclude that the number of roots of
det(Y ) in C+ equals the number of roots of det(P ) in C+; from Theorem 1 we
conclude that the latter is exactly ν−, the number of negative eigenvalues of the
Pick matrix of the data. Sufficiency is thus proved.
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In order to prove necessity, we proceed as follows. Let U ∈ Rp×m[ξ], Y ∈
Rp×p[ξ] constitute a solution of the TIP. Choose F ∈ Rp×p[ξ] so that F

[
U −Y

]
also models the trajectories in V⊥i exp−λit

, 1 ≤ i ≤ N besides the trajectories
vi expλit, 1 ≤ i ≤ N . Observe that F can be chosen to be Hurwitz, since[

U −Y
]

already models Vi expλit, 1 ≤ i ≤ N . Conclude from the fact that
F
[

U −Y
]

models D and from the fact that a representation of the MPUM
for D is given, that there exist Π,Φ ∈ R•×•[ξ] such that (24) holds. We now
prove the claim regarding the contractivity of Φ−1Π and the Hurwitzianity of
Φ.

Contractivity follows easily from the J-unitariness of R and from the con-
tractivity of Y −1U , since

FT (−iω)(UT (−iω)U(iω)− Y T (−iω)Y (iω))F (iω)
= (ΠT (−iω)Π(iω)− ΦT (−iω)Φ(iω))ΠN

i=1(−iω + λ̄i)(iω − λi)

is negative definite for all ω ∈ R if and only if ΠT (−iω)Π(iω)−ΦT (−iω)Φ(iω) <
0. The claim on the Hurwitzianity of Φ follows from

− 1
det(F )

1
det(Y )

=
1

det(Φ)
1

det(P )
1

det(Φ−1ΠN∗P−1 + Ip)

and consequently

wno(
1

det(F )
)︸ ︷︷ ︸

=0

+ wno(
1

det(Y )
)︸ ︷︷ ︸

=−ν−

= wno(
1

det(Φ)
) + wno(

1
det(P )

)︸ ︷︷ ︸
=−ν−

+wno(
1

det(Φ−1ΠN∗P−1 + Ip)︸ ︷︷ ︸
=0

The proof of the Theorem is thus complete.
The following conclusion can be drawn easily from the results of Theorem 1

and Theorem 9.

Corollary 10 The smallest k for which the Takagi interpolation problem has a
solution is the number of negative eigenvalues of the Pick matrix T{(λi,Vi)}1≤i≤N

.

Remark 11 We now discuss briefly the relationship of the results presented in
Theorem 1 and Theorem 9 with well-known results in the field of interpolation.
The time-series modeling point of view on interpolation and the notion of “sub-
space interpolation problem” put forward in [18] and in the present paper, are
germane to the approach to interpolation problems illustrated in [5]; indeed,
the time-series v expλit and v exp−λit

constituting the dualized data are associ-
ated in a natural way with the graph of a solution to the interpolation problem
as considered by Ball and Helton. Another connection to more classical ap-
proaches to interpolation theory has already been mentioned in Remark 4.2 and
in Remark 5.2 of [18]; namely, the polynomial matrix appearing in equation (6)
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is intimately related with the rational J-contractive matrix Θ of the approach
of Ball, Gohberg, and Rodman illustrated in the book [4] (see Theorem 18.1
therein) from which all solutions to the Nevanlinna- and Takagi problems are
characterized. Finally, the recursive computation of solutions to the Nevanlinna-
and Takagi interpolation problems, which we considered in the context of the
theory of exact identification of [24, 25], has been studied in [6, 8, 10, 19] in the
state-space and operator-theoretic context.

4 Conclusions and further work

In this paper we have given a new look at the interpolation problem of Takagi
from the perspective of time-series modeling, an approach introduced in [3] and
further refined in [1, 11, 18]. That framework has been extended and refined
in this paper by new results of independent interest about the relation between
the roots of the determinant of the denominator of an unfalsified model, and
the signature of the Pick matrix of the data (see the proof of statement (2c) of
Theorem 1).

The work presented in this paper and the techniques used in the proof of
Theorem 1 are being extended and applied in the following directions.

State-space formulas The state-space case is a special case of the results
presented in this paper; however, deriving explicit state-space formulas
is a task deserving interest in its own right. In this respect, see also
[8, 10, 19].

Dissipativity theory The relation between storage functions and Pick matri-
ces has been examined in detail in [22, 23]. It has been shown in Th. 6.4 of
[27] that the positivity of the real symmetric matrix K inducing a storage
function is related to the location of the roots of the “denominator” of
a canonical symmetric factorization of a quadratic differential form; this
fact has important consequences in H∞-control in a behavioral setting
(see [28]). We plan to use the results illustrated in this paper in order to
generalize this results to the case of an indefinite K.

Stabilization with dissipative controllers We are in the process of using
the results illustrated in this paper in order to attack the problem of
stabilization with dissipative controllers, formulated as follows. Let J be
as in (1), and let B be a controllable behavior. Let Bdes be a stable,
autonomous subspace of B representing the desired behavior after inter-
connection with some controller having behavior C. Does there exist a J-
dissipative controller such that C∩B = Bdes? Assuming such a controller
exists, how many unstable poles does the transfer function associated with
the controllable part of C have? It is expected that the particular kernel
representation obtained through Algorithm T can provide significant in-
sight in the solution of this problem. See also [7, 9, 12, 13, 21] for the use
of interpolation methods in controller design.
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