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ABSTRACT

We derive optimal bidding strategies for a global bidding
agent that participates in multiple, simultaneous second-price
auctions with perfect substitutes. We first consider a model
where all other bidders are local and participate in a single
auction. For this case, we prove that, assuming free dis-
posal, the global bidder should always place non-zero bids in
all available auctions, irrespective of the local bidders’ valua-
tion distribution. Furthermore, for non-decreasing valuation
distributions, we prove that the problem of finding the opti-
mal bids reduces to two dimensions. These results hold both
in the case where the number of local bidders is known and
when this number is determined by a Poisson distribution.
This analysis extends to online markets where, typically, auc-
tions occur both concurrently and sequentially. In addition,
by combining analytical and simulation results, we demon-
strate that similar results hold in the case of several global
bidders, provided that the market consists of both global and
local bidders. Finally, we address the efficiency of the overall
market, and show that information about the number of lo-
cal bidders is an important determinant for the way in which
a global bidder affects efficiency.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence|: Multiagent
systems; J.4 [Social and Behavioral Sciences|: Economics

General Terms

Economics
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1. INTRODUCTION

The recent surge of interest in online auctions has resulted
in an increasing number of auctions offering very similar or
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even identical goods and services [9, 10]. In eBay alone, for
example, there are often hundreds or sometimes even thou-
sands of concurrent auctions running worldwide selling such
substitutable items®. Against this background, it is essential
to develop bidding strategies that autonomous agents can use
to operate effectively across a wide number of auctions. To
this end, in this paper we devise and analyse optimal bid-
ding strategies for an important yet barely studied setting
— namely, an agent that participates in multiple, concur-
rent (i.e., simultaneous) second-price auctions for goods that
are perfect substitutes. As we will show, however, this anal-
ysis is also relevant to a wider context where auctions are
conducted sequentially, as well as concurrently.

To date, much of the existing literature on multiple auc-
tions focuses either on sequential auctions [6] or on simulta-
neous auctions for complementary goods, where the value of
items together is greater than the sum of the individual items
(see Section 2 for related research on simultaneous auctions).
In contrast, here we consider bidding strategies for markets
with multiple concurrent auctions and perfect substitutes.
In particular, our focus is on Vickrey or second-price sealed
bid auctions. We choose these because they require little
communication and are well known for their capacity to in-
duce truthful bidding, which makes them suitable for many
multi-agent system settings. However, our results generalise
to settings with English auctions since these are strategically
equivalent to second-price auctions. Within this setting, we
are able to characterise, for the first time, a bidder’s utility-
maximising strategy for bidding simultaneously in any num-
ber of such auctions and for any type of bidder valuation dis-
tribution. In more detail, we first consider a market where a
single bidder, called the global bidder, can bid in any number
of auctions, whereas the other bidders, called the local bid-
ders, are assumed to bid only in a single auction. For this
case, we find the following results:

e Whereas in the case of a single second-price auction a
bidder’s best strategy is to bid its true value, the best
strategy for a global bidder is to bid below it.

e We are able to prove that, even if a global bidder re-
quires only one item, the expected utility is maximised
by participating in all the auctions that are selling the
desired item.

e Finding the optimal bid for each auction can be an ar-
duous task when considering all possible combinations.
However, for most common bidder valuation distribu-

1To illustrate, at the time of writing, within eBay alone over
1300 auctions were selling the Apple iPod Video 30GB.



tions, we are able to significantly reduce this search
space and thus the computation required.

e Empirically, we find that a bidder’s expected utility
is maximised by bidding relatively high in one of the
auctions, and equal or lower in all other auctions.

We then go on to consider markets with more than one global
bidder. Due to the complexity of the problem, we combine
analytical results with a discrete simulation in order to nu-
merically derive the optimal bidding strategy. By so doing,
we find that, in a market with only global bidders, the dy-
namics of the best response do not converge to a pure strat-
egy. In fact it fluctuates between two states. If the market
consists of both local and global bidders, however, the global
bidders’ strategy quickly reaches a stable solution and we
approximate a symmetric Nash equilibrium.

The remainder of the paper is structured as follows. Sec-
tion 2 discusses related work. In Section 3 we describe the
bidders and the auctions in more detail. In Section 4 we in-
vestigate the case with a single global bidder and characterise
the optimal bidding behaviour for it. Section 5 considers the
case with multiple global bidders and in Section 6 we address
the market efficiency. Finally, Section 7 concludes.

2. RELATED WORK

Research in the area of simultaneous auctions can be seg-
mented along two broad lines. On the one hand, there is the
game-theoretic and decision-theoretic analysis of simultane-
ous auctions which concentrates on studying the equilibrium
strategy of rational agents [3, 7, 8, 9, 12, 11]. Such analy-
ses are typically used when the auction format employed in
the concurrent auctions is the same (e.g. there are M Vick-
rey auctions or M first-price auctions). On the other hand,
heuristic strategies have been developed for more complex
settings when the sellers offer different types of auctions or
the buyers need to buy bundles of goods over distributed auc-
tions [1, 13, 5]. This paper adopts the former approach in
studying a market of M simultaneous Vickrey auctions since
this approach yields provably optimal bidding strategies.

In this case, the seminal paper by Engelbrecht-Wiggans
and Weber provides one of the starting points for the game-
theoretic analysis of distributed markets where buyers have
substitutable goods. Their work analyses a market consist-
ing of couples having equal valuations that want to bid for
a dresser. Thus, the couple’s bid space can at most contain
two bids since the husband and wife can be at most at two
geographically distributed auctions simultaneously. They de-
rive a mixed strategy Nash equilibrium for the special case
where the number of buyers is large. Our analysis differs
from theirs in that we study concurrent auctions in which
bidders have different valuations and the global bidder can
bid in all the auctions concurrently (which is entirely possible
given autonomous agents).

Following this, [7] then studied the case of simultaneous
auctions with complementary goods. They analyse the case
of both local and global bidders and characterise the bidding
of the buyers and resultant market efficiency. The setting
provided in [7] is further extended to the case of common
values in [9]. However, neither of these works extend easily to
the case of substitutable goods which we consider. This case
is studied in [12], but the scenario considered is restricted
to three sellers and two global bidders and with each bidder
having the same value (and thereby knowing the value of

other bidders). The space of symmetric mixed equilibrium
strategies is derived for this special case, but again our result
is more general. Finally, [11] considers the case of concurrent
English auctions, in which he develops bidding algorithms for
buyers with different risk attitudes. However, he forces the
bids to be the same across auctions, which we show in this
paper not always to be optimal.

3. BIDDING IN MULTIPLE AUCTIONS

The model consists of M sellers, each of whom acts as an
auctioneer. Each seller auctions one item; these items are
complete substitutes (i.e., they are equal in terms of value
and a bidder obtains no additional benefit from winning more
than one item). The M auctions are executed concurrently;
that is, they end simultaneously and no information about
the outcome of any of the auctions becomes available until
the bids are placed®. However, we briefly address markets
with both sequential and concurrent auctions in Section 4.4.
We also assume that all the auctions are equivalent (i.e., a
bidder does not prefer one auction over another). Finally, we
assume free disposal (i.e., a winner of multiple items incurs
no additional costs by discarding unwanted ones) and risk
neutral bidders.

3.1 TheAuctions

The seller’s auction is implemented as a Vickrey auction,
where the highest bidder wins but pays the second-highest
price. This format has several advantages for an agent-based
setting. Firstly, it is communication efficient. Secondly, for
the single-auction case (i.e., where a bidder places a bid in
at most one auction), the optimal strategy is to bid the true
value and thus requires no computation (once the valuation
of the item is known). This strategy is also weakly dominant
(i-e., it is independent of the other bidders’ decisions), and
therefore it requires no information about the preferences of
other agents (such as the distribution of their valuations).

3.2 Global and Local Bidders

We distinguish between global and local bidders. The former
can bid in any number of auctions, whereas the latter only bid
in a single one. Local bidders are assumed to bid according to
the weakly dominant strategy and bid their true valuation®.
We consider two ways of modelling local bidders: static and
dynamic. In the first model, the number of local bidders
is assumed to be known and equal to N for each auction.
In the latter model, on the other hand, the average number
of bidders is equal to N, but the exact number is unknown
and may vary for each auction. This uncertainty is modelled
using a Poisson distribution (more details are provided in
Section 4.1).

As we will later show, a global bidder who bids optimally
has a higher expected utility compared to a local bidder, even
though the items are complete substitutes and a bidder only
requires one of them. However, we can identify a number of
compelling reasons why not all bidders would choose to bid
globally. Firstly, participation costs such as entry fees and
time to set up an account may encourage occasional users to

2 Although this paper focuses on sealed-bid auctions, where
this is the case, the conditions are similar for last-minute
bidding in English auctions such as eBay [10].

3Note that, since bidding the true value is optimal for local
bidders irrespective of what others are bidding, their strategy
is not affected by the presence of global bidders.



participate in auctions that they are already familiar with.
Secondly, bidders may simply not be aware of other auctions
selling the same type of item. Even if this is known, how-
ever, additional information such as the distribution of the
valuations of other bidders and the number of participating
bidders is required for bidding optimally across multiple auc-
tions. This lack of expert information often drives a novice
to bid locally. Thirdly, an optimal global strategy is harder
to compute than a local one. An agent with bounded ratio-
nality may therefore not have the resources to compute such
a strategy. Lastly, even though a global bidder profits on
average, such a bidder may incur a loss when inadvertently
winning multiple auctions. This deters bidders who are ei-
ther risk averse or have budget constraints from participating
in multiple auction. As a result, in most market places we
expect a combination of global and local bidders.

In view of the above considerations, human buyers are
more likely to bid locally. The global strategy, however, can
be effectively executed by autonomous agents since they can
gather data from many auctions and perform the required
calculations within the desired time frame.

4. A SINGLE GLOBAL BIDDER

In this section, we provide a theoretical analysis of the opti-
mal bidding strategy for a global bidder, given that all other
bidders are local and simply bid their true valuation. Af-
ter we describe the global bidder’s expected utility in Sec-
tion 4.1, we show in Section 4.2 that it is always optimal for
a global bidder to participate in the maximum number of
auctions available. In Section 4.3 we discuss how to signifi-
cantly reduce the complexity of finding the optimal bids for
the multi-auction problem, and we then apply these methods
to find optimal strategies for specific examples. Finally, in
Section 4.4 we extend our analysis to sequential auctions.

4.1 The Global Bidder’s Expected Utility

In what follows, the number of sellers (auctions) is M > 2 and
the number of local bidders is N > 1. A bidder’s valuation
v E [07 vmw] is randomly drawn from a cumulative distri-
bution F' with probability density f, where f is continuous,
strictly positive and has support [0, Umaz]|. F is assumed to
be equal and common knowledge for all bidders. A global
bid B is a set containing a bid b; € [0, Umaz] for each auction
1 < ¢ < M (the bids may be different for different auctions).
For ease of exposition, we introduce the cumulative distri-
bution function for the first-order statistics G(b) = F(b)"¥ €
[0, 1], denoting the probability of winning a specific auction
conditional on placing bid b in this auction, and its proba-
bility density g(b) = dG(b)/db = NF()V~'f(b). Now, the
expected utility U for a global bidder with global bid B and
valuation v is given by:

U(B,v):v{l— I1 o - Z/ vy 1)

b eB

Here, the left part of the equation is the valuation mul-
tiplied by the probability that the global bidder wins at
least one of the M auctions and thus corresponds to the
expected benefit. In more detail, note that 1 — G(b;) is
the probability of not winning auction ¢ when bidding b;,
[I,e5(1 — G(bi)) is the probability of not winning any auc-
tion, and thus 1 — [], c5(1 — G(b:)) is the probability of
winning at least one auction. The right part of equation 1
corresponds to the total expected costs or payments. To see

the latter, note that the expected payment of a single second-
price auction when bidding b equals fo yg(y)dy (see [6]) and
is independent of the expected payments for other auctions.
Clearly, equation 1 applies to the model with static local bid-
ders, i.e., where the number of bidders is known and equal
for each auction (see Section 3.2). However, we can use the
same equation to model dynamic local bidders in the follow-
ing way:
Lemma 1 By replacing the first-order statistic G(y) with
Gly) =N, @

and the corresponding density function g(y) with §(y) =
dé(y)/dy = Nf(y)eN(F(y)fl), equation 1 becomes the ex-
pected utility where the number of local bidders in each auc-
tion is described by a Poisson distribution with average N
(i.e., where the probability that n local bidders participate
is given by P(n) = N"e™" /nl).

PROOF To prove this, we first show that G(-) and F(-) can
be modified such that the number of bidders per auction is

given by a binomial distribution (where a bidder’s decision
to participate is given by a Bernoulli trial) as follows:

G'y)=F N =0-p+pFu)V, (3)

where p is the probability that a bidder participates in the
auction, and N is the total number of bidders. To see this,
note that not participating is equivalent to bidding zero. As
a result, F'(0) = 1 — p since there is a 1 — p probability
that a bidder bids zero at a specific auction, and F'(y) =
F'(0) + p F(y) since there is a probability p that a bidder
bids according to the original distribution F(y). Now, the
average number of participating bidders is given by N = p

By replacing p Wlth A/./\/ equation 3 becomes G'(y) = (1 —
N/N + (N/NF Note that a Poisson distribution is
given by the hmlt of a binomial distribution. By keeping
N constant and taking the limit AY — oo, we then obtain
G'(y) = eNFW=D = G(y). This concludes our proof. [0

The results that follow apply to both the static and dynamic
model unless stated otherwise.

4.2 Participation in Multiple Auctions

We now show that, for any valuation 0 < v < Vmaz, a utility-
maximising global bidder should always place non-zero bids
in all available auctions. To prove this, we show that the ex-
pected utility increases when placing an arbitrarily small bid
compared to not participating in an auction. More formally,
Theorem 1 Consider a global bidder with valuation 0 <
v < Umaz and global bid B, where b; < v for all b; € B.

Suppose B contains no bid for auction j € {1,2,..., M},
then there exists a b; > 0 such that U(BU{b;},v) > U(B,v).

Proor Using equation 1, the marginal expected utility for
participating in an additional auction can be written as:

]
UBU {b;},0) - UBv) = oG(b;) [ (- Gbe)) - /O va(w)dy

b;eB

Now, using integration by parts, we have j;)bj yg(y) = b;G(b;)—

fobj G(y)dy and the above equation can be rewritten as:

UBU{bj},v) —U(B,v) =
bj
+/O G(y)dy (4)

v [[ @-a®) -

b EB

G(by)




Let b; = €, where € is an arbitrarily small strictly positive
value. Clearly, G(b;) and fobj G(y)dy are then both strictly
positive (since f(y) > 0). Moreover, given that b; < v <
Umaez for b; € B and that v > 0, it follows that vaieB(l —

G(b;)) > 0. Now, suppose b; = %vaieB(l — G(b;)), then
UB U {b}v) - U(Bv) = Glby) [20]L,,cs1 - G(b)] +

fobj G(y)dy > 0 and thus U(B U {b;},v) > U(B,v). This
completes our proof. [

4.3 The Optimal Global Bid

A general solution to the optimal global bid requires the max-
imisation of equation 1 in M dimensions, an arduous task,
even when applying numerical methods. In this section, how-
ever, we show how to reduce the entire bid space to two di-
mensions in most cases (one continuous, and one discrete),
thereby significantly simplifying the problem at hand. First,
however, in order to find the optimal solutions to equation 1,
we set the partial derivatives to zero:

oU
a5, — 90 |v 11
by eB\{b;}

(I=G(b) —bi| =0 (5)

Now, equality 5 holds either when ¢(b;) = 0 or when
HbjeB\{bi}(l — G(bj))v — b; = 0. In the dynamic model,
g(bi) is always greater than zero, and can therefore be ig-
nored (since g(0) = Nf(0)e™™ and we assume f(y) > 0).
In the static model, g(b;) = 0 only when b; = 0. How-
ever, theorem 1 shows that the optimal bid is non-zero for
0 < v < Umagz- Therefore, we can ignore the first part, and
the second part yields:

bi = H

byeB\{b;}

In other words, the optimal bid in auction i is equal to the
bidder’s valuation multiplied by the probability of not win-
ning any of the other auctions. It is straightforward to show
that the second partial derivative is negative, confirming that
the solution is indeed a maximum when keeping all other bids
constant. Thus, equation 6 provides a means to derive the
optimal bid for auction i, given the bids in all other auctions.

4.3.1 Reducing the Search Space

In what follows, we show that, for non-decreasing probabil-
ity density functions (such as the uniform and logarithmic
distributions), the optimal global bid consists of at most two
different values for any M > 2. That is, the search space
for finding the optimal bid can then be reduced to two con-
tinuous values. Let these values be bpign and bjow, where
brigh > biow. More formally:

(1= G(by)) (6)

Theorem 2 Suppose the probability density function f is
non-decreasing within the range [07 vmw], then the following
proposition holds: given v > 0, for any b; € B, either b; =
brigh, bi = biow, or bi = brigh = biow-

Proor Using equation 6, we can produce M equations, one

for each auction, with M unknowns. Now, by combining
these equations, we obtain the following relationship: b1 (1 —

G(b1)) = b2(1 — G(b2)) = ... = bm(1 — G(bm)). By defining
H(b) =b(1 — G(b)) we can rewrite the equation to:
H(b)) = H(bs) =...=H(bn) =v [[ A= G(;)) (7)

b;€B

In order to prove that there exist at most two different bids,
it is sufficient to show that b = H™'(y) has at most two
solutions that satisfy 0 < b < vpmae for any y. To see this,
suppose Hil(y) has two solutions but there exists a third
bid b; # biow 7 brigh. From equation 7 it then follows that
there exists a y such that H(b;) = H (biow) = H(bhigh) = y.
Therefore, H'(y) must have at least three solutions, which
is a contradiction.

Now, note that, in order to prove that ™' (y) has at most
two solutions, it is necessary and sufficient to show that H (b)
has at most one local maximum for 0 < b < vVipae. A suffi-
cient conditions, however, is for H(b) to be strictly concave®.
The function H is strictly concave if and only if the following
condition holds:

oy d _ dg
H'0) = 55 (= b900) = GO) = = (457 +20(0)) <0
(8)
where H”(b) = d>*H/db*. By performing standard calcula-
tions, we obtain the following condition for the static model:

b ((N - 1)% + NJ;((:))> > =2 for 0 <b < vmaz, (9)
and similarly for the dynamic model we have:
b (N f(b) + {Cfl((:))) > =2 fO’/' 0 <b < vmas, (10)

where f'(b) = df/db. Since both f and F are positive,
conditions 9 and 10 clearly hold for f’(b) > 0. In other
words, conditions 9 and 10 show that H(b) is strictly con-
cave when the probability density function is non-decreasing
for 0 < b < Umaz, completing our proof. [

Note from conditions 9 and 10 that the requirement of
non-decreasing density functions is sufficient, but far from
necessary. Moreover, condition 8 requiring H (b) to be strictly
concave is also stronger than necessary to guarantee only two
solutions. As a result, in practice we find that the reduction
of the search space applies to most cases.

Given there are at most 2 possible bids, bjow and bnign, we
can further reduce the search space by expressing one bid in
terms of the other. Suppose the buyer places a bid of b in
Mo auctions and bpign for the remaining Mpign = M —Miow
auctions, equation 6 then becomes:

buow = (1 = G(bio) ™ (1 = Gi{brign)) %,

and can be rearranged to give:

1
. B 1 _ blow m
brigh = G (1 |:’U(1 — G(blow))Mlow71:| ) (11)

Here, the inverse function G~'(-) can usually be obtained
quite easily. Furthermore, note that, if Mo, = 1 or Mpign =
1, equation 6 can be used directly to find the desired value.

Using the above, we are able to reduce the bid search space
to a single continuous dimension, given Mjow or Mpign. How-
ever, we do not know the number of auctions in which to bid
biow and bpign, and thus we need to search M different com-
binations to find the optimal global bid. Moreover, for each

*More precisely, H (b) can be either strictly convex or strictly
concave. However, it is easy to see that H is not convex since
H(0) = H(Umaz) =0, and H(b) > 0 for 0 < b < Vmaz-
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Figure 1: The optimal bid fractions = = b/v and cor-
responding expected utility for a single global bidder
with N = 5 static local bidders and varying number of
auctions (M). In addition, for comparison, the dark
solid line in the right figure depicts the expected util-
ity when bidding locally in a randomly selected auc-
tion, given there are no global bidders (note that, in
case of local bidders only, the expected utility is not
affected by M).

combination, the optimal b;o,, and bnign can vary. There-
fore, in order to find the optimal bid for a bidder with valua-
tion v, it is sufficient to search along one continuous variable
biow € [0,v], and a discrete variable Mo = M — Mpign €
{1,2,...,M}.

4.3.2 Empirical Evaluation

In this section, we present results from an empirical study
and characterise the optimal global bid for specific cases.
Furthermore, we measure the actual utility improvement that
can be obtained when using the global strategy. The results
presented here are based on a uniform distribution of the val-
uations with vpmqe = 1, and the static local bidder model, but
they generalise to the dynamic model and other distributions
(not shown due to space limitations). Figure 1 illustrates
the optimal global bids and the corresponding expected util-
ity for various M and N = 5, but again the bid curves for
different values of M and N follow a very similar pattern.
Here, the bid is normalised by the valuation v to give the bid
fraction = b/v. Note that, when = = 1, a bidder bids its
true value.

As shown in Figure 1, for bidders with a relatively low
valuation, the optimal strategy is to submit M equal bids
at, or very close to, the true value. The optimal bid fraction
then gradually decreases for higher valuations. Interestingly,
in most cases, placing equal bids is no longer the optimal
strategy after the valuation reaches a certain point. A so-
called pitchfork bifurcation is then observed and the optimal
bids split into two values: a single high bid and M — 1 low
ones. This transition is smooth for M = 2, but exhibits an
abrupt jump for M > 3. In all experiments, however, we
consistently observe that the optimal strategy is always to
place a high bid in one auction, and an equal or lower bid in
all others. In case of a bifurcation and when the valuation
approaches vmaqz, the optimal high bid goes to the true value
and the low bids go to zero.

As illustrated in Figure 1, the utility of a global bidder be-
comes progressively higher with more auctions. In absolute
terms, the improvement is especially high for bidders that
have an above average valuation, but not too close to Vmaz.-
The bidders in this range thus benefit most from bidding

globally. This is because bidders with very low valuations
have a very small chance of winning any auction, whereas
bidders with a very high valuation have a high probability of
winning a single auction and benefit less from participating
in more auctions. In contrast, if we consider the utility rel-
ative to bidding in a single auction, this is much higher for
bidders with relatively low valuations (this effect cannot be
seen clearly in Figure 1 due to the scale). In particular, we
notice that a global bidder with a low valuation can improve
its utility by up to M times the expected utility of bidding
locally. Intuitively, this is because the chance of winning one
of the auctions increases by up to a factor M, whereas the
increase in the expected cost is negligible. For high valuation
buyers, however, the benefit is not that obvious because the
chances of winning are relatively high even in case of a single
auction.

4.4 Sequential and Concurrent Auctions

In this section we extend our analysis of the optimal bidding
strategy to sequential auctions. Specifically, the auction pro-
cess consists of R rounds, and in each round any number of
auctions are running simultaneously. Such a combination of
sequential and concurrent auctions is very common in prac-
tice, especially online®. It turns out that the analysis for
the case of simultaneous auctions is quite general and can
be easily extended to include sequential auctions. In the fol-
lowing, the number of simultaneous auctions in round r is
denoted by M., and the set of bids in that round by B,. As
before, the analysis assumes that all other bidders are local
and bid in a single auction. Furthermore, we assume that the
global bidders have complete knowledge about the number
of rounds and the number of auctions in each round.

The expected utility in round r, denoted by Uy, is similar to
before (equation 1 in Section 4.1) except that now additional
benefit can be obtained from future auctions if the desired
item is not won in one of the current set of simultaneous
auctions. For convenience, U, (B, M,) is abbreviated to U
in the following. The expected utility thus becomes:

Ur=v-P(B,) —

by
/ yg(y)dy + Ur-Jrl . (1 - PT'(BT))
b €Br* 0

= Urir + (= Upi1) P (B,) -
bri €EBy

brq
/O yg(y)dy, (12)

where Pr(Br) = 1—]], .5, (1—G(bri)) is the probability of
winning at least one auction in round r. Now, we take the
partial derivative of equation 12 in order to find the optimal
bid b,; for auction j in round r:

o,
br;

g(bry) [ =Ussa)  []

briEBr\{br]‘}

(1= (b)) — b

(13)

SRather than being purely sequential in nature, online auc-
tions also often overlap (i.e., new auctions can start while
others are still ongoing). In that case, however, it is optimal
to wait and bid in the new auctions only after the outcome
of the earlier auctions is known, thereby reducing the chance
of unwittingly winning multiple items. Using this strategy,
overlapping auctions effectively become sequential and can
thus be analysed using the results in this section.



Note that equation 13 is almost identical to equation 5 in
Section 4.3, except that the valuation v is now replaced by
v—Uyr41. The optimal bidding strategy can thus be found by
backward induction (where Ur4+1 = 0) using the procedure
outlined in Section 4.3.

5. MULTIPLE GLOBAL BIDDERS

As argued in section 3.2, we expect a real-world market to
exhibit a mix of global and local bidders. Whereas so far we
assumed a single global bidder, in this section we consider a
setting where multiple global bidders interact with one an-
other and with local bidders as well. The analysis of this
problem is complex, however, as the optimal bidding strat-
egy of a global bidder depends on the strategy of other global
bidders. A typical analytical approach is to find the symmet-
ric Nash equilibrium solution [9, 12], which occurs when all
global bidders use the same strategy to produce their bids,
and no (global) bidder has any incentive to unilaterally de-
viate from the chosen strategy. Due to the complexity of the
problem, however, here we combine a computational simula-
tion approach with analytical results. The simulation works
by iteratively finding the best response to the optimal bid-
ding strategies in the previous iteration. If this should result
in a stable outcome (i.e., when the optimal bidding strate-
gies remains unchanged for two subsequent iterations), the
solution is by definition a (symmetric) Nash equilibrium.

5.1 The Global Bidder’'s Expected Utility

In order to find a global bidder’s best response, we first need
to calculate the expected utility given the global bid B and
the strategies of both the other global bidders as well as the
local bidders. In the following, let Ny denote the number of
other global bidders. Furthermore, let the strategies of the
other global bidders be represented by the set of functions
Br(v),1 < k < M, producing a bid for each auction given a
bidder’s valuation v. Note that all other global bidders use
the same set of functions since we consider symmetric equi-
libria. However, we assume that the assignment of functions
to auctions by each global bidder occurs in a random fashion
without replacement (i.e., each function is assigned exactly
once by each global bidder). Let © denote the set of all pos-
sible assignments. Each such assignment w € Q is a (M, Ny)
matrix, where each entry w; ; identifies the function used by
global bidder j in auction i¢. Note that the cardinality of €2,
denoted by |Q|, is equal to M!™s. Now, the expected utility
is the average expected utility over all possible assignments
and is given by:

U(B,v) = Wll v (1 -1 a- éwi(bi)))

weN b, eB

b;
_Tsll\ Z Z/o Yo, (¥)dy, (14)

weN b, eB

where G.,(b) = G(b) - Hj\r:gl (fﬁwi,j (y)f(y)dy denotes the
probability of winning auction 4, given that each global bid-
der 1 < j < Ny bids according to the function 3., ;, and
G (y) = dG.,(y)/dy. Here, G(b) is the probability of win-
ning an auction with only local bidders as described in Sec-
tion 4.1, and f(y) is the probability density of the bidder

valuations as before.

5.2 The Simulation

The simulation works by discretising the space of possible
valuations and bids and then finding a best response to an

initial set of bidding functions. The best response is found by
maximising equation 14 for each discrete valuation, which, in
turn, results in a new set of bidding functions. These func-
tions then affect the probabilities of winning in the next iter-
ation for which the new best response strategy is calculated.
This process is then repeated for a fixed number of iterations
or until a stable solution has been found®.

Clearly, due to the large search space, finding the utility-
maximising global bid quickly becomes infeasible as the num-
ber of auctions and global bidders increases. Therefore, we
reduce the search space by limiting the global bid to two
dimensions where a global bidder bids high in one of the
auctions and low in all the others”. This simplification is
justified by the results in Section 4.3.1 which show that, for
a large number of commonly used distributions, the optimal
global bid consist of at most two different values.

The results reported here are based on the following set-
tings.® In order to emphasize that the valuations are dis-
crete, we use integer values ranging from 1 to 1000. Each
valuation occurs with equal probability, equivalent to a uni-
form valuation distribution in the continuous case. A bid-
der can select between 300 different equally-spaced bid lev-
els. Thus, a bidder with valuation v can place bids b &
{0,v/300,2v/300, ...,v}. The local bidders are static and
bid their valuation as before. The initial set of functions can
play an important role in the experiments. Therefore, to en-
sure our results are robust, experiments are repeated with
different random initial functions.

5.3 TheResults

First, we describe the results with no local bidders. For this
case, we find that the simulation does not converge to a stable
state. That is, when there is at least one other global bidder,
the best response strategy keeps fluctuating, irrespective of
the number of iterations and of the initial state. The fluctua-
tions, however, show a distinct pattern and alternate between
two states. Figure 2 depicts these two states for N¢ = 10 and
M = 5. The two states vary most when there are at least as
many auctions as there are global bidders. In that case, one
of the best response states is to bid truthfully in one auction
and zero in all others. The best response to that, however,
is to bid an equal positive amount close to zero in all auc-
tions; this strategy guarantees at least one object at a very
low payment. The best response is then again to bid truth-
fully in a single auction since this appropriates the object in
that particular auction. As a result, there exists no stable
solution. The same result is observed when the number of
global bidders is less than the number of auctions. This oc-

5This approach is similar to an alternating-move best-
response process with pure strategies [4], although here we
consider symmetric strategies within a setting where an op-
ponent’s best response depends on its valuation.

"Note that the number of possible allocations still increases
with the number of auctions and global bids. However, by
merging all utility-equivalent permutations, we significantly
increase computation speed, allowing experiments with rela-
tively large numbers of auctions and bidders to be performed
(e.g., a single iteration with 50 auctions and 10 global bidders
takes roughly 30 seconds on a 3.00 Ghz PC).

8We also performed experiments with different precision,
other valuation distributions, and dynamic local bidders. We
find that the prinicipal conclusions generalise to these dif-
ferent settings, and therefore we omit the results to avoid
repetitiveness.
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Figure 2: The two states of the best response strat-
egy for M =5 and N,y = 10 without local bidders.
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Figure 3: The variance of the best response strategy
over 10 iterations and 10 experiments with different
initial settings and M = 5. The errorbars show the
(small) standard deviations.

curs since global bidders randomise over auctions, and thus
they cannot coordinate and choose to bid high in different
auctions.

As shown in Figure 2, a similar fluctuation is observed
when the number of global bidders increases relative to the
number of auctions. However, the bids in the equal-bid state
(state 2 in Figure 2), as well as the low bids of the other
state, increase. Moreover, if the number of global bidders is
increased even further, a bifurcation occurs in the equal-bid
state similar to the case without local bidders.

We now consider the best response strategies when both lo-
cal and global bidders participate and each auction contains
the same number of local bidders. To this end, Figure 3
shows the average variance of the best response strategies.
This is measured as the variance of an actual best-response
bid over different iterations, and then taking the average over
the discrete bidder valuations. Here, the variance is a gauge
for the amount of fluctuation and thus the instability of the
strategy. As can be seen from this figure, local bidders have
a large stabilising effect on the global bidder strategies. As a
result, the best response strategy approximates a pure sym-
metric Nash equilibrium. We note that the results converge
after only a few iterations.

The results show that the principal conclusions in the case
of a single global bidder carry over to the case of multiple
global bidders. That is, the optimal strategy is to bid posi-
tive in all auctions (as long as there are at least as many bid-
ders as auctions). Furthermore, a similar bifurcation point
is observed. These results are very robust to changes to the
auction settings and the parameters of the simulation.

To conclude, even though a theoretical analysis proves dif-
ficult in case of several global bidders, we can approximate
a (symmetric) Nash equilibrium for specific settings using a

discrete simulation in case the system consists of both local
and global bidders. Thus, our simulation can be used as a
tool to predict the market equilibrium and to find the opti-
mal bidding strategy for practical settings where we expect
a combination of local and global bidders.

6. MARKET EFFICIENCY

Efficiency is an important system-wide property since it char-
acterises to what extent the market maximises social welfare
(i.e. the sum of utilities of all agents in the market). To this
end, in this section we study the efficiency of markets with
either static or dynamic local bidders, and the impact that a
global bidder has on the efficiency in these markets. Specifi-
cally, efficiency in this context is maximised when the bidders
with the M highest valuations in the entire market obtain a
single item each. More formally, we define the efficiency of
an allocation as:

Definition 1 Efficiency of Allocation. The efficiency ni
of an allocation K is the obtained social welfare proportional
to the maximum social welfare that can be achieved in the
market and is given by:

> vi(K)
S vk

where K* = arg maxgei Zf\r:Tl v;(K) is an efficient alloca-
tion, IC is the set of all possible allocations, v;(K) is bidder
1’s utility for the allocation K € K, and Nr is the total num-
ber of bidders participating across all auctions (including any
global bidders).

K = (15)

Now, in order to measure the efficiency of the market and
the impact of a global bidder, we run simulations for the
markets with the different types of local bidders. The exper-
iments are carried out as follows. Each bidder’s valuation is
drawn from a uniform distribution with support [0,1]. The
local bidders bid their true valuations, whereas the global
bidder bids optimally in each auction as described in Sec-
tion 4.3. The experiments are repeated 5000 times for each
run to obtain an accurate mean value, and the final aver-
age results and standard deviations are taken over 10 runs in
order to get statistically significant results.

The results of these experiments are shown in Figure 4.
Note that a degree of inefficiency is inherent to a multi-
auction market with only local bidders [2].° For example,
if there are two auctions selling one item each, and the two
bidders with the highest valuations both bid locally in the
same auction, then the bidder with the second-highest value
does not obtain the good. Thus, the allocation of items to
bidders is inefficient. As can be observed from Figure 4, how-
ever, the efficiency increases when N becomes larger. This
is because the differences between the bidders with the high-
est valuations become smaller, thereby decreasing the loss of
efficiency.

Furthermore, Figure 4 shows that the presence of a global
bidder has a slightly positive effect on the efficiency in case
the local bidders are static. In the case of dynamic bidders,
however, the effect of a global bidder depends on the number
of sellers. If M is low (i.e., for M = 2), a global bidder sig-
nificantly increases the efficiency, especially for low values of

9Trivial exceptions are when either M = 1 or N = 1 and bid-
ders are static, since the market is then completely efficient
without a global bidder.
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Figure 4: Average efficiency for different market set-
tings as shown in the legend. The error-bars indicate
the standard deviation over the 10 runs.

N. For M = 6, on the other hand, the presence of a global
bidder has a negative effect on the efficiency (this effect be-
comes even more pronounced for higher values of M). This
result is explained as follows. The introduction of a global
bidder potentially leads to a decrease of efficiency since this
bidder can unwittingly win more than one item. However,
as the number of local bidders increase, this is less likely to
happen. Rather, since the global bidder increases the num-
ber of bidders, its presence makes an overall positive (albeit
small) contribution in case of static bidders. In a market with
dynamic bidders, however, the market efficiency depends on
two other factors. On the one hand, the efficiency increases
since items no longer remain unsold (this situation can oc-
cur in the dynamic model when no bidder turns up at an
auction). On the other hand, as a result of the uncertainty
concerning the actual number of bidders, a global bidder is
more likely to win multiple items (we confirmed this analyt-
ically). As M increases, the first effect becomes negligible
whereas the second one becomes more prominent, reducing
the efficiency on average.

To conclude, the impact of a global bidder on the efficiency
clearly depends on the information that is available. In case
of static local bidders, the number of bidders is known and
the global bidder can bid more accurately. In case of uncer-
tainty, however, the global bidder is more likely to win more
than one item, decreasing the overall efficiency.

7. CONCLUSIONS

In this paper, we derive utility-maximising strategies for bid-
ding in multiple, simultaneous second-price auctions. We
first analyse the case where a single global bidder bids in
all auctions, whereas all other bidders are local and bid in a
single auction. For this setting, we find the counter-intuitive
result that it is optimal to place non-zero bids in all auctions
that sell the desired item, even when a bidder only requires
a single item and derives no additional benefit from having
more. Thus, a potential buyer can achieve considerable ben-
efit by participating in multiple auctions and employing an
optimal bidding strategy. For a number of common valua-
tion distributions, we show analytically that the problem of
finding optimal bids reduces to two dimensions. This consid-
erably simplifies the original optimisation problem and can
thus be used in practice to compute the optimal bids for any
number of auctions.

Furthermore, we investigate a setting with multiple global

bidders by combining analytical solutions with a simulation
approach. We find that a global bidder’s strategy does not
stabilise when only global bidders are present in the market,
but only converges when there are local bidders as well. We
argue, however, that real-world markets are likely to contain
both local and global bidders. The converged results are then
very similar to the setting with a single global bidder, and we
find that a bidder benefits by bidding optimally in multiple
auctions. For the more complex setting with multiple global
bidders, the simulation can thus be used to find these bids
for specific cases.

Finally, we compare the efficiency of a market with multi-
ple concurrent auctions with and without a global bidder. We
show that, if the bidder can accurately predict the number of
local bidders in each auction, the efficiency slightly increases.
In contrast, if there is much uncertainty, the efficiency sig-
nificantly diminishes as the number of auctions increases due
to the increased probability that a global bidder wins more
than two items. These results show that the way in which
the efficiency, and thus social welfare, is affected by a global
bidder depends on the information that is available to that
global bidder.

In future work, we intend to extend the results to imperfect
substitutes (i.e., when a global bidder gains from winning
additional items), and to settings where the auctions are no
longer identical. The latter arises, for example, when the
number of (average) local bidders differs per auction or the
auctions have different settings for parameters such as the
reserve price.
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