Investigation of two-dimensional acoustic resonant modes in a particle separator
Investigation of two-dimensional acoustic resonant modes in a particle separator
Within an acoustic standing wave particles experience acoustic radiation forces, a phenomenon which is exploited in particle or cell manipulation devices. When developing such devices, one-dimensional acoustic characteristics corresponding to the transducer(s) are typically of most importance and determine the primary radiation forces acting on the particles. However, radiation forces have also been observed to act in the lateral direction, perpendicular to the primary radiation force, forming striated patterns. These lateral forces are due to lateral variations in the acoustic field influenced by the geometry and materials used in the resonator. The ability to control them would present an advantage where their effect is either detrimental or beneficial to the particle manipulation process.
The two-dimensional characteristics of an ultrasonic separator device have been modelled within a finite element analysis (FEA) package. The fluid chamber of the device, within which the standing wave is produced, has a width to height ratio of approximately 30:1 and it is across the height that a half-wavelength standing wave is produced to control particle movement. Two-dimensional modal analyses have calculated resonant frequencies which agree well with both the one-dimensional modelling of the device and experimentally measured frequencies. However, these two-dimensional analyses also reveal that these modes exhibit distinctive periodic variations in the acoustic pressure field across the width of the fluid chamber. Such variations lead to lateral radiation forces forming particle bands (striations) and are indicative of enclosure modes.
The striation spacings predicted by the FEA simulations for several modes compare well with those measured experimentally for the ultrasonic particle separator device. It is also shown that device geometry and materials control enclosure modes and therefore the strength and characteristics of lateral radiation forces, suggesting the potential use of FEA in designing for the control of enclosure modes in similar particle manipulator devices.
lateral radiation force, fea, particles
e467-e471
Townsend, R.J.
0452b21c-a758-4d4a-925b-1511d9296d62
Hill, M.
0cda65c8-a70f-476f-b126-d2c4460a253e
Harris, N.R.
237cfdbd-86e4-4025-869c-c85136f14dfd
White, N.M.
c7be4c26-e419-4e5c-9420-09fc02e2ac9c
22 December 2006
Townsend, R.J.
0452b21c-a758-4d4a-925b-1511d9296d62
Hill, M.
0cda65c8-a70f-476f-b126-d2c4460a253e
Harris, N.R.
237cfdbd-86e4-4025-869c-c85136f14dfd
White, N.M.
c7be4c26-e419-4e5c-9420-09fc02e2ac9c
Townsend, R.J., Hill, M., Harris, N.R. and White, N.M.
(2006)
Investigation of two-dimensional acoustic resonant modes in a particle separator.
Ultrasonics, 44 (Supple), .
(doi:10.1016/j.ultras.2006.05.025).
Abstract
Within an acoustic standing wave particles experience acoustic radiation forces, a phenomenon which is exploited in particle or cell manipulation devices. When developing such devices, one-dimensional acoustic characteristics corresponding to the transducer(s) are typically of most importance and determine the primary radiation forces acting on the particles. However, radiation forces have also been observed to act in the lateral direction, perpendicular to the primary radiation force, forming striated patterns. These lateral forces are due to lateral variations in the acoustic field influenced by the geometry and materials used in the resonator. The ability to control them would present an advantage where their effect is either detrimental or beneficial to the particle manipulation process.
The two-dimensional characteristics of an ultrasonic separator device have been modelled within a finite element analysis (FEA) package. The fluid chamber of the device, within which the standing wave is produced, has a width to height ratio of approximately 30:1 and it is across the height that a half-wavelength standing wave is produced to control particle movement. Two-dimensional modal analyses have calculated resonant frequencies which agree well with both the one-dimensional modelling of the device and experimentally measured frequencies. However, these two-dimensional analyses also reveal that these modes exhibit distinctive periodic variations in the acoustic pressure field across the width of the fluid chamber. Such variations lead to lateral radiation forces forming particle bands (striations) and are indicative of enclosure modes.
The striation spacings predicted by the FEA simulations for several modes compare well with those measured experimentally for the ultrasonic particle separator device. It is also shown that device geometry and materials control enclosure modes and therefore the strength and characteristics of lateral radiation forces, suggesting the potential use of FEA in designing for the control of enclosure modes in similar particle manipulator devices.
Text
ultrasonics_2006_2D_resonant.pdf
- Other
More information
e-pub ahead of print date: 2 June 2006
Published date: 22 December 2006
Keywords:
lateral radiation force, fea, particles
Organisations:
EEE
Identifiers
Local EPrints ID: 263269
URI: http://eprints.soton.ac.uk/id/eprint/263269
ISSN: 0041-624X
PURE UUID: 630dcffc-6476-42cc-8a67-9a4ab4c69f5b
Catalogue record
Date deposited: 22 Dec 2006
Last modified: 07 Dec 2024 02:34
Export record
Altmetrics
Contributors
Author:
R.J. Townsend
Author:
N.R. Harris
Author:
N.M. White
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics