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Abstract. We describe a system for bilateral negotiations in which artificial agents
are generated by an evolutionary algorithm (EA). The negotiations are governed by
a finite-horizon version of the alternating-offers protocol. Several issues are negoti-
ated simultaneously. We first analyse and validate the outcomes of the evolutionary
system, using the game-theoretic subgame-perfect equilibrium as a benchmark. We
then present two extensions of the negotiation model. In the first extension agents
take into account the fairness of the obtained payoff. We find that when the fair-
ness norm is consistently applied during the negotiation, agents reach symmetric
outcomes which are robust and rather insensitive to the actual fairness settings. In
the second extension we model a competitive market situation where agents have
multiple bargaining opportunities before reaching the final agreement. Symmetric
outcomes are now also obtained, even when the number of bargaining opportunities
is small. We furthermore study the influence of search or negotiation costs in this
game.

Keywords: multi-issue bargaining, evolutionary algorithms, fairness, multiple bar-
gaining opportunities, game theory.

1. Introduction

Automated negotiations have received increasing attention in the last
years, especially from the field of electronic trading [4, 14, 15, 17]. In the
near future, an increasing use of bargaining agents in electronic market
places is expected. Ideally, these agents should not only bargain over the
price of a product, but also take into account aspects like the delivery

* This paper has been presented at the Workshop on Complex Behavior in Eco-
nomics at Aix-en-Provence, France, May 4-6, 2000. This research was part of the
project “Autonomous Systems of Trade Agents in E-Commerce”, funded by the
Telematics Institute in the Netherlands.
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time, quality, payment methods, return policies, or specific product
properties. In such multi-issue negotiations, the agents should be able
to negotiate outcomes that are mutually beneficial for both parties. The
complexity of the bargaining problem increases rapidly, however, if the
number of issues becomes larger than one. This explains the need for
“intelligent” agents, which should be capable of negotiating successfully
over multiple issues at the same time.

In this paper, we consider negotiations that are governed by a finite-
stage version of the Rubinstein-Stahl multi-round bargaining game with
alternating offers [23, 24]. We investigate the computation of strate-
gies of the agents by evolutionary algorithms (EAs). EAs are powerful
search algorithms (based on Darwin’s evolution theory) which can be
used to model social learning in societies of boundedly-rational agents
[7, 19]. It is important to note that EAs make no explicit assumptions
or use of rationality. Basically, the fitness (i.e., quality) of the individual
agents is used to determine whether a strategy will be used in future
situations.

A small, but growing, body of literature already exists in this field
[15, 17, 25]. These papers demonstrate that, using an EA, artificial
agents can learn effective negotiation strategies. In [25], a system-
atic comparison between game-theoretic and evolutionary bargaining
models is also made, in case negotiations concern a single issue.

The focus of this paper lies on negotiations where multiple issues
are involved. We first analyse the results and compare these with game
theory. We study both models in which time plays no role and models
in which there is a time pressure to reach agreements early (because a
risk of breakdown in negotiations exists after each round).

We subsequently present two important extensions of this negotia-
tion model. The first extension introduces a fairness norm and is based
on the following observation. When no time pressure is present, extreme
divisions of the payoff occur in the computational experiments, due to a
powerful ‘take-it-or-leave-it’ position for one of the negotiating agents in
the last round of the negotiation. Although such extreme outcomes are
in agreement with game-theoretic results, they are usually not observed
in real-life situations, where social norms such as fairness play an im-
portant role [3, 13, 20, 27]. We therefore introduce a fairness norm and
incorporate this in the agents’ behaviour. We perform computational
experiments with various fairness settings, and show that, depending
on the actual settings, “fair” deals indeed evolve.

In the second extension, we endow agents with additional bargaining
opportunities in case of a disagreement. Agents can now choose to
refuse unacceptable take-it-or-leave-it deals and negotiate with another
opponent. This extension introduces competition among the agents
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and is probably a better model of real-life bargaining situations, where
often several negotiation partners are available (e.g. within a market
place). Because agents now no longer have to accept extreme deals, the
situation for agents in a bad bargaining position improves. We perform
various experiments with this setup, and we observe efficient and “fair”
agreements. We also study the effect of search costs for finding a new
negotiation partner.

These evolutionary models are a first attempt to study complex bar-
gaining situations which are more likely to occur in practical settings.
A rigorous game-theoretic analysis is typically much more involved or
may even be intractable under these conditions.

The remainder of this paper is organised as follows. Section 2 gives
an outline of the setup of the computer experiments. A comparison of
the computational results with game-theoretic results is presented in
Section 3. The extensions with fairness and with multiple bargaining
opportunities are the topic of Sections 4 and 5 respectively. Section 6
summarises the main results and concludes.

2. Experimental Setup

This section describes the setup of the computational system and ex-
periments. The alternating-offers negotiation protocol is described in
Section 2.1. Section 2.2 then describes the EA.

2.1. NEGOTIATION PROTOCOL AND AGENT MODEL

2.1.1. Negotiation Protocol

During the negotiation process, the agents exchange offers and counter
offers in an alternating fashion at discrete time steps (rounds). In
the following, the agent starting the negotiations is called “agent 17,
whereas his opponent is called “agent 2”.

Bargaining takes place over m issues simultaneously, where m is the
total number of issues. We assume (without loss of generality) that the
total bargaining surplus available per issue is equal to unity. We express
an offer as a vector 0, where the i-th component o' specifies the share
that agent 1 receives for issue i if the offer is accepted. Agent 2 then
receives 1 — o' for issue 4. The index ¢ ranges from 1 to m. Note that
an offer always specifies the share obtained by agent 1.

As stated above, agent 1 makes the initial offer. If agent 2 accepts
this offer, an agreement is reached and the negotiations stop. Otherwise,
play continues to the next round with a certain continuation probabil-
ity p (0 < p <1). When a negotiation is broken off prematurely, both
agents receive nothing.
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If negotiations proceed to the next round, agent 2 needs to propose a
counter offer, which agent 1 can then either accept or refuse. This pro-
cess of alternating bidding continues for a limited number of n rounds.
When this deadline is reached without an agreement, the negotiations
end in a disagreement, and both players receive nothing.

2.1.2. Agent Model

The agent model contains the negotiation strategy used by the agent
and a utility function to evaluate an opponent’s offer. In a game-
theoretic context, a strategy is a plan which specifies an action for
each history [2]. In our model, the agent’s strategy specifies the offers
0j(r) and thresholds ¢;(r) for each round r in the negotiation process
for agents j € {1,2}. The threshold determines whether an offer of the
other party is accepted or rejected: If the value of the offer (see below)
falls below the threshold the offer is refused; otherwise an agreement
is reached.! This strategy representation is depicted in Fig. 1. Notice
that in each round, the strategy of an agent specifies either an offer or
a threshold, depending on whether the agent proposes or receives an
offer in that round.

Agent 1 ‘ o1(1) ‘ t1(2) ‘ 01(3) ‘ t1(4) ‘ ‘

Agent 2 | t2(1) | 32(2) | t2(3) | 32(4) | .. |

Figure 1. The strategies for agent j € {1,2} specify a sequence of offers d;(r)
and thresholds t;(r) for rounds r € {1,2,...,n} of the negotiation.

The agents evaluate the offers of their opponents using an additive
multi-attribute utility function [15, 17]. Agent 1’s utility function is
wy - o(r) = S0 wl - oé»(r), where j = 1 if the offer is proposed by
agent 1 and j = 2 otherwise. Agent 2’s utility function is - [1— ;(r)].
Here, wj is a vector containing agent j’s weights wé- for each issue i.
The weights are normalised and larger than zero, i.e., Y i wj- =1 and

wj- > 0. Because we assume that 0 < o?(r) < 1 for all 7, the utilities
are real numbers in [0, 1].

2.2. THE EVOLUTIONARY SYSTEM

We use an EA to evolve the negotiation strategies of the agents. The
implementation is based on “evolution strategies” (ES), using a real-

! The same approach was used in [17, 25].
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encoding of the offers and thresholds [1].2 A technical description of
our implementation is given in Appendix A. An outline of the EA is
given in Fig. 2.

replace
Parental reproduce Offspring select New parental
Population 1 Population 1 Population 1
"""""" 8 S
=4 ~< -
Z! fegotiate
rrrrrrrrrrrrr :L,/
Parental reproduce Offspring select New parental
Population 2 Population 2 Population 2
R RRERE ﬁ """""""""""""""""""""""""""" g replace

Figure 2. Tteration loop of the evolutionary algorithm.

The system initially starts with two separate (and randomly ini-
tialised) “parental” populations of bargaining agents. Each agent within
a population contains a bargaining strategy, which is encoded on his
“chromosome” as a set of real values. These values specify the offers
for each round and for each issue separately, and also the thresholds
for each round (see Appendix A.1).

Agents in population 1 start the bargaining process (i.e., they are
of the “agent 1” type). The fitness of the parental agents is determined
by negotiation between the agents in the two parental populations.
Fach agent negotiates with all agents in the other population. The
utility functions are the same for agents within the same population
(i.e., the weight settings are equal). The average utility obtained in all
negotiations is an agent’s fitness value.

Subsequently, “offspring” agents are created (see Fig. 2). An off-
spring agent is generated by first (randomly, with replacement) se-
lecting an agent in the parental population, and then mutating his
chromosome to create a new offspring (see Appendix A.2). The fitness of
the new offspring is evaluated by negotiation with the parental agents.?
A social or economic interpretation of this parent-offspring interaction
is that new agents can only be evaluated by competing against existing
or “proven” strategies.

2 The widely-used genetic algorithms (GAs) are more tailored toward binary-
coded search spaces [11, 16, 9].

3 In an alternative model, not only the parental agents are used as opponents,
but also the newly-formed offspring. Similar dynamics have been observed in this
alternative model.
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In the final stage (see Fig. 2), the fittest agents from the parental
and offspring populations are selected as the new “parents” for the next
iteration (see Appendix A.3). This final step completes one iteration
(or “generation”) of the EA. All relevant settings of the evolution-
ary system are listed in Table I (further explanation is provided in
Appendix A).

Table I. Default settings of the evolutionary system.

EA Parental population size (u) 25
Parameters  Offspring population size () 25
Selection scheme (n+ A)-ES
Mutation model self-adaptive
Initial standard deviations (c;(0)) 0.1
Minimum standard deviation (e, ) 0.025
Negotiation ~Number of issues (m) 2
parameters ~ Number of rounds (n) 10

—

Weights of agents in population 1 (w1)  (0.7,0.3)T
Weights of agents in population 2 (w:) (0.3,0.7)T

3. Validation and Interpretation of the Evolutionary
Experiments

Experimental results obtained with the evolutionary system are pre-
sented in this section. A comparison with game-theoretic results is
made to validate the evolutionary approach. Section 3.1 addresses the
evolution of efficient negotiation results. Section 3.2 further analyses
the results and compares the experimental results with predictions from
game theory. In the following, we refer to the agents in the evolutionary
system as “evolutionary agents”.

3.1. EFFICIENCY

First, we investigate the experimental results w.r.t. disagreements. With-
out breakdown (p = 1), disagreements can only occur when the deadline
is reached. The experiments show that the percentage of disagreements
is then very small (around 0.1% after 1000 generations if n = 10).
With a risk of breakdown of 30% (p = 0.7), this percentage is between
1% and 10%. Timing is now important for efficiency. The evolutionary
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agents avoid disagreements by reaching agreements early: after 1000
generations, approximately 75% is reached in the first round.

Next, we study the efficiency of the agreements reached in the ex-
periments. The agreements are depicted in Fig. 3. This figure shows the
utilities for both agents of the deals reached. Also depicted in Fig. 3 is
the so-called “Pareto-efficient frontier”. An agreement is located on the
Pareto-efficient frontier when an increase of utility for one agent nec-
essarily results in a decrease of utility for the other agent. Agreements
can therefore never be located above the Pareto-efficient frontier. A
special point is the symmetric point S [at (0.7,0.7)], where both agents
obtain the maximum share of the issue they value the most, and receive
nothing of the less important issue.

1
Pareto-efficient frontier Pareto-efficient frontier
&
o o 08
£ o O«/S (0.7,0.7) «~ —+—S (0.7,0.7)
o © 2 06
o <& > < 5}
< (A o <<>> %:
o <& E 04
& o 00 & g g :;
o
02 r
<><> <><>
| | | | © O | | | |
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
utility agent 1 utility agent 1
(@) (b)

Figure 3. Agreements reached by the evolutionary agents at (a) the start of
a typical EA run and (b) after 100 generations. The negotiation settings are
p = 0.7 and n = 10.

Figure 3 shows that initially, many agreements are located far from
the Pareto-efficient frontier. After 100 generations, however, the agree-
ments are chiefly Pareto-efficient. We note that, even in the long run,
the agents keep exploring the search space, resulting in a continuing
moving “cloud” of agreements along the frontier.

Conclusion. Results in this section thus show that the evolutionary
agents reach efficient agreements, viz. on the Pareto-efficient frontier,
and that disagreements are avoided. The next section studies the actual
outcomes more closely, using results from game theory as a benchmark.

3.2. FURTHER ANALYSIS

The computational results are analyzed in more detail in this section
and compared with game-theoretic results, and in particular the sub-
game perfect equilibrium (SPE) predictions. Two strategies are in SPE
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if they constitute a Nash equilibrium in any subgame that remains
after an arbitrary sequence of offers and replies. Rubinstein and (much
earlier) Stahl applied this notion to the alternating-offers bargaining
game [23, 24]. Our experimental setup differs in two respects from their
model, however. First, the agents bargain over multiple issues instead
of a single issue. Second, the evolutionary agents are “myopic”: they do
not apply any explicit rationality principles in the negotiation process,
nor do they maintain any history. Actually, they only experience the
profit of their interactions with other agents. The SPE behaviour of
rational agents with complete information will nevertheless serve as a
useful theoretical benchmark.

We distinguish between three classes of experiments w.r.t. the break-
down probability: (1) no risk of breakdown (p = 1), (2) a low breakdown
probability (0.8 < p < 1.0) and (3) a high breakdown probability
(p < 0.8). For each of these classes we consider the role of n on the
outcomes.

We found that in our experiments, when p = 1, in the long run
almost all agreements are delayed until the last round (about 80% after
1000 generations). Furthermore, the last offering agent makes a take-it-
or-leave-it deal and demands almost the entire surplus (on each issue),
which is accepted by the opponent. This extreme division of the surplus
agrees with game-theory [8]; it is rational for the responder to accept
any positive amount in the last round. Note, however, that rational
agents are indifferent about the actual round in which the agreement
is reached. The deadline-approaching behaviour in our experiments
corresponds better to “real-world” behaviour [21], however.

The EA results and SPE outcomes for different values of n (game
length) are compared in Fig 4a. To guide the eye, the SPE outcomes
for successive values of n are connected. Notice that fitness of agents in
population 1 converges to unity if n is odd, and to to zero if n is even
(the opposite holds for the agents in population 2).

Figure 4b shows the results for p = 0.95. Note that the partition-
ing outcomes becomes less extreme with a low breakdown probability
compared to no breakdown. This holds for both SPE outcomes and
EA results, although the effect is much stronger in the evolutionary
system (see Fig. 4b). These differences with SPE are due to the myopic
properties of the agents in the EA. The evolutionary agents do not
reason backwards from the deadline (as in SPE), since most agreements
are reached in the first few rounds (if p < 1). As a result, the deadline
is not perceived accurately by the evolving agents. In fact, the game
length is strongly overestimated. Furthermore, in SPE all agreements
are reached without delay (see [25]). The EA, on the other hand, also
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Figure 4. Comparison of the long-term evolutionary results with SPE results
for (a) p =1 (time indifference) and (b) p = 0.95. The error bars indicate the
standard deviations across 25 runs.

continues to explore other strategies, which results in a remaining small
number of disagreements (see Section 3.1).

As p becomes smaller, the influence of the game length on the SPE
outcome also decreases (see [25]). Therefore, if p becomes sufficiently
small (e.g., p < 0.8), the computational results automatically show a
much better match with SPE outcomes than if p is large: the match is
almost perfect, although a small number of disagreements occur due to
a continuing exploration of new strategies.

Interestingly, in the limit of n — oo, game theory predicts that the
agents in population 1 have a fitness of ~ 0.71 when p = 0.95, whereas
the agents in population 2 have a fitness of ~ 0.68. This corresponds
to a point in the vicinity of the symmetric point S, indicated in Fig. 3.
The results reported in Fig. 4b show that the behaviour of the agents
corresponds much better to an infinite-horizon model than the finite-
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horizon model for n > 5 (see Fig. 4b). The same behaviour was observed
for other EA settings (e.g., larger population size) and other negotiation
situations (e.g., other weight settings).

We also studied the performance of the EA in case the number of
issues m is increased to 8. We observe that, for p = 1, the long-term
outcomes of the EA are unstable and do not converge to the extreme
partitioning. When we increase the population size for the EA from
25 to 100 agents,® the extreme partitioning reappears. Thus, for more
complicated bargaining problems, the EA parameters must be adjusted.
For m = 8 and p < 1, similar observations are found as reported in
Section 3.2 (like Fig. 4) when using the adjusted population size.

Conclusion. Game-theoretic (SPE) results appear to be a very useful
benchmark to investigate the results of the evolutionary simulations.
In computational simulations without a risk of breakdown (case 1),
agreements are predominantly reached in the final round. This deadline
effect is consistent with human behaviour [21]. Furthermore, the last
agent in turn successfully exploits his advantage and claims a take-it-
or-leave-it deal (as in SPE). In case of a small risk of breakdown (case
2), the deadline is not accurately perceived by the evolving agents, and
the last-mover advantage is smaller than predicted by game theory. In
fact, if the finite game becomes long enough, results match the SPE
outcomes for the infinite-horizon game. With a high risk of breakdown
(case 3), however, this deviation from SPE becomes negligible. Finally,
it appears to be important to adjust the EA parameter settings (e.g.,
by increasing population sizes) for more complex bargaining problems.

4. Social Extensions: Fairness

We extend the agent model within our evolutionary system in this
section to study the influence of “fairness”, an important aspect of
real-life bargaining situations. The motivation and description of this
fairness model is given in Section 4.1. In the fairness model studied
in Section 4.2 the evolving agents only take the fairness of a proposed
deal into account when the deadline is reached. Section 4.3 presents
results obtained when agents perform a “fairness check” in each round.
Section 4.4 further analyses the model in Section 4.3 for a simple case.

4 The 8-dimensional weight vector for agents in popula-
tion 1 is set to %(0.7,0.3,0.5,0.2,0.3,0.4,0.57 1.0)7 and equal to
$(0.3,0.7,0.5, 1.0,0.5,0.5,0.2,0.2)T for agents in population 2. These settings are
such that they contain both “competitive” issues (e.g., issue 3) and issues where
compromises can be made (e.g., issue 8).

5 To avoid a (quadratic) increase in the number of fitness evaluations, each agent
negotiates with 25 (random) opponents.
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4.1. MOTIVATION AND DESCRIPTION: THE FAIRNESS MODEL

Game-theoretic models for rational agents often predict the occurrence
of very asymmetric outcomes for the two parties. We showed in Sec-
tion 3.2 (see Fig. 4a) that such “unfair” behaviour can also emerge in
a system of evolving agents, in particular when p = 1 or n is small
(see Fig. 4). Large discrepancies between human behaviour in labo-
ratory experiments and game-theoretic outcomes are found, however,
both for ultimatum (1 round) and multi-stage (several rounds) games
[3, 6, 13, 20, 22, 27]. A possible explanation for the occurrence of these
discrepancies between theory and practice is the strong influence of so-
cial or cultural norms on the individual decision-making process. In [20,
p. 264] and [10], for example, it is argued that responders tend to reject
unfair or “insultingly low” proposals. Therefore, an anticipating agent
should lower his demand in order to avoid a disagreement, this way
taking into account the expectations about his opponent’s behaviour.

In [13] a model is proposed in line with this hypothesis. In their
model, the probability of acceptance of an offer increases with the
amount offered to the responder. Such a model, making more realistic
assumptions about the agents’ behaviour, appears to organise the data
from experiments with humans better than the SPE model [13].

Following [13], we introduce a fairness model in our evolutionary
system. The agent model (see Section 2.1.2) is extended as follows. If
the value of an offer exceeds the responder’s threshold, the agent has
the opportunity to re-evaluate his decision. The probability that he
finally accepts the agreement is then a function of the acquired utility.
This so-called “fairness function” is assumed to be piece-wise linear
(with up to three segments).® The instances that we use are shown
in Fig. 5.7 We now further distinguish between two different extended
agent models. In the first model, the fairness function is used at the
deadline only. This situation is studied in Section 4.2. In the second
model, the fairness function is effective at any moment. This case is
studied in Section 4.3. The first case is motivated by the deadline-
effect observed in the experiments without a risk of breakdown (see
Section 3.2), where most agreements are reached in the last round.
The second case, however, is more likely to be an appropriate model of
human behaviour.

6 Piece-wise linear functions nicely fit the experimental data reported in [13, 22].

7 We want to remark here that, although the fairness function is the same for all
agents, the actual fairness function can depend on cultural norms in the real world
[13].
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Figure 5. Fairness functions used by the agents in the EA.

4.2. FAIRNESS CHECK AT THE DEADLINE

In this section, fairness is applied in the last round. We study the case
in which p = 1 and n = 3. Figure 6 shows that if the evolving agents
in population 2 use fairness function 1 (i.e., a “weak” fairness model),
the partitioning is much less extreme than in case of no fairness check
(function 0). However, the agents in population 1 still reach a relatively
high fitness (utility) level. Fair agreements evolve, on the other hand,
when the agents in population 2 use function 2 (a case with average
fairness). In this case the mean long-term fitness is approximately equal
to 0.7 for all agents (most agreements are thus located close to the
symmetric point S in Fig. 3).

1

0.8 -

3(pop- 2)

o 3 (pop- 1 4 (POPM
A 1(pop.2) |

0.4 AL AN E
| \“AW- 1 M

02

mean fitness (over 25 runs)

0 (pop. 2)

0 1 1 1 1 1
0 50 100 150 200 250

generation

300
Figure 6. Mean fitness when fairness functions 0-5 are applied at the deadline.

When stronger fairness functions (e.g., functions 3 through 5) are
used by the agents the roles reverse, and the agents in population
2 reach a higher fitness level than their opponents in population 1
(see Fig. 6). Because of the strong fairness check, many last-round
agreements are rejected in this case and agents in population 2 can
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demand a larger share of the surplus in the round before last. As a
result, the deadline is effectively reached one round earlier. This effect
indeed occurs in our experiments.

Concluston. Our results show that fair outcomes can evolve in an
evolutionary system with a fairness model in the last round. However,
there is a rather large sensitivity to the actual fairness function that
is used by the evolved agents; an “average” fairness function yields
symmetric results, whereas more extreme fairness functions yield more
asymmetric outcomes.

4.3. FAIRNESS CHECK IN EAcH ROUND

This section studies the second fairness model, in which the responding
agent re-evaluates all potential agreements. The EA settings are the
same as in the previous section.

The results in Fig. 7 for fairness functions 1 are similar to the pre-
vious case (see Fig. 6). However, when fairness functions 2 through 5
are used, the agents in both populations reach almost identical fitness
levels. Most agreements now occur in the vicinity of point S in Fig. 3.
Note that the agents have no explicit knowledge about the location of
this point, and that this knowledge is also not incorporated within the
fairness functions. We also observe that agreements are now reached in
different rounds, whereas in earlier experiments without fairness most
agreements occur at the very end of the game.

Fig. 7 thus shows that the agents’ long-term behaviour is much less
sensitive to the shape of the fairness function: the various “stronger”
fairness functions all yield similar results. Figure 7 however indicates
that when the agents use fairness function 5, the mean fitness of both
agents decreases. This is due to the increasing number of disagreements
which are a result of the strong fairness check.

We furthermore studied a 2-issue negotiation problem with an asym-
metric Pareto-efficient frontier, as shown in Fig. 8. In this case, agent 1
values both issues equally important, whereas agent 2 has different
valuations for each issue (his weights are 0.2 and 0.8 for issues 1 and
2 respectively). If each agent obtains the whole surplus on his most
important issue, agent 1 obtains 0.5, whereas agent 2 gets 0.8. This
outcome corresponds to the Nash bargaining solution (NBS) [2, Ch. 5].
The symmetric point (S), on the other hand, is located at (55, %).®

Both solutions can be considered to be fair outcomes in different
ways: the first solution maximises the product of the agents’ utili-
ties and also splits the surplus equally, whereas in the second case
equal utility levels are obtained for both agents (see [18, Ch. 16] for

8 This outcome corresponds to the Kalai-Smorodinsky solution [12].
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Figure 7. Mean fitness when fairness functions 0-5 are applied each round.
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Figure 8. Resulting agreements in a single generation when the Pareto-efficient
frontier is asymmetric and fairness function 4 is used.

a related discussion). In the computational results, we observe that,
when fairness functions 2-5 are applied, the agreements are divided
and are usually concentrated in two separate clusters (“clouds”), see
Fig. 8. The issue of the choice of and distribution over multiple “fair”
agreement points seems an important issue for further research, both
in a computational setting as well as in experimental economics.

We also experimented with different weight vectors and with m >
2. A general finding is that extreme outcomes do not occur in the
evolutionary process if the agents apply a fairness check.

Conclusion. We have shown that fair agreements can evolve if fair-
ness is evaluated each round, even with strong fairness norms: the
fairness of the deals is much more stable w.r.t. the actual choice of the
fairness function. Of course, the number of actual agreements drops
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Table II. Comparison of the agents’ payoffs
in the EA with SPE results.

’ ’ Payoff agent 1 ‘ Payoff agent 2 ’

SPE
EA

0.419
0.391 (+0.022)

0.391
0.412 (+0.014)

if a very strong fairness function is used, resulting in a lower fitness
for both parties. In case of two-issue negotiations with a symmetric
Pareto-efficient frontier, most agreements are reached in the vicinity of
the symmetric point. In the asymmetric case, fair solutions can also
be obtained. The solutions are then distributed over various possible
outcomes, which can all be considered fair in different ways.

In the next section, we investigate the evolving strategies of the
agents in more detail, but for single-issue negotiations.

4.4. VALIDATION AND STRATEGY ANALYSIS FOR A SIMPLE CASE

Although our incorporation of fairness aspects makes a game-theoretic
analysis much more complicated, SPE strategies can again be derived
for a very simple version: the game with only a single issue (m = 1) and
fairness function 4. These settings were chosen because of mathematical
feasibility. The general equations are presented in Appendix B.

Table IT shows both the SPE results and the payoffs obtained by
the evolving agents (in the long run) in the a with m = 1, n = 3,
p = 1, and with the (rather strong) fairness function 4. Note that since
m = 1, an agent’s payoff equals the share obtained for issue 1. Results
for the EA are obtained after 300 generations (averaged over 25 runs).
Notice that the SPE payoffs are in good agreement with the outcome
of the evolutionary experiments. However, in SPE agent 1’s payoff is
slightly larger than agent 2’s payoff. In the EA this is reversed, although
Table II shows that differences between theory and experiment are very
small. We will further analyse the evolving strategies below.

Table IIT compares the offers of the evolving agents (for each round)
with SPE results, showing a good match. From Table III, it can be
derived that agreements are reached in all rounds, with some emphasis
on the first round.’

Table IIT also shows the acceptance thresholds (the thresholds are
calculated based on the payoff which an agent expects to receive if he

9 Acceptance rates are approximately 39%, 22%, 20% in SPE in rounds 1-3, and
36 £ 4%, 25 + 3%, 20 £ 2% for the EA in rounds 1-3.
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Table III. Comparison of the evolved strategies with
game-theoretic (SPE) results for each round.

Round | Offer Offer Threshold | Threshold
(SPE) (EA) (SPE) (EA)

1 0.609 | 0.58 +0.06 0.391 0.23 +£0.21

2 0.375 | 0.39+0.07 0.250 0.14 £ 0.13

0.500 | 0.48£0.09 0.000 0.13£0.13

rejects the current offer, see Appendix B). Because the thresholds in
rounds 2 and 3 are much lower than the obtained utility, the thresholds
in these rounds are not really relevant in SPE. This explains the large
variance of the thresholds in the EA and why these thresholds can de-
viate from SPE predictions in these rounds. In round 1, the threshold is
important in SPE and influences the offer made. The experiments show
a much lower average threshold value than the SPE (see Table III).
Nevertheless, the thresholds influences the offers made in the EA due
to a high variance of the threshold values. We analyse this more closely.

0.8 1

mean threshold population 2 (round no. 1)

0 200 400 600 800 1000

generation

Figure 9. Average threshold values of the agent strategies in the EA in the first
round.

Figure 9 shows the evolution of the threshold value for the first round
for a single experiment. The indicate the variance in the population.
Notice that this variance and the volatility of the mean threshold is

rather high. This forces the offers in population 1 to be similar as in
SPE.
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In order to obtain an even better match with SPE results, we re-
duced the occurrence of frequent peaks by using a decreasing mutation
step-size in the EA (instead of self-adaptive mutation step-sizes, see
Appendix A.2). At the beginning of each EA run, o; is set to 0.1 for
all i (as before, see Table I) and then exponentially decrease until
o; = 0.01 after 1000 generations. This procedure indeed reduces the
fluctuations in the threshold values and the offers in the long run.
Results for experiments with this EA setting appear to be in excellent
agreement with SPE results, see Table IV. We found no significant effect
of the new mutation scheme on the evolutionary outcomes for m = 2,
however. We suspect that this is due to the integrative nature of the
negotiation problem, where the results obtained are already beneficial
for both parties.

Table IV. Comparison of the evolutionary agents’ payoffs
after 1000 generations (using exponentially decreasing mu-
tation step-sizes) with SPE results

‘ | Payoff agent 1 | Payoff agent 2 |

SPE
EA with decreasing o;

0.419
0.416 £0.012

0.391
0.395 £ 0.009

Conclusion. This relatively simple bargaining situation shows a good
match between theoretical (SPE) and experimental results. Further-
more, when fairness norms are applied, the outcome of the negotiation
process comes to depend on the actual round in which an agreement is
finally reached, while thresholds play an important role in some of the
rounds. We also showed that EA parameters can be fine-tuned for a
more stable situation if needed. This rendered an excellent match with
the SPE for m = 1.

5. Social Extensions: Multiple Bargaining Opportunities

In the negotiation game discussed so far, both parties receive nothing
in case of a disagreement. This section, on the other hand, considers a
model of an agent society in which agents have a number of additional
bargaining opportunities if negotiations should fail. This game is a
step further towards reality, where (for instance) consumers can go
to various brokers until a satisfactory deal is reached (e.g. when buying
a house, car, etc.). This model introduces the important concept of
competition among agents. The payoff received by an agent now results
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from the bargaining behaviour of all competitors. This makes an an-
alytical treatment extremely difficult compared to the easier case of
one-on-one negotiations. Below, we describe the game in more detail
and discuss the results of the simulations.

5.1. DESCRIPTION OF THE GAME

As before, we model a society with two groups of agents (e.g. buyers
and sellers), which correspond to the two populations in our EA. In the
extended game, every agent within either population can subsequently
bargain with up to k& opponents to reach a deal. A simple bargaining
game is denoted as an “encounter” in the following and we use “m-
game” to denote a game with multiple bargaining opportunities. If an
encounter does not result in an agreement, an agent is again matched
with a randomly selected opponent for his next encounter (provided
that the agent still has another bargaining opportunity). Thus, an agent
can now refuse offers which are unsatisfactory and wait for a better
deal in another encounter, which is usually played against a different
opponent.

We also introduce search costs in our model. The search costs rep-
resent the amount of money, time, or effort that an agent may incur
in finding another negotiation partner [5, Ch.7]. These costs, however,
can also represent the costs involved in the negotiation process itself.
Search costs are fixed and associated with each new encounter (only
the first encounter is “free”).

5.2. IMPLEMENTATION

The m-game is implemented as follows. First, a pair of agents is ran-
domly selected from the populations and negotiate using the alternating-
offers protocol as before, where agent 1 makes the first offer and agent 2
either rejects or accepts. We take n = 1, i.e., just one round of bargain-
ing. This is justified based on the results in Section 3.2, where it was
observed that each agreement was completely determined by the last
round only. If agent 2 refuses the deal, the bargaining ends, and the
agents can participate in another encounter, provided that they have
not exceeded their maximum number of bargaining opportunities. An
agent incurs some fixed costs (which could be zero) for locating another
negotiation partner. If an agent has no more bargaining opportunities
or if an agreement is reached, this concludes an agent’s m-game and he
is disactivated.

Next, another encounter is arranged by selecting once again a (ran-
dom) pair of active agents. The process is then repeated, until one
of the populations has no more active agents. Note that because the
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agents are randomly matched, two encountering agents may differ in
their remaining number of bargaining opportunities. Therefore, the
bargaining position of the opponent is not known.

To reduce stochastic effects and to remove initiatory and end effects
(explained below), each agent actually plays a number of consecutive
m-games in the simulation: If an m-game is concluded, the agent starts
with a new m-game. A distinct payoff results from each m-game. The
maximum number of m-games that an agent can play is fixed to 10.

The fitness of an agent is the average payoff obtained in his m-games.
However, since initially all agents of both populations start with their
first encounters, in the first rounds of the encounters the opponent’s
bargaining position is not completely random (i.e., there is an initiatory
effect). Furthermore, we note that when one of the populations has no
more active agents, the other population may still be active (i.e., there
is also an end effect). To suppress these undesired effects, we do not
include an agent’s payoff received in the first m-game and the last four
m-games when calculating his fitness value. This way, we model an
ongoing bargaining society.

5.3. AGENT MODEL

The strategy representation and the utility function of Section 2.1.2 are
somewhat altered in the m-game. Agent 1’s negotiation strategy now
consists of k offers, one for each encounter, and agent 2 has k thresholds
(where k is the maximum number of encounters). The utility functions
are changed to w0 - dj(e) — a1 - (e — 1) and wh - [1 — 6;(r)] — o1 - (e — 1)
for agent 1 and 2 respectively, where o; is agent j’s search cost and
e € {1,2,...,k} counts the opponents. Notice that an agent’s payoff
can also become negative.

Table V. Settings for the experiments with multiple
bargaining opportunities.

Maximum number of encounters per m-game (k) 1-20
Maximum number of m-games 10

M-games used for fitness evaluation 2-6

5.4. RESULTS WITHOUT SEARCH COSTS

The settings used for the experiments without search costs are shown
in Table V. The evolutionary settings remain as before (see Table I).
The fitness obtained for negotiations over two issues (m = 2) are shown
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in Fig. 10. The agents reach agreements near the symmetric point (see
Fig. 3) when k = 5, in contrast to the take-it-or-leave-it deals observed
when k = 1. The last-mover advantage appears to diminish rapidly if
agents are allowed additional bargaining opportunities, even for k = 2
(see Fig. 10). In fact, three encounters are already sufficient to obtain
almost symmetric fitness values. Furthermore, this symmetry remains
for larger values of k (experiments have been performed with k up to
20). These outcomes are also robust for various other EA settings.

1
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e R P S e FEE W S 2
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> 08 ’ R
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o \
0 \
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k=1 (pop. 1) +—+— k=2 (pop. 1) +—=*— k=5 (pop. 1) —=—
k=1 (pop. 2) +--x-- k=2 (pop. 2) +—=-— k=5 (pop. 2) ——

Figure 10. Evolving fitness value for k=1, k =2 and k£ = 5.

We also performed experiments using the asymmetric Pareto-efficient
frontier shown in Fig. 8. Results in generation 500 of a typical run are
shown in Fig. 11. Recall from Section 4.3 that the bargaining game has
two fitness outcomes which are specific candidates for a “fair” outcome:
the symmetric point and the Nash bargaining solution. Figure 11 shows
that most agreements in the simulation with multiple bargaining op-
portunities are located in between both bargaining solutions, and that
thus fair deals emerge.

Conclusion. We show that competition among agents induced by
multiple bargaining opportunities results in “fair” agreements. These
results are obtained without any additional constraints on the agent
model.

5.5. INFLUENCE OF SEARCH COSTS

We now consider the case where both agents have symmetric (i.e.,
equal) positive search costs. Clearly, if search costs are excessive, most
agreements should be reached at the first encounter, and, effectively
only a single bargaining opportunity remains. We then expect the
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Figure 11. Resulting agreements (after 500 generations) when the
Pareto-efficient frontier is asymmetric and the agents have 5 bargaining
opportunities.

proposing agent to be able to make an extreme take-it-or-leave-it deal
as before. These results are indeed found in the simulation: if the search
costs are greater than unity, agent 1 will receive almost the whole
surplus.

Similar results, however, are also obtained for much smaller search
costs, see Fig. 12. This figure shows the fitnesses after 1000 generations
of both agent populations for experiments with k = 2,5 and different
(but symmetric) search costs. Even when search costs are relatively
small, the agents are stimulated to reach agreements early. Notice that,
even if search costs are as low as 0.05, the utility of agent 2 decreases
from ~ 0.68 (without search costs) to ~ 0.15 when k = 5. This decrease
in fitness of & 0.53 is much larger than the possible total search costs
(0.2 in case of 5 encounters). Thus, the search costs have a “leverage”
effect on the outcome of the bargaining process.

This leverage effect can be explained as follows. As the costs increase,
agents in population 2 concede a part of their bargaining surplus in the
first encounter to reach an earlier agreement. As a result, the search
costs relative to the obtained bargaining surplus increase for the agents
in population 2 (and decrease for the agents in population 1). This
stimulates the agents in population 2 to reach agreements even earlier
on average and concede even more. The opposite holds for agents in
population 1. Thus, the leverage effect occurs because the costs are
fixed and independent of the obtained bargaining surplus. In fact, the
leverage effect disappears if a discount factor (instead of a fixed cost
per encounter) is used.
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Concluston. Without search costs or with very small search costs,
fair deals occur. If agents incur more substantial search costs, however,
a leverage effect may result in extreme deals as before.
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Figure 12. Long-term EA results for varying (symmetric) search costs for k = 2 and
k=5.

6. Conclusions

We have investigated a system for negotiations, in which agents learn
effective negotiation strategies using evolutionary algorithms (EAs).
Negotiations are governed by a finite-horizon version of the alternating-
offers game. Several issues are negotiated simultaneously. Both negotia-
tions with and without a risk of breakdown have been studied. Our ap-
proach facilitates the study of cases for which a rigorous mathematical
approach is unwieldy or even intractable. We presented computational
results for several difficult bargaining problems in this paper.

We first validated the long-term evolutionary behaviour using the
game-theoretic concept of subgame-perfect equilibrium (SPE). When
no risk of breakdown exists, the last agent in turn proposes a take-it-or-
leave-it deal in the last round and demands most of the surplus for each
issue. This extreme division is consistent with SPE predictions. When
a risk of breakdown exists, most agreements in the EA are reached in
the first round. If the finite game becomes long enough, the deadline
is therefore no longer perceived by the evolutionary agents and results
actually match SPE predictions for the infinite-horizon game.

We also modelled and studied two important aspects of real-life
negotiations: (1) the concept of “fairness” and (2) competition by al-
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lowing for multiple bargaining opportunities. In the first extension,
a responding agent carries out a fairness check before an agreement
is definitely accepted. This fairness check was modelled in two ways:
a responding agent considers fairness only at the deadline or all the
time, for any potential agreement. In both cases, fair outcomes can be
obtained but the outcomes in the second case are much less sensitive
to the actual choice of the fairness function. In case of an asymmetric
bargaining situation (where the players have asymmetric preferences),
multiple outcomes then exist which can be considered “fair” in different
ways. We also found a good match between the EA results and game-
theoretic SPE predictions for a simple bargaining game (concerning a
single issue).

In the second extension, each agent is allowed to subsequently ne-
gotiation with a number of opponents and therefore has several oppor-
tunities to reach an agreement. It appears that agents now no longer
propose a take-it-or-leave-it deal and fair agreements spontaneously
emerge in the evolutionary system. This effect is reduced when agents
incur some more substantial search costs, and results then again show
an unequal partitioning of the bargaining surplus.

We are currently researching a more complex negotiation strategy
representation using finite state machines [26]. A finite state machine is
more general and enables agents to react to the opponent’s behaviour.
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Appendix

APPENDIX

A. Technical Description of the Evolutionary Algorithm

A.1. GENETIC REPRESENTATION OF THE STRATEGIES

The chromosome specifies the strategy which an agent uses in the
bargaining game. A chromosome consists of a sequence of real values
in the unit interval for the offers and thresholds (one offer or threshold
for each negotiation round). We use z; to denote the (real) value at
location ¢ of the chromosome. The agents’ strategies are initialised at
the beginning of each EA run by drawing random numbers in the unit
interval (from a flat distribution).

A.2. MUTATION AND RECOMBINATION

Mutation and recombination are the most commonly used EA opera-
tors for reproduction. Recombination exchanges parts of the parental
chromosomes, whereas mutation produces random changes in a chro-
mosome. Earlier experiments [25] showed little effect on the results
when a recombination operator was applied. We therefore focus on
mutation-based models.

The mutation operator changes the chromosome of an agent as fol-
lows. Each real value z; is mutated by adding a zero-mean Gaussian
variable with a standard deviation o; [1, 25]:

z; = x; + oiN;(0,1). (1)

All resulting values larger than unity (or smaller than zero) are set to
unity (respectively zero). In our simulations, we use an elegant mutation
model with self-adaptive control of the standard deviations o; [1, pp.
71-73][25]. This model allows the evolution of both the strategy and the
corresponding standard deviations at the same time. More formally,
an agent consists of strategy variables [z, ..., z;—1] and ES-parameters
[00, ..., 07—1] in our model, where [ is the length of the chromosome.

The mutation operator first updates an agent’s ES-parameters o; in
the following way:

o; = oexp[T’ N(0,1) + 7N;(0,1)], (2)

where 7/ and 7 are the so-called learning rates [1, p. 72|, and N(0,1)
denotes a normally distributed random variable having expectation
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zero and standard deviation one. The index ¢ in N; indicates that the
variable is sampled anew for each value of ¢. We use commonly recom-
mended settings for these parameters.'? After the strategy parameters
have been modified, the strategy variables are mutated as indicated in
Eq. 1. The initial standard deviations o; in the EA are set to a value
of 0.1. The particular initial value chosen for ¢; is typically not crucial,
because the self-adaptation process rapidly scales ¢; into the proper
range. To prevent complete convergence of the population, we force all
standard deviations to remain larger than a small value ¢, = 0.025 [1,
pp. 72-73].

A.3. SELECTION MODEL

Selection is performed using the (p 4+ \)-ES selection scheme [1], where
1 is the number of parents and A is the number of generated offspring
(u=A=25, see Table I). The p survivors with the highest fitness are
selected (deterministically) from the union of parental and offspring
agents.

B. Game-Theoretic Analysis of Multi-Issue Negotiations

Subgame perfect equilibrium (SPE) strategies for multiple-stage games
with complete information can be derived using a backward induction
approach. The fairness models evaluated in Section 4.2 (i.e., with a
fairness check at the deadline only) and in Section 4.3 (i.e., with a
fairness check in each round) are analysed in this appendix. As in [8,
25], we apply backward induction to deduce the SPE partitioning. The
fairness function is now formally denoted as g,(u). This (real-valued)
function returns the probability of acceptance of a proposal in round r
in case the responding agent’s utility is equal to u. If a fairness check is
performed only in the last round, g,(u) = 1 for all » < n (where n is the
number of rounds). In case the same fairness check is performed each
round, gr(u) is independent of . We assume that the fairness function
is a monotonic non-decreasing function of u and that g,(u = 1) = 1.
Let agent j be the agent proposing a deal at round r and agent —j
the responder. We then abbreviate g.[u_;(0;(r))] (the probability of
acceptance of agent j’s offer ¢ in round ) as p?°(d).

If n is even, agent 2 will propose an offer in the last round (at r = n).
Agent 2 will then propose an offer d5(r = n) which, in SPE, maximises
his payoff, i.e., his expected utility. The payoff w9 received by Agent 2

19 Namely, 7/ = (v2)7* and 7 = (v/2vD)™* [1, p. 72], where [ is the length of
the chromosome.
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if his offer is accepted equals p"ug[da(r = n)], where ug is agent 2’s
utility function (see Section 2.1.2). The acceptance probability is equal

to ptloa(r = n)]. Agent 2’s payoff in round r = n is therefore:
mo(r =n) = _max p"us[0z(r = n)|p;“[oa(r = n)l, (3)
O2(r=n)eP

where P C [0, 1]™ is the set containing all Pareto-efficient offers. Anal-
ogously, the payoff m; for agent 1 in round r = n is equal to:

m(r = n) = p"u[02(r = n)]p;~[02(r = n)], (4)

where u7 is agent 1’s utility function.

It is again straightforward to show that it is optimal to propose
a Pareto-efficient deal. Assume for instance, that a Pareto-inefficient
offer is made. The proposer of this offer can then improve his payoff
by selecting an offer on the Pareto-frontier which yields his opponent
the same payoff. Because the probability of acceptance only depends
on the responder’s utility of this offer, this will not affect the fairness
evaluation.

We now analyse the previous round (r = n — 1). In SPE, at r =
n — 1 agent 2 only accepts a deal which is at least equal to the payoff
mo(r = n) that he receives in the next round (in SPE). Therefore,
mo(r = n —1) > me(r = n) in SPE. Effectively, mo(r = n) acts as a
threshold used by agent 2 to determine the minimal acceptable offer
at r = n — 1. Some elementary manipulations then show that in SPE
agent 1 should make an offer 0 (r = n — 1) such that

P lugloy(r =n —1)] > ma(r = n), (5)
otherwise, agent 2 rejects the proposal at = n — 1 to earn ma(r = n)
in the last round. We now define R C [0, 1]™ to be the set of offers for
which Eq. 5 is not violated. In SPE, agent 1’s payoff in round r = n—1
then equals

m(r=n—1) = al(rzg&ffepmp”*lm [01(r = n — D)]pic (31 (r = n — 1)]
H1 = pp5[o1(r =n—1)]}mi(r =n). (6)

In a similar fashion, we can calculate agent 2’s payoff at r =n — 1 in

SPE:

mo(r=n—1) = p" luz(di(r = n - 1)|pi[61(r = n - 1)]
+{1 — p2 [01(r =n —1)]}ma(r = n). (7)

For r = n — 2 expressions very similar to Eqgs. 6 and 7 can be derived
(but the roles of the two agents switch). This procedure is then repeated
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until the beginning of the game is reached (at » = 1). The same line of
reasoning holds if the number of rounds is odd (simply switch the roles
of agent 1 and agent 2).

In the basic model without fairness all agreements occur in the first
round in SPE (for p < 1). When the agents apply a fairness check in
each round, however, even in SPE a significant number of agreements
occurs after the first round. In this case, the strategy followed in all
rounds comes to play a role in determining the outcome of the game.

We also remark that, although a responder’s fairness considerations
determines for a large part the offers made by a proposing agent, this
does not make the responder’s thresholds superfluous in SPE. Recall
that the role of the threshold is reflected in Eq. 5.
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