Reducing the Energy Consumption in Fault-tolerant Distributed Embedded
Systemswith Time-Constraint *

Yuan Cai',

Sudhakar M. Reddy’,

Bashir M. Al-Hashimi?

! Department of Electrical and Computer Engineering, University of lowa
E-mail: {yucai, reddy } @engineering.uiowa.edu
2School of Electronics and Computer Science, University of Southampton
Email: bmah@ecs.soton.ac.uk

Abstract

In this paper we address the problem of reducing the energy
consumption in distributed embedded systems associated with
time-constraints and equipped with fault-tolerant techniques.
A greedy heuristic is presented to reduce the energy during
task mapping and fault tolerance policy assignment. Fault tol-
erance is achieved through task re-execution and replication.
The proposed approach can obtain much lower energy con-
sumption compared to the solution without considering energy
while tolerating the same number of faults and satisfying the
time-constraints. The effectiveness of the proposed approach
is evaluated by using extensive experiments.

1 Introduction

Many embedded systems are required to have continu-
ous reliability in addition to high performance and low cost.
Examples include telephone systems and industrial control
equipments, where the failure of systems will cause huge
losses [1]. The reliability of embedded systems is affected by
different kinds of faults, including transient, permanent and
intermittent faults. Among these faults, the transient fault is
much more common than the other two types for a system that
was fault-free at deployment. Using redundant hardware has
been a commonly used technique to tolerate permanent faults,
as well as transient faults [2, 3, 4]. However, these approaches
incur large hardware overhead. Since a transient fault has the
feature that it occurs once and then disappears, running the
task again, i.e., re-executing the task can achieve fault toler-
ance without extra hardware. In distributed systems, replicat-
ing a task on two or more processors is also an alternative to
avoid using redundant hardware in processors.

An adaptive checkpoint insertion approach is proposed in
[5] to avoid re-executing whole task. Instead, only the portion
between two checkpoints has to be re-executed. This reduces
the overhead of re-execution, however, the checkpoints them-
selves will involve overheads. Xie. et al [6], [7] insert task
replicas into the idle time slots after tasks have been sched-
uled. Hence the extent of fault tolerance actually depends
on the amount of idle time in the task schedule. [8] reserves
re-execution slack during task scheduling for tasks to tolerate
transient faults. When a fault is found during the execution of
a task, the task will be re-executed in the reserved slack period.

*Thiswork is supported in part by the EPSRC, U. K., under grant
GR/S95770

It is assumed in [8] that each processor will have at most one
fault during one operation of the application. Hence several
tasks which are executed consecutively on the same processor
can share the reserved slack because if one task has a fault,
other tasks will not have any fault. 1zosimov et al.[9] find that
combining task re-execution and task replication can tolerate
the same number of faults while producing shorter schedule
length than pure re-execution or pure replication. However, to
assign a task the re-execution policy or the replication policy
should be decided carefully.

The above works on fault tolerance neglect another impor-
tant issue in the embedded system design: the energy con-
sumption. In fact, the reliability and the energy consumption
of the system are closely related. High power consumption
(energy consumption per unit time) would cause high heat dis-
sipation in the system, which will in turn reduce the reliabil-
ity of the system. Energy reduction techniques used without
evaluating their effect on reliability could decrease the reliabil-
ity. Recently, researchers have begun to consider the problems
of energy reduction and fault tolerance together in embedded
system design. Zhang et al. introduce dynamic voltage scaling
(DVS) into the embedded systems equipped with checkpoints
[5, 10, 11]. In these works, after the checkpoints are inserted
into tasks, if there is still slack left in the schedule, DVS will
be applied to reduce energy consumption by utilizing the avail-
able offline slack. Han and Li [12] propose a similar approach
to adjust the voltage by using the online slack, but the check-
points are still determined in the offline phase. Zhu et al. [13]
observe that DVS itself will reduce the reliability of the system
and study the problem of obtaining the best tradeoff between
the energy saving and reliability. Ejlali et al. [14] combine
time and information redundancy to tolerate transient faults in
DVS-enabled systems such that more slack can be used for
DVS. Chen et al. [15] use idle time in the schedule to either
duplicate tasks or put the processor into a low power mode.
The design purpose is to minimize the product of energy, de-
lay and the inverse of the reliability and assume the system has
no time-constraint.

The above energy reduction approaches are applied after
the task mapping and after the fault tolerance design has been
done and assume the processors have either DVS ability or a
low power mode. However, it is well known that task mapping
heavily affects the final energy consumption [16] and fault tol-
erance by using replication will also cause large energy over-
head. Hence, we should take the energy consumption into con-

‘ Po ‘ P1 ‘ P2
< Bus

CC: communication controller

>

Yo

@ (b)

Figure 1. Architecture and application model

sideration even when there is no DVS ability and low power
mode in the processor.In this paper, we address the problem of
energy reduction in fault-tolerant distributed embedded sys-
tems during task mapping and fault tolerance policy assign-
ment without sacrificing the reliability level (in terms of the
number of faults to be tolerated) and the time constraints on
the task execution. A greedy heuristic is proposed to effec-
tively solve this problem.

In the remainder of the paper, we introduce the system
model and fault tolerance techniques in Section 2. After a mo-
tivational example in Section 3, the problem investigated is
formulated in Section 4. The proposed algorithm is presented
in Section 5 and experimental results are given in Section 6.
Conclusions are included in Section 7.

2 Preliminaries
2.1 Architectureand application models

The embedded system considered consists of a set of het-
erogeneous processors P and a bus connects every processor
P; € P together. Figure 1 (a) gives an illustration of the sys-
tem architecture where three processors share the bus. Be-
tween a processor and the bus, there is a communication con-
troller which implements the protocol services. In this paper,
we consider the time-triggered protocol (TTP) [3] which al-
lows each processor to transmit during a predetermined time
interval. Details of the implementation of TTP can be found
in [3].

The application to be realized on the embedded system can
be modeled as a set of directed acyclic graphs G(7, C) which
is usually called task graph [16]. Each node 7; € T in the task
graph represents a computational task and an edge ;; € C be-
tween tasks 7; and 7; denotes the data communication between
two tasks. A task can start its execution only after all its inputs
have arrived from the bus and it sends out the outputs after it
completes the execution. A task graph with four tasks and four
edges is illustrated in Figure 1 (b). If two tasks execute on the
same processor, then the communication time between them
can be regarded as quite small and is neglected. We assume
that every task can be executed by any processor in the system.
The worst case execution time Cf_jk of task 7;, when executed
on processor Py, is assumed to be known. Similarly, the trans-
mission time of each data communication is also known. All
tasks and communications in the task graph have a common
period and a time-constraint Dg is imposed on task graph G,
by which time the last task must finish its execution.

o[t]
[T |

S

(b) task replication

// k=2 D H=10ms

N

() task re—execution

NS
[

(c) combined re—execution and replication

Figure 2. Fault-tolerance techniques [9]

2.2 Fault model and fault-tolerancetechniques

In this paper, we consider transient faults which are much
more common than intermittent and permanent faults in cur-
rent embedded systems. Specifically, the k-fault model [8, 9,
10] will be used here. In this model, & transient faults will oc-
cur during one operation of a task graph. Several faults may
appear on several processors at the same time or on the same
processor at different moments. A fault can only affect one
task and once this fault is tolerated by some technique, the
successor tasks will not be affected by the same fault. The
total number of faults & can be larger than the number of pro-
cessors in the system. Each fault has a worst case duration u,
i.e., it takes p time units for the processor to go back to normal
operation after the fault is detected. Fault detection is not con-
sidered in this paper and we assume that each processor can
detect the fault by some methods, e.g., watchdogs.

We consider two different fault tolerance techniques: task
re-execution and replication [9]. Figure 2 [9] gives an exam-
ple to illustrate the two techniques. In this example, the worst
case execution time (WCET) of task 7, is 30 ms and there
are 2 faults with a duration of 4, = 10ms. In Figure 2 (a),
the first fault happens at the end of the execution of ;. Af-
ter the fault is detected, the task is re-executed after duration
of p and the re-execution is labeled with 7 /5. Then in the
worst case, another fault happens at the end of 7, ,, and the
task is re-executed again. The third re-execution 7y /3 will ex-
ecute without error since both faults have been tolerated. Task
replication is illustrated in Figure 2 (b), where task 7y is ex-
ecuted on processor P; while the two replicas 7/, and 7y /3
execute on P, and P respectively. No matter where the two
faults happen, there will be one replica of the task executing
correctly. In addition to pure re-execution or pure replication,
by combining these two techniques, faults can also be toler-
ated, as illustrated in Figure 2 (c). The task is re-executed only
once on Py in case the fault happens during the first execution
of 71, but since there is a replica 7 /3 executing on P, the two
faults can be guaranteed to be tolerated.

3 A Motivational Example

We use a motivational example to show that with the same
time-constraints and the same number of faults to be tolerated,
the energy consumption of the system can be quite different,
hence the energy issue must be carefully considered during

system design.

In Figure 3 (a), we have a task graph with four tasks to be
implemented on two processors (P;, P2) and k£ = 1 fault with
duration of 10 ms must be tolerated. We assume the slot of
the bus has a length of 10ms and it is large enough to transmit
any single data communication. P; and P, will use the odd
numbered and even numbered slots respectively. The power
value of each processor and the WCETSs of each task on both
processors are shown in the table beside the task graph. The
task graph is from [9] and the power values of the P; and P,
correspond to that of AMD K6-2E+ 500MHz and AMD K6-
2E 400MHz processors [19]. We assume the power of the bus
is 5mWw.

Tasks 79, 71 and 73 execute on P; while 73 executes on P,
in Figure 3 (b). The shallow shaded region in the schedule is
the reserved slack for re-execution.Task g is assigned replica-
tion policy and the replica will execute on P,, the other three
tasks are assigned re-execution policy. In Figure 3 (c), tasks
T9, 1 and T execute on P; and 73 executes on P,. All tasks
are assigned re-execution policy.

Here we can find that that some tasks share one reserved re-
execution slack, e.g., 7, and 73 in Figure 3 (b). This is because
we only need to tolerate one fault and if it occurs in one task,
other tasks will not be affected. Only tasks scheduled consec-
utively without interval on the same processor can share the
reserved slack and the slack should equal the longest WCET
of these tasks [8].

Based on the power value of the processors and the bus, and
the WCET of each task, the energy consumption of the sys-
tem can be computed. In Figure 3 (b), the system consumes
3310 pJ energy, which is the sum of the energy of all tasks
including the replica of 7y and the two data communications.
Similarly, the energy for Figure 3 (c) case can be calculated as
2790 pJ, 15.71% less than that of Figure 3 (b). Though task
79 finishes later in Figure 3 (c) than in Figure 3 (b), the final
finish time of all tasks, i.e., the schedule length is the same
(both are 230 ms) in these two cases. Hence the energy reduc-
tion is achieved without sacrificing the schedule length and the
number of tolerated faults (both tolerate £ = 1 fault). How to
achieve the minimum energy is the problem considered here
and it is formulated in the next section.

4 Problem Formulation

There are three issues to be considered in fault tolerant em-
bedded systems design. 1. Task mapping: for a given task
graph and an architecture of the embedded system, we must
make a decision for each task on which processor it should
execute. 2. Task scheduling: we need to determine the exe-
cution order and start time of all tasks based on their WCETSs
so that the time-constraints are satisfied. The data communi-
cations between each pair of tasks should also be scheduled
on the bus. 3. Fault tolerance policy assignment: in order
to tolerate £ faults, we should decide for each task whether it
should use re-execution, replication or a combination of the
two to achieve fault tolerance. The fault tolerance policy as-
signment should be carried out together with task mapping and

. To [Ty |T T
Vou Voo o|t1 2 3

@ P 40| 60|60 |40
(14mW)

Yo P 5| 757550
@ (10mw)
@
Pl] [[|

R [2 [|
rresus | | [[[LILLITOLLLITTLTTL]
yﬂszl
(b)
plo [v [= [N |
P B
rresus | [[[[[[[[LILITITTITTL]

t
Yis
©

Figure 3. Task mapping and fault tolerance policy assign-
ment

scheduling since we have to decide the processors on which
the replicas will be mapped during task mapping phase and re-
serve re-execution slack during the task scheduling phase.

Both task mapping and fault tolerance policy assignment
affect the energy consumption of the system. Since we as-
sume the system is made up of heterogeneous processors, each
processor will consume different amount of energy to execute
the same task. Hence different task mappings would cause
different energy consumptions. Because replicas are executed
on different processors, extra energy is consumed even if no
fault appears and the amount of the extra energy depends on
both the number and the mapping of the replicas. Note that
we compute the energy consumption for the worst case fault
scenario [9]. The actual energy consumption depends on when
the fault occurs, but since the number of faults is usually much
less than the number of tasks, the worst case energy consump-
tion is quite similar to the actual energy consumption.

Let Fr : T — Tx be the function determining which task
is to be replicated and Fx : T UTr — Tx be the function ap-
plying re-execution to the tasks, including the replicas in 7.
We denote the tuple < Fr, Fx > with F. The mapping of
tasks and replicas is given by a function M : T U T — P.
Let S denote task scheduling, which includes the start time
for each task and the TTP slot for each data communication.
Now the problem can be formulated as given the task graph G,
the set of processors P and the number of faults &, determine
F, M and S, such that the energy consumption is minimum
while the time-constraint of the task graph Dy is satisfied and
k faults can be tolerated.

5 Design Strategy

The problem formulated above is NP complete since both
task mapping and scheduling are NP complete [16]. Hence we

propose a greedy heuristic to solve this problem.
5.1 Task mapping and fault tolerance policy assignment

The basic idea of reducing the energy consumption during
task mapping and fault tolerance policy assignment is to start
from an initial solution and change the mapping and fault tol-
erance policy of each task iteratively to reduce the energy.

In the initialization phase, each task is assigned re-
execution policy and tasks are mapped such that the utilization
among processors are balanced. The utilization of a processor
is the sum of WCETSs of tasks mapped on the processor. This
simple mapping procedure and re-execution only policy de-
cides the initial solution quickly. It is not necessary for the ini-
tial solution to satisfy the time constraint because the follow-
ing greedy heuristic will try to find one which satisfies the time
constraint. If at the end of the heuristic, no solution can satisfy
the time constaint, the design is failed and higher performance
processors should be chosen. The bus configuration is also set
up in the initialization phase. Each processor P; € P is given
aslotin the TTP bus to transfer the outgoing data from the pro-
cessor. The slot length is set to the length of the largest data
communication in the task graph so that any communication
can be transfered in one slot. For simplicity, the optimization
of the bus configuration is not considered here.

After the initialization, we change the mapping and fault
tolerance policy for each task in a greedy manner to reduce
the energy. The pseudo code in Figure 4 describes the pro-
cedure. We first compute the energy consumption based on
the initial mapping M and fault tolerance policy assignment
FO (line 01). In the outer while loop, tasks are put into a list
(line 03). The task consuming maximum energy is found and
we try all possible “moves” of this task. A “move” of a task
is defined as changing the mapping of the task from its origi-
nal mapped processor to a new processor, or adding a replica
of the task into the task list, or removing a replica of the task
from the task list. Though adding a replica will increase the
energy consumption, it is necessary since pure re-execution
may not satisfy the time constraint.When a replica is added,
the incoming and outgoing data communications of task 7 are
also replicated and added to the task graph together with the
replica. The number of replicas of the task is restricted by &
since we only need to tolerate k faults. The new replica must
be mapped on a processor where task = and other replicas of
T are not mapped. For every possible move of the task, we
schedule all tasks and data communications and compute the
resulting energy consumption (line 10 and 11). The schedul-
ing will be discussed in the next section. Among all possible
moves, we greedily choose the one which results in the min-
imum energy while satisfying the time-constraint and label it
as the “BestMove”(line 12-14). If this minimum energy is less
than the previous energy, there is an improvement (line 16)
and the previous energy is set to the minimum energy (line
17). The “BestMove” is applied to the task 7 and the proce-
dure goes into the next iteration. If after all the moves of
have been tried and there is no energy reduction, 7 is removed
from the task list (line 20). The procedure ends when the task

Input: -G, P,k
01: PreviousEnergy = EnergyCompute(G, P, M°, F°);
02: while(improvement == true)
03: Put all tasks into a task list T'L;
04: improvement = false;
05: while(T'L is not empty)
06: find the task — whose energy is maximum;
07: MinimumEnergy = PreviousEnergy;
08: for each possible “move” of 7
09: try move(7);
10: ScheduleLength = Scheduling(G, P, M, F);
11: Energy = EnergyCompute(G, P, M, F);
12: if(Energy < CurrentEnergy
&& ScheduleLength <= Dg)
13: MinimumEnergy = Energy;
14: BestMove = move;
15: if(MinimumEnergy < PreviousEnergy)
16: improvement = true;
17: PrevouseEnergy = MinimumEnergy;
18: apply BestMove(7);
19: break;
20: remove 7 fromT'L;

Figure 4. Pseudo code: the greedy heuristic

list is empty and there is no improvement.

We also implemented tabu search to do task mapping and
fault tolerance policy assignment. Tabu search is a general
search procedure designed for solving a wide range of opti-
mization problems [17]. Tabu search does not discard a task
if the moves of the task can not reduce the energy. Instead,
it associates the task with a variable called tabu which is an
integer. In each iteration, the task whose tabu is not zero will
not be considered but its tabu will decrease by 1. Some search
diversification techniques are also included in tabu search and
the details can be found in [9]. Hence tabu search is much
more complex than the proposed procedure. We will see from
the experimental results that greedy heuristic can achieve en-
ergy saving quite close to tabu search, but using much less run
time.

5.2 Task scheduling

For a given task mapping M and fault tolerance policy as-
signment F, the tasks and data communications have to be
scheduled. List scheduling is the most commonly used algo-
rithm to schedule tasks with dependent relationships and the
complexity of list scheduling is O(n), where n is the number
of tasks. In list scheduling, whenever there is a task whose
predecessor tasks and incoming data have been scheduled, the
task is put into a ready list. All tasks in the ready list are in-
vestigated and the task with the highest priority is extracted
from the list and scheduled on its mapped processor. Here we
use the partial critical path priority presented in [18] as the
task priority. After a task has been scheduled, its output data
are also scheduled by using the “ScheduleMessage” function
from [18] on the TTP bus.

During task scheduling, re-execution slack for tasks to be

Table 1. Experimental results of energy reduction

20 tasks (k=3) | 40 tasks (k=4) | 60 tasks (k=5) | 80 tasks (k=6) | 100 tasks (k=7)
Min. reduction (%) 0.12 313 6.64 6.90 22.08
Max. reduction (%) 48.08 70.64 51.33 68.57 67.49
Ave. reduction (%) 14.39 23.35 27.88 32.84 45.98

re-executed is inserted into the schedule. The procedure of in-
serting the re-execution slack is introduced in [8] where the
total amount of slack can be reduced through slack sharing.
For example, in Figure 3 (c), tasks 7o, 71 and 7» share one
slack in the case of one fault.

We should notice that though task scheduling does not con-
sider the energy consumption of the system, it is involved in
each iteration of the greedy heuristic in Figure 4 since we must
obtain the schedule length and guarantee it satisfies the time-
constraint. The fault tolerance is realized in both phases: repli-
cas are added during the task mapping and re-execution slack
is inserted during the task scheduling.

6 Experimental Results

We use the task graphs generated in [9] to evaluate the ef-
fectiveness of the proposed energy reduction algorithm. The
task graphs consist of 20, 40, 60, 80 and 100 tasks. These task
graphs are implemented on embedded systems with 2, 3, 4, 5
and 6 processors, respectively and the number of faults & is set
to 3, 4, 5, 6, 7 for each system dimension, respectively. The
duration g of the fault is set to 5 ms. The processors have dif-
ferent execution times for the same task and different power
consumptions, and we assume the processors have no DVS
ability and no low power mode here. For each task graph di-
mension, fifteen random examples are generated, thus totally
75 task graphs are used for the experimental evaluation. The
task graphs are generated with either random structure or more
regular structures like trees and groups of chains. The worst
case execution time of each task is assigned randomly using
both uniform and exponential distribution from 10 to 100 ms.

We first compare the energy consumption of the proposed
algorithm with the procedure of [9] where energy is not
taken into consideration and only solutions satisfying the time-
constraint are given. For all 75 benchmarks, energy can be
reduced by using the proposed algorithm while the resulting
schedule length are the same as those by the procedure of [9].
That is, we can reduce the energy consumption without sac-
rificing the schedule length. Meanwhile, the given number of
faults are guaranteed to be tolerated. Due to limited space, we
do not list the results for all the 75 task graphs. However, Ta-
ble 1 gives a simple statistic of the results. In the table, the
minimum, maximum and average energy reductions in terms
of percentage for each size of task graphs are given. It can be
seen that the maximum energy saving can be up to more than
70 percent. On average, 14.39% energy can be saved in small
task graphs (with 20 tasks) and 45.98% energy can be saved
in large task graphs (with 100 tasks). This clearly shows the
effectiveness of the proposed energy reduction procedure.

Table 2. Energy reduction (%) of different number of faults

2faults | 4faults | 6faults | 8faults | 10 faults
Min. 4.02 6.12 7.92 11.58 11.12
Max. 32.57 40.37 45.63 56.03 67.14
Ave. 13.11 23.18 29.60 34.83 38.23

With larger number of tasks, there are more possible task
mappings and fault tolerance policy assignments and the
chance of finding solutions with lower energy becomes higher.
Hence, we can see from the table that the average energy re-
duction grows with increase in the number of tasks.

It is clear that the number of faults will affect the sched-
ule length. Specifically, to tolerate more faults, the resulting
schedule length will become longer [9]. We also find that to
tolerate different number of faults, the energy reduction is dif-
ferent. Generally, more energy can be saved when there are
more faults because there are more fault tolerance policy as-
signments and it is possible to find solutions with lower energy
consumption. Table 2 shows the energy reduction of different
number of faults for task graphs with 60 tasks. On average,
the energy reduction increases from 13.11% to 38.23% when
the number of faults changes from 2 to 10.

The time constraint is another important parameter affect-
ing the energy consumption. With a loose time-constraint,
more tasks can be mapped on processors which execute tasks
slowly but consume less energy. Hence the system energy de-
creases when the time-constraint is relaxed. This is shown in
the graph of Figure 5, which is the energy consumption for
different time-constraints for one task graph with 100 tasks.
In the harizontal axis, “1” means the tightest time-constraint,
which is set to the minimum schedule length found by using
the procedure of [9] and “1.05” means the time-constraint is
extended by 5 percent, “1.1” means the time-constraint is ex-
tended by 10 percent, and so on. From the graph, it can be
seen that energy consumption drops from more than 1400 mJ
to around 950 mJ when the time-constraint is increased by
30 percent. Hence there is a tradeoff between energy and the
schedule length, i.e., if more energy has to be saved, we should
allow the application to finish in longer time.

Finally, we compare the energy reduction of greedy heuris-
tic with tabu search and the results are shown in Table 3. It
can be seen that the average energy reduction of tabu search
is more than that of the greedy heuristic, but the difference is
quite small. What’s more, greedy heuristic takes much less
time than tabu search. It takes no more than 10 minutes for
greedy heuristic to find the solution for task graphs with 100
tasks, while tabu search needs over 30 hours. This demon-
strates that the proposed greedy heuristic is not only effective

1500

1400

1300

1200

energy consumption(mJ)

1100

1000

1 1.05 11 115 12 125 13
time constraints

Figure 5. Energy consumptions with different time-
constraints

to reduce energy consumption, but also is quite efficient.
7 Conclusions

In this paper, we formulated the problem of reducing the
energy consumption in distributed embedded systems with
time-constraints and fault tolerance ability. Task replication
and re-execution are used to realize fault tolerance. The energy
is saved through a proposed greedy heuristic during task map-
ping and fault tolerance policy assignment. List scheduling is
used to schedule tasks and re-execution slack is inserted dur-
ing the scheduling. The experimental results have shown that
taking energy into account during the system design, consider-
able amount of energy can be saved while satisfying the time-
constraint and tolerating a given number of transient faults.

8 Acknowledgments

The authors acknowledge the help of V. 1zosimov, P. Pop,
P. Eles, and Z. Peng of Linkoping University, Sweden for their
technical support of this work.

References

[1] R.V.Whiteand F. M. Miles, “ Principles of fault tolerance’,
Proc. of Applied Power Electronics Conference and Exposi-
tion (APEC), pp. 18-25, Mar.1996.

[2] V. Claeson, S. Poldena, J. Soderberg, “The XBW Model for
Dependable Real-Time Systems”, Proc. of Parallel and Dis-
tributed Systems, pp. 130-138, 1998.

[3] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwable,
C. Senft and R. Zainliner, “Fault-tolerant real-time systems:
The Mars approach”, |EEE Micro, 9(1), pp. 25-40, 1989.

[4] H. Kopetz, G. Bauer, “The Time-Triggered Architecture’,
Proceedings of the IEEE, 91(1), pp. 112-126, 2003.

[5] Y. Zhang and K. Chakrabarty, “ Energy-Aware Adaptive
Checkpointing in Embedded Real-Time Systems’, Proc. De-
sign, Automation and Test in Europe (DATE), pp. 918-923,
2003.

[6] Y. Xie, L.Li, M. Kandemir, N. Vijaykrishnan and M. J. Irwin,
“Reliability-Aware Co-synthesis for Embedded Systems”, In-
ternational Conference on Application-Specifi ¢ Systems, Ar-
chitectures and Processors (ASAP), 2004.

[7] J. Conner, Y. Xie, M. Kandemir, R. Dick and G. Link,
“ FD HGAC: A Hybrid Heuristic/Genetic Algorithm Hard-

Table 3. Average energy reduction (%) by two methods

20tasks | 40tasks | 60tasks | 80tasks | 100 tasks
greedy
heuristic 14.39 23.35 27.88 32.84 45,98
tabu
search 17.23 25.98 30.27 34.58 46.85

ware/Software Co-synthesis Framework with Fault Detec-
tion”, Proc. of Asia and South Pacifi c Design Automation
Conference (ASP-DAC), pp. 709-712, 2005.

[8] N. Kandasamy, J. P. Hayes and B. T. Murray, “ Transpar-
ent Recovery from Intermittent Faultsin Time-Triggered Dis-
tributed Systems’, |EEE Transaction on Computers, Vol. 52,
No. 2, Feb. 2003.

[9] V. lzosimov, P. Pop, P. Eles and Z. Peng, “ Design Opti-
mization of Time- and Cost-Constrained Fault-Tolerant Dis-
tributed Embedded Systems”, Proc. of Design, Automation
and Test in Europe (DATE), 2005.

[10] Y. Zhang, R. Dick and K. Chakrabarty, “ Energy-aware de-
terministic fault tolerance in distributed real-time embedded
systems”’, Proc. of Design Automation Conference (DAC), pp.
550-555, 2004.

[11] Y. Zhang and K. Chakrabarty, “ Task feasibility analysis and
dynamic Voltage scaling in fault-tolerant real-time embedded
systems’, Proc. of Design, Automation and Test in Europe
(DATE), pp. 1170-1175, 2004.

[12] J. Han and Q. Li, “Dynamic Power-Aware Scheduling Algo-
rithms for Real-Time Task Setswith Fault-Tolerance in Paral-
lel and Distributed Computing Environment”, Proc. of Inter-
national Parallel and Distributed Processing Symposium, pp.
6-16, 2005.

[13] D. Zhu, R. Melhem and D. Mosse, “ The Effects of Energy
Management on Reliability in Real-Time Embedded Sys-
tems’, Proc. International Conference on Computer Aided
Design (ICCAD), Nov. 2004.

[14] A. Ejldi. B. M. Al-Hashimi, M. T. Schmitz, P. Rosinger and
S. G. Miremadi, “Combined Time and Information Redun-
dancy for SEU-Tolerancein Energy-Effi cient Real-Time Sys-
tems’, IEEE Transaction on VLS| Systems, Vol. 14, No. 4,
pp. 323-335, Apr. 2006.

[15] G. Chen, M. Kandemir and E. Li, “Energy-Aware Computa-
tion Duplication for Improving Reliability in Embedded Chip
Multiprocessors’, Proc. of Asiaand South Pacifi c Design Au-
tomation Conference (ASP-DAC), Jan. 2006.

[16] M. T. Schmitz, B. M. Al-Hashimi, P. Eles, System-Level
Design Techniques for Energy-Efficient Embedded Systems,
Kluwer Academic Publishers, 2004.

[17] F Glover and M. Laguna, Tabu Search. Kluwer Academic
Publishers, 1997.

[18] P Eles, A. Dabali, P. Pop and Z. Peng, “Scheduling with bus
access optimization for distributed embedded systems’, IEEE
Transactions on VLS| Systems, Vol. 8, Issue 5, pp. 472-491,
2000.

[19] E3S benchmark suit.
http://www.ece.northwestern.edu/ dickrp/e3s

