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A Kernel-Based Two-Class Classifier
for Imbalanced Data Sets

Xia Hong, Senior Member, IEEE, Sheng Chen, Senior Member, IEEE, and Chris J. Harris

Abstract—Many kernel classifier construction algorithms adopt
classification accuracy as performance metrics in model evalu-
ation. Moreover, equal weighting is often applied to each data
sample in parameter estimation. These modeling practices often
become problematic if the data sets are imbalanced. We present a
kernel classifier construction algorithm using orthogonal forward
selection (OFS) in order to optimize the model generalization for
imbalanced two-class data sets. This kernel classifier identification
algorithm is based on a new regularized orthogonal weighted
least squares (ROWLS) estimator and the model selection crite-
rion of maximal leave-one-out area under curve (LOO-AUC) of
the receiver operating characteristics (ROCs). It is shown that,
owing to the orthogonalization procedure, the LOO-AUC can be
calculated via an analytic formula based on the new regularized
orthogonal weighted least squares parameter estimator, without
actually splitting the estimation data set. The proposed algorithm
can achieve minimal computational expense via a set of forward
recursive updating formula in searching model terms with max-
imal incremental LOO-AUC value. Numerical examples are used
to demonstrate the efficacy of the algorithm.

Index Terms—Forward selection, imbalanced data sets, kernel
classifier, leave-one-out (LOO) cross validation, receiver operating
characteristics (ROCs).

1. INTRODUCTION

ODEL EVALUATION in terms of good generalization
M performance is essential in the development and analysis
of data-based learning algorithms for the construction of object
classifiers. A fundamental concept in the evaluation of model
generalization capability is that of cross validation [1], e.g.,
leave-one-out (LOO) cross validation is often used to estimate
generalization error by choosing amongst different network
architectures [1]. The study of classifiers for improving model
generalization capability has been widely researched [2]-[10].
In most model combinatory approaches, it is assumed that a set
of different classifiers with some reasonable performances are
readily available. Cross validation, as required in most algo-
rithms for model generalization evaluation, contributes signifi-
cantly to computational cost. Clearly, the overall computational
cost is intensive for most model combinatory approaches. Al-
ternatively, in order to produce an individual model with good
generalization for regression/classification, there has been sig-
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nificant research on kernel-model-based construction/selection
approached, such as support vector machine (SVM), relevance
vector machine (RVM), and orthogonal forward regression
(OFR), etc., [11]-[14]. The efficient construction of a sparse
model representation is crucial in generating a model that is
easy to use and generalizes well. A class of forward orthogonal
least squares (OLS) algorithms to select model regressors in a
forward regression manner by virtue of their contributions to
the model, which are measured by some objective function for
model construction, have been developed [14]-[19]. For the
construction of a sparse regression model that generalizes well,
regressors are incrementally appended in an efficient forward
regression procedure while minimizing the LOO errors [18],
[19]. For the two-class classification problem, sparse kernel
classifiers can be constructed via incrementally maximizing
the Fisher ratio of class separability using the orthogonal
forward selection (OFS) procedure [20], [21]. Alternatively,
the data-structure-preserving criterion has been introduced as
a neuron selection criterion to improve model generalization
[22]. Recent work [23] has developed an OFS procedure based
on minimizing the LOO misclassification rate for constructing
a two-class classifier. It has been shown in [18], [19], and [23]
that LOO cross validation for good model generalization can be
performed efficiently, without resort to either actually splitting
the estimation data set or utilizing an additional validation data
set due to orthogonalization decomposition used in forward
selection.

Many techniques on classifier construction, including kernel
classifier of standard SVM, RVM, or OFS, are based on clas-
sification accuracy as a performance metric. This type of per-
formance metric may break down if the class distribution is not
well balanced, or if the two types of misclassification costs are
skewed [9], [24]. A common problem in learning the imbal-
anced data sets using classification accuracy as modeling objec-
tive function is that a trained classifier tends to classify all ex-
amples to the major class [25]. Boosting algorithms have been
developed [25], [26] based on the optimal setting of the margin
given by imbalanced data sets, in which the parameter estimator
uses unequal weights for data samples based on their margins.
There has been considerable interest in cost-sensitive classifi-
cation [9], [25]-[27]. An essential characteristic of cost-sensi-
tive classifiers is that they can successfully handle imbalanced
data and/or skewed misclassification cost. In [27], the cost is
defined as a general performance metric including the costs of
misclassification errors and experiments. In the context of SVM
kernel classifiers, techniques have been introduced for imbal-
anced training data sets including a control sensitivity loss func-
tion [28], a kernel boundary alignment (KBA) algorithm [29],
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and a proximal SVM algorithm [30]. A novel concept of using
autoassociator neural network to be trained only by one partic-
ular class data samples has been proposed by Japkowicz [31].
The associator is applied to new data samples by comparing its
reconstruction error to a threshold. In the context of k-nearest
neighbor classifiers [2], a neighbor-weighted k-nearest neighbor
(NKKNN) algorithm has been introduced and applied to im-
balanced text categorization [32]. A theoretically sophisticated
model combinatory approach known as random forest (RF) is
shown to be the most accurate classifier for many benchmark
data sets [5]. One remarkable feature of the RF is that it does
not overfit since its generalization error converges asymptoti-
cally to a limit as the number of trees in the forest becomes
large. There are other valuable original approaches developed
for learning from imbalanced data sets through sampling tech-
niques [33], [34]. The techniques of cost-sensitive learning and
sampling has been introduced in an RF classifier for imbalanced
data sets [35] with superior classification performance.

Fundamental to the modeling of imbalanced data sets is the
receiver operating characteristics (ROCs) which is a classical
methodology from signal detection theory [36], [37]. The ROC
analysis has been widely used in medical diagnosis [37] and
is receiving considerable attention in the machine learning re-
search community [9]. It has been shown that the ROC ap-
proach is a powerful tool both for making practical choices and
for drawing scientific conclusions [24]. The cost of misclas-
sification is described in [9], in which the ROC convex hull
(ROCCH) method has been introduced to manage (via com-
bining or voting) classifiers. One of the performance metrics
used in the ROC analysis [9], [36], [37] is to maximize the area
under curve (AUC) of an ROC, which is equivalent to the prob-
ability that for a pair of randomly drawn data samples from the
positive and negative groups respectively, the classifier ranks
the positive sample higher than the negative sample in terms of
“being positive.”

In all the aforementioned OLS or OFS algorithms [14]-[21],
[23], the model parameters are based on a least squares or a
regularized lease squares estimator, with equal weighting for
all data points in estimation. Intuitively, this type of estimator,
if used for imbalanced data, will produce unfavorable classifi-
cation results for the minority class. As the forward selection
model construction algorithms are computationally efficient al-
gorithms in producing parsimonious kernel models, it is then
desirable to develop new forward selection model construction
algorithms for building two-class classifiers from imbalanced
data sets, and this is the objective of this paper. Note that in for-
ward-orthogonal-selection-based algorithms, two cost functions
are generally utilized. These are as follows: 1) a parameter esti-
mation cost function which is used to derive parameters for can-
didate models, such as least squares parameter estimators; and
2) model selective criteria, which are used to decide amongst
the candidate models, i.e., which term to be included into the
model in each forward regression step. From previous analysis,
it is seen that there are two feasible approaches in order to iden-
tify a classifier suitable for imbalanced data sets: i) for model
performance criteria, the criteria as in ROC analysis are prefer-
able to classification accuracy as model selective criteria; and

ii) for parameter estimators, applying unequal weighting factors
for data points instead of equal weighting as used in most least
squares solutions in forward regression algorithms.

Consequently, we derive the proposed algorithm containing
two elements specifically for effectively handling imbalanced
data sets. First, by combining the concepts of LOO cross val-
idation and AUC, the model generalization metrics via leave-
one-out area under curve (LOO-AUC) is used as the objec-
tive function to select the model kernels in a forward selec-
tion manner. For a two-class classification problem with imbal-
anced data samples, and/or imbalanced misclassification cost,
it is helpful to build up a parameter estimator using some cost
function that is sensitive to the data sample’s importance for
classification [25], [26]. Another element of this paper is to
introduce a new forward regression model structure selection
algorithm, the forward regularized orthogonal weighted least
squares algorithm (FROWLYS), in which the parameter estima-
tion cost function is sensitive to their class labels, i.e., by as-
signing more weights on the error due to a data sample in the
minority class, but less weights on the error due to a data sample
in the majority class.

This paper is organized as follows. Section II initially intro-
duces the ROC plane and LOO-AUC which forms the basic
idea of model generalization evaluation for imbalanced data
sets. Section III introduces the new kernel classifier identifi-
cation algorithm for imbalanced data sets, by using forward
selection algorithm based on a new regularized orthogonal
weighted least squares algorithm as parameter estimator and a
maximal LOO-AUC as model selective criterion. It is shown
that LOO-AUC can be calculated via analytic formula based
on a new regularized orthogonal weighted least squares algo-
rithm as a parameter estimator, rather that actually splitting
the estimation data set owing to orthogonalization procedure.
The proposed algorithm can achieve minimal computational
expense via a set of forward recursive updating formulas in the
search of terms with maximal LOO-AUC. Finally, the proposed
two-class kernel classifier construction algorithm is presented
using OFS by directly maximizing the LOO-AUC in order to
optimize the model generalization for imbalanced data sets.
Numerical examples are used to demonstrate the efficacy of the
algorithm in Section IV and conclusions are given in Section V.

II. ROC PLANE AND AUC

Consider a data set Dy = {D4,D_} consisting of
N n-dimensional data samples that belong to a two-class set,
ie., Dy = {x(i),t(i)}}Y,, where t(i) € [1,—1] is used to de-
note the class type for each data sample x(7) € R™. Assume that
there are N positive data samples with ¢(¢) = 1 and N_ nega-
tive data samples ¢(¢) = —1, respectively (N = Ny + N_).In
this paper, the minority class is referred to as the positive class
D, Let a two-class classifier £(x) : R — [1, —1] be formed
using the data set. The performance of the classifier may be eval-
uated using the counts of data samples {a, b, ¢, d} defined via
the confusion matrix of Table I.
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TABLE I
CONFUSION MATRIX OF A CLASSIFIER (COUNTS OF DATA SAMPLES)

Predicted positive | Predicted negative

Actual positive a b
Actual negative c d
1
TP
0 FP 1

Fig. 1. ROC of a single classifier.

Clearly Ny = a+ b and N_ = c¢ + d. The true positive
rate (TP) is the proportion of positive data samples that were
correctly identified, as given by [37]

a a

TP = = —.
(l+b N+

6]

The false positive rate (FP) is the proportion of the negatives
data samples that were incorrectly classified as positive, as cal-
culated using [37]

c c
FP = = —. 2
c+d N_ @
Note that maximizing classification accuracy (CA) of
a+d a+d
= 3)

T 4+b+c+d N

is a commonly used performance metric, which is equivalent to
minimizing the misclassification rate of the classifier.
Alternatively, a classifier can be mapped as a point in two-di-
mensional (2-D) ROC plane with coordinates as {FP, TP}, as
shown in Fig. 1. By connecting this point with {0,0} and {1, 1},
we get the ROC curve for a nonprobabilistic or hard classifier.
ROC analysis is commonly applied in visualizing model per-
formance, decision analysis, and model combinations [9] with
extensive scope and applications [36], [37]. The ROC is a graph
showing the conditional probability of classifying positive sam-
ples as positive plotted against the conditional probability of
classifying negative samples as positive [37]. From left to right,
the ROC represents the variation of performance of the classi-
fier if the criterion of choosing positive becomes more lenient.
The ROC curve shows the tradeoff between TP and FP that ac-
knowledges the fact that the capacity of any classifier cannot in-
crease TP without also increasing FP. The area under the ROC
curve AUC is one of the performance metrics in the ROC anal-
ysis [9], [36], [37], which is equivalent to the probability that,
given a pair of randomly drawn data samples from the positive
and negative groups, respectively, the classifier ranks the posi-
tive sample higher than the negative sample in terms of “being
positive.” Note that an AUC of 0.50 means that the diagnostic
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accuracy is equivalent to a pure random guess, and an AUC of 1
means that the classier distinguishes class examples perfectly.
One way of selecting classifier is based on using a classifier
which maximizes the AUC of a ROC, which can be calculated
by

AUC — 1+ TP —FP @)

2

for the ROC curve of a single hard classifier as shown in Fig. 1.

Equation (4) can be easily adjusted to cope with cost-sensi-
tive classification if the misclassification costs are skewed [9],
or other performance metrics derived from TP and FP are used.
Clearly, the AUC of (4) is a classifier metric with a tradeoff be-
tween high TP and low FP. Note that if the data set is completely
balanced with N = N_, then AUC = CA [see (3)]. However,
for imbalanced data sets, this equivalence no longer holds. By
separating the performance of a classifier into two terms that
represent the performance for two classes, respectively, in com-
parison to the classification accuracy of (3) which only has a
single term, this enables the possibility to manage the classifi-
cation performance for imbalanced data.

Alternatively, cross-validation criteria are metrics that mea-
sure model’s generalization capability [1]. One commonly used
version of a cross validation is the LOO cross validation. The
idea is that, for a given classifier model structure, each data point
in the estimation data set Dy is sequentially set aside in turn, a
classifier is estimated using the remaining (/N — 1) data, and the
predicted label is derived for the data point that was removed.
By excluding the sth data example in estimation data set, the
output of the model for the 7th data example using a model es-
timated by using remaining (N — 1) data examples is denoted
as t(=9)(x(4)), or in short £(=%)(7). We can use the LOO-AUC
as the metrics for model generalization in terms of AUC perfor-
mance, as calculated by

y 1+ TP —FP)

(7
AUCC) = 5 5)

where

P = N% ; 1dT (ﬂ‘”(z‘) X t(z‘)i('b’))

N
1 o
=) — — (=i (4 N (i
FPO) = — 271: IdF (t (i) x t(3), t(z)) ©®)
in which the indicator functions IdT'(u, v) for TP and IdF (u, v)
for FP are defined as

i > =
1T (u, v) = {[1]7 ifu>0andv =1

otherwise
1, ifu<Oandv= -1
1dF(u, v) = {07 otherwise.

In order to optimize the model structure of a classifier in
terms of maximal LOO-AUC, the model selective criterion by
using the maximization AUC in (5) is used in this paper. For
linear in the parameter model, it has been shown [18], [19], [23]
that LOO cross validation for better model generalization can
be performed efficiently based on the orthogonal decomposi-
tion due to the fact that LOO errors can be derived using alge-
braic operations rather than actually splitting the training data
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set. Consequently, we achieve good model generalization per-
formance without resort to an additional validation data set. In
Section III, a new forward orthogonal weighted least squares
(FOWLS) classifier construction algorithm is introduced based
on the model selective criterion of maximizing LOO-AUC given
by (5), in which a set of forward recursive updating formula for
fast calculation of LOO-AUC is developed based on the kernel
classifier model representation in orthogonal form.

III. FROWLS FOR CLASSIFIER CONSTRUCTION

Consider the kernel classifier
t(7) = sgn(y(i)) with y(i Z w;g;(x (7

where ¢;(x(4)) denotes the classifier kernels. M is the number
of kernels and #(4) is the estimated class label for x(i). w;, j =
1,..., M denotes the classifier weights. The Gaussian kernel
functions g;(x) = exp [— ((|[x — c;]|?) /(0?))] are used in
this paper, where the centers c;’s are to be selected from the
full set of input vectors as a subset, and ¢ is the width parameter
assumed to be appropriately chosen by the user.

Given the training data set D+ = {x(i),#(i)}, define
the kernel matrix G = [g1,...8j,...8m] in which g; =
[9;(x(1)),...,g;(x(N))]T. Over the training data set, (7) can
be written in vector form as

t=y+e=Gw-+e (8)

where t = [t(1),...,t(N)]T, and e = [e(1),...,
e(i), ...,e(N)]T is model residual vector with e(i) =

i). w = [wi,...wy]T is the classifier's weight
vector. y = [y(1),y(2),...,y(N)]T is the classifier output
vector. Geometrically, a set of weight vectors w of the kernel
model defines a hyperplane of

M
> wjg;(x) =0 ©)
=1

dividing the data into two classes.

The LOO predicted label £(~9) (i) of a kernel classifier of (7),
is given by £(=9)(4) = sgn(y(=")(4)), in which y(~?)(4) is the
model prediction evaluated using the ¢th data sample, from a
model estimated from the data set Dy \ [x(4), t(¢)], i.e., the ith
data sample [x(%), ¢(7)] is removed from D for estimation. By
definition, we have sgn(#(i)) = sgn(y(i)) and sgn(f-9 (7)) =
sgn(y(~9(i)), so that

N
TP = — ST 1dT(h(i), (i)
+ i=
1 X
FPC) = — > TdF(h(i), t(i (10)
=1

with k(i) = 99 (i)t(3).

The basic idea in the proposed algorithm is that the efficient
evaluation of LOO-AUC can be achieved through the fast cal-
culation of A(7). In the following, it will be shown that the cal-
culation of h() can be performed efficiently without actually

splitting the training data set. An analytic formula of h(i) is
given in Section III-B, based on a new regularized orthogonal
weighted least squares (ROWLS) classifier estimator as intro-
duced in Section III-A.

A. ROWLS Parameter Estimation

For a two-class problem, sparse kernel classifiers can be con-
structed using the OFS procedure [20], [21], [23]. A common
feature of these algorithms is that least squares type parameter
estimators have been used for parameter estimation. Note that
parameter estimators that directly optimize classification perfor-
mance are generally difficult to find due to the factors such as
unknown probability function of the data distribution, or pos-
sibly nondifferentiable objective functions. The advantage of
using a least-squares-type parameter estimator is that the clas-
sifier can be easily obtained, but the disadvantage is that they
are not directly derived by optimizing the results of classifica-
tion, or the cost of classification. The OFS procedure [20], [21],
[23] can effectively alleviate this disadvantage as we initially
use least squares type parameter estimator for generating can-
didate models, followed by direct evaluation of these models in
terms of classification performance, i.e., minimizing the LOO
misclassification rate [23]. The model selection step can, there-
fore, guarantee that the best model in terms of classification per-
formance is found amongst the candidate models.

A common scenario in learning the imbalanced data sets is
that the trained classifier tends to classify all examples to the
major class [25]. In practice, it is often very important to have
accurate classification for the minority class, e.g., in the appli-
cation of abnormality detection. For this purpose, in the pro-
posed algorithm, the maximization of LOO-AUC is used as
the model selection criterion to choose from candidate models.
However, in order to guarantee that the final model has a high
value of LOO-AUG, it is necessary to make sure that the pa-
rameter estimation for candidate models is appropriate for im-
balanced data. Intuitively, for imbalanced data, least squares or
regularized lease squares estimator with equal weighting for all
data points will produce unfavorable classification results for the
minority class, which has a much smaller influence than the ma-
jority class to the resultant parameter estimates, and hence the
decision boundary. A basic idea is that it is helpful to build up
a parameter estimator using some cost function that is sensitive
to data sample’s importance for classification [25], [26] in order
to produce better candidate models. In this paper, the parameter
estimator is based on the following cost function:

T=p Y > )

x(i)eD4 x(i)eD_

(1)

in which p > 1 is the weight for minority class as defined by
the user through trials. Note that if p = 1, then the aforemen-
tioned cost function for parameter estimator becomes the same
asused in [20], [21], and [23]. The cost function (11) gives more
weights to data points in the minority class to alleviate the po-
tential problem of classifying all examples to the major class,
because, as demonstrated in Fig. 2, the previous parameter cost
function has a similar effect as that of [26] in that the hyperplane
as given by (9) is forced away from the minority class.
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I
o Majority class (D )
x  Minority class (D+)
—— Decision boundary using higher weights for D+
= Decision boundary using equal weights

051 ©

0

0

1 1.5

Fig. 2. Effect of using (11) as a cost function; here, a linear discriminant function is used for illustration.

Let A = diag{\(1), ... A(9), ... \(N)}, in which

A(i) = {’1’

Then, (11) can be expressed in vector form

if x(i) € Dy
ifx(i) € D_ -

J=eTAe

=[t — Gw]TA[t — Gw]

=[AY*t — AY2Gw]T[AY?t — A2 Gw]

=A%t - Gw]T[AY?t — Gw] (12)
in which the equation shown at the bottom of the page holds,
and the nonsingular square root matrix of A is denoted by
AY? = diag{\/X(D), ..., /AQD). ... /AN)}.
_Denote G = [g1,...,8n]. The column and row vectors of
G are represented by g = [gx(1),...,gx(N)]T, and g(i) =

[g1(7), ..., g (4)]T, respectively. Let an orthogonal decompo-

7.

sition of G be G = PA, where A € RM*M s an upper tri-

The column and row vectors of P are represented by px =

tively. The aforementioned orthogonal decomposition can be
realized through the Gram—Schmidt procedure by transferring
nonorthogonal vectors g;, j = 1,..., M to orthogonal vectors
pj,j = 1,..., M. Note that

y =Gw
=A"'?py (15)
where @ = Aw = [y,...,0,]7 is a weight vector in orthog-
onal space. Equation (15) is equivalent to
| M
y(i) = ——== ) Oipi(i) Vi (16)
VA(@E) ;

The ROWLS parameter estimator is the parameter vector that
minimizes the cost function Jz(8) = (J + 8" ), where 11 > 0
is the regularization parameter as set by the user

angular matrix. P is a N x M matrix with orthogonal columns Jr(0) = [AY*t — POTIAYt — PO] + 16" 6. (17)
that satisfy By setting (0/96)Jr(0) = 0, §;’s are obtained as
Tp _ 3 TAV/24
PP = diag(k1,...,km) (13) 6, = p; 7 Jj=1.....M (18)
Kj+ 1
with
The solution for the classifier’s weight vector w is readily avail-
Kj = p]ij7 j=1...,M. (14)  able from Aw = 6 using backward substitution.
VAW (1) AL)g2(1) VAL ga(1)
G =AY = | VAM29(2)  VAR)g(2) VA2)gnm(2)

VAMG (V) ANg(N) - /AW gar (V)
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B. Analytic Formula for Evaluating h(1)
Based on the regularized orthogonal least squares model pa-
rameters given by (18), the model residuals can be represented

by

1 M
e(r) =t(z) — — Hjji
) =10) =5 2o 0imi)

=t(i 0" p(i Y. 19
()= =) Vi )

The LOO model residual is given by
0 (i) = 1(i) -y V). (20)

It has been shown [19] that for regularized orthogonal least
squares estimator, the LOO model residuals can be derived
using an algebraic operation rather than actually splitting the
training data set based on the Sherman—Morrison—Woodbury
theorem [38]. For models evaluated using regularized orthog-
onal weighted least square parameter estimates, it can be shown
that the LOO model residuals are given by (see Appendix)

e(—i) (Z) — 6(2)
1 —pT()[PTP + ul]~'p(i)

21

which has the same form as in regularized orthogonal least
squares parameter estimates [19].
Consequently

e TI(@) = 1(i) =y ()

_ e(i)
S 1- p()T[PTP + ul]=Tp(i)
= % (22)
1— IR AN
j=1Kjt+ 1
Hence
1) =y V) = % (23)
- j=1Fj + 1

Multiplying both sides of (23) with #(i), and applying #3(i) =
1, V i yields

e =
- j=1 6+ A
so that
WS- £ L0
h(i) = t(i)y= (i) = — pg(j)_ -
1= 21 K ']—}— i
= (25)

in which (16) was applied. The simplicity of (25) is due to:

1) the linear-in-the-parameters model structure so that (21) is
valid; and 2) the orthogonal procedure to enable the matrix in-
version in (21) to be applied to the diagonal matrix [PTP + p1].

C. FOWLS Maximal LOO-AUC Classifier Construction
Algorithm

In the following, it is shown that computational expense as-
sociated with kernel classification determination can be signifi-
cantly reduced by utilizing the forward regression process via a
recursive formula. In the forward regression process, the model
size is configured as a growing variable k. Consider the model
construction by using a subset of k regressors (k < M), that
is a subset selected from the full model set consisting of M ini-
tial regressors [given by (7)] to approximate the system. By re-
placing M with a variable model size k, and #(i)y(~") (i) with
hi(7), (25) is represented by

1) 0.0 (3) — ko pi(i)
A — VA7) ]gl D (i) ]21 Kj =+ 1 _ (i)
hi(7) L0 Be) (26)
o ; ij+ 4

where (i) = 1 — Z§=1 (D3(0)/rj+ ), ow(i) =
(LN Sy 6305 — Sy (#200) /5 + ).

a (1), Br(1) can be represented using the following recursive
formula:

N ; Ok ()t(i)  pE(i)
N R
Bui) = B (i) - j—(ﬁu @7)

Thus, the LOO-AUC for a new model with size increased from
(k — 1) to k is calculated by

TP = N% i 1dT (R, (7), t(7))

1 N
FP{™) = K Z IdF (hu (i), (i)

1+ TP, — Fp{”)
2

where hy (i) = ((ag(%))/(Br(7))). This is advantageous in that,
for a new model whose size is increased from (k — 1) to k, we
only need to adjust both numerator «(4) and the denominator
Bk (7) based on that of the model of size (k — 1), with a minimal
computational effort. In order to construct a sparse k-term
classifier that maximizes the value of LOO-AUC as given by
(5), a FOWLS model construction approach is applied that
incrementally adds a kernel per forward regression step. The
Gram-Schmidt procedure is used to construct the orthogonal
basis py in a forward regression manner [18], [19]. At each
regression step, the regressor with the maximal LOO-AUC

(AUC,g_ )> is selected.

AuCc =

(28)
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LOO-AUC maximization-based forward
Gram-Schmidt subset selection algorithm
(LOO-AUC+OFS)

1) Construct G, and A for given p. Initialize
ao(z) =0 and /30(1) =1, for i=1,...,N. Form
=A'?G
2) At the kth step where k> 1, for 1<I< M,
l#1,...l # li_1, compute
1, fj=k
(/) _ p it =
Wk = 1<j<k
if k=1
p® =
Z at kp], kE>2
W = (p l>) ¢
0) 1/24
A
o0 = (p )
(l) (0
NG Oy i ()t(i)
i)=ap_1(1)+ L7
(i) = ar—1(i) )
(CINE
[Pu) 2 i=1,...,N)
+u
l .
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b V ZIdF (h (i ))
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auci0 =1+ . (29)
Find
Iy = argmax{auc, ™ "1 <1< M, 1#1,...01# li_1}]
(30)
and select
ajp =d'¥)  avcy” = avc (31)
and update
arp(i)y =™ () Be(i) = U (), (i=1,....N)
g5 if k=1
— ) —1
Pr =P, " = g[k_ Z(’j/@p;’, E>2 (32)
g=1

3) The procedure is monitored and terminated
at the derived k =ny step, when AUCY) < AUCE,:)1
Otherwise, set k=k+1, and go to step 2).

This algorithm is presented with some predetermined param-
eters p, o, and p. Note that the setting of user-defined parame-
ters more or less affect the classification performance. It seems
that if the ultimate goal is the classification performance, then
all parameters including p, o, and p should be also optimized.
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However, the task of both model structure identification of the
kernel classifier and nonlinear/nondifferentiable parameters op-
timization simultaneously is to solve an intractable problem. In
order to obtain a tradeoff between model performance and al-
gorithmic complexity, it is a common practice to set some pa-
rameters empirically because suboptimal approaches are often
preferable in practical data modeling algorithms/applications.

Remarks:

1) The parameter p is an important parameter introduced to
increase the flexibility of dealing with different degrees of
imbalances in the data sets. The effects of p will be inves-
tigated in Section IV through simulations. It will be shown
that the empirical results conform to the initial analysis in
Section III-A, e.g., models obtained by increasing p from
1 will increase both TP and FP until a balanced model is
found.

2) The classification performance is quite robust to the width
o, as long as this is chosen in a wide range in the same
scale of the input data set. Note that the input data samples
should be standardized if the input variables are not in the
same range. A simple way of locating a good choice of o
is to use a simple grid search.

3) Note that the regularization parameters ;4 may be opti-
mized iteratively using the evidence procedure [12], [39],
[19] for regression and balanced data set classification.
Further research on the suitability of the procedure over im-
balanced data set is necessary as the underlying assumption
of the procedure may no longer be suitable for imbalanced
data sets. Nevertheless, it may be useful to set the regular-
ization parameter p as a small positive parameter [40] to
improve numerical stability and overcome overfitting for
some noisy data and/or small data set.

4) An estimate of the computational cost of the algorithm at
the training stage O(ng N M), withng < M and M < N.
For a large data set, a subset of M randomly drawn data
samples from [V training data samples may be used to con-
trol the computational cost. Note that the proposed classi-
fier generally has a minimal model size bringing the ad-
vantage of the minimal computational cost when applying
to new data set.

IV. ILLUSTRATIVE EXAMPLES

Tllustrative examples are reported in the following to examine
the operation of the proposed algorithm in deriving single clas-
sifiers based on incrementally maximizing LOO-AUC perfor-
mance in a forward regression manner. Simulation results using
k-fold cross validation are used to indicate model generalization
capabilities based on multiple specifications. It is shown that the
results from the proposed approach are comparable with other
approaches.

Example 1: For this synthetic data set, an estimation data set
with two features z; and x, was generated, with the majority
class (D_) of mean vector [0, 0]7 and the covariance matrix as
the identity matrix. The minority class (D_) has a mean vector
of [2,2]* and the same identity matrix as the covariance matrix.
The estimation data set consists of 100 data samples from D_
and ten data samples from D, . A test data set with the same
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Fig. 3. Evolution of LOO-AUC versus the classifier size for the synthetic data set using the proposed algorithm.
TABLE II
GENERALIZATION PERFORMANCE OF CLASSIFICATION FOR SYNTHETIC DATA SET
TP FP Precision | F-measure | G-mean | Wt.Accuracy
KRLS with all data as centres | 0.840 | 0.037 0.694 0.760 0.899 0.901
1-NN 0.830 | 0.047 0.638 0.722 0.889 0.892
3-NN 0.780 | 0.022 0.780 0.780 0.873 0.879
LOO-AUC+OFS (p=1) 0.860 | 0.049 0.637 0.732 0.904 0.905
LOO-AUC+OFS (p=5) 0.840 | 0.028 0.75 0.792 0.903 0.906
LOO-AUC+OFS (p=10) 0.90 | 0.063 0.588 0.712 0.918 0.919
LOO-AUC+OFS (p=15) 0.870 | 0.046 0.654 0.747 0.911 0.912
LOO-AUC+OEFS (p=20) 0.870 | 0.049 0.640 0.737 0.909 0911

distribution was also generated, providing 1000 data samples for
the majority class and 100 data samples for the minority class.

By using the estimation data set, the Gaussian kernel function
9j(x) = exp[—||x — ¢;||?/0?] is used as basis functions, where
o is setas 1. All estimation data examples were used to form the
candidate center set c;. The regularization parameter was set
as u = 1x1073. Taking p = 10 for illustration, the proposed
maximal LOO-AUC-based forward selection algorithm (LOO
- AUC+OFS) was applied. The modeling process is illustrated
in Fig. 3, in which it is seen that LOO-AUC increases over the
forward regression step up to model size 3.

To illustrate the effect of the proposed algorithm of achieving
a more balanced classification results for both classes, the full
set of 110 kernels was used to construct a kernel classifier with
regularized least squares parameter estimator (KRLS). The reg-
ularization parameter 1x 1072 was applied. Other algorithms
used for comparison are the k-nearest neighbor classifiers
(1-NN and 3-NN). For imbalanced data sets, there are several
performance metrics widely used for comparison. All of them
are based on values in the confusion matrix of Table I. The
performance on TP and FP can be used to generate a single
performance metric as geometric mean (G-mean), defined by

G-mean = /TP X (1 — FP).

(33)

The G-mean value is a metric which favors balanced classifi-
cation performance for two classes. In addition to TP, FP, and
G-mean, there are precision [41] and F-measure [41] as defined
by

Precision =

a+c (34

and

2 x Precision X TP
Precision + TP

F-measure = 35)

Simulation results of the three methods over the test data set
that has not been involved in model construction are shown in
Table II and Fig. 4. From Table II, it is seen that the proposed
algorithm has better tradeoff between TP and FP than both the
k-nearest neighbor classifier and the conventional KRLS param-
eter estimator based on F-measure and G-mean values. From
Fig. 4, it is clearly seen that the decision boundary of the three-
term kernel classifier as derived by the proposed algorithm is
further away from the minority class D_ than that of the KRLS.
This example shows that the proposed algorithm has the effect
of achieving better classification for the minority class and more
balanced classification results for both classes. Note that the
main computational cost of KRLS is the matrix inversion es-
timated as O(NN?3) for the full data sets as centers. This means
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Fig. 4. Synthetic test data set and the decision boundary of (a) the regularized least squares 110-center kernel classifier with equal data weighting and (b) the

derived three-term kernel classifier by the proposed algorithm.

TABLE III
EIGHTFOLD CROSS-VALIDATION CLASSIFICATION PERFORMANCE FOR PIMA INDIAN DIABETES DATA SET

TP FP Precision | F-measure | G-mean | Wt.Accuracy

KRLS with all 0.56 0.14 0.68 0.61 0.69 0.71
data as centres +0.05 | £0.04 +0.07 +0.04 +0.03 +0.02
1-NN 0.54 0.21 0.58 0.56 0.65 0.66
+0.04 | +0.04 +0.06 +0.04 +0.02 +0.02

3-NN 0.58 0.17 0.65 0.61 0.69 0.70
+0.06 | +0.06 +0.07 +0.04 +0.04 +0.03

LOO-AUC+OFS 0.58 0.13 0.70 0.63 0.71 0.72
(p=1) +0.03 | £0.05 +0.09 +0.05 £0.03 $0.03
LOO-AUC+OFS 0.68 0.20 0.65 0.66 0.73 0.74
(p=1.5) +0.06 | £0.07 +0.08 +0.05 +0.04 +0.04
LOO-AUC+OFS 0.73 0.24 0.62 0.67 0.74 0.74
(p=2) +0.05 | £0.07 +0.07 +0.05 +0.04 +0.04
LOO-AUC+OFS 0.77 0.31 0.57 0.66 0.73 0.73
(p=2.5) +0.05 | +0.06 +0.05 +0.07 +0.03 +0.03

that it is impractical for KRLS to be applied to very large data
samples. In addition, both KRLS and k-nearest neighbor classi-
fier will certainly be more computational expensive when eval-
uating new data samples as they all involve calculation through
the full estimation data set.

Example 2: The Pima Indians diabetes data set obtained
from the University of California at Irvine (UCI) repository
[42] contains 768 samples from two classes with 500 nega-
tive samples and 268 positive samples. The positive class is
interpreted as “tested positive for diabetes.” There are eight
input features for the data samples. Initially, all eight input
features are normalized to the range [0, 1] using the opera-
tion: ((z5(7) — min(xs))/(max(xs) — min(zy))), — z4(7),
Vi, for s = 1,2,...8. Then, the Gaussian kernel function
gi(x) = exp[—((||x — ¢;]|*)/(c?))] is used as the basis func-
tions, where o is set as 1. As shown in Fig. 5, initially taking
p = 2 and based on the whole data set, the model construction
process using LOO-AUC model term selection is demonstrated
by automatically deriving a kernel classifier with nine centers.
The regularization parameter i = 1 x 10~* was applied.

Then, the eightfold cross validation was used to investigate
the effectiveness of the proposed algorithm. The proposed al-

gorithm with various values of p were experimented with regu-
larization parameter as 1 = 1 x 10™%, in comparison with al-
ternative approaches. The results of k-nearest neighbor (1-NN
and 3-NN) and a kernel classifier were used for comparison; the
latter is based on the regularized least squares algorithm using
all estimation data as centers and the regularization parameter
of 1 x 107%. The results of the eightfold cross validation are
shown in Table III. For models derived using equal weighting
for data samples, the models have a low TP, i.e., weak detection
capability for diabetes. The variation in performance in terms of
TP and FP with respect to that of parameter p is examined. p is
increased from 1 to 2.5 at a step of 0.5; it increased the detection
capability at the cost of an increased FP. Based on G-mean and
F-measures, it can be concluded that the choice of p around two
produced better models.

The models derived using the (LOO - AUC+OFS) algorithm
in eightfold cross-validation experiments have model sizes in
the range of 4-24 centers.

Example 3: Haberman’s survival data set obtained from the
UCI repository [42] is from a study on the survival of patients
who had undergone surgery for breast cancer. The data set con-
tains data samples of 306 patients with 225 negative samples
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Fig. 5. Evolution of LOO-AUC versus the classifier size for Pima Indians diabetes data set using the proposed algorithm.

TABLE IV
TWOFOLD CROSS-VALIDATION CLASSIFICATION PERFORMANCE FOR HABERMAN DATA SET
TP FP Precision | F-measure | G-mean | Wt.Accuracy

KRLS with all 0.33 0.11 0.63 0.41 0.54 0.61
data as centres +0.05 | +0.01 +0.07 +0.05 +0.04 +0.03

1-NN 0.32 0.21 0.36 0.38 0.50 0.56
+0.03 | +0.02 +0.01 +0.02 +0.02 +0.01

3-NN 0.17 0.15 0.30 0.22 0.38 0.51
+0.06 | +0.06 +0.07 +0.04 +0.04 +0.03

LOO-AUC+OFS 0.21 0.05 0.61 0.31 0.45 0.58
(p=1) +0.02 | £0.01 +0.05 +0.03 +0.02 +0.01

LOO-AUC+OFS 0.38 0.13 0.51 0.44 0.57 0.63
(p=2) +0.08 | 40.02 +0.02 +0.06 +0.05 +0.03

LOO-AUC+OFS 0.62 0.27 0.45 0.52 0.67 0.68
(p=3) +0.08 | +0.03 +0.05 +0.06 +0.05 +0.05

LOO-AUC+OFS 0.67 0.42 0.36 0.47 0.62 0.62
(p=4) +0.02 | 40.08 +0.03 +0.02 +0.03 +0.03
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and 81 positive samples. The positive class represents “the pa-
tients who died within five years.” There are three input features
for the data samples. The data set was randomly split into 50/50
for the twofold cross-validation experiments. Initially, all three
input features are normalized to the range [1, 1] using the oper-
ation: ((zs(¢) — min(z,))/(max(zs) — min(z;))), — s(7),
V1, for s = 1,2,...3. Then, the Gaussian kernel function
g;(x) = exp [— ((/lx = ¢;||*) /(0?))] is used as a basis func-
tion, where o is set as 1. The proposed algorithm with various
values of p was experimented with regularization parameter as
i =1 x 10%, in comparison with the k-nearest neighbor
(1-NN and 3-NN) and a kernel classifier that are based on the
regularized least squares algorithm using all estimation data as
centers and the regularization parameter of 1 x 10~%. The re-
sults of the twofold cross validation are shown in Table IV.
For models derived using equal weighting for data samples, the
models have a low TP, i.e., weak detection capability for the
positive class. Experiments on the proposed algorithm were car-
ried out by increasing p from 1 to 4 at a step of 1. It is clear that

TP is increased at the cost of an increased FP. Based on the
G-mean and F-measures, it can be concluded that the choice of
p around three produced better models.

Example 4: The austempered ductile iron (ADI) material data
set for automotive camshaft application [43] is used to study
why fatigue cracks are initiated from the graphite nodules within
the microstructure. There are nine features and two class labels

“crack” and “no crack”). The data set is very imbalanced with
a total of 2923 samples in which 116 samples are “crack class,”
and 2807 samples are “no crack class.” A cost-sensitive support
vector machine (CS-SVM) and a cost-sensitive SUPANOVA
model [43] were applied to investigate the data set [43]. The
cost-sensitive SUPANOVA model used one-norm regularization
to derive a reduced model set trading model interpretability with
classification performance. They used a reduced training data
set of 90 “crack” and 700 “no crack” data samples.

We used random drawn data samples consisting of 90
“crack” and 700 “no crack” data samples from the data
set, and the process was repeated 16 times to obtain eight



38

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 1, JANUARY 2007

TABLE V
GENERALIZATION PERFORMANCE OF CLASSIFICATION FOR ADI DATA SET
TP FP Precision | F-measure | G-mean | Wt.Accuracy
SVM 0.34 0.10 0.30 0.32 0.55 0.62
(C+ = 1000, C'— = 1000) +0.03
CS SVM 0.72 0.23 0.29 0.42 0.74 0.75
(C+=1,C-=0.1) +0.02
SUPANOVA 0.80 0.53 0.18 0.29 0.64 0.67
C+=1,C-—=0.1) +0.03
LOO-AUC+OFS 0.21 0.01 0.67 0.32 0.46 0.60
(p=1) +0.03 | £0.01 +0.08 +0.04 +0.03 +0.02
LOO-AUC+OFS 0.55 0.14 0.33 0.41 0.68 0.70
(p=5) +0.09 | £0.02 +0.02 +0.04 +0.05 +0.04
LOO-AUC+OFS 0.71 0.23 0.29 0.41 0.74 0.74
(p=8) +0.07 | £0.03 +0.01 +0.02 +0.03 +0.02
LOO-AUC+OFS 0.71 0.22 0.30 0.42 0.74 0.74
(p=10) +0.05 | £0.03 +0.01 £0.01 +0.02 $0.02
LOO-AUC+OFS 0.77 0.25 0.28 0.41 0.76 0.76
(p=12) +0.02 | £0.02 +0.02 +0.02 +0.01 +0.01
LOO-AUC+OFS 0.83 0.29 0.27 0.40 0.76 0.76
(p=15) +0.02 | £0.02 +0.01 +0.02 +0.01 +0.01
LOO-AUC+OFS 0.88 0.36 0.24 0.37 0.75 0.75
(p=20) +0.03 | £0.04 +0.02 +0.02 +0.02 +0.02

pairs of training/testing data set in order to make a com-
parison with results of [43]. Initially, all nine input fea-
tures are normalized to the range [0, 1] using the operation:
((@o(i) - min(e,))/(max(z,) - min(z,), — (i),
Vi, for s = 1,2,...9. Then, the Gaussian kernel function
g;(x) = exp [— (([lx — ¢;||?) /(0?))] is used as a basis func-
tion, where o is set as 1. For each pair of training/testing data
set, all the data samples in the training data set were used to form
the candidate center set c;. The regularization parameter was
setas u = 1 x 10~%. The proposed maximal LOO-AUC-based
forward selection algorithm (LOO - AUCHOFS) was applied
while p was varied from 1 to 20. The classification results of
the eight trials were listed in Table V. The results are quoted
from [43] for comparison. The CS-SVM approach in [43]
used a control sensitivity loss function [28] including weights
C+,C— for slacking variables of two classes, respectively.
Lee [43] used a grid search by varying C'+, C'— in the range
[0.01, 10000], and the best model in terms of best G-mean was
found the model with (C+ = 1, C— = 0.1). To provide the
overall performance on other criteria on precision, F-measure,
G-mean, and weighted accuracy for SVM, CS-SVM, and
SUPANOVA, these values are added based on Table I, (1), (2),
and (33)—(35). It can be concluded that the choice of p around
10-12 produced better models with competitive performance
with the best CS-SVM (C+ =1, C— = 0.1). For p = 12, the
model size is between 3-7.

Example 5: The Satimage data set from the UCI repository
[42] obtained from [44] contains 36 attributes that are numer-
ical values for nine neighborhood pixels in four frequencies, and
six class labels [44] denoting types of soil (or crop) of the cen-
tered pixel. There are 9.73% samples of the data set from class 4
(damp grey soil) as the least prevalent class, and this was chosen
to be classification target in this study (D). Data with other
class labels were combined as a major class “not class 4,” con-
taining 90.27% samples of the data set (D_ ). The total number
of data samples is 6435. The data set was split into ten pairs of
training/test data sets using tenfold cross validation. The size of
each training data set is, therefore, N = 5791. For each training

data set in turn, the experiments were repeated to obtain results
for p in the range of between 1-10.

Initially, all 36 input features are normalized to the range
[0,1] using the operation: ((zs(¢) — min(zs))/(max(zs) —
min(zs))), — x5(4), Vi, fors = 1,2, ... 36. Then, the Gaussian
kernel function g;(x) = exp [— ((|lx — ¢;11?) /(¢?))] is used
as a basis function, where o is set as 1. In order to reduce the
computational cost, 20% randomly drawn training data samples
(M = 1158) rather than all the training data samples were
used to form the candidate center set c;. The regularization
parameter was set very small as ;1 = 1x 10~? since the training
data set size is large. The proposed maximal LOO-AUC-based
forward selection algorithm (LOO - AUC+OFS) was repeat-
edly applied to each training data set with different p. The
derived model size are between 15-30. In Table VI, the tenfold
cross-validation results of the proposed approach were listed
together with some other imbalanced data classifiers quoted
from [35] for reference. It is worth mentioning that the RF
approach used in [35] is a sophisticated classification tree
approach with unparallel classification accuracy [5]. Note that
the model derived from LOO - AUCHOFS algorithm with a
proper p tends to achieve high performance over minority class
trading off performance in the majority class. We do not claim
the superiority over other imbalanced data modeling methods,
as the best tradeoff between TP and FP is dependent upon
the application. The purpose of the paper is to investigate the
applicability of the algorithm for imbalanced data, especially in
its capability to achieve a good balanced performance through
the objective function (5). Note that it is easy to modify the
algorithm by using other model selective criteria, e.g., F-mea-
sure (35) in order to derive models with better performance for
the specific measure of interest. The example indicates that the
proposed algorithm can achieve good classifiers with simple
model structure.

V. CONCLUSION

Classification algorithms have often been developed with the
aim to obtain good classification accuracy, i.e., to minimize the
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TABLE VI
TENFOLD CLASSIFICATION PERFORMANCE FOR SATIMAGE DATA SET
TP FP Precision | F-measure | G-mean | Wt Accuracy

Standard RIPPER 0.4743 | 0.0241 0.6792 0.5550 0.6803 0.7251
SMOTE 100 0.6517 | 0.0554 0.5588 0.5997 0.7846 0.7982
SMOTE 200 0.7489 | 0.0871 0.4808 0.5826 0.8268 0.8309
SMOTE-Boost 100 0.6388 | 0.0198 0.7771 0.7012 0.7913 0.8095
SMOTE-Boost 300 0.6787 | 0.0275 0.7268 0.7019 0.8124 0.8256
BRF cutoff1 0.6709 | 0.0403 0.6422 0.6562 0.8024 0.8153

BRF cutoff2 0.7700 | 0.0644 0.5631 0.6505 0.8488 0.8528

WRF weightl 0.6933 | 0.0329 0.6944 0.6938 0.8188 0.8302
WRF weight2 0.7748 | 0.0544 0.6055 0.6798 0.8560 0.8602
LOO-AUC+OFS (p=1) | 0.4603 | 0.0230 0.6866 0.5497 0.6689 0.7187
LOO-AUC+OFS (p =2) | 0.6337 | 0.0616 0.5279 0.5754 0.7708 0.7861
LOO-AUC+OFS (p =3) | 0.7626 | 0.0924 0.4733 0.5832 0.8315 0.8315
LOO-AUC+OFS (p =4) | 0.8236 | 0.1446 0.3827 0.5209 0.8389 0.8395
LOO-AUC+OFS (p =5) | 0.8492 | 0.1523 0.3763 0.5205 0.8482 0.8484
LOO-AUC+OFS (p = 8) 0.8563 | 0.1584 0.3732 0.5177 0.8486 0.8490
LOO-AUC+OFS (p =10) | 0.8642 | 0.1687 0.3602 0.5072 0.8470 0.8478

misclassification rate over all data samples. In real applications,
imbalanced data sets are common where the objective is to
achieve a high accuracy for minority class as well as that
of majority class. Conventional classifiers tend to produce
unfavorable classification results for minority class unless the
issues caused by the imbalance between classes are addressed
in an appropriate manner. A new two-class kernel classifier
construction algorithm uses OFS in order to optimize the
model generalization for imbalanced data sets. The new kernel
classifier identification algorithm is based on a new ROWLS
and the model selective criterion of a maximal LOO-AUC
of the ROCs. The new regularized orthogonal weighted least
squares algorithm as parameter estimator is developed in the
framework of forward orthogonal selection. Based on the
orthogonalization procedure, the computing of LOO-AUC is
performed using analytic formula rather than actually splitting
the estimation data set. Consequently, the proposed algorithm
can achieve minimal computational expense via a set of for-
ward recursive updating formula in the search of terms with
maximal LOO-AUC value. Several examples have been pro-
vided to demonstrate the proposed algorithm is a viable, highly
computational, and efficient alternative approach for building
two-class classifier for imbalanced data sets.

APPENDIX
LOO MODELING RESIDUALS OF REGULARIZED OWLS

Following (18), the regularized parameter vector estimator
based on orthogonal weighted least squares algorithm is
0= [PTP + uI] 'PTAY 2t = D 'PTAY% (36)
where I is a unit matrix. Substitute (36) into (19) of the model
residual representation to yield

(1) =t(i) - A(Z.>~‘»’Tp('i)
=t(i) — %tTAl/ PD'p(i). (37)

If the data sample indexed at ¢ is deleted from estimation data
set, the regularized LOO model parameter vector based on
OWLS is given by

= {[PCIPTPED 4Ty AP A 2y 0

=D PCI Y (38)
where t denotes the weighted output vector AY 2)t, with its sth
element as \/A(2)t(i). P(=% and t(=*) denote the LOO regres-
sion matrix and weighted output vector, respectively. By deriva-
tion, it can be shown that

99

D) =D — p(i)p” (i) (39)
[ETPED =8TP — /A@)H(i)p" (0)
=tTAY?P — /AG)t()pT (). (40)

The LOO modeling errors evaluated at i, based on the regular-
ized orthogonal weighted least squares, are given by

(@) =1(i) =y ()
=1(i) — 81" p(i
) = st el
=0~ 75 GRS DR i JORICOD

Equation (39) and using the matrix inversion lemma yields

DI =D - p(i)p” (i)] "
1, D p()lo()D1
=Dt DBy @
and
DO Ip(i) = — 2 P (43)

1—p”(i)D~'p(i)
Substituting (40) and (43) into (41) yields

D (i) = 1(i) — i(z) (tTAYZP — /At
y D~ 'p(i)
1—pT(i)D~'p(i)

AN 1 2T Al/2 —1..(;
- t(7) —mt A"PD'p(7) )
B 1—p"(i)D~'p(i) '




Applying (37) to (44) yields

e(—i) (’l,) — 6(2)
1—p"(:)D~'p(2)
_ e(i)
C1=pT()PTP + pd] 7 p(i) |

(45)
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