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Abstract. A bilinear multivariate errors-in-variables model is considered. It
corresponds to an overdetermined set of linear equations AXB= C, 4 e R™*"
B e R”*Y, in which the data A, B, C are perturbed by errors. The total least
squares estimator is inconsistent in this case.

An adjusted least squares estimator X is constructed, which converges
to the true value X, as m — o0, ¢ — oo. A small sample modification of the
estimator is presented, which is more stable for small m and ¢ and is asymp-
totically equivalent to the adjusted least squares estimator. The theoretical
results are confirmed by a simulation study.

Key words: bilinear multivariate measurement error models, errors-in-
variables models, adjusted least squares, consistency, asymptotic normality,
small sample modification

1 Introduction

Many linear parameter estimation problems [VV91] can be reduced to solving
an overdetermined set of linear equations

AX ~ B. (1)

Whenever all measurements in both matrices 4 and B are affected by errors,
the popular ordinary least squares estimator gives biased estimates. Measure-
ment error models [Ful87], also called errors-in-variables models, should
be considered in order to derive consistent estimators. If the errors are non-
correlated and equally sized, the total least squares (TLS) method [VV91,
GV80] provides a consistent estimate of the unknown parameter X. This
method, better known as orthogonal regression in the statistical literature,
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computes correction matrices 44 and 4B of minimal Frobenius norm in order
to make the corrected set of equations

(A— 44)X = B— AB

compatible and has become very popular in engineering since the early
eighties due to the existence of computationally attractive algorithms based
on the singular value decomposition (SVD) [GV80, VVI91].

Since then several generalizations of the TLS estimator have been pre-
sented. In particular, we mention the generalized TLS estimator, based on
the generalized SVD, which provides consistent estimates of X provided the
measurement errors in [4 B] are row-wise i.i.d. with zero mean and same
covariance matrix, known up to a factor of proportionality.

In this paper we generalize the linear model in (1) to a bilinear model,
represented as

AXB~C ()

This model can be considered as a special case of a polynomial model, namely
a quadratic measurement error model [Ful87, CRS95].

It should be noted that the TLS principle can no longer be applied to
model (2) in order to provide consistent estimates. Indeed, as mentioned in
[Ful87], adding correction matrices 44, 4B and AC of minimal Frobenius
norm in order to make (4 — 44)X (B — 4AB) = C — AC compatible results in
biased estimates for the parameter X. In this paper an adjusted least squares
(ALS) estimator [CRS95, CS98] of X is presented and shown to be consistent.

Next we give two examples where the bilinear measurement errors model
(2) arises.

Example 1 (Total production cost model). Assume that r production inputs
(materials, parts, labor, etc.) are combined to make n products. Let b, be the
price per unit of the k-th production input and xj be the number of units of
the k-th production input, required to produce one unit of the j-th product.
The production costs per unit of the j-th product is the j-th element of the
vector

y = Xb.

Let a; be a required quantity to be produced of the j-th product. The total
quantity of the k-th production input needed is the k-th element of the vector

z=XTa.

The total production cost ¢ is z”h, which gives a “single measurement”
AXB = C model

alXb = c.

A situation in which we have multiple measurements could be: given
is a set of (approximate) quantities to be produced of the n products,

a',...,a", (approximate) prices per unit of the production inputs, b',..., b9,
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and (approximate) total costs ¢, corresponding to all combinations of the
given quantities to be produced and prices. Then the model is

(a")” el ola
Xp'.. b=
(am)T B le e
A C

Estimation of xj in the model AXB = C, can be interpreted as: estimate
the number of units of the k-th production input, required to produce one unit
of the j-th product.

Example 2 (Estimation of the fundamental matrix [MMO98]). Two images are
captured by a mobile camera and m matching pixels are located. Let

u;(1 vi(1)
U = ul(z) and U = Uj(2) ) i= 17 cees M
1

represent the homogeneous pixel coordinates in the first and second image
respectively. The so called epipolar constraint relates the corresponding pixel
coordinates by the model

v/ Fu;=0, i=1,...,N, (3)

where F € R¥3, rank(F ) =2 is the fundamental matrix which is identical
for all pairs of corresponding vectors u;, v;, 1 <i < N. Estimation of F from
the given noisy data is called structure from motion problem and is a central
problem in computer vision.

In [KMVO01] we modified the adjusted least squares estimator derived in this
paper for the model (3).

The notation we use is standard. For any matrix 7, #; denotes the i, j-th
element of T. The bold symbol E denotes mathematical expectation. It acts
on the expression on the right up to an addition or subtraction sign. Condi-
tional expectation of x, conditioned on C, is denoted by E[x|C]. The nota-

tion cov(x) denotes the covariance matrix Ex”x — ExTEx and A" denotes the
pseudo-inverse of A. In the formulas “const” denotes any constant value (for
example, we can write const?> = const).

The paper is organized as follows. Section 2 introduces the model and the
global assumptions. In Section 3, an ALS estimator for the bilinear model (2)
is derived. In Section 4, weak and strong consistency of the ALS estimator is
stated. In Section 5, a bound on the rate of convergence is derived. In Section
6, asymptotic normality is shown. In Section 7, a small sample correction of
the ALS estimator is derived. Section 8 gives numerical results and Section 9
concludes and discusses future work. Technical proofs are presented in the
Appendix.



256 A. Kukush et al.

2 The model
We consider the model
AXB = C. (4)

Here A e R™", Be R?*Y, C e R™Y are observations and X € R"™? is a
parameter of interest. We suppose that

A=Ay+A, B=By+B, C=Cy+C, (5)
and that there exists Xy € R"*? such that
Ao XoBy = Cy.

Here Ao, By, and Cy are nominal or true values and A, B, and C are errors.
The matrix X, is the nominal or true value of the parameter. From the point
of view of errors-in-variables models, C represents the equation error, while A
and B represent the measurement errors.

Looking for asymptotic results in the estimation of X in the model (4), we
fix the dimensions of X, n and p, and let the number of measurements, m and
g, increase. The measurements are represented by the rows of 4, the columns
of B and the elements of C. For the whole paper we denote

V;2EATA, Vz;2EBB”.

The matrices Vi and Vi are supposed to be known, while the variances of the
entries of C are unknown.

Specific notation is set in the course of exposition. The assumptions used in
the paper are enumerated. Global assumption for the paper is assumption (i).

(i). The errors {a;,i>1,1<j<n}, {5/(;,1 <k<p,l>1} and {é,i=>1,
/ > 1} form three independent arrays of r.v., which are centered and pos-
sess finite second order moments.

More assumptions are stated where necessary.
The model (4-5) is a bilinear regression measurement error model. In a
scalar form it can be written as

C,‘]Zng»x]‘kbgl—Féil, I<i<m1<l]<yq,
Ik

aj=ay+a; 1<i<m1<j<n, (6)

bu=0% +by, 1<k<pl<l<g.

Here the design points a?j and b}, are unobservable non-stochastic variables
and the true value cl.(} is a nonlinear function of 4 and By.

It is known that orthogonal regression is inconsistent for nonlinear mea-
surement error models, see comments in [Ful87] and a mathematical proof of
inconsistency in [KZ96]. The orthogonal regression estimator is a (weighted)
TLS estimator [GV80, VV91], therefore due to nonlinearity of the model (4),

the TLS estimator is inconsistent in this case.
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The model (6) is a particular case of a quadratic model; it is bilinear with
respect to the compound nuisance parameters [4g By|. For polynomial errors-
in-variables models an ALS estimator is proposed in [CS98]. It is consistent.
In [CRS95, Chapter 6], the method of corrected score functions is presented
and in [Bar00] it is mentioned that an ALS estimator in a polynomial model is
generated by the method of corrected score functions.

3 The score equation and an ALS estimator
We start with the LS objective function

¢is(X,4,B,C) £ | AXB - C||}. ()
In the space of matrices IR**?, we introduce a scalar product

(T,SY 2 tr(TST), T,SeR™,.

The derivative dq,5/0X is a linear functional on R™*”. It acts on H € R
according to the rule

aqu
0.4

(H) = tr((AXB — C)(AHB)") = tr(4" (AXB — C)B"HT)

N —

=<{A"(AXB - C)BT H). (8)

We can identify the derivative dg;s/dX with a matrix, which represents it in
the equality (8). Thus it is redefined as

1aqu_ T T T T
53y = (A")X(BB") — A" CBT.

In the absence of measurement errors, i.e. when 4 = 0 and B = 0, see (5), the
LS estimator is obtained by minimizing (7) or (what is asymptotically equiv-
alent) via the score equation §dg,/0X = 0. Thus the score function for the LS
method is

W.s(X,4,B,C) £ (4"4) X (BB") — AT CBT,

and the LS estimator is consistent in the absence of measurement errors.
Now, we are looking for a corrected score function , such that

E[y(X, Ao+ A, By + B,C)|C] =y, (X, Ao, By, C) forall X, Ay, By, C.
We seek  in the form y =, — ;. We have by assumption (i)
E[y, (X, 40+ A, By + B,C)| C]
= Ys(X, Ao, Bo, C) + EATAXBB! + EAY Ao X BB + V;XV;

= Y5 + 11 (Bo) + Y1p(Ao) + Vi XV,
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with

Y11 (Bo) £ V;XBy By,

Y12(4o) £ AOTAOXVB-

To find a proper correction term /; we consider

Eyy, (Bo + B) = V;XBoBg + VXV,

EY (Ao + A) = ALY Ao XV + VX V5. o
Therefore

Y1(4,B) = Y11 (B) + ¥p(4) — ViX Vg
and

W(X,A4,B,C)

= (A"A)X(BB") — AT CB" — V;X(BB") — (ATA) XV} + V; XV}
= (A"4 - V) X(BB" — V) — ATCB”.
The ALS estimator X is defined from the equation
W(X,4,B,C) =0. (10)
As an estimator we can take
X 2 (AT - v)'(ATCBT)(BBT — V). (11)

If ATA — V; and BBT — V; are non-singular, then (11) satisfies (10). Later on
we shall show that these matrices are non-singular with probability tending to
one as the number of measurements (rows of 4 and columns of B) is tending
to infinity. Observe that (11) reduces to the generalized TLS estimator [VV89,
Gal82], in the case B = I,, B = 0 under the assumption (i).

4 Weak and strong consistency
We introduce further assumptions.

(ii). The rows of A4 are independent, i.e. (@;,i > 1,1 <j <n) are indepen-
dent, the columns of B are independent, i.e. (by,1 <k < p,l>1) are
independent, and all elements of C are independent, i.e. (¢y,i > 1,/ > 1)
are independent.

(iif). Ed;‘j < const, Eb}, < const, and E¢> < const.

(iv). We denote

Vig & Ag Ao, Vi, £ BoBg
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and assume that

imax(V;‘lo)"'m;}O as m — oo and imax(VBo)"‘q
/lrzmn(l{‘lo) mm(VBO)

The assumption (iv) corresponds to the condition of weak consistency,
given in [Gal82] for the maximum likelihood estimator in the model (1).

— 0 asg— oo.

Theorem 1 (Weak gonsistency). Assume that assumptions (i) to (iv) hold.
Then the estimator X given in (11) converges to Xy in probability, as m — oo
and g — 0.

Proof. Denote
U2 A"~ V;, Ug2BB" -1 (12)
By assumption (iv), ¥}, is non-singular for m > mg and Vj, is non-singular

for g = g for some fixed m( and g¢. For m > my, g > gy, we rewrite equation
(10) in the form

Vi ' UiXUpV ' = V' (A"AoXoBoBT + ATCBT) V! (13)
For consistency, it is enough to show that

ViU > 1, and UglVg' 51, (14)

Vil(4740) 5 1, and BoBl V' 5 I, (15)

V' ATCB V! 5 0. (16)

The proofs of (14)—(16) are given in the Appendix. []

The main probabilistic tool to prove the strong consistency is the following
matrix analogue of the Rosenthal inequality, see [Ros70].

Lemma 1. Let {5;,i > 1} be a sequence of independent r.v., En;, =0,i =1,2, ...
Then for any real number t > 2, and for all m > 1

m m m [/2
Z < ¢(#) max Z Eln,|’, <Z En; ) ,
i=1 i=1

where c(t) depends on t, but it does not depend on m.

We strengthen assumptions (iii) and (iv).
(v). For fixed real number r>2, E|a;|” < const, E|by|” < const, and

E|éy|* < const.
(vi). For fixed mg > 1,

zw: ’/2 _|_'11fndx( o) < o0
m=m mm( I{q(,) mln( V‘lo)
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and for fixed ¢¢ > 1

0 r/2 lr V
q max( Bo)
>+ 4 o < o,
(imin(VBo) 12 (VBO)>

4=40 min

where r is defined in assumption (v).

Theorem 2 (Strong consistency). Assume that assumptions (i), (ii), (v) and
(vi) hold. Then the estimator X given in (11) converges to Xy a.s., as m — oo,

q — 0.

Proof. See Appendix.

5 Rate of convergence

Let the assumptions of Theorem 1 hold. With probability tending to 1 we have

(AT4 — V)X (BB — V) = ATCB”.

(17)

We set X 2 X, + 4 and consider m > mo, q > qo, for which V;, and Vp, are

non-singular. From (17) we have
(ATA — V) A(BBT — V) = AT (40 XoBo + C)BT
— (A"4 = V) Xo(BB" — V).
Using the notations (12) we have

Vi ' UsdUpVy! = vV, " ATCBT V! + V. (A" A0 Xo By BT

— (A" — V) Xo(BB" — V) V' £ Ry + Ra.

By (14), the LHS of (19) equals
LHS = (I, + 0p(1)A(I, + 0p(1))

Next, see Section 4,

Ry =V, '4"CB" V]

_ \/)Lmax(%o) +m ) \/;Lmax(VBo) +4q .
Jomin(Va,) Zmin (Vo)

0,(1).

We decompose R, = Ry — Ry.

(18)
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Ry = V(AT 0 XoBoBT — Vi, XoVi,) V5,

— lmax(mo) )”max(VBo)
= <1,,+7/1mm(%) Op(1)>Xo<lp+—imm(V30) op(1)>—Xo, (22)

IRl = (ﬁijg%’) - ﬁfnm((VV))) 0y(1) 3

and

Ry =V, (A" — V) Xo(BB" — Vg — V4, XoVi,) V5,

<In o VT ) Op(l)> X

mm(V‘lo)

(1p + Y maX§V3°)op<1>> - Xo (24)

mm BO

/lmm(Vélo) /me(VBo)

Therefore from (19), (20), and (21) to (25) we obtain

| Rl = <f+ max(Vao) | VA H /Ao (s, ) p(1). (25)

X = Xollp = (um +v,)Op(1), (26)
where

N \/ﬁﬁ- /ﬂbmax(V;‘lo) v A \/q+ imax(VB()) (27)

" Amin(V‘io) 7 ! j*n‘lin(VBo) '

6 Asymptotic normality
6.1 Expansion for A
Now, we strengthen assumption (iv).

(vii). L ¥4, — Vi, as m — oo, and },VBO — Vs as g — oo, where V., and
VB are positive definite matrices.

Under (vii), L Amax(Vay) = Amax(Aas) >0, and L Awin(Va,) = Amin(4uso) >
0, similarly for Vg,, therefore (vii) implies (1V)

We shall assume (i) to (iii) and (vii), and in the process of establishing
asymptotic normality, we shall set some more assumptions.

From (19), (20) and (21) we have now

(I + 0p(1)) (I, + 0p(1)) ﬁopm Ryt — Ran, (28)
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Ry = (I, + V.~ 1ATAO)XO( +BoB"V ") — X,

_ _ 1
=V AT 40Xy + XoBoBTV; ' + ——0,(1
Ao 040 + 050 By + \/an p( )7
see (22). Next, see (24),
Ry = (L, + V(AT Ao+ ATA+ A"A - V)Xo
+ (I, + (BB] + BoB" + BB" — V) V') — Xy

=V (AT Ay + ATA+ A"A - V)X,

- - o 1
Xo(BBI + BoBT + BBT — V) V' + ——0,(1
and
1
_ —1 —1
Ry — Ry = —1{40 L Xy — XoL»y VBO +qup(1) (29)
Here
Ly 2 AYA+(ATA - V;), L,2 BBl + (BB" — Vj). (30)
Thus

— (I + 0p(1))4(I, + 0p(1))

1 L 1 Ly (1. \') 1

= —V«:) —Xo X0_<_VB> —

((m vm ) Vi ( Va\g ™’ q
+ ! 0,(1) (31)

ymg T

By assumption (vii), 1 ¥, and éVB‘. converge to the corresponding positive
definite matrices V., and Vp,. Random matrices L; and L, are independent
by (i). We need an assumption which ensures the convergence in distribution

omel and\/(7

6.2 Behavior ofﬁL

We denote by a!, a’” and a, i > 1, the rows of 4, 4y and A respectively.
~T 0T T
a a a

, and A=

T 0T T

m m m

N
I
N
=)
Il
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We have

m

L= Z(Cl?dT +aa] — E&idir)' (32)

To apply the central limit theorem (CLT), we consider /; £ vec(L;). We have

vec(aal) = (I, ® a")a;, (33)
and
vec(a; Zz )=a; ® a. (34)

Therefore, see (32) to (34),

h= Z(Q?T®di+5i®di—Edi®di). (35)

=1
We introduce the following assumptions in order to apply the CLT to ﬁll.

(viii). The rows {a!, i > 1} are identically distributed as random vector a. By
assumption (i), a is centered and has covariance matrix Vz =1 1.
In order to distinguish the vectors @; from the scalars a;, we will use
the notation a(i) for the elements of a.
(ix). For fixed o > 0, Ela(y )|4+§ <oo,j=1,...,n
(x). For each {j, k,I} = {l,...,n}, Ea() ( )a ()
Assumption (x) holds c. g., when a has a symmetrlc distribution. It
is possible to avoid (x), but then the asymptotic covariance matrix of X’
will be more complicated. For instance, (x) holds in the case of normal
errors a(j).
(xi). For some 7 > 0, LS 1la?||*"" < const, and L max; << |a?[|* — 0.

Denote

Uie lim (L@ a) Vil ®a)) = Vi ® Vi
and
U'2cova®a—Ea®a)
—E(a®a-Fi@a)(a®a—-EiQa)’)
=E((aa”") ® (aa")) — vec(Va)(vec(Va)) . (36)
The elements of E((aa’)® (aa’)) are the fourth moments of a,
Ea(ia(y)a(k)a(l). We note that U and U, are positive semidefinite. The last

assumption in this subsection is assumption (xii).

(xii). U{+ U/ is positive definite.
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Now, under new assumptions (viii) to (xi) we apply the CLT to ﬁll, see (39).
We have

1 1 m
cov (%) = cov(l)) = E;Un ®aVi(l, ® " + U/
and cov(l;/v/m) — Uy £ U/ + U/, which is positive definite.

Next, we check the Lyapunov condition, with v £ min(z,8/2), where T and
o are defined in assumptions (ix) and (xi). We have, see (35),

m

2+v a = = ~ 11240
MZ E|(L, ® ad)a|F +Ela®a - Ea@a|}")

1 m
S (E "const - la? | 2*E[a]*** + const - m>
m
1

< const - — 0, asm— oo.

1
mv/2

We have also by assumptions (iii), (viii) and (xi), that the second moments of
the summands in (35) are bounded. Therefore by the CLT

h
o N, Uy).

Then, see (31),

1 L
- Sy
Vec((m V40> vm 0)
Zl d

1 —1
=X ® (% VAo> > ﬁ_) (Xy ®V;.})-N(0,Uy)

with

24 —(X0® Aoc) UA(X0® Aoo)' (37)

; 1
6.3 Behavior ofﬁ L,
We list similar assumptions for By and B.

(viii)’. The columns {b;,l > 1} are identically distributed as random vector b.

Here B=1[b,...b ). By assumption (i), b is centered, with covariance
matrix Vg =, V3.
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(ix)’. For fixed d > 0, E|b(k)|*" < o0, k=1,...,p.
(x)’. Foreach {j, k,I} = {1,..., p}, Eb( b ( )b(/

) =
(xi)’. For some 7 >0, 1371 IB2*T < const, and |

ma X1</<q||b I —o.

Denote

. 1d
Ué A qlglgcgz(blo ®I,,)VB(Z?? ® I[))T = Vo ® Vs

=1

— E(Bb7) @ (b)) — veo(V;)(vee( V)
(xil)". Up £ Uj + U} is positive definite.

Then similarly to the previous subsection, we have

h 2 vec(Ly) =Y ((h/ ®1,)b+b®b—-Eb®Db).

q
=1

= i N(O» UB))

and
_1
vec(Xo%(é VBU) )
— (lVB)I@)Xo —i(Vﬁ@X)'N(O Us)
g " va e -

= N(0,25), (38)

where X3 2 (V! ® Xo)Us(Vy,! ® Xo)”. From (31) we obtain

. 1 1 O,(1
(In+0p(1))A(In+op(l)) = W&m—i_%nq—’— \/pn(Tq) as m — 0,4 — 0,

where {&,,} and {n,} are independent random matrices, and vec(¢,) — 4
N(0,Z4) as m — oo and vec(y,) — N(0,2p) as ¢ — o0.
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Letm = m(r) and g = q(r), with - — 74, i Ap, asr — oo, where 0 < Ay,
Ag < 00, Ay + Ap > 0. Then we have

<@+%0M¢Mxh+%a»V;g+vgh+%§f T

Therefore we proved the following asymptotic normality result.

Theorem 3. Assume that assumptions (i) to (iii), (vii) to (xii), and (viii)’ to

(xii)" hold. Then for m = m(r), g = q(r), %= — A4, == — Ap, as r — oo with
4= 4\ i) 4

0<ig<o0,0<lg< oo, dy+ g >0, we have

Vi vee(X — Xo) % N(O, 424 + 1pZ).

Now, we investigate the rank of the matrix 1,2 + 1525. We analyze (37).
Suppose that Xj is of full rank, i.e. rank(Xp) = min(n, p). Then

rank(X,’ ® V.!) = rank(Xo ® V') = nmin(n, p).
Uy has full rank equal n%, and
rank(2,) = nmin(n, p).
Similarly
rank(2p) = pmin(n, p).
Denote
XL 45+ AgZs.
- If 24 > 0, 2 > 0 then rank (X)) = max(rank(Z4), rank(23)) = np, i.e. Zisa
positive definite np X np matrix.
— If 24 = 0 then rank(X) = rank(Xp) = pmin(n, p), and X is positive definite
when n < p.
— If Ag = 0 then rank(X)) = rank(Z,) = nmin(n, p), and X is positive definite
when n > p.
In the case when X' is positive definite, we have
VPP vee(d)|) 4 12, asr— o,

or

r- (vec(4))" 2 vec(d) 4 )(fp asr — oo. (39)

6.4 Approximate expression

Next, we give an approximate expression for 2, constructed via observations,
which converges in probability to 2.

2P = J 3P+ Ap St
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see (37),

-\T -1
Zip — ()2@ (%ATA —~ K;) > U <X’® (%ATA - VA~> >

app __ / "
U;l - Uapp.A + Uapp,A’

1
aopoa = Va® (EATA — Va>, and Uy ,=U.

Now, see (38),

T
1 o ! e
) o) ()2

app __ g7/ "
UB - Uapp.B + Uapp.B

1
UgtP = (5 BBT — VB> ®V;, and Up® = Up.

The approximate asymptotic covariance matrix 2*P? can be used to con-
struct an asymptotic confidence ellipsoid for vec(Xy), based on the convergence

r- (vec(d))T (2%P) ! vec(4) 4 Xﬁp, asr— 00,m— 00,q — 0.

7 Small sample correction
7.1 Construction

In [CSTO0] a small sample estimator for a polynomial regression with errors
in the variables was constructed. We apply this approach for the model (4),
(5). Our goal is to modify the ALS estimator (11) in such a way that it shows
good results in small samples without loosing the asymptotic properties for
large samples.

We construct a modification of the ALS estimator as follows. For arbi-
trary positive integers § and y, f < y, denote

- A T yx1
2£071...10... R,
fﬂy [W—/u] €
B ]
First we introduce two matrices of the same size, with ¢ < ¢

TAé{%Cftq Ar{%cftq A], and WAé[

and let A4 be the smallest positive root of

0
0o ;|

det(T — AW;) = 0. (40)
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Our polynomial measurement error model is of degree d = 2. Following the
advice of [CSTO00] we set « £ d + 1 = 3. We define

%’ lfj‘A>1+m’
My =

Aa(m—a) 1
) i G < 1L

Similarly we introduce the other two matrices of equal size, s < m,

Tp 4 LC‘Tfym BT ' LC'ijvm BT and Wy £ 0 0
ﬁ S \/E S K 0 VB Y

and let A be the smallest positive root of
det(TB — }vWB) =0. (41)
We set
q%qx, if g >1 +é,
Hp = Ap(g—a)
g+l

if )L331+},.

The modified estimator is defined by
Xy & (AT — V) AT CBT(BBT — pg V)", (42)

7.2 T4 and Tg are positive definite, a.s.
We need the next assumption.
(xiii). The following distributions have no atoms
L), i=10=1, L), i=1,j<n Lby), k<pl=1.

We remind that the distribution of a r.v. £ has no atoms iff P(¢ = a) = 0, for
all a e R.

Lemma 2. Assume that assumptions (i) and (xiii) hold. Then for allm > n + 1,
q = 1,1t < q, Ty is positive definite a.s., and forallm > 1, g > p+1,s <m, Tp
is positive definite a.s.

Proof. We shall give a proof for T4 only. The sum of independent r.v. with
non- atomlc distribution also has non-atomic distribution, hence the compo-
nents of \[ Cf,q have non-atomic distribution. We suppose that m >n+ 1,

g > 1. Denote —- Cf,q [u1 um] It is sufficient to show that the vectors
231 T A | Unsl
hTé[ }h =[ ] (43)
1 a n+1 it
are linearly independent, a.s. Note that /y,..., A, are independent as ran-
dom vectors. Using induction by n > 1 we prove the following statement.
Let hy,...,h,y1 given in (43) be independent random vectors, a; € R,
u; € R, and uy, ..., u,, 1 have non-atomic distribution, and all the coordinates

of aj,...,a, have non-atomic distribution as well. Then
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h
det| : #0, as.

hn+l

a). Indeed, forn =1

hy
det
¢ |:/12

:| = ujdy — urd and ay # 07 a.s.
Then

P(u1a2 — Urda) = 0) = E(E[l(umz — Urday) = 0) |a1,a2]),
where I(-) denotes the indicator function of a random event. But for
deterministic a1, a», a; # 0, we have: % (uja; —u»a;) is non-atomic because
it is a sum of two independent r.v. with non-atomic distribution (if @, # 0)
or it is exactly #(—uza; ), which is non-atomic. Then

E[I(ulaz — Urd) = 0) |a1,a2] =0 a.s.

and P(uja; — upa; = 0) = 0. We proved the statement for n = 1.

b). Suppose it holds for n — 1 > 1, and we prove it for .

hy
n+1
det = Z Ll,‘A,',
hn+1 =
where A; = A;(ay,...,a,+1) is the corresponding algebraic complement.
Here
ai
Appp==det| | #0 a.s.
an

by the assumption of induction. Then

n+1 n+l1
P(Zu,A,:0> :E(E 1(2%,:0) |a1,...,an+1]) =0,
i=1 i=1

because for deterministic Ay, ..., Ayi1, Apr1 # 0, we have E(Zf’ill u;A;)
is non-atomic. Thus we proved the statement for 7.

This accomplishes the proof of the auxiliary statement.
Thus a.s. rank( {% Cfiy AD =n+1, and T, is positive definite a.s.
Lemma 2 is proved. [
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7.3 The matrices ATA — 1,V and BBT — gV are positive definite, a.s.

We suppose that m > n+ 1, ¢ > p+ 1. We may and do assume that 74 and
Tp are positive definite. If V; # 0 and V; # 0 then 14 and /p exist, because
(40) is equivalent to

1
det( T, T, 1/2—1 n+1) =0,

and this equation has a positive solution 4, as T, 1/2 WwiT, 12 is positive semi-
definite and T, 2w, T, /2 24 0; the same for (41)
Now, we show that ATA 1y V5 is positive definite. We have

and

ATA — V> aTa =" "% v
HaVa = m+17474

_m—

T4 > 0.
m+1

+1 a1
T T
2ATA — 24V, )+—1AA o

Similarly BT B — uVj is also positive definite. Thus form >n+1,¢g> p+1
we have a.s.

Xy = (474 — 1, v;) ' ATCBT(BBT — pgVy) ™!

7.4 X\ has the same asymptotic properties as X

First we show that P(14 > 1) — 1 as m,q — oo, and the same for Az. We
need some new assumptions.

(Xiv). t =t =o(y/m), m — w0, t<q and s=s,=0(y/q), ¢ — 0, s<m
and t,, s, are nondecreasing sequences of numbers. E.g., it is pos-

sible to set t = [m!/4] and s = [¢'/4], where [-] are Gaussian brackets, if
m/q — A, with arbitrary 4 € (0, o0).
(xv). {,i > 1,1 > 1} are identically distributed and E¢?, > 0.

Lemma 3. Assume (i) to (iii), (vii), (viii), (viii)’, (xiv) and (xv). Then for
m — 00, ¢ — o0, we have

P(AA > 1) — 1 and P(AB > 1) — 00
Proof. See Appendix.

Theorem 4. Assume (i) to (iii), (vii), (viii), (viii)’, (xiv) and (xv). Then for
m=m(u), g = q(u), u/m(u) — Aq, u/qu) — Ag, asu — oo, with 0 < 14 < o0,
0< g < o0, dy+ g >0, we have

p min u(X, — X) = 0.

U— 0
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Proof. We follow the line of [CST00]. From Lemma 3 and the definition of y,,
see Subsection 7.1, we obtain that with probability tending to one,

Therefore

p lim vim(p — 1) = 0. (44)
g— 0

Similarly

p lim /g(us — 1) = 0. (45)
g— 0

Now, we consider the difference between the estimators X — X,,. From (9) and
(42) we have

(ATA — V) X(BBT — V) = (A4 — u, V) Xss(BBT — uzVy).

Weset,qul-l—%,,uB:l—l—hTz,hlLO,hZLOandX’MéX’—i—X’.
We have

(ATA — Vi + (s — DV X (BB — sV + (5 — 1) V)
— (ATA =y V) (X + X)(BB" — 1y V),

(474 — VA’)X(BBT —ugVp)

hooo o - Y
=LV X(BBT — Vy) + —= (ATA — V)X V5 + VXV,
/m A ( B) \/q ( A) B \/m_q A

But under t}l”le assumptions of Section 4 we have as m(u, —1) — 0,
Va(ug —1) =0,

(s -+ 0p(1) Xl + 0p(1)) = Z=04(1) + 2 0y(1) + 2 0y(1)
_op(1) |, op(1) , 0p(1)
ERVZIMNCINRN A

We assume that m = m(u), ¢ = q(u), and we have as u — oo that m — oo,
g — oo and

£—>}.A, E—>},B, 0<Ay<ow, 0<Ag<oo, Ag4+4p>0.
m q
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Then we have as u — oo

(In + 0p(1) (VuX) (L + 0p(1))

:Wg%m+ﬁ% J_”% O

From Theorem 4 under the conditions of asymptotic normality of X, see
Subsections 6.2 and 6.3, we will have

Vit -vee(Xy — X)L N0, JuZa + 25Zs).

If 1424 + Ag2p > 0 then we can say that X, and X have the same asymptotic
properties. It happens, see Subsection 6.3, if

— either Ag >0, 2 >0,
—oris=0andn < p,
—orig=0andn > p.

Thus in the case n = p we guarantee that X,, and X are asymptotically
equivalent only for the convergence m — co, ¢ — oo, m/q — 4, A€ (0, 00).

8 Examples

In this section we apply the ALS estimator to a hypothetical example.
We consider the model (4), (5) withm =gandn=p =2, ie.

A X B = C .
B

mx2 2x2 2xm mxm
The true data is

L LI
Ao=|:|, Bo=[h...L], and Cy= | : f,
I J R A

and the true value of the parameter is Xy = . The perturbations 4, B and C
are selected in three different ways.

1. Equally sized errors. All elements aj;, by, ¢y are independent, centered, and
normally distributed with common variance 0.01.

2. Differently sized errors. All elements aj;;, by, ¢y are independent, centered,
and normally distributed. The elements in the first column of A4 have vari-
ance 0.05 and the elements in the second column of 4 have variance 0.01.
The elements in the first row of B have variance 0.01 and the elements in
the second row of B have variance 0.05. All elements of C have variance
0.01;
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3. Correlated errors. All elements a;;, by, ¢y are independent and normally
distributed. All rows of 4 have covariance 0.01 [? ﬂ and the elements are

independent from row to row. All columns of B have covariance 0.01 H ;]
and the elements are independent from column to column.

The estimation is performed for increasing number of measurements m. As
measure of the estimation quality, we use the empirical (relative) mean square
error

Z [[Xo — ”F,

s:l HXO”F

where X is the estimate computed for the s-th noise realization.
The ALS and the small sample modified ALS estimators are compared
with the LS estimator

X5 2 (A™4) 4" cBT (BBT)T,
and with the partial LS estimators,

Xea 2 TLS solution of XB = (474) 47 C
and

X,y £ TLS solution of 4X = CB”(BB”)'.

Figure 1 shows small sample size result for equally sized errors; the num-
ber of measurements m is between 10 and 20. On the left plot is the mean
square error of estimation e(m) for LS (dotted line), ALS (solid line), small
sample modified ALS (dashed-dotted line) and partial LS (dashed lines) esti-
mators. The plots are averaged for N = 200 noise realizations.

The right plot of Figure 1 illustrates application of the asymptotic
normality results for confidence region computation, see Subsection 6.4. The

16” Mean square error Confidence ellipsoid (m = 20)

21

Fig. 1. Equally sized errors, small sample size results
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Confidence ellipsoid (m = 100)

21

Fig. 2. Equally sized errors, result for m € {20,...,100}

100 estimates, m = 20

Table 1. Percentage of estimates inside

inside

T21

sm(1:2) e Goo(Em(1:2) | 89%

-015) )ACM Eé"o_g(fCM) 91%

Fig. 3. Clustering of the modified ALS estimates

confidence region of %, £ vec(Xy) with 1 — o confidence probability is the
ellipsoid

67 5) = {2 (5 50) < ),

where (7), is the o quantile of the y7 distribution, i.e. P(x7 > (x7),) = o, and
[ is the number of degrees of freedom. For X, in the example, / = 4

In order to be able to visualize the results, we use the first two elements of
Xy, denoted by % (1 : 2). For Xy(1 : 2), / = 2 and the approximate asymptotic
covariance matrix is the upper left, 2 by 2 submatrix of XPP,

The computed confidence region &35 (Xy) for m = 20 is shown as shaded
area on the plot. The symbol “o” indicates the true value point [1 O] and the
symbol “x” indicates the point estimate x,(1 : 2).

Figure 2 shows analogous results for equally sized errors for larger sample
size; m between 20 and 100.

Figure 3, shows how the estimates are clustered. Again “o” corresponds to
the true value [1 0] . The “x” symbols correspond to 100 estimates X/ (1 : 2).
The shaded area is the elhpsmd,

9

6ioatt) = {x1 (=502 =50 < (),
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Mean square error Mean square error
0.02 0.04

0.035

O
0.015(\ ° 0.03F s . f_XP.S,
0.025 RIS
— — .
£ oo g oo

0015~

0.005 0.01

0.005

%0 40 60 80 100 g

Fig. 4. Left: differently sized errors; right: correlated errors

described by the true asymptotic covariance matrix X, see (39), and centered
at the true value xy(1 : 2).

Figure 4 show the mean square error of the compared estimators for
differently sized uncorrelated errors (left plot) and for correlated errors (right
plot).

9 Conclusion

We considered the multivariable model AXB = C. In the situation when the
TLS estimator is inconsistent, we construct the ALS estimator, which is con-
sistent. We gave the conditions of weak and strong consistency, and of asymp-
totic normality. It turns out that the asymptotic covariance matrix of the esti-
mator does not depend upon the covariance structure of C. We introduced a
small sample modification of the estimator, which has better properties for
small samples and preserves the asymptotic properties of the estimator.

An open question is what are the optimality properties of the ALS
estimator. In [KMOO] for the model AX = B in the scalar case it was shown
that the ALS estimator is asymptotically efficient in the situation where V;
is known exactly and Eb}, are known up to a constant factor. It would be
interesting to check the following conjecture:

In the model 4XB = C the ALS estimator is asymptotically efficient in

the situation where V; and V3 are known exactly and E¢; are known
up to a constant factor.

10 Appendix

10.1 Proof of (14)
We have

ViU =1L+ V" (ATA— V) + V' (AT 4o + AT A). (46)

0
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Next

1/ ;T 7 2 —12 T 7 2
E[V (ATA=Vpllr < 1V, IPEIA"A - Vili7

-1

and ” A(JIH = /“mm(

%) By (ii) and (iii), we have

E|AT4 - ||F = Z var (Z a,,a,k>

i,k=1

n m
= Z Zvar(&ﬁdjk) < const - m,

ik=1 j=1
thus by (iv)
const - m
E[V, (ATA-V)lf < 5————0 asm— oo,
‘ /lrznm(mo)
this proves that V;-1(A74 — V) 20.
Next
AT T 2 T 72
E|V, ( Ao+ A A)||F ————E| 43 4|[¢
min\ ¥4o
and

m 2 n m
E|AlA|; = Z E(Z a,k> =) (af)’ var(a)
. ;

i,k=1 k=1 j=1

n m
< const - Z Z(a](-f»)z < const - Amax(Va,)
i=1

=1 j=1

and from (49) under assumption (iv) we have

V(AT 49+ A7 4) 5 0.

A. Kukush et al.

(48)

(50)

Now, (46), (48) and (50) imply the first relation in (14), and the second one in

(14) holds similarly.

10.2 Proof of (15)

Vi (AT 4o) = I, + V' A" 4,

and this converges in probability to I,, see Subsection 10.1. The second con-

dition in (15) is shown similarly.
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10.3 Proof of (16)
We have

1
;Lmin( I{élo)j-min< VBD)

1V, ATCB V!l < 14" CBT ||, (51)

and

n

2
~ P m q
E|47CBT|; = ZE( Zaiié,-le) = Y Eaj var(é)Eby,
]

=1 k=1 =1 =1 ikl

=

m
< const - (Z

i=1 j=

1 Ea3j> (Zp: zq: Eb,f,)

k=1 1=
< const - (Amax(Vay) + 1) (Amax(Va,) + 4)-
Then from (51) we have

(/lmaX(V%) +m) ) (lmaX(VBo) +q)
;{mm(VAn) irznm(VBo)

E||V,,'ATCBT V|| < const -

)

and this tends to zero, as m — o0, ¢ — oo by assumption (iv).

10.4 Proof of Theorem 2

We have to show that in (14) to (16) the convergence is with probability one.
After that the statement of Theorem 2 will follow from equation (13) for the
estimator X.

We use Lemma 1. First, see (46). Consider

r

E|A"4 -V} = Z (ala; —Eala)| < const-m'/?
=l F
because by (v) E[|a||* < const. Then
U r/2
E|V, (ATA - V})|} < const -~
I, 44 = 7 Traa Vi)’

r/2

Zﬂ' (Vi) =

m=m, min

and by Borel-Cantelli lemma

I{IEI(ATA —V;) —0 as. asm— 0.
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Next, consider

147 4o + AGA|lp < 2] A7 Al

and
~ m 2r m
E|l4JA|} =E||> aYa| < const- Zna?n2 < const- A" (Va,)-
i=1 F i=1
Therefore,

(Vi
E||V,;' (AT 4o + AT A)||”" < const - Lx( o)
;mln(%l))

Z };nax(V‘lo) < o0,

m=my ;”rzr:m( V‘io)
and by Borel-Cantelli lemma

K,EI(ATAO +AY4) -0 as., asm— .
Thus, see (46), V, UA — I, as., as m — co. Similarly, UgVz! — I, as., as
q — 0.

Secondly, in (15) we also have convergence a.s., compare with the proof of

Theorem 1.
Thirdly, consider

E[|A"CB"||7' | 4.B] =

[>T

m q ~ ~
< const - (ZZE[IIa,-TEnb/TIIZ’ | 4, B]

=1 /=1

+ (z"sz[||afei,b,T||24, B}) )

i=1 I=1

q
ZZE[IIa cuby ||| 4, B] < const - leasz'ZIIb I,

i=1 I=1

m q
¢ <Z > Ellla] e/ |* |4, B]) < const - (Apay (Vig) +1) (Ao (V) + 4)-
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Next,

m q r
E( ZE[laiT5i1sz||2|A»B]>

i=1 =1

m r q r
< const-E <Z |ai|2> E(Z ||bl||2>
i=1 =1

< const - (imax(l{‘ln) )(/lfnax(VBo) + qr)

Therefore

E|[A"CB" |7 < const - (A (Vo) +m") (pax (V) + ")

max

and, see (46),

j’fnax(%o) + mr ;\'I';’laX(VBO) + qr

E||VAEIATC~'BT 1||F < const -

min min

Z Z max I{40 +m’ )rrna,x(VBo)+qr

2
m=my q=qo n;’m( V:‘lo) mm( VB())

_ (Z i:naxmmmr) ( 2 i (V) +q"> <o
m=m 12’ (V40) = )‘2’ (VBO)

min 9=q0 min

Then for each ¢ > 0,
. 1 . )
P(|V,,'ATCBT V! > &) < gEHVA;lATCBTVgOIHZ’

and by Borel-Cantelli lemma with probability one the event

Dmg ={1V,' AT CBT V| > &}

Zanin(Vio) hivin (V)

279

happens only for finite number of indices m and ¢. Then almost surely
there exists m; = m;(w) and q; = ¢;(w), such that for all m > my, q > ¢,

[V, 'ATCBT V| <e.

This means that V' ATCBT V3! — 0 a.s., asm — 0, ¢ — 0.

We proved that in (14) to (16) the convergence is with probability one and

Theorem 2 is proved. []

10.5 Proof of Lemma 3
We give the proof for 14 only. It is sufficient to show that

P(Ty>W;)—1 asm— o0, g — 0.
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We have

o [reran, Lrrera
U A

1

! LT AT Ar
= [tcofzq Ao] [IZCOf,q AO]JF{,f,qC;) Cfiq 0}

Vi Vi 0

Ha(CIC+CTC)fy  AI(CTA+ CT )
%(JTC0+AOTC“)ftq AVA+AT4g+ (ATA - V)

£ H, + H, + Hs.

10.5.1 Behavior of H;

H, H
We have H; >0, and H| = 1/1 1,2 7
Hy  Hy,
1 ! 1 T . ..
%HZZ = ZAOAO — Vi, >0, see assumption (vii).

10.5.2 Behavior of H,

H" 0
Wehavesz{ 0“ O}’

1 1 N y t 5 1 ) ) o
_HIHIZ_ Cik Cil = — Z Clzk‘i‘% Z CikciléSA—I—SB.

i=1 k=1 =1 1<i<m 1<i<m
1<k<t 1<k<i<t
We have
1 1 . . mt?
—ES,%:T E E(ci)E(cﬁ)gconst-TﬁO asm — o0, ¢ — 0.
4 t 1<i<m m-t
1<k<l<t

Next, by assumption (xv) and by the law of large numbers
Sy — E&}, as. asm— 0, q— ©

Thus
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Ecf, 01 a.s.

H, —
: 0 0

10.5.3 Behavior of Hj

p H/// H///

1 i — 11 12

We prove that .- H3 — 0. We write H3 = { o ,,,}
H) Hp

a).

1

2 2
—EGﬁjc{éﬁq> = ( ftTCTCOf,q>

m(izkzﬁ

Sy (ya)

< const -

1 m t
o 2o 26’
i=1 I=1

1 : 00T
< const - W/Imax( I//:lo)ﬂvmax (Z bi bi

i=1

t
< const-— — 0,
m

because 1 = o(y/m). Thus H// = 0.
b).

1 [ :
EWA Cofig

2
1 n m t
< const - —- 02
m-t
k=1 i=1 \ /=1

1 m
< const - —22 (02)2

281
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e

t
< const - — — 0.
m

From b) and c) we have H{} L 0, HY! = 0.
d). It was shown above that H}; 2,0, see section 10.1. Finally,

10.5.4 End of proof

Summarizing Subsection 10.5.3, we have

1
[
m

F m

We need to know the behavior of the other blocks of Hj.
l 1 m t 2
~H =— 0
i mt; (; czl)
1 m t 0 5
=< m Z Z(Cﬂ)
i=1 I=1

< const - 7.

lH’ 1ATCf 1TA IXBf
m 21 — WZ\/_ 0Jtg — 0" \/Z 0D0./ g5
|-

—Hj,|| < const- V1,

m F

and

1 / 1 !/

—H,|| =|—=H3 | <const- vt

m F m F

A. Kukush et al.

H; 5 0.
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We consider the matrix

My el

—(Hy + H»).
m( | + H>)

It is positive semidefinite and we look for &y > 0 such that M, > 870 a1 With
probability tending to one. We have

1 gy 1 ggn _ & 1 g/
mH11+(mH11 t) mH12
n

1 / 1 / &9
) wmHn =7

0]
My — 7In+1 = [
Now, for m > my

1
m

, & 1 & 1
H22 _70111 = (Elmin(msc) _7())111 = (Elmm(moc) _80>In

1 . 1
= Zimin(mm)a if & < Z;Lmin(moo)-

We apply Silvester’s criterion to the matrix M, — % 1,,;. We have for

1
&y < Zimin(wm)a (52)

&0 1 1 1 &0
det(MA - 7I,,) - det(%H1> + (EH{’I) det(aHéz— 71,,) +e0-0O(1).
(53)

The last term comes from L A/, det(L Hj, —%1,) and from the product of

components L HJ,, L H/, and 2 I,. In both cases we have 12 - O(1) =g - O(1).

Now, L H; > 0, therefore (53) implies

1

m

I
det(MA f—olnﬂ) > —H, ~det<
t m

&
H;, — 701n> — const; - &,
with some const; > 0, and a.s. we have

limigf det(MA — 8701,,+1) > EEf1 -det(Vj) — consty - g9 > 0,

4—0
if

1
&2 det(Vas). 54
fo < const; ¢y det(Vaen) (34)

Therefore if ¢ satisfies (52) and (54) then

€0
MA - 7111-4-1 > 07
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with probability tending to one, and

with probability tending to one. We have

> lmin(MA) - \/; ’ OP(I)’

m

1 1
imin( (T4 — WA)> > Amin(Ma) — HEH3

and with probability tending to one we have

&0 t
A-minT_W = —— —0O,(1).
(Ta = Wa) = ~ 0n(1)

But with probability tending to one

€0 t m
- \/%op(l) >0 \/;-80 > 0p(1),

and the last holds because by assumption % — oo. Thus Ty > W, with prob-
ability tending to one. Lemma 3 is proved. []
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