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Abstract. A bilinear multivariate errors-in-variables model is considered. It
corresponds to an overdetermined set of linear equations AXB¼C, A ARm�n,
B A Rp�q, in which the data A, B, C are perturbed by errors. The total least
squares estimator is inconsistent in this case.

An adjusted least squares estimator X̂X is constructed, which converges
to the true value X, as m!y, q!y. A small sample modification of the
estimator is presented, which is more stable for small m and q and is asymp-
totically equivalent to the adjusted least squares estimator. The theoretical
results are confirmed by a simulation study.
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1 Introduction

Many linear parameter estimation problems [VV91] can be reduced to solving
an overdetermined set of linear equations

AX AB: ð1Þ

Whenever all measurements in both matrices A and B are a¤ected by errors,
the popular ordinary least squares estimator gives biased estimates. Measure-
ment error models [Ful87], also called errors-in-variables models, should
be considered in order to derive consistent estimators. If the errors are non-
correlated and equally sized, the total least squares (TLS) method [VV91,
GV80] provides a consistent estimate of the unknown parameter X. This
method, better known as orthogonal regression in the statistical literature,



computes correction matrices DA and DB of minimal Frobenius norm in order
to make the corrected set of equations

ðA� DAÞX ¼ B� DB

compatible and has become very popular in engineering since the early
eighties due to the existence of computationally attractive algorithms based
on the singular value decomposition (SVD) [GV80, VV91].

Since then several generalizations of the TLS estimator have been pre-
sented. In particular, we mention the generalized TLS estimator, based on
the generalized SVD, which provides consistent estimates of X provided the
measurement errors in ½A B� are row-wise i.i.d. with zero mean and same
covariance matrix, known up to a factor of proportionality.

In this paper we generalize the linear model in (1) to a bilinear model,
represented as

AXBAC ð2Þ

This model can be considered as a special case of a polynomial model, namely
a quadratic measurement error model [Ful87, CRS95].

It should be noted that the TLS principle can no longer be applied to
model (2) in order to provide consistent estimates. Indeed, as mentioned in
[Ful87], adding correction matrices DA, DB and DC of minimal Frobenius
norm in order to make ðA� DAÞXðB� DBÞ ¼ C � DC compatible results in
biased estimates for the parameter X. In this paper an adjusted least squares
(ALS) estimator [CRS95, CS98] of X is presented and shown to be consistent.

Next we give two examples where the bilinear measurement errors model
(2) arises.

Example 1 (Total production cost model). Assume that r production inputs
(materials, parts, labor, etc.) are combined to make n products. Let bk be the
price per unit of the k-th production input and xjk be the number of units of
the k-th production input, required to produce one unit of the j-th product.
The production costs per unit of the j-th product is the j-th element of the
vector

y ¼ Xb:

Let aj be a required quantity to be produced of the j-th product. The total
quantity of the k-th production input needed is the k-th element of the vector

z ¼ X T a:

The total production cost c is zT b, which gives a ‘‘single measurement’’
AXB ¼ C model

aT Xb ¼ c:

A situation in which we have multiple measurements could be: given
is a set of (approximate) quantities to be produced of the n products,

a1; . . . ; am, (approximate) prices per unit of the production inputs, b1; . . . ; bq,
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and (approximate) total costs cil , corresponding to all combinations of the
given quantities to be produced and prices. Then the model is

ða1ÞT

..

.

ðamÞT

2
664

3
775

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
A

X ½b1 . . . bq �|fflfflfflfflfflffl{zfflfflfflfflfflffl}
B

¼
c11 � � � c1q

..

. ..
.

cm1 � � � cmq

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
C

:

Estimation of xjk in the model AXB ¼ C, can be interpreted as: estimate
the number of units of the k-th production input, required to produce one unit
of the j-th product.

Example 2 (Estimation of the fundamental matrix [MM98]). Two images are
captured by a mobile camera and m matching pixels are located. Let

ui ¼
uið1Þ
uið2Þ

1

2
64

3
75 and vi ¼

við1Þ
við2Þ

1

2
64

3
75; i ¼ 1; . . . ;m

represent the homogeneous pixel coordinates in the first and second image
respectively. The so called epipolar constraint relates the corresponding pixel
coordinates by the model

vT
i Fui ¼ 0; i ¼ 1; . . . ;N; ð3Þ

where F A R3�3, rankðFÞ ¼ 2 is the fundamental matrix which is identical
for all pairs of corresponding vectors ui, vi, 1 a i a N. Estimation of F from
the given noisy data is called structure from motion problem and is a central
problem in computer vision.

In [KMV01] we modified the adjusted least squares estimator derived in this
paper for the model (3).

The notation we use is standard. For any matrix T, tij denotes the i; j-th
element of T. The bold symbol E denotes mathematical expectation. It acts
on the expression on the right up to an addition or subtraction sign. Condi-
tional expectation of x, conditioned on C, is denoted by E½xjC �. The nota-

tion covðxÞ denotes the covariance matrix ExT x� ExT Ex and Ay denotes the
pseudo-inverse of A. In the formulas ‘‘const’’ denotes any constant value (for
example, we can write const2 ¼ const).

The paper is organized as follows. Section 2 introduces the model and the
global assumptions. In Section 3, an ALS estimator for the bilinear model (2)
is derived. In Section 4, weak and strong consistency of the ALS estimator is
stated. In Section 5, a bound on the rate of convergence is derived. In Section
6, asymptotic normality is shown. In Section 7, a small sample correction of
the ALS estimator is derived. Section 8 gives numerical results and Section 9
concludes and discusses future work. Technical proofs are presented in the
Appendix.
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2 The model

We consider the model

AXB ¼ C: ð4Þ

Here A A Rm�n, B A Rp�q, C A Rm�q are observations and X A Rn�p is a
parameter of interest. We suppose that

A ¼ A0 þ ~AA; B ¼ B0 þ ~BB; C ¼ C0 þ ~CC; ð5Þ

and that there exists X0 A Rn�p such that

A0X0B0 ¼ C0:

Here A0, B0, and C0 are nominal or true values and ~AA, ~BB, and ~CC are errors.
The matrix X0 is the nominal or true value of the parameter. From the point
of view of errors-in-variables models, ~CC represents the equation error, while ~AA
and ~BB represent the measurement errors.

Looking for asymptotic results in the estimation of X in the model (4), we
fix the dimensions of X, n and p, and let the number of measurements, m and
q, increase. The measurements are represented by the rows of A, the columns
of B and the elements of C. For the whole paper we denote

V~AA vE ~AAT ~AA; V~BB vE ~BB ~BBT :

The matrices V~AA and V~BB are supposed to be known, while the variances of the

entries of ~CC are unknown.
Specific notation is set in the course of exposition. The assumptions used in

the paper are enumerated. Global assumption for the paper is assumption (i).

(i). The errors f~aaij; i b 1; 1 a j a ng, f~bbkl ; 1 a k a p; l b 1g and f~ccil ; i b 1,
l b 1g form three independent arrays of r.v., which are centered and pos-
sess finite second order moments.

More assumptions are stated where necessary.
The model (4–5) is a bilinear regression measurement error model. In a

scalar form it can be written as

cil ¼
X
j;k

~aa0
ijxjk

~bb0
kl þ ~ccil ; 1 a i a m; 1 a l a q;

aij ¼ a0
ij þ ~aaij ; 1 a i a m; 1 a j a n;

bkl ¼ b0
kl þ ~bbkl ; 1 a k a p; 1 a l a q:

ð6Þ

Here the design points a0
ij and b0

kl are unobservable non-stochastic variables
and the true value c0

il is a nonlinear function of A0 and B0.
It is known that orthogonal regression is inconsistent for nonlinear mea-

surement error models, see comments in [Ful87] and a mathematical proof of
inconsistency in [KZ96]. The orthogonal regression estimator is a (weighted)
TLS estimator [GV80, VV91], therefore due to nonlinearity of the model (4),
the TLS estimator is inconsistent in this case.
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The model (6) is a particular case of a quadratic model; it is bilinear with
respect to the compound nuisance parameters ½A0 B0�. For polynomial errors-
in-variables models an ALS estimator is proposed in [CS98]. It is consistent.
In [CRS95, Chapter 6], the method of corrected score functions is presented
and in [Bar00] it is mentioned that an ALS estimator in a polynomial model is
generated by the method of corrected score functions.

3 The score equation and an ALS estimator

We start with the LS objective function

qlsðX ;A;B;CÞv kAXB � Ck2
F : ð7Þ

In the space of matrices Rn�p, we introduce a scalar product

hT ;Siv trðTS TÞ; T ;S A Rn�p:

The derivative qqls=qX is a linear functional on Rn�p. It acts on H A Rn�p

according to the rule

1

2

qqls

qX
ðHÞ ¼ trððAXB � CÞðAHBÞTÞ ¼ trðATðAXB � CÞBT H TÞ

¼ hAT ðAXB� CÞBT ;Hi: ð8Þ

We can identify the derivative qqls=qX with a matrix, which represents it in
the equality (8). Thus it is redefined as

1

2

qqls

qX
¼ ðATAÞXðBBTÞ � AT CBT :

In the absence of measurement errors, i.e. when ~AA ¼ 0 and ~BB ¼ 0, see (5), the
LS estimator is obtained by minimizing (7) or (what is asymptotically equiv-
alent) via the score equation 1

2 qqls=qX ¼ 0. Thus the score function for the LS
method is

c
ls
ðX ;A;B;CÞv ðATAÞX ðBBTÞ � AT CBT ;

and the LS estimator is consistent in the absence of measurement errors.
Now, we are looking for a corrected score function c, such that

E½cðX ;A0 þ ~AA;B0 þ ~BB;CÞ jC � ¼ c
ls
ðX ;A0;B0;CÞ for all X ;A0;B0;C:

We seek c in the form c ¼ c
ls
� c1. We have by assumption (i)

E½c
ls
ðX ;A0 þ ~AA;B0 þ ~BB;CÞ jC �

¼ c
ls
ðX ;A0;B0;CÞ þ E ~AAT ~AAXB0BT

0 þ EAT
0 A0X ~BB ~BBT þ V~AAXV~BB

¼ c
ls
þ c11ðB0Þ þ c12ðA0Þ þ V~AAXV~BB;
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with

c11ðB0ÞvV~AAXB0BT
0 ;

c12ðA0ÞvAT
0 A0XV~BB:

To find a proper correction term c1 we consider

Ec11ðB0 þ ~BBÞ ¼ V~AAXB0BT
0 þ V~AAXV~BB;

Ec12ðA0 þ ~AAÞ ¼ AT
0 A0XV~BB þ V~AAXV~BB:

ð9Þ

Therefore

c1ðA;BÞ ¼ c11ðBÞ þ c12ðAÞ � V~AAXV~BB

and

cðX ;A;B;CÞ

¼ ðATAÞX ðBBTÞ � AT CBT � V~AAX ðBBTÞ � ðATAÞXV~BB þ V~AAXV~BB

¼ ðATA� V~AAÞXðBBT � V~BBÞ � AT CBT :

The ALS estimator X̂X is defined from the equation

cðX ;A;B;CÞ ¼ 0: ð10Þ

As an estimator we can take

X̂X v ðATA� V~AAÞ
yðAT CBTÞðBBT � V~BBÞ

y: ð11Þ

If ATA� V~AA and BBT � V~BB are non-singular, then (11) satisfies (10). Later on
we shall show that these matrices are non-singular with probability tending to
one as the number of measurements (rows of A and columns of B) is tending
to infinity. Observe that (11) reduces to the generalized TLS estimator [VV89,
Gal82], in the case B ¼ Ip, ~BB ¼ 0 under the assumption (i).

4 Weak and strong consistency

We introduce further assumptions.

(ii). The rows of ~AA are independent, i.e. ð~aaij ; i � 1; 1 a j a nÞ are indepen-
dent, the columns of ~BB are independent, i.e. ð~bbkl ; 1 a k a p; l b 1Þ are
independent, and all elements of ~CC are independent, i.e. ð~ccil ; i b 1; l b 1Þ
are independent.

(iii). E~aa4
ij a const, E~bb4

kl a const, and E~cc2
il a const.

(iv). We denote

VA0
vAT

0 A0; VB0
vB0BT

0
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and assume that

lmaxðVA0
Þ þm

l2
minðVA0

Þ
! 0 as m!y; and

lmaxðVB0
Þ þ q

l2
minðVB0

Þ
! 0 as q!y:

The assumption (iv) corresponds to the condition of weak consistency,
given in [Gal82] for the maximum likelihood estimator in the model (1).

Theorem 1 (Weak consistency). Assume that assumptions (i) to (iv) hold.

Then the estimator X̂X given in (11) converges to X0 in probability, as m!y
and q!y.

Proof. Denote

UA vATA� V~AA; UB vBBT � V~BB: ð12Þ

By assumption (iv), VA0
is non-singular for m b m0 and VB0

is non-singular
for q b q0 for some fixed m0 and q0. For m b m0, q b q0, we rewrite equation
(10) in the form

V�1
A0

UAXUBV�1
B0
¼ V�1

A0
ðATA0X0B0BT þ AT ~CCBTÞV�1

B0
: ð13Þ

For consistency, it is enough to show that

V�1
A0

UA !
p

In and UBV�1
B0
!p Ip; ð14Þ

V�1
A0
ðATA0Þ !

p

In and B0BT
0 V�1

B0
!p Ip; ð15Þ

V�1
A0

AT ~CCBT V�1
B0
!p 0: ð16Þ

The proofs of (14)–(16) are given in the Appendix. r

The main probabilistic tool to prove the strong consistency is the following
matrix analogue of the Rosenthal inequality, see [Ros70].

Lemma 1. Let fhi; i b 1g be a sequence of independent r.v., Ehi ¼ 0, i ¼ 1; 2; . . .
Then for any real number t b 2, and for all m b 1

E
Xm

i¼1

hi

�����

�����
t

a cðtÞmax
Xm

i¼1

Ejhij
t;
Xm

i¼1

Eh2
i

 !t=2
0
@

1
A;

where cðtÞ depends on t, but it does not depend on m.

We strengthen assumptions (iii) and (iv).

(v). For fixed real number r b 2, Ej~aaijj2r
a const, Ej~bbkl j2r

a const, and
Ej~ccil j2r

a const.
(vi). For fixed m0 b 1,

Xy
m¼m0

mr=2

lr
minðVA0

Þ þ
l r

maxðVA0
Þ

l2r
minðVA0

Þ

 !
<y;
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and for fixed q0 b 1

Xy
q¼q0

qr=2

l r
minðVB0

Þ þ
lr

maxðVB0
Þ

l2r
minðVB0

Þ

 !
<y;

where r is defined in assumption (v).

Theorem 2 (Strong consistency). Assume that assumptions (i), (ii), (v) and
(vi) hold. Then the estimator X̂X given in (11) converges to X0 a.s., as m!y,
q!y.

Proof. See Appendix.

5 Rate of convergence

Let the assumptions of Theorem 1 hold. With probability tending to 1 we have

ðATA� V~AAÞX̂XðBBT � V~BBÞ ¼ AT CBT : ð17Þ

We set X̂X vX0 þ D̂D and consider m b m0, q b q0, for which VA0
and VB0

are
non-singular. From (17) we have

ðATA� V~AAÞD̂DðBBT � V~BBÞ ¼ ATðA0X0B0 þ ~CCÞBT

� ðATA� V~AAÞX0ðBBT � V~BBÞ: ð18Þ

Using the notations (12) we have

V�1
A0

UAD̂DUBV�1
B0
¼ V�1

A0
AT ~CCBT V�1

B0
þ V�1

A0
ðATA0X0B0BT

� ðATA� V~AAÞX0ðBBT � V~BBÞÞV�1
B0

vR1 þ R2: ð19Þ

By (14), the LHS of (19) equals

LHS ¼ ðIn þ opð1ÞÞD̂DðIp þ opð1ÞÞ ð20Þ

Next, see Section 4,

R1 ¼ V�1
A0

AT ~CCBT V�1
B0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðVA0

Þ þm
p

lminðVA0
Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðVB0

Þ þ q
p

lminðVb0
Þ �Opð1Þ: ð21Þ

We decompose R2 ¼ R21 � R22.
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R21 ¼ V�1
A0
ðATA0X0B0BT � VA0

X0VB0
ÞV�1

B0

¼ Inþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðVA0

Þ
p

lminðVA0
Þ Opð1Þ

 !
X0 Ipþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðVB0

Þ
p

lminðVB0
Þ Opð1Þ

 !
�X0; ð22Þ

kR21kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðVA0

Þ
p

lminðVA0
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðVB0

Þ
p

lminðVB0
Þ

 !
Opð1Þ ð23Þ

and

R22 ¼ V�1
A0
ðATA� V~AAÞX0ðBBT � V~BB � VA0

X0VB0
ÞV�1

B0

¼ In þ
ffiffiffiffi
m
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðVA0

Þ
p

lminðVA0
Þ Opð1Þ

 !
X0

Ip þ
ffiffiffi
q
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðVB0

Þ
p

lminðVB0
Þ Opð1Þ

 !
� X0; ð24Þ

kR22kF ¼
ffiffiffiffi
m
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðVA0

Þ
p

lminðVA0
Þ þ

ffiffiffi
q
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðVB0

Þ
p

lminðVB0
Þ

 !
Opð1Þ: ð25Þ

Therefore from (19), (20), and (21) to (25) we obtain

kX̂X � X0kF ¼ ðum þ vqÞOpð1Þ; ð26Þ

where

um v
ffiffiffiffi
m
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðVA0

Þ
p

lminðVA0
Þ ; vq v

ffiffiffi
q
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðVB0

Þ
p

lminðVB0
Þ : ð27Þ

6 Asymptotic normality

6.1 Expansion for D̂D

Now, we strengthen assumption (iv).

(vii). 1
m

VA0
! VAy as m!y, and 1

q
VB0
! VBy as q!y, where VAy and

VBy are positive definite matrices.

Under (vii), 1
m

lmaxðVA0
Þ ! lmaxðAAyÞ > 0, and 1

m
lminðVA0

Þ ! lminðAAyÞ >
0, similarly for VB0

, therefore (vii) implies (iv).
We shall assume (i) to (iii) and (vii), and in the process of establishing

asymptotic normality, we shall set some more assumptions.
From (19), (20) and (21) we have now

ðIn þ opð1ÞÞD̂DðIp þ opð1ÞÞ ¼
1ffiffiffiffiffiffiffi
mq
p Opð1Þ þ R21 � R22: ð28Þ
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R21 ¼ ðIn þ V�1
A0

~AAT A0ÞX0ðIp þ B0
~BBT V�1

B0
Þ � X0

¼ V�1
A0

~AAT A0X0 þ X0B0
~BBT V�1

B0
þ 1ffiffiffiffiffiffiffi

mq
p Opð1Þ;

see (22). Next, see (24),

R22 ¼ ðIn þ V�1
A0
ð ~AAT A0 þ AT

0
~AAþ ~AAT ~AA� V~AAÞÞX0

þ ðIp þ ð ~BBBT
0 þ B0

~BBT þ ~BB ~BBT � V~BBÞV�1
B0
Þ � X0

¼ V�1
A0
ð ~AAT A0 þ AT

0
~AAþ ~AAT ~AA� V~AAÞX0

þ X0ð ~BBBT
0 þ B0

~BBT þ ~BB ~BBT � V~BBÞV�1
B0
þ 1ffiffiffiffiffiffiffi

mq
p Opð1Þ;

and

R21 � R22 ¼ �V�1
A0

L1X0 � X0L2V�1
B0
þ 1ffiffiffiffiffiffiffi

mq
p Opð1Þ: ð29Þ

Here

L1 vAT
0

~AAþ ð ~AAT ~AA� V~AAÞ; L2 v ~BBBT
0 þ ð ~BB ~BBT � V~BBÞ: ð30Þ

Thus

�ðIn þ opð1ÞÞD̂DðIp þ opð1ÞÞ

¼ 1

m
VA0

� ��1
L1ffiffiffiffi

m
p X0

 !
1ffiffiffiffi
m
p þ X0

L2ffiffiffi
q
p

1

q
VB0

� ��1
 !

1ffiffiffi
q
p

þ 1ffiffiffiffiffiffiffi
mq
p Opð1Þ: ð31Þ

By assumption (vii), 1
m

VA0
and 1

q
VB0

converge to the corresponding positive

definite matrices VAy and VBy. Random matrices L1 and L2 are independent
by (i). We need an assumption which ensures the convergence in distribution

of 1ffiffiffi
m
p L1 and 1ffiffi

q
p L2.

6.2 Behavior of 1ffiffiffi
m
p L1

We denote by ~aaT
i , a0T

i and aT
i , i b 1, the rows of ~AA, A0 and A respectively.

~AA ¼
~aaT

1

..

.

~aaT
m

2
664

3
775; A0 ¼

a0T
1

..

.

a0T
m

2
664

3
775; and A ¼

aT
1

..

.

aT
m

2
664

3
775:
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We have

L1 ¼
Xm

i¼1

ða0
i ~aaT

i þ ~aai ~aa
T
i � E~aai ~aa

T
i Þ: ð32Þ

To apply the central limit theorem (CLT), we consider l1 v vecðL1Þ. We have

vecða0
i ~aaT

i Þ ¼ ðIn n a0
i Þ~aai; ð33Þ

and

vecð~aai ~aa
T
i Þ ¼ ~aai n ~aai: ð34Þ

Therefore, see (32) to (34),

l1 ¼
Xm

i¼1

ða0T
i n ~aai þ ~aai n ~aai � E~aai n ~aaiÞ: ð35Þ

We introduce the following assumptions in order to apply the CLT to 1ffiffiffi
m
p l1.

(viii). The rows f~aaT
i ; i b 1g are identically distributed as random vector ~aa. By

assumption (i), ~aa is centered and has covariance matrix V~aa ¼ 1
m

V~AA.
In order to distinguish the vectors ~aai from the scalars ~aai, we will use

the notation ~aaðiÞ for the elements of ~aa.
(ix). For fixed d > 0, Ej~aað jÞj4þd <y, j ¼ 1; . . . ; n:
(x). For each f j; k; lgH f1; . . . ; ng, E~aað jÞ~aaðkÞ~aaðlÞ ¼ 0:

Assumption (x) holds, e.g., when ~aa has a symmetric distribution. It
is possible to avoid (x), but then the asymptotic covariance matrix of X̂X
will be more complicated. For instance, (x) holds in the case of normal
errors ~aað jÞ.

(xi). For some t > 0, 1
m

Pm
i¼1ka0

i k
2þt

a const, and 1
m

max1aiamka0
i k

2 ! 0.

Denote

U 0
A v lim

m!y

1

m
ðIn n a0

i ÞV~aaðIn n a0
i Þ

T ¼ V~aa nVAy;

and

U 00
A v covð~aan ~aa� E~aan ~aaÞ

¼ Eðð~aan ~aa� E~aan ~aaÞð~aan ~aa� E~aan ~aaÞT Þ

¼ Eðð~aa~aaTÞn ð~aa~aaT ÞÞ � vecðV~aaÞðvecðV~aaÞÞT : ð36Þ

The elements of Eðð~aa~aaTÞn ð~aa~aaTÞÞ are the fourth moments of ~aa,
E~aaðiÞ~aað jÞ~aaðkÞ~aaðlÞ. We note that U 0

A and U 00
A are positive semidefinite. The last

assumption in this subsection is assumption (xii).

(xii). U 0
A þU 00

A is positive definite.
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Now, under new assumptions (viii) to (xi) we apply the CLT to 1ffiffiffi
m
p l1, see (35).

We have

cov
l1ffiffiffiffi
m
p

� �
¼ 1

m
covðl1Þ ¼

1

m

Xm

i¼1

ðIn n a0
i ÞV~aaðIn n a0

i Þ
T þU 00

A

and covðl1=
ffiffiffiffi
m
p
Þ ! UA vU 0

A þU 00
A , which is positive definite.

Next, we check the Lyapunov condition, with vvminðt; d=2Þ, where t and
d are defined in assumptions (ix) and (xi). We have, see (35),

1

m1þv=2

Xm

i¼1

ðEkðIn n a0
i Þ~aak

2þv
F þ Ek~aan ~aa� E~aan ~aak2þv

F Þ

a
1

m1þv=2

Xm

i¼1

const � ka0
i k

2þvEk~aak2þv þ const �m
 !

a const � 1

mv=2
! 0; as m!y:

We have also by assumptions (iii), (viii) and (xi), that the second moments of
the summands in (35) are bounded. Therefore by the CLT

l1ffiffiffiffi
m
p !d Nð0;UAÞ:

Then, see (31),

vec
1

m
VA0

� ��1
L1ffiffiffiffi

m
p X0

 !

¼ X T
0 n

1

m
VA0

� ��1
 !

l1ffiffiffiffi
m
p !d ðX T

0 nV�1
AyÞ �Nð0;UAÞ

¼ Nð0;SAÞ; as m!y

with

SA v ðX0 nV�1
AyÞ

T
UAðX0 nV�1

AyÞ: ð37Þ

6.3 Behavior of 1ffiffi
q
p L2

We list similar assumptions for B0 and ~BB.

(viii) 0. The columns f~bbl ; l b 1g are identically distributed as random vector ~bb.

Here ~BB ¼ ½~bb1 . . . ~bbq�. By assumption (i), ~bb is centered, with covariance
matrix V~bb ¼ 1

q
V~BB.
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(ix) 0. For fixed d > 0, Ej~bbðkÞj4þd <y, k ¼ 1; . . . ; p.
(x) 0. For each f j; k; lgH f1; . . . ; pg, E~bbð jÞ~bbðkÞ~bbðlÞ ¼ 0.

(xi) 0. For some t > 0, 1
q

Pq
l¼1kb0

i k
2þt

a const, and 1
q

max1alaqkb0
l k

2 ! 0.

Denote

U 0
B v lim

q!y

1

q

Xq

l¼1

ðb0
l n IpÞV~bbðb

0
l n IpÞT ¼ VBy nV~bb;

and

U 00
B v covð~bbn~bb� E~bbn~bbÞ

¼ Eð~bbn~bb� E~bbn~bbÞð~bbn~bb� E~bbn~bbÞT

¼ Eðð~bb~bbTÞn ð~bb~bbTÞÞ � vecðV~bbÞðvecðV~bbÞÞ
T :

(xii) 0. UB vU 0
B þU 00

B is positive definite.

Then similarly to the previous subsection, we have

l2 v vecðL2Þ ¼
Xq

l¼1

ððb0
l n IpÞ~bbþ ~bbn~bb� E~bbn~bbÞ:

l2ffiffiffi
q
p !d Nð0;UBÞ;

and

vec X0
L2ffiffiffi

q
p

1

q
VB0

� ��1
 !

¼ 1

q
VB0

� ��1

nX0

 !
l2ffiffiffi
q
p !d ðV�1

By nX0Þ �Nð0;UBÞ

¼ Nð0;SBÞ; ð38Þ

where SB v ðV�1
By nX0ÞUBðV�1

By nX0ÞT . From (31) we obtain

ðInþ opð1ÞÞD̂DðInþ opð1ÞÞ ¼
1ffiffiffiffi
m
p xmþ

1ffiffiffi
q
p hqþ

Opð1Þffiffiffiffiffiffiffi
mq
p as m!y; q!y;

where fxmg and fhqg are independent random matrices, and vecðxmÞ !
d

Nð0;SAÞ as m!y and vecðhqÞ !
d

Nð0;SBÞ as q!y.
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Let m ¼ mðrÞ and q ¼ qðrÞ, with r
m
! lA, r

q
! lB, as r!y, where 0 � lA,

lB <y, lA þ lB > 0. Then we have

ðIn þ opð1ÞÞð
ffiffi
r
p

D̂DÞðIn þ opð1ÞÞ ¼
ffiffiffiffi
r

m

r
xm þ

ffiffiffi
r

q

r
hq þ

Opð1Þffiffi
r
p �

ffiffiffiffiffiffiffiffiffiffi
r

m
� r
q

r
:

Therefore we proved the following asymptotic normality result.

Theorem 3. Assume that assumptions (i) to (iii), (vii) to (xii), and (viii) 0 to
(xii) 0 hold. Then for m ¼ mðrÞ, q ¼ qðrÞ, r

mðrÞ ! lA, r
qðrÞ ! lB, as r!y with

0 a lA <y, 0 a lB <y, lA þ lB > 0, we have

ffiffi
r
p
� vecðX̂X � X0Þ !

d
Nð0; lASA þ lBSBÞ:

Now, we investigate the rank of the matrix lASA þ lBSB. We analyze (37).
Suppose that X0 is of full rank, i.e. rankðX0Þ ¼ minðn; pÞ. Then

rankðX T
0 nV�1

AyÞ ¼ rankðX0 nV�1
AyÞ ¼ n minðn; pÞ:

UA has full rank equal n2, and

rankðSAÞ ¼ n minðn; pÞ:

Similarly

rankðSBÞ ¼ p minðn; pÞ:

Denote

S v lASA þ lBSB:

– If lA > 0, lB > 0 then rankðSÞ ¼ maxðrankðSAÞ; rankðSBÞÞ ¼ np, i.e. S is a
positive definite np� np matrix.

– If lA ¼ 0 then rankðSÞ ¼ rankðSBÞ ¼ p minðn; pÞ, and S is positive definite
when n a p.

– If lB ¼ 0 then rankðSÞ ¼ rankðSAÞ ¼ n minðn; pÞ, and S is positive definite
when n b p.

In the case when S is positive definite, we have

k
ffiffi
r
p

S�1=2 vecðD̂DÞk2 !d w2
np as r!y;

or

r � ðvecðD̂DÞÞT S�1 vecðD̂DÞ !d w2
np as r!y: ð39Þ

6.4 Approximate expression

Next, we give an approximate expression for S, constructed via observations,
which converges in probability to S.

Sapp ¼ lAS
app

A þ lBS
app

B ;

266 A. Kukush et al.



see (37),

S
app

A ¼ X̂X n
1

m
ATA� V~AA

� ��1
 !T

U
app

A X̂X n
1

m
ATA� V~AA

� ��1
 !

;

U
app

A ¼ U 0
app;A þU 00

app;A;

U 0
app;A ¼ V~aa n

1

m
ATA� V~aa

� �
; and U 00

app;A ¼ U 00
A :

Now, see (38),

S
app

B ¼ 1

q
BBT � V~BB

� ��1

n X̂X

 !
U

app
B

1

q
BBT � V~BB

� ��1

n X̂X

 !T

;

U
app

B ¼ U 0
app;B þU 00

app;B

U
app

B1 ¼
1

q
BBT � V~bb

� �
nV~bb; and U

app
B2 ¼ U 00

B2:

The approximate asymptotic covariance matrix Sapp can be used to con-
struct an asymptotic confidence ellipsoid for vecðX0Þ, based on the convergence

r � ðvecðD̂DÞÞTðSappÞ�1 vecðD̂DÞ !d w2
np; as r!y;m!y; q!y:

7 Small sample correction

7.1 Construction

In [CST00] a small sample estimator for a polynomial regression with errors
in the variables was constructed. We apply this approach for the model (4),
(5). Our goal is to modify the ALS estimator (11) in such a way that it shows
good results in small samples without loosing the asymptotic properties for
large samples.

We construct a modification of the ALS estimator as follows. For arbi-
trary positive integers b and g, b a g, denote

fbg v ½ 1 . . . 1|fflffl{zfflffl}
b

0 . . . 0|fflffl{zfflffl}
g�b

�T A Rg�1:

First we introduce two matrices of the same size, with t a q

TA v
1ffiffi

t
p Cftq A

� �T 1ffiffi
t
p Cftq A

� �
; and WA v

0 0

0 V~AA

� �
;

and let lA be the smallest positive root of

detðTA � lWAÞ ¼ 0: ð40Þ
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Our polynomial measurement error model is of degree d ¼ 2. Following the
advice of [CST00] we set av d þ 1 ¼ 3. We define

mA ¼
m�a

m
; if lA > 1þ 1

m
;

lAðm�aÞ
mþ1

; if lA a 1þ 1
m
:

(

Similarly we introduce the other two matrices of equal size, s a m,

TB v
1ffiffi
s
p C T fsm BT

� �T 1ffiffi
s
p C T fsm BT

� �
; and WB v

0 0

0 V~BB

� �
;

and let lB be the smallest positive root of

detðTB � lWBÞ ¼ 0: ð41Þ

We set

mB ¼
q�a

q
; if lB > 1þ 1

q
;

lBðq�aÞ
qþ1

; if lB a 1þ 1
q
:

8<
:

The modified estimator is defined by

X̂Xm v ðATA� mAV~AAÞ
y
AT CBTðBBT � mBV~BBÞ

y: ð42Þ

7.2 TA and TB are positive definite, a.s.

We need the next assumption.

(xiii). The following distributions have no atoms

Lð~ccilÞ; i b 1; l b 1; Lð~aaijÞ; i b 1; j a n; Lð~bbklÞ; k a p; l b 1:

We remind that the distribution of a r.v. x has no atoms i¤ Pðx ¼ aÞ ¼ 0, for
all a A R.

Lemma 2. Assume that assumptions (i) and (xiii) hold. Then for all m b nþ 1,

q b 1, t a q, TA is positive definite a.s., and for all m b 1, q b pþ 1, s a m, TB

is positive definite a.s.

Proof. We shall give a proof for TA only. The sum of independent r.v. with
non-atomic distribution also has non-atomic distribution, hence the compo-
nents of 1ffiffi

t
p Cftq have non-atomic distribution. We suppose that m b nþ 1,

q b 1. Denote 1ffiffi
t
p Cftq v ½u1 . . . um�T . It is su‰cient to show that the vectors

hT
1 v

u1

a1

� �
; . . . ; hT

nþ1 v
unþ1

anþ1

� �
ð43Þ

are linearly independent, a.s. Note that h1; . . . ; hnþ1 are independent as ran-
dom vectors. Using induction by n b 1 we prove the following statement.

Let h1; . . . ; hnþ1 given in (43) be independent random vectors, ai A Rn�1,
ui A R, and u1; . . . ; unþ1 have non-atomic distribution, and all the coordinates
of a1; . . . ; an have non-atomic distribution as well. Then
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det

h1

..

.

hnþ1

2
64

3
750 0; a:s:

a). Indeed, for n ¼ 1

det
h1

h2

� �
¼ u1a2 � u2a1 and a1 0 0; a:s:

Then

Pðu1a2 � u2a1 ¼ 0Þ ¼ EðE½Iðu1a2 � u2a1 ¼ 0Þ j a1; a2�Þ;

where Ið�Þ denotes the indicator function of a random event. But for
deterministic a1; a2; a100, we have: Lðu1a2�u2a1Þ is non-atomic because
it is a sum of two independent r.v. with non-atomic distribution (if a2 0 0)
or it is exactly Lð�u2a1Þ, which is non-atomic. Then

E½Iðu1a2 � u2a1 ¼ 0Þ j a1; a2� ¼ 0 a:s:

and Pðu1a2 � u2a1 ¼ 0Þ ¼ 0. We proved the statement for n ¼ 1.

b). Suppose it holds for n� 1 b 1, and we prove it for n.

det

h1

..

.

hnþ1

2
64

3
75 ¼

Xnþ1

i¼1

uiAi;

where Ai ¼ Aiða1; . . . ; anþ1Þ is the corresponding algebraic complement.
Here

Anþ1 ¼Gdet

a1

..

.

an

2
64

3
750 0 a:s:

by the assumption of induction. Then

P
Xnþ1

i¼1

uiAi ¼ 0

 !
¼ E E I

Xnþ1

i¼1

uiAi ¼ 0

 !
j a1; . . . ; anþ1

" # !
¼ 0;

because for deterministic A1; . . . ;Anþ1, Anþ1 0 0, we have Lð
Pnþ1

i¼1 uiAiÞ
is non-atomic. Thus we proved the statement for n.

This accomplishes the proof of the auxiliary statement.

Thus a.s. rank 1ffiffi
t
p Cftq A
h i� 	

¼ nþ 1, and TA is positive definite a.s.

Lemma 2 is proved. r
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7.3 The matrices ATA� mAV~AA and BBT � mBV~BB are positive definite, a.s.

We suppose that m b nþ 1, q b pþ 1. We may and do assume that TA and
TB are positive definite. If V~AA 0 0 and V~BB 0 0 then lA and lB exist, because
(40) is equivalent to

det T
�1=2

A WAT
�1=2

A � 1

l
Inþ1

� �
¼ 0;

and this equation has a positive solution l, as T
�1=2

A WAT
�1=2

A is positive semi-

definite and T
�1=2

A WAT
�1=2

A 0 0; the same for (41).

Now, we show that ATA� mAV~AA is positive definite. We have

mA a
m� a

mþ 1
lA

and

ATA� mAV~AA b ATA�m� a

mþ 1
lAV~AA

¼ m� a

mþ 1
ðATA� lAV~AAÞ þ

aþ 1

mþ 1
ATA b

aþ 1

mþ 1
ATA > 0:

Similarly BT B� mBV~BB is also positive definite. Thus for m b nþ 1, q b pþ 1
we have a.s.

X̂Xm ¼ ðATA� mAV~AAÞ
�1

AT CBT ðBBT � mBV~BBÞ
�1:

7.4 X̂Xm has the same asymptotic properties as X̂X

First we show that PðlA > 1Þ ! 1 as m; q!y, and the same for lB. We
need some new assumptions.

(xiv). t ¼ tm ¼ oð
ffiffiffiffi
m3
p
Þ, m!y, t a q and s ¼ sq ¼ oð ffiffiffiq3

p Þ, q!y, s a m

and tm, sq are nondecreasing sequences of numbers. E.g., it is pos-

sible to set t ¼ ½m1=4� and s ¼ ½q1=4�, where ½�� are Gaussian brackets, if
m=q! l, with arbitrary l A ð0;yÞ.

(xv). f~ccil ; i b 1; l b 1g are identically distributed and E~cc2
11 > 0.

Lemma 3. Assume (i) to (iii), (vii), (viii), (viii) 0, (xiv) and (xv). Then for
m!y, q!y, we have

PðlA > 1Þ ! 1 and PðlB > 1Þ !y:

Proof. See Appendix.

Theorem 4. Assume (i) to (iii), (vii), (viii), (viii) 0, (xiv) and (xv). Then for
m ¼ mðuÞ, q ¼ qðuÞ, u=mðuÞ ! lA, u=qðuÞ ! lB, as u!y, with 0 a lA <y,
0 � lB <y, lA þ lB > 0, we have

p min
u!y

ffiffiffi
u
p
ðX̂Xm � X̂XÞ ¼ 0:

270 A. Kukush et al.



Proof. We follow the line of [CST00]. From Lemma 3 and the definition of mA,
see Subsection 7.1, we obtain that with probability tending to one,

m� a

mþ 1
a mA a

m� a

m
;

and

0 a ðmA � 1Þ
ffiffiffiffi
m
p

a
affiffiffiffi
m
p :

Therefore

p lim
m!y
q!y

ffiffiffiffi
m
p
ðmA � 1Þ ¼ 0: ð44Þ

Similarly

p lim
m!y
q!y

ffiffiffi
q
p ðmB � 1Þ ¼ 0: ð45Þ

Now, we consider the di¤erence between the estimators X̂X � X̂Xm. From (9) and
(42) we have

ðATA� V~AAÞX̂XðBBT � V~BBÞ ¼ ðATA� mAV~AAÞX̂XMðBBT � mBV~BBÞ:

We set mA ¼ 1þ h1ffiffiffi
m
p , mB ¼ 1þ h2ffiffi

q
p , h1 !

p

0, h2 !
p

0 and X̂Xm v X̂X þ ~XX .
We have

ðATA� mAV~AA þ ðmA � 1ÞV~AAÞX̂XðBBT � mBV~BB þ ðmB � 1ÞV~BBÞ

¼ ðATA� mAV~AAÞðX̂X þ ~XX ÞðBBT � mBV~BBÞ;

ðATA� mAV~AAÞX̂X ðBBT � mBV~BBÞ

¼ h1ffiffiffiffi
m
p V~AAX̂X ðBBT � V~BBÞ þ

h2ffiffiffi
q
p ðATA� V~AAÞX̂XV~BB þ

h1h2ffiffiffiffiffiffiffi
mq
p V~AAX̂XV~BB:

But under the assumptions of Section 4 we have as
ffiffiffiffi
m
p
ðmA � 1Þ !p 0,ffiffiffi

q
p ðmB � 1Þ !p 0,

ðIn þ opð1ÞÞ ~XXðIp þ opð1ÞÞ ¼
h1ffiffiffiffi
m
p Opð1Þ þ

h2ffiffiffi
q
p Opð1Þ þ

h1h2ffiffiffiffiffiffiffi
mq
p Opð1Þ

¼ opð1Þffiffiffiffi
m
p þ opð1Þffiffiffi

q
p þ opð1Þffiffiffiffiffiffiffi

mq
p :

We assume that m ¼ mðuÞ, q ¼ qðuÞ, and we have as u!y that m!y,
q!y and

u

m
! lA;

u

q
! lB; 0 a lA <y; 0 a lB <y; lA þ lB > 0:
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Then we have as u!y

ðIn þ opð1ÞÞð
ffiffiffi
u
p

~XXÞðIp þ opð1ÞÞ

¼
ffiffiffiffi
u

m

r
opð1Þ þ

ffiffiffi
u

q

r
opð1Þ þ

ffiffiffiffi
u

m

r ffiffiffi
u

q

r
opð1Þffiffiffi

u
p : r

From Theorem 4 under the conditions of asymptotic normality of X̂X , see
Subsections 6.2 and 6.3, we will have

ffiffiffi
u
p
� vecðX̂Xm � X̂X Þ !d Nð0; lASA þ lBSBÞ:

If lASA þ lBSB > 0 then we can say that X̂Xm and X̂X have the same asymptotic
properties. It happens, see Subsection 6.3, if

– either lA > 0, lB > 0,
– or lA ¼ 0 and n a p,
– or lB ¼ 0 and n b p.

Thus in the case n ¼ p we guarantee that X̂Xm and X̂X are asymptotically
equivalent only for the convergence m!y, q!y, m=q! l, l A ð0;yÞ.

8 Examples

In this section we apply the ALS estimator to a hypothetical example.
We consider the model (4), (5) with m ¼ q and n ¼ p ¼ 2, i.e.

A|{z}
m�2

X|{z}
2�2

B|{z}
2�m

¼ C|{z}
m�m

:

The true data is

A0 ¼
I2

..

.

I2

2
64

3
75; B0 ¼ ½I2 . . . I2�; and C0 ¼

I2 � � � I2

..

. ..
.

I2 � � � I2

2
64

3
75;

and the true value of the parameter is X0 ¼ I2. The perturbations ~AA, ~BB and ~CC
are selected in three di¤erent ways.

1. Equally sized errors. All elements aij, bkl , cil are independent, centered, and
normally distributed with common variance 0.01.

2. Di¤erently sized errors. All elements aij , bkl , cil are independent, centered,
and normally distributed. The elements in the first column of ~AA have vari-
ance 0.05 and the elements in the second column of ~AA have variance 0.01.
The elements in the first row of ~BB have variance 0.01 and the elements in
the second row of ~BB have variance 0.05. All elements of ~CC have variance
0.01;
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3. Correlated errors. All elements aij , bkl , cil are independent and normally

distributed. All rows of ~AA have covariance 0.01 5 1
1 1

� �
and the elements are

independent from row to row. All columns of ~BB have covariance 0.01 1 1
1 5

� �
and the elements are independent from column to column.

The estimation is performed for increasing number of measurements m. As
measure of the estimation quality, we use the empirical (relative) mean square
error

eðmÞ ¼ 1

N

XN

s¼1

kX0 � X̂X ðsÞk2
F

kX0k2
F

;

where X̂X ðsÞ is the estimate computed for the s-th noise realization.
The ALS and the small sample modified ALS estimators are compared

with the LS estimator

X̂Xls v ðATAÞyAT CBTðBBTÞy;

and with the partial LS estimators,

X̂Xpa vTLS solution of XB ¼ ðATAÞyAT C

and

X̂Xpb vTLS solution of AX ¼ CBTðBBTÞy:

Figure 1 shows small sample size result for equally sized errors; the num-
ber of measurements m is between 10 and 20. On the left plot is the mean
square error of estimation eðmÞ for LS (dotted line), ALS (solid line), small
sample modified ALS (dashed-dotted line) and partial LS (dashed lines) esti-
mators. The plots are averaged for N ¼ 200 noise realizations.

The right plot of Figure 1 illustrates application of the asymptotic
normality results for confidence region computation, see Subsection 6.4. The

Fig. 1. Equally sized errors, small sample size results
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confidence region of x̂xm v vecðX̂XmÞ with 1� a confidence probability is the
ellipsoid

E
app

1�aðx̂xmÞ ¼ x j ðx� x̂xmÞðSappÞ�1ðx� x̂xmÞa
1

m
ðw2

l Þa
� �

;

where ðw2
l Þa is the a quantile of the w2

l distribution, i.e. Pðw2
l b ðw2

l ÞaÞ ¼ a, and
l is the number of degrees of freedom. For x̂xm in the example, l ¼ 4.

In order to be able to visualize the results, we use the first two elements of
x̂xm, denoted by x̂xmð1 : 2Þ. For x̂xmð1 : 2Þ, l ¼ 2 and the approximate asymptotic
covariance matrix is the upper left, 2 by 2 submatrix of Sapp.

The computed confidence region E
app

0:9 ðx̂xmÞ for m ¼ 20 is shown as shaded
area on the plot. The symbol ‘‘4’’ indicates the true value point ½1 0�T and the
symbol ‘‘=’’ indicates the point estimate x̂xMð1 : 2Þ.

Figure 2 shows analogous results for equally sized errors for larger sample
size; m between 20 and 100.

Figure 3, shows how the estimates are clustered. Again ‘‘4’’ corresponds to
the true value ½1 0�T . The ‘‘=’’ symbols correspond to 100 estimates x̂xMð1 : 2Þ.
The shaded area is the ellipsoid,

E1�aðx̂xmÞ ¼ x j ðx� x̂xmÞS�1ðx� x̂xmÞa
1

m
ðw2

l Þa
� �

;

Fig. 2. Equally sized errors, result for m A f20; . . . ; 100g

Table 1. Percentage of estimates inside

inside

x̂xMð1 : 2Þ A E0:9ðx̂xMð1 : 2ÞÞ 89%

x̂xM A E0:9ðx̂xMÞ 91%

Fig. 3. Clustering of the modified ALS estimates
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described by the true asymptotic covariance matrix S, see (39), and centered
at the true value x̂xmð1 : 2Þ.

Figure 4 show the mean square error of the compared estimators for
di¤erently sized uncorrelated errors (left plot) and for correlated errors (right
plot).

9 Conclusion

We considered the multivariable model AXB ¼ C. In the situation when the
TLS estimator is inconsistent, we construct the ALS estimator, which is con-
sistent. We gave the conditions of weak and strong consistency, and of asymp-
totic normality. It turns out that the asymptotic covariance matrix of the esti-
mator does not depend upon the covariance structure of ~CC. We introduced a
small sample modification of the estimator, which has better properties for
small samples and preserves the asymptotic properties of the estimator.

An open question is what are the optimality properties of the ALS
estimator. In [KM00] for the model AX ¼ B in the scalar case it was shown
that the ALS estimator is asymptotically e‰cient in the situation where V~AA

is known exactly and E~bb2
kl are known up to a constant factor. It would be

interesting to check the following conjecture:

In the model AXB ¼ C the ALS estimator is asymptotically e‰cient in
the situation where V~AA and V~BB are known exactly and E~cc2

il are known
up to a constant factor.

10 Appendix

10.1 Proof of (14)

We have

V�1
A0

UA ¼ In þ V�1
A0
ð ~AAT ~AA� V~AAÞ þ V�1

A0
ð ~AAT A0 þ AT

0
~AAÞ: ð46Þ

Fig. 4. Left: di¤erently sized errors; right: correlated errors
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Next

EkV�1
A0
ð ~AAT ~AA� V~AAÞk

2
F a kV�1

A0
k2

Ek ~AAT ~AA� V~AAk
2
F ð47Þ

and kV�1
A0
k ¼ l�1

minðVA0
Þ. By (ii) and (iii), we have

Ek ~AAT ~AA� V~AAk
2
F ¼

Xn

i;k¼1

var
Xm

j¼1

~aaji ~aajk

 !

¼
Xn

i;k¼1

Xm

j¼1

varð~aaji ~aajkÞa const �m;

thus by (iv)

EkV�1
A0
ð ~AAT ~AA� V~AAÞk

2
F a

const �m
l2

minðVA0
Þ
! 0 as m!y; ð48Þ

this proves that V�1
A0
ð ~AAT ~AA� V~AAÞ !

p

0.
Next

EkV�1
A0
ð ~AAT A0 þ AT

0
~AAÞk2

F a
2

l2
minðVA0

Þ
EkAT

0
~AAk2

F ð49Þ

and

EkAT
0

~AAk2
F ¼

Xn

i;k¼1

E
Xm

j¼1

a0
ji ~aajk

 !2

¼
Xn

i;k¼1

Xm

j¼1

ða0
jiÞ

2 varð~aajkÞ

a const �
Xn

i¼1

Xm

j¼1

ða0
jiÞ

2
a const � lmaxðVA0

Þ

and from (49) under assumption (iv) we have

V�1
A0
ð ~AAT A0 þ AT

0
~AAÞ !p 0: ð50Þ

Now, (46), (48) and (50) imply the first relation in (14), and the second one in
(14) holds similarly.

10.2 Proof of (15)

V�1
A0
ðAT A0Þ ¼ In þ V�1

A0

~AAT A0;

and this converges in probability to In, see Subsection 10.1. The second con-
dition in (15) is shown similarly.
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10.3 Proof of (16)

We have

kV�1
A0

AT ~CCBT V�1
B0
kF a

1

lminðVA0
ÞlminðVB0

Þ kA
T ~CCBTkF ; ð51Þ

and

EkAT ~CCBTk2
F ¼

Xn

j¼1

Xp

k¼1

E
Xm

i¼1

Xq

l¼1

aij ~ccilbkl

 !2

¼
X

i; j;k; l

Ea2
ij varð~ccilÞEb2

kl

a const �
Xm

i¼1

Xn

j¼1

Ea2
ij

 ! Xp

k¼1

Xq

l¼1

Eb2
kl

 !

a const � ðlmaxðVA0
Þ þmÞðlmaxðVB0

Þ þ qÞ:

Then from (51) we have

EkV�1
A0

AT ~CCBT V�1
B0
k2

F a const � ðlmaxðVA0
Þ þmÞ

l2
minðVA0

Þ
� ðlmaxðVB0

Þ þ qÞ
l2

minðVB0
Þ

;

and this tends to zero, as m!y, q!y by assumption (iv).

10.4 Proof of Theorem 2

We have to show that in (14) to (16) the convergence is with probability one.
After that the statement of Theorem 2 will follow from equation (13) for the
estimator X̂X .

We use Lemma 1. First, see (46). Consider

Ek ~AAT ~AA� V~AAk
r
F ¼ E

Xm

i¼1

ð~aaT
i ~aai � E~aaT

i ~aaiÞ
�����

�����
r

F

a const �mr=2;

because by (v) Ek~aak2r
a const. Then

EkV�1
A0
ð ~AAT ~AA� V~AAÞk

r
F a const � mr=2

l r
minðVA0

Þ ;

Xy
m¼m0

mr=2

lr
minðVA0

Þ <y

and by Borel-Cantelli lemma

V�1
A0
ð ~AAT ~AA� V~AAÞ ! 0 a:s: as m!y:
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Next, consider

k ~AAT A0 þ AT
0

~AAkF a 2kAT
0

~AAkF

and

EkAT
0

~AAk2r
F ¼ E

Xm

i¼1

a0T
i ~aai

�����

�����
2r

F

a const �
Xm

i¼1

ka0
i k

2

 !r

a const � lr
maxðVA0

Þ:

Therefore,

EkV�1
A0
ð ~AAT A0 þ AT

0
~AAÞk2r

a const � l
r
maxðVA0

Þ
l2r

minðVA0
Þ
;

Xy
m¼m0

lr
maxðVA0

Þ
l2r

minðVA0
Þ

ay;

and by Borel-Cantelli lemma

V�1
A0
ð ~AAT A0 þ AT

0
~AAÞ ! 0 a:s:; as m!y:

Thus, see (46), V�1
A0

UA ! In a.s., as m!y. Similarly, UBV�1
B0
! Ip a.s., as

q!y.
Secondly, in (15) we also have convergence a.s., compare with the proof of

Theorem 1.
Thirdly, consider

E½kAT ~CCBTk2r
F j ~AA; ~BB� ¼ E

Xm

i¼1

Xq

l¼1

aT
i ~ccilb

T
l

�����

�����
2r

F

j ~AA; ~BB

2
4

3
5

a const �
 Xm

i¼1

Xq

l¼1

E½kaT
i ~ccilb

T
l k

2r j ~AA; ~BB�

þ
Xm

i¼1

Xq

l¼1

E½kaT
i ~ccilb

T
l k

2 j ~AA; ~BB�
 !r!

:

Now,

Xm

i¼1

Xq

l¼1

E½kaT
i ~ccilb

T
l k

2r j ~AA; ~BB�a const �
Xm

i¼1

kaik2r
Xq

l¼1

kblk2r;

and

E
Xm

i¼1

Xq

l¼1

E½kaT
i ~ccilb

T
l k

2r j ~AA; ~BB�
 !

aconst � ðlr
maxðVA0

Þ þmÞðlr
maxðVB0

Þþ qÞ:
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Next,

E
Xm

i¼1

Xq

l¼1

E½kaT
i ~ccilb

T
l k

2 j ~AA; ~BB�
 !r

a const � E
Xm

i¼1

kaik2

 !r

E
Xq

l¼1

kblk2

 !r

a const � ðlr
maxðVA0

Þ þmrÞðlr
maxðVB0

Þ þ qrÞ

Therefore

EkAT ~CCBTk2r
F a const � ðl r

maxðVA0
Þ þmrÞðl r

maxðVB0
Þ þ qrÞ;

and, see (46),

EkV�1
A0

AT ~CCBT V�1
B0
k2r

F a const � l
r
maxðVA0

Þ þmr

l2r
minðVA0

Þ
lr

maxðVB0
Þ þ qr

l2r
minðVB0

Þ
;

Xy
m¼m0

Xy
q¼q0

lr
maxðVA0

Þ þmr

l2r
minðVA0

Þ
l r

maxðVB0
Þ þ qr

l2r
minðVB0

Þ

¼
Xy

m¼m0

lr
maxðVA0

Þ þmr

l2r
minðVA0

Þ

 ! Xy
q¼q0

lr
maxðVB0

Þ þ qr

l2r
minðVB0

Þ

 !
<y:

Then for each e > 0,

PðkV�1
A0

AT ~CCBT V�1
B0
k > eÞa 1

e2r
EkV�1

A0
AT ~CCBT V�1

B0
k2r

and by Borel-Cantelli lemma with probability one the event

Dmq ¼ fkV�1
A0

AT ~CCBT V�1
B0
k > eg

happens only for finite number of indices m and q. Then almost surely
there exists m1 ¼ m1ðoÞ and q1 ¼ q1ðoÞ, such that for all m b m1, q b q1,
kV�1

A0
AT ~CCBT V�1

B0
ka e.

This means that V�1
A0

AT ~CCBT V�1
B0
! 0 a.s., as m!y, q!y.

We proved that in (14) to (16) the convergence is with probability one and
Theorem 2 is proved. r

10.5 Proof of Lemma 3

We give the proof for lA only. It is su‰cient to show that

PðTA > WAÞ ! 1 as m!y; q!y:
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We have

TA �WA ¼
1
t

f T
tq C T Cftq

1ffiffi
t
p f T

tq C T A
1ffiffi
t
p AT Cftq ATA� V~AA

" #

¼ 1ffiffi
t
p C0 ftq A0

	 
T
1ffiffi

t
p C0 ftq A0

	 

þ

1
t

f T
tq

~CC T ~CCftq 0

0 0

	 


þ
1
t

f T
tq ðC T

0
~CC þ ~CC T C0Þ ftq

1ffiffi
t
p f T

tq ðC T
0

~AAþ ~CC T A0Þ
1ffiffi
t
p ð ~AAT C0 þ AT

0
~CCÞ ftq AT

0
~AAþ ~AAT A0 þ ð ~AAT ~AA� V~AAÞ

2
4

3
5

vH1 þH2 þH3:

10.5.1 Behavior of H1

We have H1 b 0, and H1 ¼
"

H 0
11 H 0

12

H 0
21 H 0

22

#
;

1

m
H 0

22 ¼
1

m
AT

0 A0 ! VAy > 0; see assumption ðviiÞ:

10.5.2 Behavior of H2

We have H2 ¼
H 00

11 0

0 0

	 

,

1

m
H 00

11 ¼
1

mt

Xm

i¼1

Xt

k¼1

~ccik

Xt

l¼1

~ccil ¼
1

mt

X
1aiam
1akat

~cc2
ik þ

2

mt

X
1aiam

1ak<lat

~ccik ~ccil vSA þ SB:

We have

1

4
ES2

B ¼
1

m2t2

X
1aiam

1ak<lat

Eð~cc2
ikÞEð~cc2

ilÞaconst � mt2

m2t2
! 0 as m!y; q!y:

Next, by assumption (xv) and by the law of large numbers

SA ! E~cc2
11 a:s: as m!y; q!y

Thus
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H2 !
E~cc2

11 0

0 0

" #
a:s:

10.5.3 Behavior of H3

We prove that 1
m

H3 !
p

0. We write H3 ¼
H 000

11 H 000
12

H 000
21 H 000

22

	 

,

a).

1

m2
E

1

t
f T
tq C T

0
~CCftq

� �2

¼ 1

m2
E

1

t
f T
tq

~CC T C0 ftq

� �2

¼ 1

m2t2
E
Xm

i¼1

Xt

k¼1

c0
ik

Xt

l¼1

~ccil

 !2

¼ 1

m2t2

Xm

i¼1

Xt

l¼1

E~cc2
11

Xt

k¼1

c0
ik

 !2

a const � 1

m2

Xm

i¼1

Xt

l¼1

ðc0
ikÞ

2

a const � 1

m2
lmaxðVA0

Þlmax

Xt

i¼1

b0
i b0T

i

 !

a const � t

m
! 0;

because t ¼ oð
ffiffiffiffi
m3
p
Þ. Thus H 000

11 !
p

0.
b).

1

m2
E

1ffiffi
t
p ~AAT C0 ftq

����
����

2

¼ 1

m2t
E
Xn

k¼1

Xm

i¼1

~aaik

Xt

l¼1

c0
il

 !2

a const � 1

m2t

Xn

k¼1

Xm

i¼1

Xt

l¼1

c0
il

 !2

a const � 1

m2

Xm

i¼1

Xt

l¼1

ðc0
ilÞ

2

a const � t

m
! 0:
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c).

1

m2
E

1ffiffi
t
p AT

0
~CCftq

����
����

2

¼ 1

m2t
E
Xn

k¼1

Xm

i¼1

a0
ik

Xt

l¼1

~ccil

 !2

¼ 1

m2t

Xn

k¼1

Xt

l¼1

E~cc2
11

Xm

i¼1

a0
ik

 !2

a const � 1

m2

Xm

i¼1

Xn

k¼1

ða0
ikÞ

2

a const � t

m
! 0:

From b) and c) we have H 000
12 !

p

0, H 000
21 !

p

0.

d). It was shown above that H 000
22 !

p

0, see section 10.1. Finally, H3 !
p

0.

10.5.4 End of proof

Summarizing Subsection 10.5.3, we have

1

m
H3

����
����

F

¼
ffiffiffiffi
t

m

r
�Opð1Þ:

We need to know the behavior of the other blocks of H1.

1

m
H 0

11 ¼
1

mt

Xm

i¼1

Xt

l¼1

c0
il

 !2

a
1

m

Xm

i¼1

Xt

l¼1

ðc0
ilÞ

2

a const � t:

1

m
H 0

21 ¼
1

m
ffiffi
t
p AT

0 C0 ftq ¼
1

m
AT

0 A0 �
1ffiffi

t
p X0B0 ftq;

1

m
H 0

21

����
����

F

a const �
ffiffi
t
p
;

and

1

m
H 0

12

����
����

F

¼ 1

m
H 0

21

����
����

F

a const �
ffiffi
t
p
:
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We consider the matrix

MA v
1

m
ðH1 þH2Þ:

It is positive semidefinite and we look for e0 > 0 such that MA b
e0

t
Inþ1 with

probability tending to one. We have

MA �
e0

t
Inþ1 ¼

1
m

H 0
11 þ 1

m
H 00

11 �
e0

t

� �
1
m

H 0
12

1
m

H 0
21

1
m

H 0
22 �

e0

t
In

" #
:

Now, for m b m0

1

m
H 0

22 �
e0

t
In b

1

2
lminðVAyÞ �

e0

t

� �
In b

1

2
lminðVAyÞ � e0

� �
In

b
1

4
lminðVAyÞ; if e0 a

1

4
lminðVAyÞ:

We apply Silvester’s criterion to the matrix MA � e0

t
Inþ1. We have for

e0 a
1

4
lminðVAyÞ; ð52Þ

det MA�
e0

t
In

 �
¼ det

1

m
H1

� �
þ 1

m
H 00

11

� �
det

1

m
H 0

22�
e0

t
In

� �
þ e0 �Oð1Þ:

ð53Þ

The last term comes from 1
m

H 0
11 det 1

m
H 0

22 �
e0

t
In

� �
and from the product of

components 1
m

H 0
21, 1

m
H 0

12 and e0

t
In. In both cases we have t e0

t
�Oð1Þ ¼ e0 �Oð1Þ.

Now, 1
m

H1 b 0, therefore (53) implies

det MA �
e0

t
Inþ1

 �
b

1

m
H 00

11 � det
1

m
H 0

22 �
e0

t
In

� �
� const1 � e0;

with some const1 > 0, and a.s. we have

lim inf
m!y
q!y

det MA �
e0

t
Inþ1

 �
b E~cc2

11 � detðVAyÞ � const1 � e0 > 0;

if

e0 <
1

const1
E~cc2

11 detðVAyÞ: ð54Þ

Therefore if e0 satisfies (52) and (54) then

MA �
e0

t
Inþ1 > 0;
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with probability tending to one, and

lminðMAÞb
e0

t
;

with probability tending to one. We have

lmin
1

m
ðTA �WAÞ

� �
b lminðMAÞ �

1

m
H3

����
����b lminðMAÞ �

ffiffiffiffi
t

m

r
�Opð1Þ;

and with probability tending to one we have

lminðTA �WAÞb
e0

t
�

ffiffiffiffi
t

m

r
Opð1Þ:

But with probability tending to one

e0

t
�

ffiffiffiffi
t

m

r
Opð1Þ > 0,

ffiffiffiffi
m

t3

r
� e0 > Opð1Þ;

and the last holds because by assumption m
t3 !y. Thus TA > WA with prob-

ability tending to one. Lemma 3 is proved. r
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