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Summary. A parameter estimation problem for ellipsoid fitting in the pres-
ence of measurement errors is considered. The ordinary least squares estima-
tor is inconsistent, and due to the nonlinearity of the model, the orthogonal
regression estimator is inconsistent as well, i.e., these estimators do not con-
verge to the true value of the parameters, as the sample size tends to infinity.A
consistent estimator is proposed, based on a proper correction of the ordinary
least squares estimator. The correction is explicitly given in terms of the true
value of the noise variance.

Mathematics Subject Classification (2000): 65D15, 65D10, 15A63

1 Introduction

The main motivation for our work is the ellipsoid fitting problem—given a
set of data points {x(l)}ml=1, x(l) ∈ R

n, find an ellipsoid

E(Ae, c) := { x ∈ R
n : (x − c)�Ae(x − c) = 1 }, Ae > 0,(1)

that “best matches” them. The freedom in the choice of the matching criterion
gives rise to different estimation methods.

One approach, called algebraic fitting, is to solve the following optimi-
zation problem:

min
Ae,c

m∑

l=1

(
(x(l) − c)�Ae(x

(l) − c)− 1
)2
,(2)
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and to define the estimate as any global optimal point. We will refer to (2) as
the ordinary least squares (OLS) method for the ellipsoid model.

Another approach, called geometric fitting, is to solve the optimization
problem

min
Ae,c

m∑

l=1

(
dist

(
x(l), E(Ae, c)

))2
,(3)

where dist(x, E) is the Euclidean distance from the point x to the set E . In
the statistical literature, (3) is called the orthogonal regression method.

We assume that all data points are noisy measurements x(l) := x̄(l) + x̃(l)

of some true points x̄(1), . . . , x̄(m) that lie on a true ellipsoid E(Āe, c̄), i.e.,
the model is a measurement error model [CV99,CRS95]. The measurement
errors x̃(1), . . . , x̃(m) are centered, independent identically distributed, and
the distribution is normal with variance-covariance matrix σ̄ 2I , where σ̄ 2 is
the noise variance.

Due to the quadratic nature of the ellipsoid model with respect to the
measurement x, both the algebraic and the geometric fitting methods are
inconsistent in a statistical sense, see the classical paper of [NS48] and the
discussion in [Ful87, p. 250]. We propose a consistent estimator, called ad-
justed least squares (ALS) estimator, that is derived from the OLS cost func-
tion by applying a correction.

The OLS estimator, defined by (2), is a nonlinear least-squares problem.
We use a computationally cheap, but suboptimal method to solve the opti-
mization problem (2). The quadratic equation defining the ellipsoid model is
“embedded” in the quadratic equation

x�Ax + b�x + d = 0, A > 0,(4)

which is linear in the parameters A, b, and d, so that a linear least squares
estimation is possible. For given estimates Â, b̂, and d̂, of the parameters
in (4), assuming that Â > 0, the estimates of the original parameters in (2)
are given by:

ĉ := −1

2
Â−1b̂ and Âe := 1

ĉ�Âĉ − d̂
Â.(5)

The necessary computation for the (suboptimal) OLS estimator involves find-
ing an eigenvector associated with the smallest eigenvalue of a symmetric
matrix. We use the same indirect approach to compute the ALS estimator.

The correction needed for the ALS estimator is given explicitly in terms
of the noise variance σ̄ 2. We give an algorithm for ellipsoid fitting that imple-
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ments the theoretical results. Its computational cost increases linearly with
the sample size m. In a separate paper [KMV02a], we present the statistical
properties of the estimator and treat the case when σ̄ 2 is unknown.

The orthogonal regression estimator, on the other hand, is computed
via a local optimization method and scales worse with m and with the
dimension n of the vector space. In addition, due to the nonconvexity of
the cost function in (3), the computed solution depends on the supplied
initial approximation. In degenerate cases, see [Nie02, p. 260–261], the
global minimum of (3) is not unique, so that there are several “best” fitting
ellipses.

We point out several papers in which the ellipsoid fitting problem is
considered. Gander et. al. [GGS94] consider algebraic and geometric fit-
ting methods for circles and ellipses and note the inadequacy of the alge-
braic fit on some specific examples. Later on, the given examples are used
as benchmarks for the algebraic fitting methods. Fitting methods, specific
for ellipsoids, as opposed to the more general conic sections are first pro-
posed in [FPF99]. The methods incorporate the ellipticity constraint into
the normalizing condition and thus give better results when an elliptic fit
is desired. In [Nie01] a new algebraic fitting method is proposed that does
not have as singularity the special case of a hyperplane fitting; if the best
fitting manifold is affine the method coincides with the total least squares
method. Numerical methods for the orthogonal fitting problem are devel-
oped in [Spä97a].

A statistical point of view on the ellipsoid fitting problem is taken in
[Kan94] and [CM96]. Kanatani proposed an unbiased estimation method,
called a renormalization procedure. He uses an adjustment similar to the
one in the present paper but his approach of estimating the unknown noise
variance is different from the one presented in [KMV02a]. Moreover, the
noise variance estimate proposed in [Kan94] is still inconsistent; the bias is
removed up to the first order approximation.

Standard notation used in the paper is: R for the set of the real num-
bers, N for the set of the natural numbers, Ex̃ for the expectation of the
random variable x̃, N(0, V ) for the zero mean normal distribution with vari-
ance-covariance matrix V , λmin(A)

(
λmax(A)

)
for the minimum (maximum)

eigenvalue of a symmetric matrix A, ||x|| for the Euclidean norm of the vec-
tor x, and ||A||F for the Frobenius norm of the matrix A. Throughout the
paper S denotes the space of the n×n symmetric matrices. Specific notation
is introduced in the text.

The paper is structured as follows. Section 2 defines the quadratic mea-
surement error model. The OLS and ALS estimators are defined in Sects. 3
and 4. Ellipsoid estimates are derived from the general quadratic model esti-
mates in Sect. 5. An algorithms for ALS estimation is outlined in Sect. 6.
Section 7 shows simulation examples and Sect. 8 gives conclusions.
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2 Quadratic measurement error model

A second order surface in R
n is the set

S(A, b, d) := { x ∈ R
n : x�Ax + b�x + d = 0 },(6)

where the symmetric matrix A ∈ S, the vector b ∈ R
n, and the scalar d ∈ R

are parameters of the surface. If A = 0 and b �= 0, then the surface (6) is
a hyperplane, and if A is positive definite and 4d < b�A−1b, then (6) is an
ellipsoid. Until Sect. 5, we will only assume that S(A, b, d) is a non empty
set, but in Sect. 5, we will come back to the ellipsoid fitting problem, so that
the parameters will be restricted.

Let Ā ∈ S, b̄ ∈ R
n, and d̄ ∈ R be such that the set S(Ā, b̄, d̄) is non-

empty and let the points x̄(1), . . . , x̄(m), lie on the surface S(Ā, b̄, d̄), i.e.,

x̄(l)�Āx̄(l) + b̄�x̄(l) + d̄ = 0, for l = 1, . . . , m.(7)

The points x(1), . . . , x(m), are measurements of the points x̄(1), . . . , x̄(m),
respectively, i.e.,

x(l) = x̄(l) + x̃(l), for l = 1, . . . , m,(8)

where x̃(1), . . . , x̃(m) are the corresponding measurement errors. We assume
that the measurement errors form an independent identically distributed se-
quence and the distribution of x̃(l), for all l = 1, . . . , m, is normal, zero
mean, with variance-covariance matrix σ̄ 2In, i.e.,

E x̃(l1)x̃(l2)� = 0, for l1, l2 = 1, . . . , m, l1 �= l2,

and

x̃(l) ∼ N(0, σ̄ 2In), for l = 1, . . . , m,

where σ̄ 2 > 0 is called the noise variance.
The matrix Ā is the true value of the parameter A, while b̄, and d̄ are the

true values of the parameters b and d, respectively. Without additional con-
straint imposed on the parameters, for given second order surface S(A, b, d),
the model parameters A, b, and d are not unique: S(τA, τb, τd) is the same
surface for any real nonzero τ . This makes the quadratic model, parameter-
ized by A, b, and d, non-identifiable. To resolve the problem, we impose a
normalizing condition, e.g., the true values of the parameters are assumed to
satisfy the constraint

||Ā||2F + ||b̄||2 + d̄2 = 1.(9)

Then the estimates are unique up to a sign.
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Remark 1 (Invariance of the OLS and ALS estimators) As shown in [Boo79,
p. 59, §4], [GGS94, p. 564, eq. (3.5)], and [Pra87, p. 147], the constraint (9) is
not invariant under Euclidean transformations. As a result, the OLS estimator
is not invariant under Euclidean transformations. Such a dependence on the
coordinate system is undesirable. Suggestions for making the OLS estimator
invariant can be found in [Nie01].

The following question arises. Are the ALS estimators derived with the
constraint (9) invariant? If the noise variance is fixed, the answer is negative.
However, if we are allowed to modify the noise variance after the transfor-
mation of the data, then the ALS estimator could be made invariant.

A modification of the noise variance that ensures invariance under Euclid-
ean transformations is the noise variance estimation procedure derived in
[KMV02a]. We demonstrate the invariance properties of the ALS estimator
with estimated noise variance by a simulation example in Sect. 7. Rigorous
proof of this property will be given elsewhere.

3 Ordinary least squares estimation

The OLS estimator for model (6) subject to the normalizing condition (9) is
defined as a global minimum point of the following optimization problem:

min
A,b,d

m∑

l=1

(
x(l)�Ax(l) + b�x(l) + d

)2
s.t.

{
A — symmetric

||A||2F + ||b||2 + d2 = 1.

(10)

The OLS cost function is

Qols(A, b, d) =
m∑

l=1

qols(A, b, d; x(l)),

where the elementary OLS cost function,

qols(A, b, d; x) = (x�Ax + b�x + d)2

measures the discrepancy of a single measurement point x from the sur-
face S(A, b, d).

In order to derive the solution of (10), we introduce a parameter vector β
containing all decision variables. Let vecs : S → R

(n+1)n/2 be an operator, a
symmetric matrix vectorizing operator, that stacks the upper triangular part
of A in a vector. The vector of decision variables is

β := [
vecs(A)

� b� d
]�
.(11)

It is an element of the parameter space R
nβ , nβ := (n+ 1)n/2 + n+ 1.
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Define the symmetric Kronecker product ⊗s by

x�Ax = (x⊗s x)
�vecs(A), for all x ∈ R

n and A ∈ S.(12)

We have for the elementary OLS cost function,

qols(β; x) = (x�Ax + b�x + d)2

=
( [
(x⊗s x)

� x� 1
]

︸ ︷︷ ︸
y�




vecs(A)

b

d




)2

= (y�β)2 = β�yy�β,(13)

and for the OLS cost function,

Qols(β) =
m∑

l=1

qols(β; x(l)) =
m∑

l=1

(
(y(l)�)β

)2 = ||Yβ||2 = β�Y�Yβ,

where

y(l) :=



x(l) ⊗s x

(l)

x(l)

1



 , for l = 1, . . . , m, and Y :=




y(1)�
...

y(m)�



 .

Let H ∈ R
nβ×nβ be a matrix, such that

||Hβ||2 = ||A||2F + ||b||2 + d2 for all A ∈ S, b ∈ R
n, d ∈ R,(14)

where β is defined in (11).
The OLS estimation problem (10) is equivalent to the following classical

quadratically constrained least squares problem

min
β

||Yβ||2 s.t. ||Hβ||2 = 1.(15)

The OLS estimator β̂ols is H−1vmin, where vmin is a normalized eigenvector
of H−T Y�YH−1, corresponding to the smallest eigenvalue.

Remark 2 In order to avoid the computation of the Gram matrixY�Y , one can
obtain the solution from the singular value decomposition (SVD) of YH−1.
Let

YH−1 = USV �, with U�U = I, V �V = I, and

S = diag(s1, . . . , sn), s1 ≥ · · · ≥ sn ≥ 0,(16)

then β̂ols is H−1vmin, where vmin is the last column of the matrix V .
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Remark 3 The matrixH that ensures (14) is a diagonal matrix with diagonal
elements equal to 1 or

√
2, where the latter correspond to the off-diagonal

elements ofA, see Remark 6. Since the normalizing condition (9) is arbitrary,
however, we can choose any nonsingular matrixH in (15). Particularly simple
is H = I . The OLS and ALS estimators depend on the normalizing condi-
tion but the ALS estimator is consistent for any non-degenerate normalizing
condition, i.e., for any full-rank matrix H .

Remark 4 Note that vecs(xx
�) �= x⊗s x. One can verify that x⊗s x =

D vecs(xx
�), where D is a diagonal matrix with diagonal elements equal to

1 or 2; the latter corresponding to the off-diagonal elements of xx� appearing
in the product D vecs(xx

�), see Remark 6.

4 Adjusted least squares estimation

The OLS estimator is readily computable but it is inconsistent. We propose
an adjustment procedure, that defines a consistent estimator. The proposed
approach is due to [KZ02], and it is related to the method of corrected score
functions, see [CRS95, Sec. 6.5]. The model (7) is quadratic and a simi-
lar adjustment for a bilinear model, arising in motion analysis, is proposed
in [KMV02b].

The ALS estimator β̂als is defined as a global minimum point of the fol-
lowing optimization problem:

min
β
Qals(β) s.t. ||Hβ||2 = 1,

where the ALS cost function Qals is

Qals(β) =
m∑

l=1

qals(β; x(l)), for all β ∈ R
nβ .

Let x = x̄+ x̃, where x̃ is normally distributed with zero mean and variance-
covariance matrix σ̄ 2I . The elementary ALS cost function qals is defined by
the following identity

Eqals(β, x̄ + x̃) = qols(β, x̄), for all β ∈ R
nβ and x̄ ∈ R

n.(17)

We motivate the definition of the ALS cost function as follows.

Qols(β) :=
m∑

l=1

qols(β; x̄(l)), for all β ∈ R
nβ ,

has as a global minimum point the true value of the parameter vector

β̄ := [
vecs(Ā)

� b̄� d̄
]�
.

Indeed, Qols ≥ 0 and by definition Qols(β̄) = 0. From
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EQals = Qols,

we see that, as the sample size grows,Qals approximatesQols. Provided that
Qols has β̄ as a unique global minimum (the contrast condition of [KMV02a]),
the ALS estimator is strongly consistent.

Next, we derive an explicit expression for the ALS cost function Qals.
From (17) and (13), we have

Eqals(β, x) = qols(β, x̄) = β�ȳȳ�β =: β�ψols(x̄)β,

where

ȳ := [
(x̄⊗s x̄)

� x̄� 1
]�

and ψols(x̄) := ȳȳ�.

Thus the ALS elementary cost function qals is quadratic in β,

qals(β; x) = β�ψals(x)β,

where

Eψals(x) = ψols(x̄).(18)

Under the normality assumption for the noise term x̃, (18) yields the following
convolution equation:

( 1

2πσ̄ 2

)n/2∫ ∞

−∞
· · ·

∫ ∞

−∞
ψals(x̄ + x̃)

n∏

i=1

exp
(

− x̃2
i

2σ̄ 2

)
dx̃1 · · · dx̃n = ψols(x̄).

Solving for the unknown ψals is a deconvolution problem.
The deconvolution problem can be solved independently for the entries

of ψals. The elements of the matrix ψols(x̄) are monomials of at most fourth
order in x̄. Consider the generic term

ηols(x̄) = x̄i x̄j x̄px̄q, where i, j, p, q ∈ { 0, 1, . . . , n }
We formally set x̄0 = 1 and allow any of the indices to be zero, in order to
allow ηols to be of order less than four.

Let r(s), s = 1, . . . , n, denotes the number of repetitions of the index s
in the monomial x̄i x̄j x̄px̄q . For example, let n = 2. In the monomial x̄1x̄

3
2 ,

r(1) = 1 and r(2) = 3, and in the monomial x̄4
1 , r(1) = 4 and r(2) = 0.

The functions

t0(ξ) := 1, t1(ξ) := ξ, t2(ξ) := ξ 2 − σ̄ 2,

t3(ξ) := ξ 3 − 3ξ σ̄ 2, and t4(ξ) := ξ 4 − 6ξ 2σ̄ 2 + 3σ̄ 4.(19)

have the property

Etk(x̄s + x̃s) = (x̄s)
k, for all x̄s ∈ R and k = 0, 1, . . . , 4,



Consistent least squares fitting of ellipsoids 185

where x̃s ∼ N(0, σ̄ 2). Thus the polynomial

ηals(x) :=
n∏

s=1

tr(s)(xs),(20)

has the property

Eηals(x) = x̄i x̄j x̄px̄q = ηols(x̄), for all x̄ ∈ R
n.

This shows that ηals is the desired solution. The matrix ψals is constructed
element-wise in the described way.

The ALS cost function Qals is quadratic in β,

Qals(β) = β�	alsβ, for all β ∈ R
nβ ,

where

	als =
m∑

l=1

ψals(x
(l)).

Thus the function Qals is described thoroughly.

Example 1 ( The matrix ψals for the case n = 2 ) The model parameters are
A = [

a11 a12
a21 a22

]
, b = [

b1
b2

]
, and the scalar d. The parameter space is 6-dimen-

sional with

β := [
vecs(A)

� b� d
]� = [

a11 a12 a22 b1 b2 d
]�
.

From (12), we have

[
x1 x2

]� ⊗s
[
x1 x2

]� = [
x1x1 2x1x2 x2x2

]�
.

so that

y := [
(x⊗s x)

� x� 1
]� = [

x1x1 2x1x2 x2x2 x1 x2 1
]�
,

and

ψols(x) = yy� =





x4
1 2x3

1x2 x2
1x

2
2 x3

1 x2
1x2 x2

1
∗ 4x2

1x
2
2 2x1x

3
2 2x2

1x2 2x1x
2
2 2x1x2

∗ ∗ x4
2 x1x

2
2 x3

2 x2
2

∗ ∗ ∗ x2
1 x1x2 x1

∗ ∗ ∗ ∗ x2
2 x2

∗ ∗ ∗ ∗ ∗ 1




,

with ∗’s indicating the symmetric elements.
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The adjusted matrixψals isψals = ψols+
ψals, where the correction
ψals

is




3σ̄ 4 − 6σ̄ 2x2
1 −6σ̄ 2x1x2 
ψals,13 −3σ̄ 2x1 −σ̄ 2x2 −σ̄ 2

∗ 
ψals,22 −6σ̄ 2x1x2 −2σ̄ 2x2 −2σ̄ 2x1 0
∗ ∗ 3σ̄ 4 − 6σ̄ 2x2

2 −σ̄ 2x1 −3σ̄ 2x2 −σ̄ 2

∗ ∗ ∗ −σ̄ 2 0 0
∗ ∗ ∗ ∗ −σ̄ 2 0
∗ ∗ ∗ ∗ ∗ 0




,

and


ψals,13 = σ̄ 4 − σ̄ 2(x2
1 + x2

2), and 
ψals,22 = 4σ̄ 4 − 4σ̄ 2(x2
1 + x2

2).

The correction matrix
ψals, without the fourth order terms in σ̄ , is derived
in [Zha97, Sec. 7]. The derivation in [Zha97], however, is specialized for the
two-dimensional case.

Remark 5 The recommended way of computing the OLS estimator is via the
SVD of YH−1. For the ALS estimator, however, we use the less accurate
eigenvalue decomposition because the correction is derived for 	ols = Y�Y
and can not be determined for the factor Y .

5 Ellipsoid estimation

TheALS estimatorβals is derived for the general quadratic measurement error
model (7–8). Now, we specialize it for the ellipsoid fitting problem, i.e., we
assume that the true surface belongs to the class of surfaces

C(Ae, c) = { x ∈ R
n : (x − c)�Ae(x − c) = 1 }(21)

for some true values Āe ∈ S, Āe > 0 and c̄ of the parameters Ae and c. The
equation defining C(Āe, c̄) can be written as

x�Āex − 2(Āec̄)
�x + c̄�Āec̄ − 1 = 0,

or, with θ := (||Āe||2F + ||2Āec̄||2 + (c̄�Āec̄ − 1)2
)1/2

,

x�(Āe/θ)x − 2(Āec̄/θ)
�x + (c̄�Āec̄ − 1)/θ = 0.

Introduce the new parameters

Ā := Āe

θ
, b̄ := −2

Āec

θ
, and d̄ := c̄�Āec̄ − 1

θ
.

As defined, Ā, b̄, and d̄ satisfy the normalizing condition (9).



Consistent least squares fitting of ellipsoids 187

We can go back to the original parameters Āe and c̄ from Ā, b̄, and d̄, that
satisfy (9) by

c̄ = −1

2
Ā−1b̄, and Āe = 1

c̄�Āc̄ − d̄
Ā.(22)

Note that θ = c̄�Āc̄− d̄ is nonzero. Let Â, b̂, d̂ be the ALS estimator of the
parameters Ā, b̄, d̄. The estimator of the parameters Āe and c̄ is given by the
transformation (5).

If the obtained estimate Âe is indefinite, we impose a posteriori positive
definiteness by the projection

Âe,2 := ∑
i:λ̂i>0 λ̂i v̂i v̂

�
i ,(23)

where Âe = ∑n
i=1 λ̂i v̂i v̂

�
i is the eigenvalue decomposition of Âe. Indefinite

estimate Âe could be obtained because the estimator does not enforce the
prior knowledge Âe > 0. Clearly the two stage procedure—Âe obtained on
the first stage and Âe,2 on the second stage—is suboptimal. Empirical results,
however, suggest that the event of having the constraint Âe > 0 active is rather
rare. Typically it occurs for a small sample size with non-uniform data point
distribution and for data with outliers. Due to Āe > 0 and the consistency of
the estimator Âe, we expect that for large sample size Âe > 0.

6 Algorithms for adjusted least squares estimation

In this section, we summarize the estimation procedure described above by
giving an algorithm for its computation. Matlab-like notation for indexing
the elements of a matrix is used. For example, A(i1:i2, j1:j2) stands for the
submatrix of A obtained by selecting the elements with first index in the set
{i1, i1 + 1, . . . , i2} and with second index in the set {j1, j1 + 1, . . . , j2}.

Algorithm ALS (Adjusted least squares ellipsoid fitting)

Input: a matrix X := [
x(1) · · · x(m)] ∈ R

n×m and the noise variance σ̄ 2.

Output: the estimates Âe, ĉ of the ellipsoid parameters.

1) Form the tensor T ∈ R
5×n×m

T (k, i, l) := tk
(
X(i, l)

)
, for k = 0, . . . , 4,

i = 1, . . . , n, and l = 1, . . . , m,

where the functions tk, k = 0, 1, 2, 3, 4, are given in (19).
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2) Define the vectors 1, i ∈ R
n+1 by

1 := [
1 · · · 1 1

]�
, i := [

1 · · · n 0
]�
,

and form the matrix M ∈ R
nβ×2, nβ := (n+ 1)n/2 + n+ 1,

M := [
vecs( i 1�) vecs( 1 i�)

]
.

We use M to find the indices of x̄ in the entries of ψols(x̄). Note that(
M(p, 1),M(p, 2)

)
are the indices of x̄ in the p-th entry of ȳ := x̄⊗s x̄.

Recall that ψols(x̄) := ȳȳ�. Thus the indices of x̄ in the (p, q)-th entry of
ψols(x̄) are

(
M(p, 1),M(p, 2),M(q, 1),M(q, 2)

)
.

3) Define a binary operator == by

(i1 == i2) :=
{

1, if i1 = i2

0, otherwise
, for all i1, i2 ∈ R.

Form the tensor R ∈ R
nβ×nβ×n,

R(p, q, i) = (
M(p, 1) == i

) + (
M(p, 2) == i

)

+ (
M(q, 1) == i

) + (
M(q, 2) == i

)
,

for all q ≥ p and i = 1, . . . , n.

Note that R(p, q, i) is the number of repetitions of the index i in the
(p, q)-th entry of ψols(x̄). Thus in terms of the function r , defined in Sect. 4,
the tensor R stores

(
r(1), . . . , r(n)

)
for the entries of ψols(x̄).

4) Compute

ηals(p, q) =
m∑

l=1

n∏

i=1

T
(
R(p, q, i), i, l

)
, for all q ≥ p.

This step corresponds to the correction (20) from Sect. 4.

In the construction of	als, however, we have to take into account the pres-
ence of factors 2 and 4 in some of the entries ofψols(x̄), see Example 1. Up to
now we have computed the corrections for monomials of the type x̄i x̄j x̄px̄q ,
but there are constants 2 and 4 coming from the symmetric Kronecker product
x̄⊗s x̄, see Remark 4.

5) Form the set D of the indices of the vector vecs(A), corresponding to the
off-diagonal elements of A,

D = { 1, . . . , (n+ 1)n/2 } − { i(i + 1)/2 : i = 1, . . . , n }.
Here D1 − D2 denotes the set difference of the sets D1 and D2. Note that
{ i(i + 1)/2 : i = 1, . . . , n } are the indices of vecs(A), corresponding to
the diagonal elements of A.
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6) Form the symmetric matrix 	als by

	als(p, q) :=






4ηals(p, q) , if p ∈ D and q ∈ D,
1ηals(p, q) , if p �∈ D and q �∈ D,
2ηals(p, q) , otherwise,

for all q ≥ p, and

	als(p, q) := 	als(q, p), for all q < p.

7) Find an eigenvector β̂als associated with the smallest eigenvalue of 	als.
8) Normalize β̂als,

β̂als := β̂als/||β̂als||.

9) Reconstruct the estimates Â, b̂, and d̂ from the vector β̂als,

Â := vec−1
s

(
β̂als(1 : n(n+ 1)/2)

)
,

b̂ := β̂als
(
n(n+ 1)/2 + 1 : nβ − 1

)
,

d̂ := β̂als(nβ),

where vec−1
s : R

n(n+1)/2 → S, forms a symmetric matrix out of the vector
of the elements in its upper triangular part.

10) The estimates of the ellipsoid parameters Āe and c̄ are obtained by (5).
11) If Âe ≤ 0, project Â on the positive definite cone by (23).

Remark 6 If a general quadratic model is estimated, the normalizing con-
dition is given as prior knowledge, see Remark 3. If an ellipsoid is esti-
mated, however, the normalizing condition is arbitrary. In Algorithm ALS,
we set H = I , which corresponds to a normalizing condition

(
vecs(A)

)�
vecs(A)+ ||b||2 + d2 = 1.

The matrix H corresponding to the normalizing condition (9) is

H =




√
D

In
1



 ,

where D is a diagonal matrix with diagonal elements

Dii =
{

2 , if i ∈ D,
1 , otherwise.
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Remark 7 (Known blocks of the matrix	als)AlgorithmALS can be improved
by setting certain elements of 	als in advance and not via following the gen-
eral adjustment procedure. Consider a block partitioning of the matricesψols,
ψals, and 	als according to the partitioning of the vector

[
(x⊗s x)

� | x� | 1
]�
,

e.g., for ψols, denote

ψols =:




ψols,11 ψols,12 ψols,13

∗ ψols,22 ψols,23

∗ ∗ ψols,33



 .

All elements of ψols are monomials in x; moreover all elements of:

– ψols,11(x) are of fourth order,
– ψols,12(x) are of third order,
– ψols,13(x) and ψols,22(x) are of second order,
– ψols,23(x) are of first order, and
– the scalar ψols,33(x) = 1 is independent of x.

For the blocks of order zero and one, there is no correction applied in the
formation of the matrix ψals. The correction for the elements of the blocks of
order two is −σ̄ 2In. Thus for the corresponding blocks of ψals, we have

ψals,22(x) = xx� − σ̄ 2In, ψals,23(x) = x,

ψals,13(x) = x⊗s x − vecs(σ̄
2In), ψals,33(x) = 1.

Finally, the corresponding blocks of 	als are

	als,22 = ∑m
l=1 x

(l)x(l)� −mσ̄ 2In, 	als,23 = ∑m
l=1 x

(l),

	als,13 = ∑m
l=1 x

(l) ⊗s x
(l) − vecs(mσ̄

2In), 	als,33 = m,

and only the upper triangular part of the block 	als,11 and the block 	als,12

need be computed in steps 4) and 6) of Algorithm ALS.

7 Simulation examples

We show the ALS, OLS, and orthogonal regression (OR) estimates for a test
example from the literature [GGS94], called “special data”. It is designed
to illustrate the inadequacy of the algebraic fitting method and to show the
advantage of the OR method.

Only data points are given; even if they are generated with a true model,
we do not know it. For this reason the comparison is visual. Since the noise
variance needed for the ALS estimator is unknown, we estimate it via the
procedure proposed in [KMV02a].
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Figure 1, shows the data points with the estimated ellipses superimposed
on them. The OR estimator is computed by a general purpose optimization
algorithm (Matlab’s fmincon function). The cost function is evaluated as
explained in [Zha97, Sec. 5.2].

For the first test example, see Fig. 1, left, the OR estimator is influenced by
the initial approximation. Using the OLS estimate as initial approximation,
the optimization algorithm converges to a local minimum. The resulting esti-
mate is the dashed-dotted ellipse closer to the OLS estimate. Using the ALS
estimate as initial approximation, the obtained estimate is the dashed-dotted
ellipse closer to the ALS estimate. Next we will consider the better of the two
OR estimates.

Although the sample size is only m = 8 data points, the ALS estimator
gives good estimates that are comparable with the OR estimate. The value
of the OR cost function (see (3)) is 3.2531 for the OLS estimator, 1.6284 for
the ALS estimator, and 1.3733 for the OR estimate. The ALS estimator is
less than 19% suboptimal. Moreover, the volume of the OR estimate is 62.09
square units, while the volume of the ALS estimate is 34.37 square units,
which is nearly twice as small. Visually (as well as in other senses) “smaller”
estimates are preferable.

In a second example, taken from [Spä97b], the ALS estimate is close to
the OR estimate, see Fig. 1, right. In terms of the OR cost function, the ALS
estimate is less than 25% suboptimal. The volume of the ALS estimate is
comparable with that of the OR estimate.

Figure 2 illustrates the invariance properties of the ALS estimator with
estimated noise variance. The data used is again the “special data” from
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Test example “special data” from [GGS94].
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Example from [Spä97b].
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Fig. 1. Test examples. dashed—OLS, dashed-dotted—OR, solid—ALS, ◦—data points,
×—centers of the estimated ellipses
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Fig. 2. ALS estimates of the original, translated, rotated, scaled, and translated and rotated
data points. ◦—data points, ×—centers of the estimated ellipses, •—point (0, 0)

[GGS94]. The figure shows translated, rotated, scaled, and translated and
rotated data points with the corresponding ALS estimates.

8 Conclusions

The OLS estimation of the ellipsoid parameters from noisy measurements
of points on its boundary is a nonlinear least squares problem. An indirect,
suboptimal approach was used that transforms the ellipsoid model to a gen-
eral quadratic model and applies linear least squares estimation. Due to the
measurement errors, however, the ordinary least squares estimator is incon-
sistent.

Assuming that the measurement errors are normally distributed, a correc-
tion is derived that uses the true measurement error variance and adjusts the
OLS cost function, so that the resulting ALS estimator is consistent. Algo-
rithm for the necessary computation is outlined.

The ALS estimator is illustrated via simulation examples. Compared with
the orthogonal regression estimator, it has the advantage of being cheaper to
compute and independent of initial approximation. The computational effi-
ciency is crucial for higher dimensional ellipsoid fitting and for problems
with large sample size.
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