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Abstract

The structured total least squares estimator, defined via a constrained optimization problem, is a
generalization of the total least squares estimator when the data matrix and the applied correction
satisfy given structural constraints. In the paper, an affine structure with additional assumptions is con-
sidered. In particular, Toeplitz and Hankel structured, noise free and unstructured blocks are allowed
simultaneously in the augmented data matrix. An equivalent optimization problem is derived that has
as decision variables only the estimated parameters. The cost function of the equivalent problem is
used to prove consistency of the structured total least squares estimator. The results for the general
affine structured multivariate model are illustrated by examples of special models. Modification of
the results for block-Hankel/Toeplitz structures is also given. As a by-product of the analysis of the
cost function, an iterative algorithm for the computation of the structured total least squares estimator
is proposed.
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1. Introduction

The total least squares(TLS) problem (Golub and Van Loan, 1980; Van Huffel and
Vandewalle, 1991),

min
�A,�B,X

‖ [�A �B]‖2
F s.t. (A+ �A)X = B + �B (1.1)

is a generalization of the ordinary least squares method when an errors-in-variables (EIV)
model

A= A0 + Ã, B = B0 + B̃, A0X0 = B0 (1.2)

is considered. HerẽA, B̃ are measurement errors andA0, B0 are true values, that satisfy
the linear model for some unknown true valueX0 of the parameterX. The TLS estimate
of X0, i.e., the solution of (1.1), corresponding toX, is proven to provide a consistent
estimate ofX0, when the elements of̃A andB̃ are zero mean i.i.d. Thegeneralized total
least squares(GTLS) problem (Van Huffel and Vandewalle, 1989) extends consistency of
the TLS estimator to cases where the errors[Ã B̃] are zero mean, row-wise independent,
and with equal row covariance matrix, known up to a factor of proportionality. Efficient and
reliable algorithms, based on the (generalized) singular value decomposition, exist for the
computation of the TLS and the GTLS solutions.

A further generalization for the case when the rows of[Ã B̃] have different covariance
matrices (but are still mutually independent) is theelement-wiseweighted total least squares
(EW-TLS) estimator (De Moor, 1993; Premoli and Rastello, 2002). Consistency of the
EW-TLS estimator is proven inKukush and Van Huffel (2004). The EW-TLS problem is a
difficult non-convex optimization problem and its solution cannot be found in terms of the
singular value decomposition of the data matrix. An iterative optimization procedure for its
solution is proposed inPremoli and Rastello (2002)andMarkovsky et al. (2002a).

In De Moor and Roorda (1994)the so-calleddynamic total least squaresproblem is
considered. The problem formulation inDe Moor and Roorda (1994)is parallel to this of
the TLS problem but a discrete-time linear dynamical model is postulated instead of the
static modelA0X0 = B0. The equations of the dynamical model over a finite time horizon
can be written as a linear system of equationsA0X0 = B0 with A0, a structured matrix,
e.g., Toeplitz or Hankel matrix. This gives rise to a TLS-type problem with the additional
constraint that the correction matrix�A obeys a certain known structure.

The resulting problem is called astructured total least squares(STLS) problem. InDe
Moor (1993)a list of applications of the STLS problem is given. Among them we mention
a single-input single-output identification problem, anH2-approximation problem, and an
errors-in-variables version of the Kalman filter. The TLS and GTLS problems are special
cases of the STLS problem. Due to the structure assumption, the errors in the STLS problem
are correlated among the rows and in this respect the STLS problem is more general than
the EW-TLS problem. For the consistency of the STLS estimator, however, we assume
stationarity of the errors. Such an assumption is not enforced in the framework of the EW-
TLS problem, so that the EW-TLS problem is not a special case of the STLS problem
formulation considered in this paper.
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The STLS problem fits within the Markov framework for semi-linear models ofPintelon
and Schoukens (2001, Chapter 7), i.e., models linear-in-observations and (non)linear-in-
the-model-parameters. In the STLS problem, however, there is a structure assumption on
the true valuesA0 andB0, while in the semi-linear model, a structure assumption is imposed
only on the errorsÃ andB̃. Moreover inPintelon and Schoukens (2001)the parameter set
is assumed to be compact and the errors to be normally distributed, while in the present
paper, the parameter set is closed but not necessary bounded and the error distribution is
not necessary Gaussian.

Although the STLS problem is a very general modeling framework, its computation
is also a difficult non-convex optimization problem. An overview of algorithms for STLS
computation is given inLemmerling (1999, Section 4), and numerically efficient algorithms
based on the Generalized Schur Algorithm are developed inMastronardi et al. (2000),
Lemmerling et al. (2000)andMastronardi (2001).

The main contribution of the present paper is a proof of statistical consistency of the
STLS estimator. Results on the consistency of the STLS estimate are presented for an affine
structured multivariate EIV model. The proofs are similar to the ones presented inKukush
andVan Huffel (2004)for the EW-TLS estimator, but the presence of the structural relations
makes the consistency proofs more complicated.

Most of the statistical literature of EIV modeling is devoted to unstructured problems,
e.g., the classical book on measurement error models (Fuller, 1987) does not treat structured
EIV models. Special cases of the STLS consistency problem are considered in the system
identification literature. We mention the papers of Aoki and Yue (Aoki and Yue, 1970a, b),
where consistency of the maximum likelihood estimator for an auto regressive moving av-
erage (ARMA) model is proven. Their estimator is a special instance of the STLS estimator
of this paper when the structure of the extended data matrix[A B] is a Hankel matrix next
to another Hankel matrix, see Section 12.2. Estimators, different from the STLS one, are
proven to be consistent for the dynamic EIV model. They are, however, statistically less
efficient than the STLS estimator. Among them we mention the weighted GTLS estimator
and bootstrapped TLS estimators (Pintelon et al., 1998), and the bias corrected least squares
estimator (Stoica and Söderström, 1982). The consistency properties of the STLS estimator
in the generality of our formulation have not been considered previously in the literature.

As a by-product of the analysis, we propose an algorithm similar to the one proposed for
the EW-TLS problem (Markovsky et al., 2002a). In a companion paper (Markovsky et al.,
2004), we implemented the proposed algorithm and compare it with other existing methods,
e.g., the methods ofLemmerling (1999)andMastronardi (2001). In terms of computational
efficiency, our proposal is competitive with the fast methods ofMastronardi (2001).

The notation we use is standard:R denotes the set of the real numbers,C the set of the
complex numbers,Z the set of the integer numbers, andN the set of the natural numbers.
Any p× q matrixA is defined by[aij ]j=1,...,q

i=1,...,p , whereaij denotes the(i, j)th element ofA.

We denote the transpose of the rows ofA, by ai , i.e.,A	 = [t1 · · · tq ]. ||x|| is the Euclidean
norm of the vectorx and||A||F is the Frobenius norm of the matrixA. The notation�(A) is
used for the spectrum of the operatorA,A∗ is the adjoint operator, and�min(A) (�max(A)) is
the minimum (maximum) eigenvalue of a symmetric matrixA. For� ∈ C, �̄ is the complex
conjugate of�. The bold symbolE denotes mathematical expectation and the bold symbol
Pdenotes probability of an event, cov(·) denotes the variance–covariance matrix of a vector
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of random variables, Op(1) denotes a sequence of stochastically bounded random variables,
and op(1) denotes a sequence of random variables that converges to zero in probability. In
the formulas “const” denotesanyconstant value (for example, we can write const2=const).
For two setsS1 andS2, S1\S2 denotes the set difference ofS1 relative toS2.

The paper is structured as follows. Section 2 defines the STLS estimator as a solution
of an optimization problem. The decision variables are the parameterX, to be estimated,
and the nuisance parameters describing the structure. Section 3 derives an equivalent op-
timization problem in which the nuisance parameters are eliminated. The cost function of
the equivalent problem is of the formQ(X) = r	�−1r, where the vectorr is an affine
function ofX, and the elements of the weight matrix� are quadratic functions ofX. In
Section 4, we study the properties of the weight matrix�. Under our assumptions, it is
a block banded matrix. In Section 5, we redefine the cost functionQ and the weight ma-

trix � as functions of the extended parameterXext :=
[
X
−I
]
. This modification simplifies

the analysis. In Section 6, we study the properties of the inverse weight matrix�−1. We
establish exponential decay of the elements of�−1, away from the main diagonal. This
property is crucial for the consistency proofs. In Section 7, we state the main results—weak
and strong consistency of the STLS estimator. In preparation for the proofs, in Section 8
we make a decomposition of the cost function. In Appendix A, bounds for the summands
of the decomposition are derived. Section 9 gives the proofs of the main results. In Sec-
tion 10, we propose an algorithm for the computation of the STLS estimator. Section 11
considers specific examples of the general STLS multivariate EIV problem and specializes
the consistency results for these cases. In Section 12, we describe three applications of the
STLS problem: FIR system impulse response estimation, ARMA model identification, and
Hankel low-rank approximation. Section 13 describes the necessary modification of the
assumptions in the paper for consistency in the case of block-Toeplitz/Hankel structures.
Section 14 gives conclusions and Appendix B reminds facts from the theory of stochastic
fields.

2. The multivariate STLS problem

We consider the modelAX ≈ B, whereA ∈ Rm×n andB ∈ Rm×d areobservations,
andX ∈ Rn×d is aparameterof interest. We suppose that (1.2) holds for someX0 ∈ Rn×d .
The matrixX0 is thetrue valueof the parameter,A0, B0 are non-stochastic true values of
AandB, respectively, and̃A, B̃ areerrors. Looking for asymptotic results in the estimation
of X, we fix the dimension ofX, n andd, and let the number of measurementsm increase.
The measurements are represented by the rows ofA and the rows ofB.

Let

�ij := ãij if i = 1,2, . . . , m and j = 1, . . . , n

and

�i,n+k := b̃ik if i = 1,2, . . . , m and k = 1, . . . , d.
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We introduce the following assumptions:

(i) The data matrix[A B] has the following partitioning:

C := [A B] = [Af As Bs Bf ],
whereAf ∈ Rm×nf , As ∈ Rm×ns, Bs ∈ Rm×ds, andBf ∈ Rm×df , with nf + ns = n,
df + ds = d, ns + ds�2. Respectively,

C0 := [A0 B0] = [A0f A0s B0s B0f ] and C̃ := [Ã B̃] = [Ãf Ãs B̃s B̃f ]
with Ãf = 0, B̃f = 0.

Condition (i) means that the firstnf columns inA and the lastdf columns inB are
error-free. An example with error-free columns is the ARMA model with noisy output but
noise-free input, see Section 12.2. Ifnf = 0, then the blockAf is absent, and ifdf = 0, then
the blockBf is absent.

(ii) There is an a priori known affine function (the structure in the problem)

S : Rnp → Rm×(ns+ds), S(p) := S0 +
np∑
k=1

Skpk for all p ∈ Rnp ,

with md�np�m(ns + ds), such that

Cs := [As Bs] = S(p)
for some parameter vectorp ∈ Rnp . Since the maximum number of parameter equals
the total number of elements inCs, we have thatnp�m(ns + ds).
The matrixC0s := [A0s B0s] also satisfies the affine functionS, i.e.,C0s= S(p0), for
some unknown parameter vectorp0 ∈ Rnp . The vectorp is a noisy measurement of
p0, i.e.,p = p0 + p̃, wherep̃ is a zero mean random vector with a positive definite
variance–covariance matrixVp̃.

(iii) All the errors �ij have zero mean and finite second moments, and the covariance

structure of[�ij ]j=1,...,n+d
i=1,...,m is known up to a factor of proportionality.

We mention that due to assumption (iii),nf anddf are known. Let

A	 =: [a1 · · · am], B	 =: [b1 · · · bm].
Similar notation is used for the rows ofA0, Ã, Ãs, etc., for example,̃B	

s =: [b̃s1 · · · b̃sm].
Let s := ns + ds − 1.

(iv) The sequence{c̃	si = [ã	si b̃	si ]	, i = 1,2, . . . , m} is stationary in a wide sense, and
s-dependent.

A centered sequence{vi, i = 1,2, . . .} of random (column) vectors is calledstationary
in a wide senseif Eviv	i+k, i = 1,2, . . ., k = 0,1,2, . . ., depends only onk and does not
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depend oni. A sequence of random vectors (or matrices){vi, i = 1,2, . . .} is calledq-
dependent, q�1, if for eachi, the two sequences{v1, . . . , vi} and{vi+q+1, vi+q+2, . . .} are
independent from each other.

Condition (iv) holds ifCs = [Cs1 · · ·Csq ], where each of the blocksCs1, . . . , Csq sep-
arately has either Hankel or Toeplitz structure, and the errorsC̃s1, . . . , C̃sq are indepen-
dent. (We may allow certain dependence for the structural parameters coming from sep-
arate blocks). The block-Hankel/Toeplitz structure does not satisfy (iv) and is treated in
Section 13.

(v) The true valueX0 ∈ �X ⊂ Rn×d , where�X is a known closed set.

Note that�X need not be compact.
ForX ∈ Rn×d , we define

Xext :=
[
X

−Id
]

and let Xext =:
[
XfA
Xs
XfB

]

according to the equality

CXext = AfXfA + CsXs + BfXfB.

(vi) For eachX ∈ �X, rank(Xs)= d.

In particular, under assumption (vi),ns + ds�d.
Under assumptions (i)–(vi), the STLS problem consists in finding the valueX̂ of the

unknown matrixX0 and the value�p̂ of the unknown errors̃p that minimize the weighted
sum of squared corrections and make the corrected model[Af , S(p − �p), Bf ]Xext = 0
hold

min
X∈�X, �p∈Rnp

||V −1/2
p̃

�p||2 s.t. [Af , S(p − �p), Bf ]Xext = 0. (2.1)

We give the following definition of the STLS estimator.

Definition 1. The STLS estimator̂X of X0 is a measurable value ofX, which solves the
optimization problem (2.1).

Remark 1. The STLS estimator̂X equals the maximum likelihood estimator in case of
Gaussian errors.

Remark 2. It can happen that for certain random realizations problem (2.1) has no solution.
In that case, we set̂X = ∞. Later on under consistency assumptions, we will show that
X̂ =∞ with probability tending to zero.
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3. The cost function forX

ForX ∈ �X fixed, consider the solution of (2.1) as a function ofX, i.e., we consider the
function

Q(X) := min
�p∈Rnp

||V −1/2
p̃

�p||2 s.t. [Af , S(p − �p), Bf ]Xext = 0. (3.1)

Then the STLS problem (2.1) is equivalent to the minimization ofQ(X), overX ∈ �X,

min
X∈�X

Q(X). (3.2)

Next, we obtain the cost functionQ(X). We minimize analytically over�p. (If �pmin
is a minimizer of (3.1), thenQ(X)=�p	minV

−1
p̃

�pmin.) Denote the residualAX−B byR

and letr be the vectorized form ofR	, i.e.,

R := AX − B = CXext, r := vec(R	)= vec([r1 · · · rm])=

 r1...
rm


 ∈ Rmd×1.

We use similar notation for the random partR̃ = R − ER of the residual, i.e.,

R̃ := ÃX − B̃ = C̃Xext, r̃ := vec(R̃	)= vec([r̃1 · · · r̃m]) :=

 r̃1...
r̃m


 ∈ Rmd×1.

The constraint of (2.1) is linear in�p

[Af , S(p − �p), Bf ]Xext = 0 ↔ CXext =
np∑
k=1

SkXs�pk

↔R	 =
np∑
k=1

(SkXs)
	�pk ⇔ vec(R	)=

np∑
k=1

vec((SkXs)
	)�pk ⇔ r =G�p,

where

G := [vec((S1Xs)
	) · · · vec((SnpXs)

	)] ∈ Rmd×np .

We have to solve the following problem:

min
�p

�p	V −1
p̃

�p s.t. G�p = r. (3.3)

Note that we need to have the constraint thatG�p= r is solvable, if (3.3) is to be feasible.
Assuming thatG is full rank, we need to have at leastmdparameters, i.e.,np�md. Then
(3.3) is a least-norm problem. Its solution is given by

�pmin = Vp̃G	(GV p̃G	)−1r
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and the optimal value is

Q(X)= �p	minV
−1
p̃

�pmin = r	(GV p̃G	)−1r.

We can writeQ as

Q(X)=
m∑

i,j=1

r	i Mij rj ,

whereMij ∈ Rd×d is thei, j th block of the matrix(GV p̃G	)−1. The cost function of the
EW-TLS problem (Markovsky et al., 2002a) is of the same type butMij = 0 for i �= j ;
equivalently the matrixGV p̃G	 is block diagonal.

Next, we show thatGV p̃G	 = Er̃ r̃	. We haveGV p̃G	 = E(Gp̃)(Gp̃)	. But r̃ =
vec(R̃)=Gp̃, so that

� := Er̃ r̃	 =GV p̃G	 (3.4)

and

Q(X)= r	�−1r. (3.5)

Under further conditions on the parameter set�X, � will be non-singular, for allX ∈ �X.

Note 1. In the unidimensional TLS case, (3.4) becomes||Ax − b||2/(1+ ||x||2), which is
a well-known formula—it gives the sum of the squared orthogonal distances from the data
points to the regression hyperplane.

Note 2. For the Markov estimator in the semi-linear model, the cost function has exactly
form (3.5), seePintelon and Schoukens (2001, Chapter 7). But in the semi-linear model,
there are no structure assumptions on the true valuesA0 andB0, therefore (3.5) is not a
consequence of the results on the Markov estimator.

We proved the following statement.

Theorem 1. The STLS estimator̂X exists if and only if there exists a minimum of(3.2),and
thenX̂ is a minimum point of Q.

Note 3. In the sequel we will use the structure assumption only on the errors, but not onA0
andB0. Without any changes, all our results are valid for the corresponding STLS estimator
also in the case where only the errors are structured, because in that case the STLS estimator
is the Markov estimator with the same cost function, see Note 2.

4. Properties of the weight matrix�

Let

Vij := E(c̃i c̃	j ), for i, j = 1,2, . . . , m, (4.1)
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wherec̃	i is theith row ofC̃, i.e.,C̃	 =: [c̃1 · · · c̃m]. We havẽri=X	
extc̃i , so that the positive

semidefinite matrix� consists of the blocks

Fij=Er̃i r̃	j = E(X	
extc̃i c̃

	
j Xext)=X	

extE(c̃i c̃
	
j )Xext

=X	
extVijXext ∈ Rd×d for i, j = 1, . . . , m.

Due to condition (iv),Vij =Vi−j is a function of the differencei − j , andVij = 0 for i and
j, such that|i − j |�ns + ds. Consequently,Fij = Fi−j , andFij = 0 if |i − j |�ns + ds.
Recall thats = ns + ds − 1. The matrix� has the block-banded structure,

� =




F0 F−1 · · · F−s 0

F1 F0
. . .

. . .
. . .

...
. . .

. . .
. . .

. . . F−s
Fs

. . .
. . .

. . .
. . .

...
. . .

. . .
. . . F0 F−1

0 Fs · · · F1 F0



, (4.2)

whereFk = F	−k andVk = V 	−k, k = 0,1, . . . , s.
In order to ensure that� is non-singular, we introduce the following assumption.

(vii) There exists�0>0, such that

v	
(
X	

ext

s∑
k=−s

Vk�kXext

)
v��0||Xsv||2 (4.3)

for all X ∈ �X, v ∈ Rd×1, and|�| = 1.

Theorem 2 (Positive definiteness of�). Under assumptions(vi) and(vii), the covariance
matrix�, given in(3.4), is non-singular.

Proof. The following functionfX : C\{0} → Cd×d is related to�,

fX(�) :=
s∑

k=−s
Fk�k, for all � ∈ C\{0}. (4.4)

As Fk = F	−k, we have thatfX(�) ∈ Cd×dsym , whereCd×dsym is the space of all Hermitian-
symmetricd × d matrices with complex elements.

Let T be the unit circle inC. We consider the space

L2
d(T)=

{
g : g(�)=

∞∑
k=−∞

gk�k, for � ∈ T, gk ∈ Cd×d ,
∞∑

k=−∞
||gk||2F<∞

}
.
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It is a Hilbert space with the scalar product

(g, h)L2
d
:= 1

d

∞∑
k=−∞

tr(gkh
∗
k), for all g, h ∈ L2

d(T),

whereh∗k is the complex-adjoint matrix,(h∗k)ij = (h̄k)ji , for i, j = 1, . . . , d.
Let

f (�) :=
∞∑

k=−∞
fk�k, for all |�| = 1

be a continuous function that takes values inCd×d . Consider a Laurent operator

Mf : L2(T)→ L2(T), Mf : g �→ fg. (4.5)

A matrix representation ofMf with respect to the sequence of functionsE := {�k, |�|=1 :
k ∈ Z} has the form


. . .

. . .
. . .

· · · f1 f0 f−1 · · ·
· · · f1 f0 f−1 · · ·

. . .
. . .

. . .


 .

It means that

Mf (gq�q)=
∞∑

k=−∞
fkgq�k+q =

∞∑
k1=−∞

fk1−qgq�k1,

therefore to findMf (gq�q), we have to perform the multiplication

0 1

0

q




. . .
. . .

. . .

· · · f1 f0 f−1 · · ·
...

...
...

· · · fq+1 fq fq−1 · · ·
. . .

. . .
. . .


 ×

q




0
...

0
gq
0


= 0

1




...

f1−qgq
f−qgq
f−1−qgq

...


 .

Let

H 2
m(T)={g ∈ L2

d(T) : gk = 0, k ∈ Z\{0,1, . . . , m− 1}}

=
{
g : g(�)=

m−1∑
k=0

gk�k, gk ∈ Cd×d , 0�k�m− 1

}
.

LetP be the orthogonal projection ofL2
d(T) ontoH 2

m(T). Then the operator

Tf : H 2
m(T)→ H 2

m(T), Tf := PMfP
∗
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has a matrix representation

f0 f−1 · · · fm−1
f1 f0 · · · fm−2
...

. . .
. . .

...

fm−1 · · · f1 f0




with respect to the set of functionsEm−1 := {�k, |�| = 1 : k= 0,1, . . . , m− 1}. We have

�(Mf )=
⋃
�∈T

�(f (�))

(Recall thatf (�) ∈ Cd×d , � ∈ T, and for all� ∈ T, �(f (�)) is a finite set containing all
the eigenvalues off (�).)

For the functionfX given in (4.4), we have thatMfX is a self-adjoint operator, therefore

�(TfX) ⊂ �(MfX) ⊂ R

and

�max(�)= �max(TfX)� max|�|=1
�(fX(�)).

We mention that, for all� ∈ T,
∑s
k=−s Fk�k is a (complex) positive semidefinite matrix.

Indeed, for allv ∈ Cd×1, we have

0�
m∑

i,j=1

(�−iv)∗Fij (�−j v)=
m∑

i,j=1

v∗Fi−j v · �i−j =
m−1∑

k=−m+1

(v∗Fkv)�k(m−|k|).

(Herev∗ := [v̄1 · · · v̄d ] ∈ C1×d .) ButFk = 0 for |k|�s. Therefore, we have

s−1∑
k=−s+1

(v∗Fkv)�k
(

1− |k|
m

)
�0.

Form tending to infinity, we obtain

v∗
(

s−1∑
k=−s+1

Fk�k
)
v�0, for all v ∈ Cd×1.

ThereforefX(�) is positive semidefinite for all� ∈ T, and�(fX(�)) ⊂ [0,∞), for all
� ∈ T. Thus

�(�)= �(TfX) ⊂
⋃
�∈T

�(fX(�)) ⊂ [0,∞). (4.6)

Under conditions (vi) and (vii), for allX ∈ �X, the matrix� is non-singular. Indeed, for
the right-hand side of (4.3), we have

||Xsv||2 = ||(X	
s Xs)

1/2v||2
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and by condition (vi),(X	
s Xs)

1/2 is positive definite; therefore (4.3) implies that for all
X ∈ �X and� ∈ T,

�min

(
X	

ext

s∑
k=−s

Vk�k Xext

)
= �min(fX(�))>0

and then from (4.6), we obtain

�(�) ⊂
⋃
�∈T

�(fX(�)) ⊂ (0,∞). �

5. Modification of the estimator and further assumptions

The residualR(X)=AX−B is an affine function of the parameterX. It can be written (in a

more homogeneous way) asR(X)=CXext, whereXext=
[
X
−I
]
. For arbitraryZ ∈ R(n+d)×d ,

we can viewRas a function ofZviaR(Z)=CZ. Consequently,r(Z)=vec(R	(Z))becomes
a function ofZ. The same reasoning applies toR̃ andr̃. As a result the cost functionQ and
the weight matrix� also become functions ofZ,

Q(Z) := vec	((CZ)	) �(Z)−1 vec((CZ)	), (5.1)

�(Z) := E(vec((C̃Z)	)vec	((C̃Z)	)). (5.2)

With some abuse of notation, we will writeQ(Z), �(Z) andQ(X), �(X) at the same time.
The distinction which function is meant, will be clear from the dimensions of the argument.
Clearly,Q(Xext)=Q(X) and�(Xext)= �(X).

ForX ∈ �X, consider

Z =Xext(X
	
s Xs)

−1/2 =
[
ZfA
Zs
ZfB

]
, (5.3)

where the blocksZfA, Zs, andZfB have the same dimension as the corresponding blocks
XfA,Xs, andXfB. Then in (5.3),Zs has the propertyZ	

s Zs= Id . We introduce a parameter
set forZ,

�Z := cl{Xext(X
	
s Xs)

−1/2 : X ∈ �X}, (5.4)

where “cl” denotes the closure in the corresponding spaceR(n+d)×d , and mention that

�Z ⊂ � := {Z ∈ R(n+d)×d : Z	
s Zs = Id}.

Denote

�Zs :=
{
Zs : Z =

[
ZfA
Zs
ZfB

]
∈ �Z

}
(5.5)
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and

�s := {Zs ∈ R(ns+ds)×d : Z	
s Zs = Id}. (5.6)

Then�s is a compact set inR(ns+ds)×d and�Zs is a compact subset of�s. Under condition
(4.3), we have

�min(fZ(�))��0, for all Z ∈ �Z, and� ∈ T, (5.7)

where

fZ(�) := Z	
(

s∑
k=−s

Vk�k
)
Z. (5.8)

A regularized problem, corresponding to (3.2), is

min
Z∈�Z

Q(Z). (5.9)

Let Ẑ be a solution of (5.9), and̂Z=
[
Ẑ′
Ẑ′′
]
, whereẐ′′ ∈ Rd×d . Suppose that rank(Ẑ′′)=d.

Then

Ẑ ∈ {Xext(X
	
s Xs)

−1/2 : X ∈ �X} (5.10)

and for certainX̂ ∈ �X,

Ẑ = X̂ext(X̂
	
s X̂s)

−1/2.

NowQ(Ẑ)=Q(X̂), thereforeX̂ satisfies Definition 1, and it is the STLS estimator ofX0.
Let rank(Ẑ′′)= d. Then we reneŵX from Ẑ by

X̂ext =
[−Ẑ′(Ẑ′′)−1

−Id
]
, X̂ =−Ẑ′(Ẑ′′)−1.

Below, under further assumptions, we will show that in probability form tending to
infinity (i.e., with probability tending to one asm → ∞), there exists a solution̂Z of
(5.9), which satisfies (5.10). Therefore the asymptotic properties of the STLS estimator will
follow the asymptotic properties of̂Z, which satisfies (5.10) and delivers a minimum to
Q(Z) on�Z.

We list the additional assumptions.

(viii) There exists��2 with �>d(ns + ds − (d + 1)/2), such that

sup
i�1, 1� j�n+d

E|�ij |2�<∞. (5.11)

(ix)
�min(A

	
0 A0)√
m

→ ∞, asm→ ∞.
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(x)
�2

min(A
	
0 A0)

�max(A
	
0 A0)

→ ∞, asm→ ∞.

Note that conditions (ix), (x), and (viii) with�=2 are exactly Gallo’s conditions of weak
consistency ford=1 in a homoscedastic unstructured case (Gallo, 1982). Due to condition
(ix), A	

0 A0 is non-singular for largem, and for thatm, the matrixX0 satisfying (1.2) is
unique.

6. Properties of the inverse weight matrix�−1

ForZ ∈ �Z, the functionfZ, defined in (5.8), depends onZ throughZs ∈ �Zs, and�Zs

is a compact set inR(ns+ds)×d . Therefore due to (5.7), there exists such an	>0, that for all
Z ∈ �Z and 1− 	< |�|<1+ 	, the functionfZ(�) is non-singular, and it is analytic on
the disk 1− 	< |�|<1+ 	. Then the function

hZ(�) := f−1
Z (�) for all 1− 	< |�|<1+ 	

is analytic, and it can be expanded as

hZ(�)=
∞∑

k=−∞
Hk�k for all 1− 	< |�|<1+ 	,

whereHk ∈ Cd×d , k ∈ Z, and the series converges pointwise. The propertiesHk ∈ Rd×d
andHk =H	−k, k ∈ Z, are inherited from the coefficients of the functionfZ.

We prove thatHk have exponential decay, i.e., that there exist constantsc1, c2>0, such
that for allk ∈ Z and allZ ∈ �Z,

||Hk||F�c1 exp(−c2 · |k|). (6.1)

Indeed, by the Cauchy formula, we have

Hk = 1

2
i

∮
|�|=1

hZ(�)
�k+1 d�, (6.2)

wherei denotes the imaginary unit
√−1. Let k�0. The functionhZ(�)/�k+1 is analytic

on the disk 1− 	< |�|<1+ 	, therefore

Hk = 1

2
i

∮
|�|=1+	/2

hZ(�)
�k+1 d�. (6.3)

But ||hZ(�)||F = ||f−1
Z (�)||F�c1, for |�|�1+ 	/2. This is true becausefZ(�) is non-

singular forZ ∈ �Z, |�|�1 + 	/2, depends onZ throughZs ∈ �Z, which is compact,
and is continuous in bothZs and�. Then we change the variable�= (1+ 	/2)�1 in (6.3),
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and obtain

||Hk||F=

∥∥∥∥∥∥∥
1

2
i

∫
|�1|=1

hZ((1+ 	/2)�1)

�k+1
1

d�1

(1+ 	/2)k

∥∥∥∥∥∥∥
F

� 1

2


∫
|�1|=1

||hZ((1+ 	/2)�1)||F
|�1|k+1

|d�1|
(1+ 	/2)k

�c1 exp(−c2k),

wherec2 := ln(1 + 	/2). Now, (6.1) follows immediately, because fork <0, ||Hk||F =
||H	−k||F = ||H−k||F.

Next, consider a matrix representation of the operatorMfZ (see (4.5)) inL2
d(T),




. . .
. . .

. . .
. . .

. . . 0 · · · 0

0 Fs · · · F1 F0 F−1 · · · F−s
. . .

...
...

. . . Fs · · · F1 F0 F−1 · · · F−s 0

0 · · · 0
. . .

. . .
. . .

. . .
. . .


 . (6.4)

We have

(MfZ)
−1 =M

f−1
Z

=MhZ,

therefore the inverse matrix in (6.4) is a matrix representation of the operatorMhZ , namely



. . .

. . .
. . .

· · · H1 H0 H−1 · · ·
· · · H1 H0 H−1 · · ·

. . .
. . .

. . .


 . (6.5)

The� matrix (5.2) is a submatrix of (6.4). The elements of�−1 are close to the corre-
sponding submatrix of (6.5)

� :=



H0 H−1 · · · H−m+1
H1 H0 · · · H−m+2
...

. . .
. . .

...

Hm−1 · · · H1 H0


= [�ij ]j=1,...,m

i=1,...,m .



330 A. Kukush et al. / Journal of Statistical Planning and Inference 133 (2005) 315–358

To find the relation between�−1 and�, we consider

(6.6)

Here�ij ∈ Rd×d , and in the middle we have the structure[0 I(m−2s−2)d 0] because of the
particular banded structure of�. Next, (6.6) can be written as

�� = Imd +D, (6.7)

where

(6.8)

The entriesij ∈ Rd×d are uniformly bounded forZ ∈ �Z. Now, we are looking for a
sharper bound for the entries ofD. Considerij with 1� i�s + 1, j > s + 1. We have, see
(6.7),

ij =−�ij = [Fi−1 · · ·F−s 0 · · ·0]

H−j+1

...

Hm−j


=

−j+s+1∑
k=−j+1

F̃kHk,
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whereF̃k are uniformly bounded matrices. Then, due to (6.1),

||ij ||F�constc1

−j+s+1∑
k=−j+1

exp(−c2 · |k|)

�constc1(s + 1) exp(−c2 (j − s − 1))

�const exp(−c2j). (6.9)

Similarly, for ij ,m− s� i�m, we have

||ij ||F�const exp(−c2(m− j)).
Finally, from (6.7), we have

�−1 = � − �−1D. (6.10)

For the consistency proof, we use (6.10) intensively to bound the cost functionQ.

Remark 3. Consistency usually requires that the noise has finite fourth-order moments.
Here in (vii) higher moments are used. There are two reasons for this: (a) in the presence of
structured relations, we do not demand the parameter set�X to be bounded, cf.Pintelon and
Schoukens (2001, Chapter 7), where�X is a compact set, and (b) the problem is multivariate,
i.e.,d can be greater than 1, cf.Gallo (1982)whered = 1 and fourth-order moments are
required, and Kukush and Van Huffel (2004) where in a multivariate unstructured problem
higher-order moments are used.

7. Main results

Denote

�m := m1/4

�1/2
min(A

	
0 A0)

+ �1/2
max(A

	
0 A0)

�min(A
	
0 A0)

. (7.1)

We present the consistency statements.

Theorem 3. Under conditions(i)–(x), the STLS estimator̂X converges in probability to
the true valueX0, as m tends to infinity, i.e.,

X̂
P→, X0 as m→ ∞.

Moreover,

||X̂ −X0||F = �mOp(1).

Theorem 4. Suppose that conditions(i)–(viii) hold. Assume additionally that for� from
condition(viii), the following series converge

(xi)
∞∑

m=m0

(
�max(A

	
0 A0)

�2
min(A

	
0 A0)

)�

<∞.
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(xii)
∞∑

m=m0

( √
m

�min(A
	
0 A0)

)�

<∞.

Then the STLS estimator converges toX0 a.s., as m tends to infinity, i.e.,

X̂→ X0, as m→ ∞ a.s.

8. Decomposition of the cost function and lower bound

In preparation for the consistency proofs, we investigate the properties ofQ, given in
(5.1). Hereafter, we assume that the conditions of Theorem 3 hold.

Introduce the matrixZ0 ∈ �Z, Z0 := X0ext(X
	
0sX0s)

−1/2, whereX0ext andX0s are the

matricesXext andXs, forX=X0. LetZ0=
[
Z′

0
Z′′

0

]
, withZ′′

0 ∈ Rd×d . ThenX0=−Z′
0(Z

′′
0)

−1.

Define

�V := Z′ +X0Z
′′. (8.1)

In Kukush and Van Huffel (2004, Section 5), it is shown that�V = 0 if and only if rank
(Z′′)= d andX0 =−Z′

0(Z
′′
0)

−1. Then

C0Z = A0�V.

Denote

r0i := Eri(Z)= Z	c0i = (�V )	a0i . (8.2)

We have

EQ(Z)=
m∑

i,j=1

r	0iMij r0j +
m∑

i,j=1

Er̃	i Mij r̃j , (8.3)

whereMij =Mij (Z) ared × d-blocks of�−1(Z). But, see (5.2),

m∑
i,j=1

Er̃	i Mij r̃j = E(r̃	�−1r̃)= tr(E(�−1r̃ r̃	))= tr(�−1�)=md. (8.4)

From (8.2)–(8.4), we have

EQ(Z)− EQ(Z0)=
m∑

i,j=1

(�V 	a0i )
	Mij (�V 	a0i ). (8.5)

Now,

�min(�−1)= 1

�max(�)
�const= 1

max�∈T, Z∈�Z�(fZ(�))
>0.

Therefore from (8.5), we have

EQ(Z)− EQ(Z0)�const||A0�V ||2F�const�min(A
	
0 A0) ||�V ||2F. (8.6)
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Next,

Q̃(Z) := Q(Z)− EQ(Z)= U1 + 2U2, (8.7)

where

U1 :=
m∑

i,j=1

(r̃	i Mij r̃j − E r̃	i Mij r̃j ),

U2 :=
m∑

i,j=1

r	0iMij r̃j =
m∑

i,j=1

a	0i�VMij r̃j .

The summandsU1 andU2 are bounded in Appendix A. The derivation of the bounds is
based on the properties of the inverse weight matrix�−1 and the results on stochastic fields
and moment inequalities, collected in Appendix B. From (8.7), (8.6), (A.19), (A.16) and
taking into account thatU2(Z0)=0, we obtain, forZ ∈ �Z and for some positive constantc,

Q(Z)−Q(Z0)�c · �min(A
	
0 A0)||�V ||2F

+√m�m(Z)+
√

�max(A
	
0 A0)||�V ||F · �m(Z), (8.8)

where

P{ sup
Z∈�Z

|�m(Z)|>a}� consta−�, for a >0 (8.9)

and

P{ sup
Z∈�Z

|�m(Z)|>a}�consta−2�, for a >0. (8.10)

9. Proofs of the main results

First ,we prove that the regularized problem (5.9) has a solution, with probability tending
to one, as the sample sizemgrows to infinity.

9.1. Existence of solution ofminZ∈�ZQ(Z)

We suppose that conditions (i)–(x) hold. We start with the function

q(Z) := ||�V ||2F = ||Z′ +X0Z
′′||2F, whereZ =

[
Z′
Z′′
]
∈ �Z. (9.1)

Below, for a matrixM ∈ Rp×q , we use an operator norm,

||M|| := supu∈Rq
||Mu||Rp
||u||Rq

. (9.2)
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We mention that forZs ∈ �Zs, we have||Zs||=1, because the columns ofZs are orthogonal
unit vectors. Denote

c0 := 2||X0ext(X
	
0sX0s)

−1X	
0s||, (9.3)

where the operator norm (9.2) is used. The constantc0 is positive, seeKukush and Van
Huffel (2004, Section 7.1).

Now, we show that

inf
Z∈�Z, ||Z||�c0

q(Z)��2, for certain fixed�>0. (9.4)

Indeed, suppose that for a certain sequence{Z(l), l�1} ⊂ �Z, with ||Z(l)||�c0, we have
lim l→∞ q(Z(l))=0.Then (9.1) impliesZ(l)+X0extZ

′′(l)→ 0, andZs(l)+X0sZ
′′(l)→ 0,

asl → ∞. Using assumption (vi), we have

lim
l→∞ (Z

′′(l)+ (X	
0sX0s)

−1X	
0sZs(l))= 0

and

lim
l→∞ (Z(l)−X0ext(X

	
0sX0s)

−1X	
0sZs(l))= 0.

But this does not hold, because||Z(l)||�c0, and

||X0ext(X
	
0sX0s)

−1X	
0sZs(l)||� ||X0ext(X

	
0sX0s)

−1X	
0s|| · ||Zs(l)|| = c0/2.

We got a contradiction and this proves (9.4).
Now, we rewrite (8.8) in the form

1

�min(A
	
0 A0)

(Q(Z)−Q(Z0))

�c ·
(
||�V ||F + �1/2

max(A
	
0 A0)

�min(A
	
0 A0)

�̃m(Z)

)2

+
√
m

�min(A
	
0 A0)

�m(Z)− c
�max(A

	
0 A0)

�2
min(A

	
0 A0)

�̃m(Z). (9.5)

Here�̃m(Z) satisfies (8.10). Introduce a random variable

Am := inf
Z∈�Z, ||Z||�c0

(Q(Z)−Q(Z0)).

We show that

P{Am <0} → 0 asm→ ∞. (9.6)
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Suppose thatAm <0 holds. Then there existsZ∗ ∈ �Z, such that||Z∗||�c0 andQ(Z∗)−
Q(Z0)<0. Let�V ∗ := �V |Z=Z∗ . From (9.5), we have(

||�V ∗||F + �1/2
max(A

	
0 A0)

�min(A
	
0 A0)

�̃m(Z
∗)
)2

<

√
m

�min(A
	
0 A0)

supZ∈�Z |�m(Z)|
c

+ �max(A
	
0 A0)

�2
min(A

	
0 A0)

(
sup
Z∈�Z

|�̃m(Z)|
)2

:= �m.

Due to (x), in probability form tending to infinity,

�1/2
max(A

	
0 A0)

�min(A
	
0 A0)

sup
Z∈�Z

|�̃m(Z)|��,

where� comes from (9.4), then we obtain, due to (9.4),(
� − �1/2

max(A
	
0 A0)

�min(A
	
0 A0)

sup
Z∈�Z

|�̃m(Z)|
)2

<�m.

Therefore, we have

P{Am <0}�P

{
�1/2

max(A
	
0 A0)

�min(A
	
0 A0)

sup
Z∈�Z

|�̃m(Z)|��

}

+ P


�1/2

max(A
	
0 A0)

�min(A
	
0 A0)

sup
Z∈�Z

|�̃m(Z)|��, and

(
� − �1/2

max(A
	
0 A0)

�min(A
	
0 A0)

sup
Z∈�Z

|�̃m(Z)|
)2

<�m


 .

Using (8.10) for�̃m(Z), we have

P{Am <0}�const

(
�max(A

	
0 A0)

�2
min(A

	
0 A0)

)�

+ P

{
�<2

�1/2
max(A

	
0 A0)

�min(A
	
0 A0)

sup
Z∈�Z

|�̃m(Z)|

+
4
√
m

�1/2
min(A

	
0 A0)

(supZ∈�Z |�m(Z)|)1/2√
c

}

�const

((
�max(A

	
0 A0)

�2
min(A

	
0 A0)

)�

+
( √

m

�min(A
	
0 A0)

)�)
.

And for �m, defined in (7.1),

P{Am <0}�const(�m)
2�. (9.7)

By conditions (ix) and (x), this implies (9.6). Then, in probability form tending to infinity,

inf
Z∈�Z

Q(Z)= inf
Z∈�Z, ||Z||�c0

Q(Z),
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and the last lower bound is attained, becauseQ(Z) is continuous on the compact set{Z ∈
�Z : ||Z||�c0}. Thus the solution of (5.9) exists with probability tending to one. Moreover,

P{Ẑ =∞ or ||Ẑ||�c0}�P{Am <0}�const(�m)
2�. (9.8)

HereẐ is a solution of (5.9), and̂Z =∞ if in (5.9), a minimum is not attained.

9.2. Proof of Theorem 3

The results of Section 9.1 imply that there exists a solution of problem (5.9) with proba-
bility tending to one, asm tends to infinity. Now, introduce the event

Bm := {||Ẑ||�c0},
with c0 defined in (9.3). We mention that due to (9.8)

P{Bm}�P{Am <0} and P{Bm} → 0 asm→ ∞. (9.9)

Assume thatBm holds. From (8.8) and the definition ofẐ, we haveQ(Ẑ)−Q(Z0)�0,
and for�V̂ := Ẑ − Z0,

||�V̂ ||2F�const· �1/2
max(A

	
0 A0)

�min(A
	
0 A0)

sup
Z∈�Z

|�̃m(Z)| · ||�V̂ ||F

+ const

√
m

�min(A
	
0 A0)

sup
Z∈�Z

|�̃m(Z)|.

This implies that

||�V̂ ||F�const·

�1/2

max(A
	
0 A0)

�min(A
	
0 A0)

sup
Z∈�Z

|�̃m(Z)|+
4
√
m

�1/2
min(A

	
0 A0)

(
sup
Z∈�Z

|�̃m(Z)|
)1/2


 .

Therefore, see (8.9) and (8.10),

P{||�V̂ ||F> �}�P{Bm} + const
1

�2�

((
�max(A

	
0 A0)

�2
min(A

	
0 A0)

)�

+
( √

m

�min(A
	
0 A0)

)�)

�const(�m)
2�(1+ 1/�2�) for �>0. (9.10)

In the last inequality, we used (9.9) and (9.8). Now, (9.10) implies that

�V̂
P→0 asm→ ∞.

From (8.1), we get

Ẑ′ +X0Ẑ
′′ P→0 asm→ ∞.

To complete the proof of the convergenceX̂
P→X0, asm→ ∞, we have to show that in

probability form tending to infinity,

rank(Ẑ′′)= d and (Ẑ′′)−1 = Op(1). (9.11)
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Indeed once we show this, then rank(Ẑ′′)= d, impliesẐ ∈ {Xext(X
	
s Xs)

−1/2 : X ∈ �X},
and

X̂ =−Ẑ′(Ẑ′′)−1 = (X0Ẑ
′′ + op(1))(Ẑ

′′)−1 =X0 + op(1)

and Theorem 3 is proved. Thus we have to prove (9.11).
Consider function (9.1) on the set

�1 := {Z ∈ �Z : ||Z||�c0}.

If q(Z)=0, thenZ=
[−X0
Id

]
Z′′,Zs=−X0sZ

′′, (Z′′)−1=−Z	
s X0s, and||(Ẑ′′)−1||F�c1=

const. Hereafter, we write||(Ẑ′′)−1||F =∞ if Z′′ is singular.
The set�1 is compact andq(Z) is continuous, then

inf
Z∈�1

2c1 � ||(Ẑ′′)−1||F �∞

||�V̂ ||2F��2
0>0.

We have

P{2c1� ||(Ẑ′′)−1||F�∞, andBm happens}�P{||�V̂ ||2F��2
0}, (9.12)

and this tends to zero. Therefore (9.11) is shown and the convergenceX̂
P→X0, asm→ ∞,

is proved.
Now, we show the second statement of Theorem 3. Bounds (9.12) and (9.10) imply that

P{2c1� ||(Ẑ′′)−1||F�∞, andBm happens}�const(�m)
2�. (9.13)

Because of

X̂ −X0 = �V̂ (Ẑ′′)−1,

we have

P{||X̂ −X0||F> �}=P{Ẑ′′ is singular or||�V̂ (Ẑ′′)−1||F> �}
�P{Am <0} + P{2c1� ||(Ẑ′′)−1||F�∞, andBm happens}

+ P{||V̂ ||F> �/(2c1)}
and hence with (9.10), (9.13), and (9.7),

P{||X̂ −X0||F> �}�const(1+ 1/�2�)(�m)
2�. (9.14)

then

P

{
||X̂ −X0||F

�m
> �

}
�const

(
(�m)

2� + 1

�2�

)

and the second statement of Theorem 3 follows.�
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If the error-free columns inAandBare absent, the proof of Theorem 3 is simpler. In that
case�=�s is compact, and�Z =�Zs ⊂ �s, �Z is compact as well. As a result of this,
part in Section 9.1 is not needed any more for the proof of Theorem 3.

9.3. Proof of Theorem 4

From (9.14) and conditions (xi), (xii), we have for suchm0, that�min(A
	
0 A0)>0,m�m0,

∞∑
m=m0

P{||X̂ −X0||F> �}<∞.

By the Borel–Cantelli lemma, this implies that

||X̂ −X0||F → 0, asm→ ∞, a.s.

10. Algorithm

Based on Theorem 1 and the cost functionQ, given in (3.5), we describe a numerical
scheme to compute the STLS estimator. We have to minimize the functionQ on �X.
Suppose thatX0 is an interior point of�X. Then by Theorem 3 with probability tending to
one,X̂ is a root of the equation dQ(X)/dX = 0.

We have forH ∈ Rn×d ,

1

2
Q′(X)H =


 r1(X)...
rm(X)



	

�−1


H

	a1
...

H	am


− 1

2


 r1...
rm



	

�−1
(

d�
dX
H

)
�−1


 r1...
rm


 .

Now,

� = E


 X

	ã1 − b̃1
...

X	ãm − b̃m


 [ã	1 X − b̃	1 · · · ã	mX − b̃	m]

and

d�
dX
H=E


H

	ã1
...

H	ãm


 [ã	1 X − b̃	1 · · · ã	mX − b̃	m]

+ E


 X

	ã1 − b̃1
...

X	ãm − b̃m


 [ã	1 H · · · ã	mH ].
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Then

1

2
Q′(X)H

= tr


 m∑
i,j=1

r	i MijH	aj −
m∑

i,j,k,l=1

r	i MijH	Eãj [ã	k b̃	k ]
[
X

−Id
]
Mklrl




= tr


 m∑
i,j=1

aj r
	
i MijH

	 −
m∑

i,j,k,l=1

Vjk

[
X

−Id
]
Mklrlr

	
i MijH

	

 ,

whereVjk := E[ãj ã	k ãj b̃	k ]. Denote also

Nkj :=
m∑
l=1

Mklrl

m∑
i=1

r	i Mij = (�−1rr	�−1)kj .

Then forX = X̃,

1

2

dQ(X)

dX
=: �(X, X̃)=

m∑
i,j=1

aj (a
	
i X − b	i )Mij (X̃)−

m∑
j,k=1

Vjk

[
X

−Id
]
Nkj (X̃).

We have to solve the equation�(X,X)=0.The proposed iterative algorithm is as follows:

(1) Compute an approximationX(0), using, e.g., the TLS estimator.
(2) Given an approximationX(k), we findX(k+1) from the linear equation�(X,X(k))= 0.

On each step, we have to check whetherX(k) is in the set�X. If for certaink,X(k) is not
in the set�X, then we change it tõX(k) which is the point in�X, nearest toX(k).

In Markovsky et al. (2004)we implemented the proposed algorithm and compared it
with the algorithms based on the structured total least norm approach (Lemmerling, 1999;
Mastronardi, 2001). The comparison shows that in term of computational efficiency our
proposal is competitive with the fast algorithms ofMastronardi (2001). We mention that the
procedure proposed here is similar to the one for the EW-TLS problem, proposed initially
in (Premoli and Rastello, 2002; Kukush and Van Huffel, 2004) and developed later on in
Markovsky et al. (2002a). In Kukush et al. (2002)it is proven that the proposed algorithm
for the EW-TLS problem is a contraction. For the STLS problem, this has not been shown
yet.

11. Examples

11.1. Scalar model with Hankel structure

Let n = d = 1, nf = 0, ns = 1. The model isax ≈ b, wherea ∈ Rm×1, x ∈ R, and
b ∈ Rm×1.
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We observe the dataai = a0i + ãi , bi = b0i + b̃i , with a0ix0 = b0i , i = 1, . . . , m, and
want to estimatex0 ∈ R. Impose the Hankel structure

[a b] =



p1 p2
p2 p3
...

...

pm pm+1


 .

Here the number of structural parameters isnp = m + 1 and is greater thanmd = m, so
that we have enough parameters in the structure, compare with the demandnp�md from
assumption (ii).

We suppose that{ p̃i , i=1,2, . . . , m+1}are independent, with zero mean and var(p̃i)=
�2
p̃
>0, and�2

p̃
does not depend oni. The true values ofpi arep0i , for i = 1,2, . . . , np.

We state a version of Theorem 4 for this scalar case.

Theorem 5. Let the following conditions hold:

(a) The true valuex0 ∈ (−∞,−1− 	] ∪ [1+ 	,∞) := �x , and	>0 is known.
(b) supi�1E p̃

4
i <∞.

(c) p01 �= 0.
Then the STLS estimatorx̂ constructed for the parameter set�x converges tox0 a.s., as

m grows to infinity, i.e.,

x̂ → x0, as m→ ∞, a.s.

We explain why condition (vii) holds now. We haver̃i (x) = p̃ix − p̃i+1, i = 1, . . . , m,
and

� = �2
p̃ ·



x2 + 1 −x 0

−x . . .
. . .

. . .
. . . −x

0 −x x2 + 1


 ∈ Rm×m.

Then

fx(�)=−x�−1 + (x2 + 1)− x�, for � ∈ C\{0}
For |�| = 1, we have,

fx(�)= (x − cos�)2 + sin2� where� := arg�.

In our case assumption (vii) takes the form

Υ (x,�) := (x − cos�)2 + sin2 �
x2 + 1

��0>0 for all |x|�1+ 	, � ∈ [0,2
].

But this holds because

Υ (x,�)→ 1, asx → ∞,
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uniformly in � ∈ [0,2
], andΥ (x,�)>0 on each set 1+ 	� |x|�L, � ∈ [0,2
]. We
have,Υ (x,�) = 0 if and only if � = 0 or 2
 andx = 1, or� = 
 andx = −1, but�x is
separated from±1, see condition (a) of Theorem 5.

Now we explain why assumption (xi) and (xii) hold, forr = 2. Indeed, in our model

p0,i+1 = p0,ix0 for i�1, so that, p0,i = p0,1x
i−1
0 for i�1.

Then a	0 a0 = ∑m
i=1(p0,i )

2 grows exponentially for|x0|>1, and both�min(a
	
0 a0)

= �max(a
	
0 a0) grow exponentially. Therefore conditions (xi) and (xii) hold with� = 2.

Defining �x in (a), we excluded the interval|x|<1. Indeed, in the case|x0|<1,
a	0 a0�(p0,1)

2/(1− x2
0), and condition (ix) does not hold, because�min(a

	
0 a0)/

√
m→ 0,

asm→ ∞.

11.2. A model with two variables and Hankel structure

Let n= 2, d = 1, nf = 0, ns = 1. The model is
 a11 a12
...

...

am1 am2


[x1
x2

]
≈

 b1
...

bm


 .

We observe

aij = a0,ij + ãij , bi = b0,i + b̃i , for i = 1, . . . , m, j = 1,2,

with

a0,i1x0,1 + a0,i2x0,2 = b0,i , for i = 1, . . . , m

and we want to estimatex0 :=
[
x0,1
x0,2

]
∈ R2×1.

Impose the Hankel structure

[A b] =



p1 p2 p3
p2 p3 p4
...

...
...

pm pm+1 pm+2




and suppose that{p̃i , i = 1,2, . . . , m+ 2} are independent with zero mean and var(p̃i)=
�2
p̃
>0, and�2

p̃
does not depend oni and is unknown.

In this case,

r̃i (x)= p̃ix1 + p̃i+1x2 − p̃i+2 for all i = 1, . . . , m,

and

fx(�)=− �−2 + (x1x2 − x2)�−1 + (||x||2 + 1)+ (x1x2 − x2)� − �2

for all � ∈ C\{0}.
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For |�| = 1, we have with� := arg �,

fx(�)= ||x||2 + 1+ 2(x1x2 − x2) cos� − 2 cos 2�.

Theorem 6. Let the following conditions hold:

(a) The true valuex0 :=
[
x0,1
x0,2

]
∈ �x ⊂ R2×1, where�x is a known closed set.

(b)
inf

x∈�x , �∈[0,2
]
||x||2 + 1+ 2(x1x2 − x2) cos� − 2 cos 2�

||x||2 + 1
>0.

(c) There exists�>2, such thatsupi�1E|p̃i |2�<∞.
(d) �max(A

	
0 A0)√
m

→ ∞, as m→ ∞.

(e) �2
min(A

	
0 A0)

�max(A
	
0 A0)

→ ∞, as m→ ∞.

Then the STLS estimatorx̂ converges in probability to the true valuex0 of the parameter,
as m grows to infinity, i.e.,

x̂
P→ x0, as m→ ∞.

We mention that condition (b) can be written in a more explicit form, because the numer-
ator is a quadratic function of cos�.

11.3. A model with A structured and B unstructured

As another particular case, we consider model (1.2) and in assumption (i), we demand
thatA= [Af As], Ãf = 0, andÃs is independent of̃B. In assumption (ii), we suppose that
S : Rnp → Rm×ns, is such thatAs = S(p) for somep ∈ Rnp , andVp̃ is positive definite;
moreover, forB̃, we suppose that{ b̃i , i = 1,2, . . . , m } are independent, andEb̃i b̃	i :=
V
b̃

does not depend oni, andV
b̃

is positive definite.
Then the total number of structural parameters in[As B] equalsnp +md�md, and the

requirement from assumption (ii) holds.
Now, we specify condition (vii). We have forVi−j , defined in (4.1),

Vi−j = E

[ 0
ãsi
b̃i

]
[ 0 ã	sj b̃	j ] =


0 0 0

0 Eãsi ã
	
sj 0

0 0 Eb̃i b̃	j


 ∈ R(n+d)×(n+d).

Thus forVã,i−j := Eãsi ã
	
sj , we have

V0 =
[0 0 0

0 Vã,0 0
0 0 V

b̃

]
, Vk =

[0 0 0
0 Vã,k 0
0 0 0

]
for all k ∈ Z, k �= 0.

Remember that due to condition (iv),Vk = 0, for |k|�ns.
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DenoteXext = [X	
f X	

A − Id ]	. Then

X	
ext


 ns+1∑
k=−ns+1

Vk�k


Xext =X	

A


 ns+1∑
k=−ns+1

Vã,k�
k


XA + V

b̃
.

NowXs = [X	
A − Id ]	, and condition (4.3) takes the form

v	X	
A


 ns+1∑
k=−ns+1

Vã,k�
k


XAv + v	Vb̃v��0(||XAv||2 + ||v||2) (11.1)

for eachX ∈ �X, v ∈ Rd×1, and� ∈ T; here�0>0 is fixed. One of the following two
conditions is sufficient for (11.1):

(A) There exists constant aL>0, such that||XA ||F�L, for eachX ∈ �X.
(B) There exists constant a�1>0, such that

v	X	
A


 ns+1∑
k=−ns+1

Vã,k�
k


XAv��1||XAv||2

for eachX ∈ �X, v ∈ Rd×1 and� ∈ T.

Indeed, assume that (A) holds. LetWl be the left-hand side of (11.1), andWr be its
right-hand side. We have

Wl ��min(Vb̃) ||v||2 and Wr ��0 ||v||2(1+ L2).

For�0 := �min(Vb̃)/(1+ L2)>0, inequality (11.1) holds.
Now, suppose that condition (B) holds. We consider two cases for fixed�>0

(a) ||XAv||��||v||, and
(b) ||XAv||��||v||.

In case (a), we haveWl ��1||XAv||2, and forv �= 0

�1||XAv||2
||XAv||2 + ||v||2 � �1�2

�2 + 1
=: �′0>0.

Thus (11.1) holds with�0 = �′0.
In case (b), we have

Wl ��min(Vb̃) ||v||2 and Wr ��0 ||v||2(�2 + 1).
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Then for�0=�′′0 := �min(Vb̃)/(�
2+1), inequality (11.1) holds. In order to cover both cases

(a) and (b), we can set

�0 := min(�′0, �
′′
0)=

1

�2 + 1
min(�1�2, �min(Vb̃))>0,

and then (11.1) is proved.
Thus Theorems 3 and 4 are applicable, if at least one of conditions (A) or (B) hold.

We mention that in an univariable cased = 1, condition (B) is equivalent to the following
condition:

inf
X∈�X, XA �=0

�∈T

1

||XA ||2


X	

A


 ns+1∑
k=−ns+1

Vã,k�
k


XA


>0.

Also, under condition (A), the moment assumption (viii) can be relaxed. namely, it is enough
to demand that (5.11) holds for certain fixed real��2, �>dns. The reason is that under
condition (A), the set{XA : X ∈ �X } is already compact, and the regularized problem
(5.9) is not needed. The proof of Theorem 3 now goes in the same line as in Sections 8
and 9, and Appendix A but in terms ofX rather thenZ. The modified moment condition is
used, e.g., to bound the correspondingU1(X) andU2(X). To boundU11(XA) (compare with
Section 3)we need�>dns, wheredns is the dimension of{XA ∈ Rd×ns : ||XA ||F�L}.

12. Applications

The STLS problem formulation, given in Section 2, covers a wide number of applications.
In particular, discrete-time linear dynamical models can be described by a structured sys-
tem of linear equations and subsequently the identification problem rephrased as an STLS
problem. We show three examples of linear discrete-time system identification problems
that reduce to the STLS problem described in the paper.

12.1. FIR system impulse response estimation

Consider the finite impulse response (FIR) system

ȳ(t)= h̄(0)ū(t)+ · · · + h̄(q)ū(t − q + 1).

Hereh̄ is the systemimpulse response, ū is theexact input, andȳ is theexact output. Noisy
measurementsu andy are obtained from the true input/output signalsū andȳ, i.e.,

u= ū+ ũ and y = ȳ + ỹ
where ũ and ỹ are zero-mean random signals with i.i.d. samples. The problem we are
interested in is: given the measurements(u, y), estimate the system impulse responseh̄.
The impulse response lengthq is assumed known.



A. Kukush et al. / Journal of Statistical Planning and Inference 133 (2005) 315–358 345

Over a finite horizon 0,1, . . . , tf − 1, the response of the system can be written as a
matrix–vector multiplication:




ū(0) ū(−1) · · · ū(−q + 1)
ū(1) ū(0) · · · ū(−q + 2)
...

...
. . .

...

ū(tf − 1) ū(tf − 2) · · · ū(0)






h̄(0)
h̄(1)
...

h̄(q − 1)


=




ȳ(0)
ȳ(1)
...

ȳ(tf − 1)


 . (12.1)

(The negative time samplesū(−1), . . . , ū(−q+1) are the system initial conditions, which
are also assumed measured with additive noise.) System (12.1) is satisfied for the exact
input/output signals and the exact impulse response. If we replace the exact signals with
the measured ones, (12.1) defines an STLS problem for the estimation of the unknown
impulse response. The problem is with a Toeplitz structuredA matrix and unstructuredB
matrix. The STLS estimatêh provides a consistent estimator of the FIR system impulse
responsēh.

12.2. ARMA model identification

Consider the ARMA system

q∑
�=0

ȳ(t + �)a(�)=
q∑

�=0

ū(t + �)b(�). (12.2)

As before,ȳ is theexact outputandū is theexact input. We measure the input and the output
with additive noises

y = ȳ + ỹ, u= ū+ ũ

and assume that the noise samplesỹ(t) and ũ(t) are zero mean i.i.d. The problem is to
estimate the parameters

a := [a(q) a(q − 1) · · · a(0)], and b := [b(q) b(q − 1) · · · b(0)]

from a given set of input/output measurements{u(t), y(t)}tf−1
t=0 . We assume that the order

q of the model is known.
This identification problem is naturally expressed as an STLS problem; moreover the

resulting problem satisfies our assumptions. From (12.2), we have

q∑
�=0

ū(t + �)b(�)+
q−1∑
�=0

−ȳ(t + �)a(�)= ȳ(t + q)a(q).

The parameters can be normalized by settinga(q) = 1. Then for a time horizont =
0,1, . . . , tf − 1, the system equations are written as a structured linear system of
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equations:

(12.3)

wherem= tf − 1− q. The number of estimated parameters isn= 2q + 1. We assume that
the time horizon is large enough to ensurem?n. System (12.3) is satisfied for the exact
input and the exact output. The unique solution is given by the true values of the parameters.

If we replace the exact input/output data with the measured one, in general system (12.3)
is no longer compatible. The STLS approach can be applied to simultaneously correct
the measurements andconsistentlyestimate the parameters. The resulting problem has
structured[A B] matrix, where the structure is given by two Hankel blocks. If the input
is measured without additive noise, then the structure is given by a Hankel block and a
noise-free block.

12.3. Hankel low-rank approximation

LetH : Rn+m−1 → Rm×n,m>n, be a function that constructs anm× n Hankel matrix
out of its parameters (the elements in the first column and the last row). The problem we
consider is: given a full rank Hankel matrixH(p), find a singular Hankel matrixH(p̂),
such that||p − p̂||22 is minimal. ThusH(p̂) is the best (in the above-specified sense) low
rank approximation ofH(p). This abstractly defined problem is related to the linear system
realization and the model reduction problems in system theory (Kailath, 1981).

The Hankel low-rank approximation problem can be rephrased as an STLS problem.
Indeed the problem is equivalent to

min
x̂,p̂

||p − p̂||22 s.t. H(p̂)

[
x̂

−1

]
= 0, (12.4)

because the constraint ensures that the nonzero vector(x̂,−1) is in the null space ofH(p̂).
Clearly, (12.4) is an STLS problem with Hankel structured[A B] matrix. Note that here
the structure parameter estimatep̂ (and notx̂) is of interest.
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The solutionp̂ of problem (12.4) guarantees thatH(p̂) is singular. If the rank ofH(p̂)
has to be lowered by more than one (this is of interest for the model reduction problem),
then a problem with multiple right-hand sides should be considered. WithX̂ ∈ Rn×d , the
solution of

min
X̂,p̂

||p − p̂||22 s.t. H(p̂)

[
X̂

−I
]
= 0,

ensures that rank(H(p̂))�n− d. (By assumption (vi),X̂ is of full rank.)
In the realization and the model reduction problems, the Hankel matrixH(p) is composed

of measurements of the Markov parameters of the system. For single-input/single-output
systems they are scalars, but in the multivariable case they become matrices with dimension
(number of outputs)×(number of inputs). This motivates an extension of the results of the
paper for block Toeplitz/Hankel structured problems. Such a generalization is described in
the next section.

13. A model with block-Hankel/Toeplitz structure

Consider model (1.2). We fix a natural numberq�2, the size of the blocks (assumed
square), and suppose thatm= ql, wherel ∈ N. Denote

A	 =: [A1 · · ·Al] and B	 =: [B1 · · ·Bl],

whereAi ∈ Rn×q andBi ∈ Rd×q , i = 1, . . . , l. We use the same notation for the blocks of
Ã, A0, B̃, B0, As, andBs.

Next, we introduce the new assumptions. We still assume that conditions (i)–(iii) hold.

(iv)′ The sequence{ [Ã	
si B̃

	
si ]	, i = 1,2, . . . , l } is stationary in a wide sense and

s-dependent.

A centered sequence{Di, i=1,2, . . .} of random matrices is called stationary in a wide
sense if the sequence{vec(Di), i = 1,2, . . .} is stationary in a wide sense, see Section 2.

We still assume that conditions (v) and (vi) hold. Now, we state an analogue of assumption
(vii). Consider the matrix�, see (3.4). It consists of the blocks

Fij := E vec(X	
extC̃i) vec	(X	

extC̃j ) ∈ Rdq×dq, for i, j = 1, . . . , l.

HereC̃	 =: [C̃1 · · · C̃l], whereC̃i ∈ R(n+d)×q and according to assumption (iv)′, { C̃i :
i=1,2, . . . , l } form a wide sense stationary ands-dependent sequence.ThereforeFij=Fi−j
is a function of the differencei − j , andFij = 0 for suchi, j that|i − j |�ns+ ds. Then�
has the block-banded structure (4.2) andF−k = F	

k , for k = 0,1, . . . , s.
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The functionfX, defined in (4.4), is related to�. A new condition is stated in terms of
fX(�), however.

(vii) ′ There exists�0>0, such that for eachX ∈ �X, v ∈ Rdq×1, and� ∈ T,

v	fX(�)v��0

∥∥∥∥∥∥

Xsv1

...

Xsvq



∥∥∥∥∥∥

2

,

wherev =: [v	1 · · · v	q ]	, with vi ∈ Rd×1, i = 1, . . . , q.

Under conditions (vi) and (vii)′, � is non-singular, and�(�) ⊂ ⋃
�∈T�(fX(�)) ⊂

(0,∞).
We state the consistency results similar to Theorems 3 and 4.

Theorem 7. Assume that conditions(i)–(iii), (iv) ′, (v), (vi), (vii) ′,and(viii)–(x) hold. Then,
the STLS estimator̂X converges in probability to the true valueX0, asl := m/q goes to
infinity, i.e.,

X̂
P→X0, as l → ∞.

Moreover,

||X̂m −X0||F = �m · Op(1), f or m= lq, l ∈ N,

where�m is defined in(7.1).

Theorem 8. In the assumptions of Theorem7, replace(ix) and(x)with (xi) and(xii). Then

X̂→ X0, as l =m/q → ∞, a.s.

Theorems 7 and 8 are applicable for the block-Hankel/Toeplitz structured[A B]. e.g.,

[A B] =



P1 P2
P2 P3
...

...

Pl Pl+1


 , wherePi ∈ Rq×q

and there is no additional structure insidePi .

14. Conclusions

Consistency results for the STLS estimator were presented. An affine structure was con-
sidered, with the additional assumptions that the errors in the measurements are stationary
in a wide sense ands-dependent for certains ∈ N. The assumptions are mild; for example,
they allow Toeplitz/Hankel structured, unstructured, and error-free blocks together in the
augmented data matrix.
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An optimization problem equivalent to the one defining the STLS estimator was derived
by analytic minimization over the nuisance parameters, defining the structure. The resulting
problem minX∈�X Q(X) has as decision variables only the estimated parameters. The cost
function Q was used in the analysis. It has the structureQ(X) = r	�−1r, wherer is
an affine function ofX and the elements of� are quadratic functions ofX. Under the
s-dependence assumption, the matrix� is block banded. In addition, the blocks of�−1

have exponential decay, away from the main diagonal. This property was used to bound the
quantityQ(X)−Q(X0), whereX0 is the true value of the estimated parameter. Based on the
bound, weak and strong consistency of the STLS estimator were proven. The significance
of the assumptions were illustrated with examples.

Based on the analysis of the cost functionQan iterative algorithm for the computation of
the STLS estimator was proposed.The performance of the proposed algorithm is comparable
with this of the currently best known STLS solvers. It is an open problem to show that the
presented algorithm is a contraction.
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Appendix A. Bounds for the summands inQ(Z) − EQ(Z)

We start withU2 and use representation (6.10). Letr0 := [r	01 · · · r	0m]	, wherer0i are
defined in (8.2). Then

U2 =
m∑

i,j=0

a	0i�V�ij r̃j − r	0 �−1Dr̃ =: U21 − U22.

A.1. Bound forU21

Let �V = [�vjp]p=1,...,d
j=1,...,n , and�V 	 =: [�v1 · · ·�vn].

We consider an elementary summand ofU21. ForZ	 = [X	 − Id ] = [ z1 · · · zn+d ], we
have

U21 =
m∑

i,j=1


 n∑
j1=1

a0,ij1�v
	
j1


 �ij


 nf+s+1∑
j2=nf+1

zj2�jj2




and

U21 =
∑

1�p,q � d, 1� j1 � n
nf +1� j2 � nf +s+1

zqj2�vj1p
m∑

i,j=1

a0,ij1[�ij ]pq�jj2. (A.1)

We consider a random field which is generic for an elementary summand of (A.1),

U ′
21 = U ′

21(Zs) :=
m∑
j=1

�jj2

m∑
i=1

a0,ij1[�ij ]pq for all Zs ∈ �Zs (A.2)

(Due to (5.2),� depends onZ through its componentZs, therefore�ij depends onZ through
Zs as well.) We apply Lemma 1 from Appendix B to bound|U ′

21(Zs)|.
Remember that{�jj2, j=1,2, . . .} is ans-dependent sequence so that we can use Lemma

2 (b). For� from condition (viii), we have

E|U ′
21|2��const


 m∑
j=1

(
m∑
i=1

a0,ij1[�ij ]pq
)2

�

�const


 m∑
j=1

(
m∑
i=1

|a0,ij1| · ||�ij ||F
)2

�

.

By (6.1),||�ij ||F�c1 exp(−c2 · |i − j |). Then

E|U ′
21|2��const


 m∑
j=1

m∑
i1,i2=1

|a0,i1j1| · |a0,i2j1|exp(−c2 · |i1−j |)exp(c2 · |i2 − j |)

�

.
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We bound the sum in the brackets.
m∑
j=1

m∑
i1,i2=1

|a0,i1j1| · |a0,i2j1|exp(−c2 · |i1−j |)exp(c2 · |i2−j |)

�
∞∑

k1=−∞

∞∑
k2=−∞

exp(−c2 · |k1|)exp(−c2 · |k2|)
∑

1� j �m
1−k1 � j �m−k1
1−k2 � j �m−k2

|a0,k1+j,j1| · |a0,k2+j,j1|

�const
m∑
i=1

a2
0,ij1

�const�max(A
	
0 A0).

Then

E|U ′
21|2��const��

max(A
	
0 A0). (A.3)

Now, we bound the moments of the increment ofU ′
21. There exists an	0>0 such that

(compare with (5.7) and (5.8))

inf
�∈T


 inf

Zs,Ys∈�Zs||Zs−Ys||F � 	0
�+�=1, �,� � 0

�min(f�Zs+�Ys(�))


 � �0

2
>0. (A.4)

Here we used that the functionfZ, defined in (5.8), depends onZ through the component
Zs. LetZs, Ys ∈ �Zs and||Zs − Ys||F�	0. For an increments of�ij , we have

|[�ij ]pq(Zs)− [�ij ]pq(Ys)|� sup
Z̄s=�Zs+�Ys

�+�=1, �,� � 0

∥∥∥∥∥�[�ij ]pq(Z̄s)

�Zs

∥∥∥∥∥ · ||Zs − Ys||F. (A.5)

This supremum has an exponential decay as|i−j | grows. Indeed, from representation (6.3)
we have

�[�ij ]pq(Z̄s)

�Zs
= 1

2
i

∮
|�|=1+	/2

�
�Zs

[f−1
Z̄s
(�)]pq d�

�i−j+1 . (A.6)

And due to (A.4)∥∥∥∥ �
�Zs

[f−1
Z̄s
(�)]pq

∥∥∥∥ �const, for all |�| = 1+ 	/2

and

Z̄s ∈ {�Zs + �Ys : � + � = 1, �,��0, Zs, Ys ∈ �Zs}.
Therefore similarly to bound (6.1), we obtain from (A.6), that∥∥∥∥∥�[�ij ]pq(Z̄s)

�Zs

∥∥∥∥∥ � c̃1 exp(−c̃2 · |i − j |), wherec̃1, c̃2>0.
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We showed the exponential decay of the supremum in (A.5). From (A.5), we have

|[�ij ]pq(Zs)− [�ij ]pq(Ys)|�const exp(−c̃2 · |i − j |) · ||Zs − Ys||F. (A.7)

Using (A.2) and (A.7), we obtain by Lemma 2(b), see Appendix B,

E|U ′
21(Zs)− U ′

21(Ys)|2�

�const


 m∑
j=1

(
m∑
i=1

|a0,ij1| · |[�ij ]pq(Zs)−[�ij ]pq(Ys)|
)2

�

�const


 m∑
j=1

(
m∑
i=1

|a0,ij1| exp(−c̃2 · |i − j |)
)2

�

· ||Zs − Ys||2�F .

Similarly to (A.3), this implies forZs, Ys ∈ �Zs, ||Zs − Ys||F�	0 that

E|U ′
21(Zs)− U ′

21(Ys)|2��const(�max(A
	
0 A0))

� · ||Zs − Ys||2�F . (A.8)

But �Zs is compact, therefore (A.8) holds for arbitraryZs, Ys ∈ �Zs.
Now, we apply Lemma 1, see Appendix B, to the stochastic fieldU ′

21(Zs) on�Zs defined
in (5.4), (5.5), withp := d(ns + ds − (d + 1)/2), though formally�Zs ∈ R(ns+ds)×d . It
is possible to extend Lemma 1 to�Zs ⊂ �s, see (5.6), using spherical coordinates and
to apply Lemma 1 directly for these coordinates. Hered(ns + ds − (d + 1)/2) equals the
dimension of�s as a manifold, see (Kukush and Van Huffel, 2004, Section 6.2).

We mention that in (A.5) and (A.3), the exponent 2�>d(ns + ds − (d + 1)/2), due to
assumption (viii). Therefore from Lemma 1, we have

sup
Zs∈�Zs

|U ′
21(Zs)| = �1/2

max(A
	
0 A0) · �′

m, (A.9)

where

P{�′
m >a}�consta−2� for all a >0. (A.10)

Now, from (A.9), (A.10), and (A.1), and taking into account that in (A.1),|zqj2|�1, we
have

sup
Zs∈�Zs

|U ′
21(Zs)| = �1/2

max(A
	
0 A0) · ||�V ||F · �′′

m, (A.11)

where�′′
m satisfies (A.10).
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A.2. Bounds forU22 andU2

We have, see (6.8), that

Dr̃ =




∑m
j=11j r̃j
· · ·∑m

j=1s+1,j r̃j
0
· · ·
0∑m

j=1m−s,j r̃j· · ·∑m
j=1mj r̃j



. (A.12)

ForU22, we can consider an elementary summand, corresponding to the upper part of the
right-hand side of (A.12),

U ′
22(Z) :=

m∑
i=1

r	0iMij1

m∑
j=1

j1j r̃j , for all 1�j1�s + 1.

We bound these two sums separately.

(a)
∥∥∑m

i=1 r
	
0iMij1

∥∥2�∑m
i=1 ||a	0i�V ||2 ·

∑m
i=1 ||Mij1||2F. But

m∑
i=1

||Mij1||2F�d�2
max(�

−1)�const,

therefore∥∥∥∥∥
m∑
i=1

r	0iMij1

∥∥∥∥∥
2

�const�1/2
max(A

	
0 A0) · ||�V ||F. (A.13)

(b) Next, consider the field

U ′′
22(Zs) :=

m∑
i=1

j1j r̃j .

We have for�, from condition (viii),

E||U ′′
22||2��const


 m∑
j=1

||j1j ||2F

�

�const

due to (6.9). Similarly forZs, Ys ∈ �Zs,

E||U ′′
22(Zs)− U ′′

22(Ys)||2��const||Zs − Ys||2�F .

Then, like in (A.9),

sup
Zs∈�Zs

||U ′′
22(Zs)|| = �′′′

m, (A.14)
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where�′′′
m satisfies (A.10). Now from (A.13) and (A.14), we have forZ ∈ �Z, (we

write it already forU22, rather than forU ′
22)

|U22(Z)|��1/2
max(A

	
0 A0) · ||�V ||F · �̃m, (A.15)

where�̃m satisfies (5.1). Summarizing (A.11) and (A.15), we have

|U2(Z)|��1/2
max(A

	
0 A0) · ||�V ||F · �m, (A.16)

where�m satisfies (5.1).
Now, we pass to

U1 = r̃	�r̃ − Er̃	�r̃︸ ︷︷ ︸
U11

− r̃	�−1Dr̃︸ ︷︷ ︸
U12

+Er̃	�−1Dr̃︸ ︷︷ ︸
U13

=: U11 − U12 + U13.

A.3. Bound forU11

As �ij =Hi−j , we have

U11(Zs)=
m−1∑

k=−m+1

∑
1� j �m

1−k� j �m−k

(r̃	k+jHkr̃j − E r̃	k+jHkr̃j ).

For a random variable�, denote

||�||� := (E|�|�)1/�,
where� comes from condition (viii). Denote also

a ∨ b := max(a, b) and a ∧ b := min(a, b).

Then

||U11||��
m−1∑

k=−m+1

∥∥∥∥∥∥
m∧(m−k)∑
j=1∨(1−k)

r̃	k+jHkr̃j − E r̃	k+jHkr̃j

∥∥∥∥∥∥
�

.

In the inner sum the variables ares-dependent. Then by Lemma 2(a), we have

||U11||��
m−1∑

k=−m+1

const max


 m∧(m−k)∑
j=1∨(1−k)

E(r̃	k+jHkr̃j − Er̃	k+jHkr̃j )2

×

 m∧(m−k)∑
j=1∨(1−k)

E|r̃	k+jHkr̃j − Er̃	k+jHkr̃j |�

1/�


 .

From (6.1), we have for certainc3>0,

||U11||��
∞∑

k=−∞
const

√
m exp(−c3 · |k|)�const

√
m
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and

E|U11|��constm�/2.

Using (A.7), we have similarly, that for allZs, Ys ∈ �Zs

E|U11(Zs)− U11(Ys)|��constm�/2 · ||Zs − Ys||�F. (A.17)

Due to our assumptions�>d(ns + ds − (d + 1)/2), andd(ns + ds − (d + 1)/2) is the
dimension of�s as a manifold,�s ⊃ �Zs.

From (A.17), by Lemma 1, we have that,

sup
Zs∈�Zs

|U11(Zs)− U11(Z0s)| =√m�′m,

whereZ0s isZs-component ofZ = Z0, and

P{�′m >a}�consta−� for all a >0.

A.4. Bound forU12

Due to the structure ofD, it is enough to consider an elementary summand ofU12,

U ′
12 :=

m∑
i=1

r̃iMij1

m∑
j=1

j1j r̃j for all 1�j1�s + 1. (A.18)

(The corresponding summands form − s�j1�m can be treated similarly.) The second
factor in (A.18) is denoted above byU ′′

22(Zs), and it permits the bound (A.14). Let

U ′′
12(Zs) :=

m∑
i=1

r̃iMij1, for all Zs ∈ �Zs ⊂ �s.

For � from condition (viii), we have due to (6.1) and Lemma 2(b) from Appendix B,

E||U ′′
12(Zs)||2��const

m∑
i=1

exp(−c̃2|i − j1|)�const

and for allZs, Ys ∈ �Zs

E||U ′′
12(Zs)− U ′′

12(Ys)||2��const||Zs − Ys||2�F .

Therefore

sup
Zs∈�Zs

||U ′′
12(Zs)|| = ˜̃�m,

where ˜̃�m satisfies (A.10). Then

sup
Zs∈�Zs

|U ′
12(Zs)|� sup

Zs∈�Zs

||U ′′
12(Zs)|| sup

Zs∈�Zs

||U ′′
22(Zs)|| = ˜̃�m�′′′

m =: �′′m



356 A. Kukush et al. / Journal of Statistical Planning and Inference 133 (2005) 315–358

and

P{�′′m >a}�P{ ˜̃�m >
√
a} + P{�′′′

m >
√
a}�const(

√
a)−2�

= consta−� for a >0.

A.5. Bounds forU13 andU1

It is enough to consider an elementary summand for 1�j1�s + 1

U ′
13(Zs) := E

m∑
i=1

r̃	i Mij1

m∑
j=1

j1j r̃j .

But {r̃j } ares-dependent. Therefore,

U ′
13 =

∑
1� i, j �m
|i−j |� s+1

E r̃	i Mij1j1j r̃j .

Recall that||j1j ||F�const exp(−c2 · j), 1�j1�s + 1, we have

|U ′
13|�const

∞∑
j=−∞

exp(−c2|j |)= const.

Thus|U13|�const. Summarizing, we have,

sup
Zs∈�Zs

|U1(Zs)− U1(Z0s)| =
√
m�m, (A.19)

where

P{�m >a}�const· a−�, for a >0.

Appendix B. Results on stochastic fields and moment inequalities

We recall the following result on stochastic fields (Ibragimov and Hasminskii, 1981).

Lemma 1. Let T () be a separable, measurable stochastic field defined on the compact
setK ⊂ Rp. Suppose that for any, ̃ (for which ∈ K,  + ̃ ∈ K)

E|T ( + ̃)− T ()|��L||̃||�′

for some���′>p positive constant L. Then for anya >0,

P{L−1/� sup
1, 2∈K

|T (1)− T (2)|>a}�k0a−�,

wherek0 depends on�, �′, p, and K but does not depend on L and a.

We give also the following version of the Rosenthal inequality (Rosenthal, 1970).
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Lemma 2. Let {�k, k�1} be a sequence of q-dependent random vectors inRp, E�k = 0,
for all k�1.Then

(a) for each�, ��2,and for allm�1, the following inequality holds:

E

∣∣∣∣∣
∣∣∣∣∣
m∑
k=1

�k

∣∣∣∣∣
∣∣∣∣∣
�

�c1 max



(
m∑
k=1

E||�k||2
)�/2

,

m∑
k=1

E||�k||�

 ,

(b) for each real�, ��2, for everym�1, and{a1, . . . , am} ⊂ R, the following inequality
holds:

E

∣∣∣∣∣
∣∣∣∣∣
m∑
k=1

ak�k

∣∣∣∣∣
∣∣∣∣∣
�

�c2
(
m∑
k=1

a2
k

)�/2

sup
1�k�m

E||vk||�,

wherec1 andc2 depend on�, p, and q but do not depend onm and the choice ofa1, . . . , am.
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