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Abstract

The structured total least squares estimator, defined via a constrained optimization problem, is a
generalization of the total least squares estimator when the data matrix and the applied correction
satisfy given structural constraints. In the paper, an affine structure with additional assumptions is con-
sidered. In particular, Toeplitz and Hankel structured, noise free and unstructured blocks are allowed
simultaneously in the augmented data matrix. An equivalent optimization problem is derived that has
as decision variables only the estimated parameters. The cost function of the equivalent problem is
used to prove consistency of the structured total least squares estimator. The results for the general
affine structured multivariate model are illustrated by examples of special models. Modification of
the results for block-Hankel/Toeplitz structures is also given. As a by-product of the analysis of the
cost function, an iterative algorithm for the computation of the structured total least squares estimator
is proposed.
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1. Introduction

The total least square§TLS) problem Golub and Van Loan, 1980; Van Huffel and
Vandewalle, 1991

min || [AA AB]|2 st (A+AA)X =B+ AB (1.1)
AA,AB,X

is a generalization of the ordinary least squares method when an errors-in-variables (EIV)
model

A=Ao+A, B=Bo+ B, AoXo=Bo (1.2)

is considered. Herd, B are measurement errors ang, B are true values, that satisfy

the linear model for some unknown true valig of the parameteK. The TLS estimate

of Xo, i.e., the solution of (1.1), corresponding Xo is proven to provide a consistent
estimate ofXg, when the elements of and B are zero mean i.i.d. Thgeneralized total

least square$GTLS) problem Yan Huffel and Vandewalle, 198@xtends consistency of

the TLS estimator to cases where the erfoYsB] are zero mean, row-wise independent,
and with equal row covariance matrix, known up to a factor of proportionality. Efficient and
reliable algorithms, based on the (generalized) singular value decomposition, exist for the
computation of the TLS and the GTLS solutions.

A further generalization for the case when the row$AfB] have different covariance
matrices (but are still mutually independent) is¢tement-wise weighted total least squares
(EW-TLS) estimator De Moor, 1993; Premoli and Rastello, 2Q0Zonsistency of the
EW-TLS estimator is proven iKukush and Van Huffel (2004)rhe EW-TLS problem is a
difficult non-convex optimization problem and its solution cannot be found in terms of the
singular value decomposition of the data matrix. An iterative optimization procedure for its
solution is proposed iRremoli and Rastello (2002ndMarkovsky et al. (2002a)

In De Moor and Roorda (1994he so-calleddynamic total least squargzoblem is
considered. The problem formulatione Moor and Roorda (19943 parallel to this of
the TLS problem but a discrete-time linear dynamical model is postulated instead of the
static modeldpXo = Bp. The equations of the dynamical model over a finite time horizon
can be written as a linear system of equatidRso = Bo with Ag, a structured matrix,

e.g., Toeplitz or Hankel matrix. This gives rise to a TLS-type problem with the additional
constraint that the correction matA obeys a certain known structure.

The resulting problem is calledsdructured total least squardSTLS) problem. IrDe
Moor (1993)a list of applications of the STLS problem is given. Among them we mention
a single-input single-output identification problem, Hsrapproximation problem, and an
errors-in-variables version of the Kalman filter. The TLS and GTLS problems are special
cases of the STLS problem. Due to the structure assumption, the errors inthe STLS problem
are correlated among the rows and in this respect the STLS problem is more general than
the EW-TLS problem. For the consistency of the STLS estimator, however, we assume
stationarity of the errors. Such an assumption is not enforced in the framework of the EW-
TLS problem, so that the EW-TLS problem is not a special case of the STLS problem
formulation considered in this paper.
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The STLS problem fits within the Markov framework for semi-linear modeRinfelon
and Schoukens (2001, Chapter iz¢., models linear-in-observations and (non)linear-in-
the-model-parameters. In the STLS problem, however, there is a structure assumption on
the true valuesglp andBo, while in the semi-linear model, a structure assumption is imposed
only on the errorst and B. Moreover inPintelon and Schoukens (20ahe parameter set
is assumed to be compact and the errors to be normally distributed, while in the present
paper, the parameter set is closed but not necessary bounded and the error distribution is
not necessary Gaussian.

Although the STLS problem is a very general modeling framework, its computation
is also a difficult non-convex optimization problem. An overview of algorithms for STLS
computation is given ihemmerling (1999, Section 4and numerically efficient algorithms
based on the Generalized Schur Algorithm are developddastronardi et al. (2000)
Lemmerling et al. (2000dndMastronardi (2001)

The main contribution of the present paper is a proof of statistical consistency of the
STLS estimator. Results on the consistency of the STLS estimate are presented for an affine
structured multivariate EIV model. The proofs are similar to the ones preseniedkirsh
and Van Huffel (2004jor the EW-TLS estimator, but the presence of the structural relations
makes the consistency proofs more complicated.

Most of the statistical literature of EIV modeling is devoted to unstructured problems,
e.g., the classical book on measurement error moBelief, 1987 does not treat structured
EIV models. Special cases of the STLS consistency problem are considered in the system
identification literature. We mention the papers of Aoki and Yaek{ and Yue, 1970a, b
where consistency of the maximum likelihood estimator for an auto regressive moving av-
erage (ARMA) model is proven. Their estimator is a special instance of the STLS estimator
of this paper when the structure of the extended data matrig] is a Hankel matrix next
to another Hankel matrix, see Section 12.2. Estimators, different from the STLS one, are
proven to be consistent for the dynamic EIV model. They are, however, statistically less
efficient than the STLS estimator. Among them we mention the weighted GTLS estimator
and bootstrapped TLS estimatoRr{telon et al., 1998and the bias corrected least squares
estimator Stoica and Sdderstrom, 198Zhe consistency properties of the STLS estimator
in the generality of our formulation have not been considered previously in the literature.

As a by-product of the analysis, we propose an algorithm similar to the one proposed for
the EW-TLS problemlarkovsky et al., 2002aln a companion papeMarkovsky et al.,

2004, we implemented the proposed algorithm and compare it with other existing methods,
e.g., the methods dfemmerling (1999andMastronardi (2001)in terms of computational
efficiency, our proposal is competitive with the fast methodslastronardi (2001)

The notation we use is standaf@:denotes the set of the real numbersthe set of the

complex numbersZ the set of the integer numbers, aNdhe set of the natural numbers.

Any p x g matrixAis defined bya;;1/=;""" q , Wherea;; denotes théi, j)th element ofA.

,,,,,

We denote the transpose of the rowsAobya,, e, AT =[t - -14]. ||x|| is the Euclidean
norm of the vectok and||A||g is the Frobenius norm of the matix The notatiors(A) is
used for the spectrum of the opera#ord* is the adjoint operator, anhin(A) (Amax(A)) is

the minimum (maximum) eigenvalue of a symmetric ma#ti¥oryn € C, i is the complex
conjugate of;. The bold symboE denotes mathematical expectation and the bold symbol
P denotes probability of an event, qeydenotes the variance—covariance matrix of a vector
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of random variables, §21) denotes a sequence of stochastically bounded random variables,
and ¢(1) denotes a sequence of random variables that converges to zero in probability. In
the formulas “const” denotesyconstant value (for example, we can write castonst).
For two sets¥’; and.%», 91\.%2 denotes the set difference &f; relative t0.%5.

The paper is structured as follows. Section 2 defines the STLS estimator as a solution
of an optimization problem. The decision variables are the paramfeterbe estimated,
and the nuisance parameters describing the structure. Section 3 derives an equivalent op-
timization problem in which the nuisance parameters are eliminated. The cost function of
the equivalent problem is of the for@(X) = r ' I'"1r, where the vector is an affine
function of X, and the elements of the weight matiixare quadratic functions of. In
Section 4, we study the properties of the weight mafriXJnder our assumptions, it is
a block banded matrix. In Section 5, we redefine the cost fun@iamd the weight ma-

trix I" as functions of the extended parameXey; := [_XI] This modification simplifies

the analysis. In Section 6, we study the properties of the inverse weight niattixWe
establish exponential decay of the elementdof, away from the main diagonal. This
property is crucial for the consistency proofs. In Section 7, we state the main results—weak
and strong consistency of the STLS estimator. In preparation for the proofs, in Section 8
we make a decomposition of the cost function. In Appendix A, bounds for the summands
of the decomposition are derived. Section 9 gives the proofs of the main results. In Sec-
tion 10, we propose an algorithm for the computation of the STLS estimator. Section 11
considers specific examples of the general STLS multivariate EIV problem and specializes
the consistency results for these cases. In Section 12, we describe three applications of the
STLS problem: FIR system impulse response estimation, ARMA model identification, and
Hankel low-rank approximation. Section 13 describes the necessary modification of the
assumptions in the paper for consistency in the case of block-Toeplitz/Hankel structures.
Section 14 gives conclusions and Appendix B reminds facts from the theory of stochastic
fields.

2. The multivariate STLS problem

We consider the model X ~ B, whereA € R™*" andB € R"*? areobservations
andX e R"*“ is aparametenf interest. We suppose that (1.2) holds for sotiges R"*¢.
The matrixXg is thetrue valueof the parameterdo, Bo are non-stochastic true values of
AandB, respectively, and, B areerrors. Looking for asymptotic results in the estimation
of X, we fix the dimension oK, n andd, and let the number of measurememgcrease.
The measurements are represented by the rowsaofl the rows oB.

Let

5,']‘ Z=c~l,‘j ifi=1,2,...,m andj:l,...,n
and

Simini=by ifi=12...,mandk=1,...,d.
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We introduce the following assumptions:

(i) The data matriYA B] has the following partitioning:
C :=[A B]=[At As Bs Bt],

whereAs € R™™  Ag € R™*"s, Bs € R"*% andB; € R™*% with ni + ng=n,
di +ds=d, ns+ ds>2. Respectively,

Co := [Ao Bol = [Aof Aos Bos Bor] and C :=[A B]=[As As Bs Bi]
with A; =0, Bf = 0.

Condition (i) means that the first; columns inA and the last columns inB are
error-free An example with error-free columns is the ARMA model with noisy output but
noise-free input, see Section 12.2xz{f= 0, then the blocl4; is absent, and if; = 0, then
the blockBs is absent.

(iiy There is an a priori known affine function (the structure in the problem)
np
SR — RO §(p) = So+ Y S forall p e R,
k=1

with md <n, <m(ns+ ds), such that
Cs:=[As Bs] = S(p)

for some parameter vectpre R"». Since the maximum number of parameter equals
the total number of elements @, we have that , <m(ns+ ds).
The matrixCops := [Ags Bos| also satisfies the affine functi@i.e., Cos = S(po), for
some unknown parameter vectag € R"». The vectom is a noisy measurement of
po, i.e., p = po + p, wherep is a zero mean random vector with a positive definite
variance—covariance matrix;.

(iii) All the errors 6;; have zero mean and finite second moments, and the covariance

structure 01[5,1,-]{:11 """ nt+d is known up to a factor of proportionality.
We mention that due to assumption (i}, andd; are known. Let
Al =ila1--anl, B =:i[b1---byl.

Similar notation is used for the rows d, A, As, etc., for exampleBy =: [bs1 - - - bgn].
LetS = ng =+ ds — 1

(iv) The sequencé¢c], = [aJ bi1T, i =1,2,...,m} is stationary in a wide sense, and
s-dependent.
A centered sequende;, i =1, 2,...} of random (column) vectors is calletiationary
in a wide senséf Ev,-vllk, i=12..,k=0,12,..., depends only ok and does not
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depend orni. A sequence of random vectors (or matricgég) i = 1,2, ...} is calledg-
dependenty > 1, if for eachi, the two sequencdss, . .., v;} and{v; 4441, Viqg+2, ...} are
independent from each other.

Condition (iv) holds ifCs = [Cs1- - - Cy ], where each of the blockSsy, .. ., Cy, sep-
arately has either Hankel or Toeplitz structure, and the edgrs. . ., qu are indepen-
dent. (We may allow certain dependence for the structural parameters coming from sep-
arate blocks). The block-Hankel/Toeplitz structure does not satisfy (iv) and is treated in
Section 13.

(v) The true valueXg € Ox C R4 where@y is a known closed set.

Note that®y need not be compact.
ForX € R"*¢, we define

X XA
Xext = [ ] and let Xext = XS
_Id
XtB

according to the equality

CXext = At Xta + CsXs + Br XiB.

(vi) ForeachX € @y, rank(Xs) =d.

In particular, under assumption (vi)s + ds>d.

Under assumptions (i)—(vi), the STLS problem consists in finding the valaé the
unknown matrixXo and the valué\ p of the unknown errorg that minimize the weighted
sum of squared corrections and make the corrected midgelS(p — Ap), Bi]Xext=0
hold

-1/2

min |V APl st [Ar, S(p — Ap). BilXea=0. 2.1)
XeOx, ApeR'»

We give the following definition of the STLS estimator.

Definition 1. The STLS estimatoX of X is a measurable value & which solves the
optimization problem (2.1).

Remark 1. The STLS estimatoX equals the maximum likelihood estimator in case of
Gaussian errors.

Remark 2. Itcan happen thatfor certain random realizations problem (2.1) has no solution.
In that case, we set = co. Later on under consistency assumptions, we will show that
X = oo with probability tending to zero.
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3. The cost function for X

For X € @y fixed, consider the solution of (2.1) as a functionf.e., we consider the
function

0() = min WV PApI st [Ar S(p—Ap). BilXea=0.  (3.1)
PeR™P

Then the STLS problem (2.1) is equivalent to the minimizatio@ok), overX € Oy,
min Q(X). 3.2)

XeOy

Next, we obtain the cost functio@ (X). We minimize analytically oveAp. (If Apmin
is a minimizer of (3.1), the® (X) = Ap;mvlglApmm.) Denote the residual X — B by R
and letr be the vectorized form &R T, i.e.,
ri
R:=AX —B=CXext, r:=VeoR')=ved[ri---rm)=| ! |e R
I'm
We use similar notation for the random p&t= R — ER of the residual, i.e.,

r
R:=AX — B=CXext, 7:=VedR")=ved[i1---nl):=| : |eRm™*L
m
The constraint of (2.1) is linear ihp
p
[At, S(p—Ap), B 1Xex=0< CXext= Y  SiXsAp;
k=1
np np
S RT =) (SiX9) Apx & vedRT) = ) | ved(§iXs) DAk < r = GAp,
k=1 k=1
where
G := [ved($1Xs) ) - - - ved(S,, Xs) )] € R
We have to solve the following problem:
min Ap'V:Ap st GAp=r. 3.3)
Ap P

Note that we need to have the constraint thatp = r is solvable, if (3.3) is to be feasible.
Assuming thaG is full rank, we need to have at leastd parameters, i.en, >md. Then
(3.3) is a least-norm problem. Its solution is given by

Apmin=V;G(GV ;G *r
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and the optimal value is
0(X) = Ap;mv[;lApmm =r (GV;GT) .

We can writeQ as
m
Q(X)= Y r Myrj,
i j=1
whereM;; € R¥*? is thei, jth block of the matrixGV G T)~1. The cost function of the

EW-TLS problem farkovsky et al., 2002ais of the same type bu¥;; = 0 fori # j;
equivalently the matri>GV,;GT is block diagonal.

Next, we show thatGV ;G" = EF7'. We haveGV ;G" = E(Gp)(Gp)'. But7 =
vedR) = G p, so that

I:=Ei' =GV;G" (3.4)
and
0X)=r"T"r. (3.5)

Under further conditions on the parameter®st, I" will be non-singular, for allk € @y.

Note 1. In the unidimensional TLS case, (3.4) becorids: — b||2/(1 + ||x||?), which is
a well-known formula—it gives the sum of the squared orthogonal distances from the data
points to the regression hyperplane.

Note 2. For the Markov estimator in the semi-linear model, the cost function has exactly
form (3.5), seePintelon and Schoukens (2001, ChapterBi)t in the semi-linear model,
there are no structure assumptions on the true valgesnd By, therefore (3.5) is not a
consequence of the results on the Markov estimator.

We proved the following statement.

Theorem 1. The STLS estimatof exists if and only if there exists a minimun(®2),and
thenX is a minimum point of Q

Note 3. In the sequel we will use the structure assumption only on the errors, but @@t on
andBy. Without any changes, all our results are valid for the corresponding STLS estimator
also in the case where only the errors are structured, because in that case the STLS estimator
is the Markov estimator with the same cost function, see Note 2.

4. Properties of the weight matrix I

Let
Vij i=E@c)), fori,j=1.2._...m, (4.1)
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whereZ] is theith row of C,i.e.,CT =: [¢1 - - - & ]. We have’; = X ¢, so that the positive
semidefinite matriX" consists of the blocks
Fij=Efi7] = E(Xgy@i€] Xex) = XouE(Gi¢] ) Xext
= XgqViiXext € R4 fori,j=1,...,m.
Due to condition (iv),V;; = V;_; is a function of the difference— j, andV;; =0 fori and

j, such thati — j| >ns+ ds. ConsequentlyF;; = F;_;, andF;; =0 if |i — j|>ns+ ds.
Recall thats = ns + ds — 1. The matrixl” has the block-banded structure,

~Fo F_1 -+ F_g 0 7
F1  Fo ‘
T 4.2)
F:S '- '- " " .
. .. . Fp F_1
. 0 FF - F1  Fp

whereFy =FT andVy =V, k=0,1,....5.
In order to ensure thdf is non-singular, we introduce the following assumption.

(vii) There existsig > 0, such that

N
v’ (Xlxt > ka"Xext> v > ol | Xsv] (4.3)
k=—s

forall X € Oy, v € R, andjow| = 1.

Theorem 2 (Positive definiteness @f). Under assumptiongri) and(vii), the covariance
matrix I', given in(3.4),is non-singular.

Proof. The following functionfy : C\{0} — C?*? is related tal",

s
fx(@) =Y Fof, forall we C\{0}. (4.4)
k=—s
As Fi = F',, we have thatfx (w) € C&ii, whereCéi is the space of all Hermitian-
symmetricd x d matrices with complex elements.
Let T be the unit circle irC. We consider the space

o0

o0
LA ={g:g@)= Y gof forweT, geC™ Y |glf<ocof.

k=—00 k=—o00
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It is a Hilbert space with the scalar product

o]

1 2
(g.mz:=> ) g, forallg,he Li(T),
k=—o00
whereh;; is the complex-adjoint matrix/y);; = (i_zk)ji, fori,j=1,...,d.

Let

f)y= Y fiok, forall ol =1
k=—0o0

be a continuous function that takes value€iti?. Consider a Laurent operator
My LX(T) — LA(T), My:g+ fg. (4.5)

A matrix representation d¥/ » with respect to the sequence of functighs= {0, |w|=1:
k € Z} has the form

fi fo fa -
e i fo fa
It means that

o0 o0
My(gqo') = Y figg = " fi, 480",

k=—00 k1=—o00

therefore to find\ ; (g, w?), we have to perform the multiplication

0 1
ST - 0 :
ol A fo fa - : Fiuty
: : : X 0|=0]| f-q8
a |- fo1 fy foa - q| g, 1| ff1484
. . . 0 :

Let
H2(T)={g € L3(T): g =0, ke Z\{0,1,...,m — 1}}
m—1
= {g (@)=Y gk, g e CY 0<k<m — 1} .
k=0
Let P be the orthogonal projection (ﬁﬁ(T) onto H,f,(T). Then the operator

Ty : H2(T) — H2(T), Ty:=PM;P*
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has a matrix representation

fO f,]_ ce fmfl
i fo - fu2
fm'—l R i1 fo

with respect to the set of functiods,_1 := {0*, |o|=1:k=0,1,..., m —1}. We have

o(Mp) =] o(f(@))

weT

(Recall thatf (w) € C™*?, w e T, and forallw € T, a( f(w)) is a finite set containing all
the eigenvalues of (w).)
For the functionfy givenin (4.4), we have thal r, is a self-adjoint operator, therefore

o(Try) Co(Myp) CR
and
Amax(I) = Amax(Try ) < lg)li)](_ o([fx()).

We mention that, foratb € T, ;_ Frok is a (complex) positive semidefinite matrix.
Indeed, for all € C?**, we have

m m m—1
0< Z (@ ) Fij (0 v) = Z VF_jv-al T = Z (v* Fev)ok (m—|k|).
i,j=1 ij=1 k=—m+1

(Herev* := [01 - - - g] € CY*?.) But Fy = 0 for |k| >s. Therefore, we have

s—1 |k|
Z (W*Frv)of (1— —) >0.
m

k=—s+1

Formtending to infinity, we obtain

s—1
v*< Z kak>v>o, for all v € C4*1,
k=—s+1

Thereforefx (w) is positive semidefinite for alb € T, anda(fx(w)) C [0, c0), for all
w € T.Thus
o(IN =0(Tr) C | o(fx(@)) C [0, 00). (4.6)
weTl
Under conditions (vi) and (vii), for alk € ©y, the matrixl” is non-singular. Indeed, for
the right-hand side of (4.3), we have

I1Xsvll% = [1(Xd Xo) Y202
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and by condition (vi),(XsTXs)l/2 is positive definite; therefore (4.3) implies that for all
XeO®xandw e T,

N
Amin (X;l:—xt Z kak Xext) = Amin(fx (w)) >0
k=—s

and then from (4.6), we obtain

o c | J o(fx(@) c(0.00). O

weT

5. Maodification of the estimator and further assumptions

TheresiduaR(X)=AX — B is an affine function of the parametérlt can be written (ina
more homogeneous way) B$X )=C X ext, WhereXextz[_XI]. Forarbitraryz € R+®>d,

we canviewRas afunctionoZviaR(Z)=CZ. Qonsequently,(Z)=veo(RT(Z)) becomes
a function ofZ. The same reasoning appliesR@ndr. As a result the cost functio@ and
the weight matrix” also become functions &,

0(2):=vec (C2)") I'(Z)y tvea(C2z)"), (5.1)
I['(Z) :=E(vea(CZ)")vec' (CZ)T)). (5.2)

With some abuse of notation, we will write(Z), I'(Z) andQ(X), I'(X) at the same time.
The distinction which function is meant, will be clear from the dimensions of the argument.
Clearly, O (Xex) = Q(X) andI'(Xex) = I'(X).

For X € ®x, consider

Zip
Z = Xext(X4 X Y2 = { Zs } : (5.3)
Zig

where the block¥sa, Zs, andZsg have the same dimension as the corresponding blocks
X¢a, Xs, andXg. Thenin (5.3),Zs has the propert;ZsTZsz I;. We introduce a parameter
set forZ,

Oz = cl{Xex(XI X9 7Y2: X € Oy}, (5.4)
where “cl” denotes the closure in the corresponding sfit&? ¢, and mention that
Oz CO:={ZecRWI. 7l 7 .= 1,).
Denote

VAT
@ZS = ZS 2= Zs € @Z (55)
ZiB
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and
Os:={Zse Rstds)xd . Z;—Zs= 14}, (5.6)

Then®sis a compact set iR(1stds)xd and@z, is a compact subset éfs. Under condition
(4.3), we have

Amin(fz(@))=4g, forall Ze @z, andw e T, (5.7)
where
N
fr(w):=2" (Z kak> Z. (5.8)
k=—s
A regularized problem, corresponding to (3.2), is
min Q(Z). (5.9)
Z€Oy

A

Let Z be a solution of (5.9), and = [;,
Then

/!

] ,whereZ” € R?*¢_ Suppose that rarik”) =d.

7 € (Xext(Xd Xo)7V?: X € Oy) (5.10)
and for certainX € Oy,
Z = Xext(Xd Xo) 712,

Now Q(Z) = Q(X), thereforeX satisfies Definition 1, and it is the STLS estimatoraf
Letrank(Z"”) = d. Then we renewX from Z by

R _Greom—1 R SR
Xext:[ N (f ) } X=-72/2" L
—1d

Below, under further assumptions, we will show that in probability fotending to
infinity (i.e., with probability tending to one as — o), there exists a solutioZ of
(5.9), which satisfies (5.10). Therefore the asymptotic properties of the STLS estimator will
follow the asymptotic properties of, which satisfies (5.10) and delivers a minimum to
Q(Z)yon®Oy.

We list the additional assumptions.

(viil) There existsy>2 with y > d(ns+ ds — (d + 1)/2), such that

sup E|6;;1% < oo. (5.11)
izl 1<j<n+d

-\ Amin(Ag Ag)
(ix) T

— 00, aSm — 0OQ.
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72 T
/min(Ag A0)
(x) R — 00, asm — 0.

Note that conditions (ix), (x), and (viii) with= 2 are exactly Gallo’s conditions of weak
consistency forl = 1 in a homoscedastic unstructured ca3allo, 1983. Due to condition
(ix), Ang is non-singular for largen, and for thatm, the matrixXg satisfying (1.2) is
unique.

6. Properties of the inverse weight matrixI"~*

ForZ e O, the functionfz, defined in (5.8), depends @throughZs € ©z,, and@ g,
is a compact set ifR"’sT9)*¢ Therefore due to (5.7), there exists sucl ar0, that for all
Z € Oz and 1— ¢ < || < 1 + ¢, the functionfz (w) is non-singular, and it is analytic on
the disk 1— ¢ < |w| < 1 + ¢. Then the function

hz(®) = f; Y w) foralll—e<|o|<l+e

is analytic, and it can be expanded as

o
hz(w) = Z HyoF forall l—e<|o|<l+e,
k=—o00

whereH; € C*¢ k € 7, and the series converges pointwise. The propeHies R?*?
andH; = H_Tk, k € Z, are inherited from the coefficients of the functign.

We prove thatH; have exponential decay, i.e., that there exist constants > 0, such
thatforallk ¢ Zand allZ € @,

|| Hillg < c1 exp(—ca - k). (6.1)
Indeed, by the Cauchy formula, we have

1 hz(w)
H, = — —— dw, 6.2
k 27i |w|=1 w”l @ ( )

wherei denotes the imaginary urit—1. Letk > 0. The functioniz (w)/o**1 is analytic
on the disk 1- ¢ < |w| < 1 + ¢, therefore

1 hz(w)
k== —— dw. (6.3)
21 J \oj=1+e/2 wk+1
But ||hz(w)||g = ||fz_1(w)||,:<c1, for |o| <1+ ¢/2. This is true becausg; (w) is non-
singular forZ € Oz, |o| <1+ ¢/2, depends o throughZs € @2, which is compact,
and is continuous in botAs andw. Then we change the variable= (1+ ¢/2)w1 in (6.3),
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and obtain

1 hz((1+¢/2 d
||Hk||F=%f 2(A+ 52wy doy

k+1 k
[0} 1+¢/2
- 1 (1+¢/2) i
1 / lhz((1+&/2wp)lp  |doy]
S 2n g K1 (1+¢/2)F
lw1]=1

<c1 exXp(—c2k),

wherecy := In(1 + ¢/2). Now, (6.1) follows immediately, because fbx 0, ||Hk||g =
H I lle = | H ]l¢-

Next, consider a matrix representation of the operadgy (see (4.5)) inLﬁ(T),

0 F, -+ F Fy F.1 - F_

(6.4)
FF - F1 F F. --- F_ O

We have
-1
Mg, — = Mfz—l =M,

therefore the inverse matrix in (6.4) is a matrix representation of the opé#atomamely

Hy Hyo H-1
H Ho Ha | (6.5)

The I’ matrix (5.2) is a submatrix of (6.4). The elements/of* are close to the corre-
sponding submatrix of (6.5)

Ho Ha -+ Hopn
Hi  Ho -+ H_pi2 i1
) . ) =912 "

i=1,..m"

Hy-1 -+ Hi Hop
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To find the relation betweeA~1 and®, we consider

I'do =

011 Olim
Oy 1,1 Os1-1,m
0 1 0
(m—25=2)dx(s+1)d (m—2s—2)d (m—2s—2)dx(s+1)d
Op—s,1 On—s,1
O, 1 O,

(6.6)

Herew;; € R™? and in the middle we have the structyi€el(,, 2,24 0] because of the
particular banded structure 6f Next, (6.6) can be written as

I'®d=1l,+D, (6.7)
where
ﬁll ﬁlm
Bs+1.1 ﬁ\ﬂrl,m
D=| o 0 (6.8)
ﬁmfs,l ,Bmf_y,l
L ﬂm,l ﬁm,m ]

The entries;; € R4 are uniformly bounded foZ € ©@;. Now, we are looking for a
sharper bound for the entries Df Considelf)’ij with 1<i<s+1,j > s+ 1. We have, see
(6.7),

—Jj+s+1

= Y. FH,

Hm—j k=—j+1

H_ji1
:Bij:_aijz[Fiflw-F,S 0---0] .
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whereF;. are uniformly bounded matrices. Then, due to (6.1),

—Jjts+1
lIBi;lle<constcr > exp(—cz - [k|)
k=—j+1
<constei(s + 1) exp(—c2(j —s — 1))
<const exp—c2j). (6.9)
Similarly, for[f,-j, m — s <i <m, we have
[1B;llF<const exp—ca(m — j)).
Finally, from (6.7), we have
ri=e¢e—r-p. (6.10)
For the consistency proof, we use (6.10) intensively to bound the cost furigtion
Remark 3. Consistency usually requires that the noise has finite fourth-order moments.
Here in (vii) higher moments are used. There are two reasons for this: (a) in the presence of
structured relations, we do not demand the parameté? géd be bounded, cRintelon and
Schoukens (2001, Chapter Where®y is acompact set, and (b) the problem is multivariate,
i.e.,d can be greater than 1, ¢kallo (1982)whered = 1 and fourth-order moments are

required, and Kukush and Van Huffel (2004) where in a multivariate unstructured problem
higher-order moments are used.

7. Main results

Denote
iy T4 Ao (7.2)
W, = . .
" M2(ALAg)  Amin(Ag Ao)

We present the consistency statements.

Theorem 3. Under conditiong(i)—(x), the STLS estimatak converges in probability to
the true valueXo, as m tends to infinity.e.,

)A(—P>, Xo as m — oo.
Moreover
1X = Xollg = 1,,Op(D).

Theorem 4. Suppose that condition®—(viii) hold. Assume additionally that fgrfrom
condition(viii), the following series converge

00 T Y
H )vmaX(Ao Ao)
XI g Y Eae el < OQ.
( ) m=mgq ()“min(AE]rAO) )
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00 Y
xi) 3 (#’%AO)) < o0.

m=mgq

Then the STLS estimator convergeXtpa.s, as m tends to infinity.e.,

X — Xo, asm— o0 a.s.

8. Decomposition of the cost function and lower bound

In preparation for the consistency proofs, we investigate the properti@s gif’en in
(5.1). Hereafter, we assume that the conditions of Theorem 3 hold.
Introduce the matriZo € @z, Zo := Xoext(XgsXo0s) /2, whereXoext and Xos are the

matricesX ey andXs, for X =Xg. Let Zg= [;53,] with Zj € RI*4, ThenXo:—Z(/)(Z/O/)_l_
0
Define
AV = Z' + XoZ". (8.1)

In Kukush and Van Huffel (2004, Section,5) is shown thatAV = 0 if and only if rank
(2")=d andXo = —24(Zy)~t. Then

CoZ = ApAV.
Denote
roi = Eri(Z) = Z " coi = (AV) T ag;. (8.2)
We have
m m
EQ(Z)= ) rgMijroj + ) EFR MyjF, (8.3)
i,j=1 i,j=1

whereM;; = M;;(Z) ared x d-blocks of '~1(Z). But, see (5.2),

> ER My =EGE T =tr €@ FFD) =tr(I" 1) = md. (8.4)
ij=1

From (8.2)—(8.4), we have

EQ(2) —EQ(Zo)= Y (AVTao)" Mi;(AV Tagi). (8.5)
i,j=1
Now,
Jmin(F™1) = > const= ! > 0.
Jmax(I") MaXyeT, ze@,0(fZ(®))

Therefore from (8.5), we have

EQ(Z) — EQ(Zo) >const|AgAV ||Z > const min(Ag Ao) ||AV[[Z. (8.6)
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Next,

0(2) = 0(2) —EQ(Z) = U1+ 20>, (8.7)

where

m
U]_ = Z (fiTM,'j}:j — EfiTM,'jfj),

i,j=1
m m
. Ty & T .
Uy := Z roiMijrj = Z aOiAVMijrj.
ij—1 ij=1

The summandg#/; andU» are bounded in Appendix A. The derivation of the bounds is
based on the properties of the inverse weight mdrix and the results on stochastic fields
and moment inequalities, collected in Appendix B. From (8.7), (8.6), (A.19), (A.16) and
taking into account thdf>(Zg) =0, we obtain, foZ € ®; and for some positive constant

Q(Z) — Q(Zo) =c - Jmin(Ag A)||AV |2

+mE(Z) +y) Amax(Ag ADIIAV||E - p,,(2), (8.8)

where

P{ sup |&,,(Z)| >a}< consta™”, fora>0 (8.9)

ZcOy

and

P{ sup |p,,(Z)|>a}<consta~?, fora=>0. (8.10)

ZE@Z

9. Proofs of the main results

First ,we prove that the regularized problem (5.9) has a solution, with probability tending
to one, as the sample simegrows to infinity.

9.1. Existence of solution afinz.g, 0(Z)

We suppose that conditions (i)—(x) hold. We start with the function

/

’ / zZ
4(2) = [IAVIZ =117 + XoZ"||Z, whereZ = [Z} 0, (0.2)

Below, for a matrixM € R”*4, we use an operator norm,

[|Mu||gr

[[M]] := SU,cpe .
1] e

(9.2)
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We mention that foZs € @, we havg|Zs||=1, because the columns 8§ are orthogonal
unit vectors. Denote

co := 2||Xoext(XgsX0s) X, (9:3)
where the operator norm (9.2) is used. The constagn$ positive, se&kukush and Van
Huffel (2004, Section 7.1)

Now, we show that

inf q(Z)=v?, for certain fixedy > 0. (9.4)
ZeOz, ||Z|| Zco

Indeed, suppose that for a certain sequdcé), [ >1} C Oz, with||Z(1)|| > co, we have
lim;— 00 ¢(Z(1))=0.Then (9.1) implie& (I)+ XoextZ” (1) — 0,andZs(l)+XosZ” (1) — O,
asl — oo. Using assumption (vi), we have

llim (Z"(1) + (X§Xos) " 1XsZs()) =0

—00

and
Jim (z() - Xoext(XgsXo09) 1 XgsZs(1)) = O.
But this does not hold, becaug& (/)|| > co, and

|| X oext(X gsX08) X dsZs(D|] < || Xoext(X gsXo0s) X gel| - 11 Zs(D]| = co/2.

We got a contradiction and this proves (9.4).
Now, we rewrite (8.8) in the form

_— Z)— 0(Z
lmin(Ang)(Q( ) — Q(Zo)

/lmin(AgAO)

max(Af A
tnaldo 405 7). 9.5)
}~min(AoA0)

2
/11/2 ATA
>c- <||AV||F+M7)M<Z>

Jm

+ PR
}vmin(AgAO)

Cm(Z) —c¢

Herep,,(Z) satisfies (8.10). Introduce a random variable

Ay = inf (Q(2) — Q(Zo)).

ZeOz, |IZ]| Zco

We show that

P{</,, <0} - 0 asm — oo. (9.6)



A. Kukush et al. / Journal of Statistical Planning and Inference 133 (2005) 315-358 335

Suppose that7,, < 0 holds. Then there exis&* € @7, suchthaf|Z*|| > coandQ(Z*) —
0(Zp) <0. LetAV* := AV|z—_z+. From (9.5), we have

JH3(AT Ao) ’
IAV¥)| +—i) (Z*)
P Jmin(Ad Ao)

ZeOy

__m_ SUce, 1En(2)] N Jmax(Ag Ao)
;vmin(A(-)rAO) ¢ ;“t?nin(AE)rAO)
Due to (x), in probability formtending to infinity,

11/2 (AT Ao)
SO0 sup 1, (2)] < v,
imln(AoAO) ZeOy "

2
sup Iﬁm(Z)I> = A

wherev comes from (9.4), then we obtain, due to (9.4),
Y2 (AT A 2
Amax(Ag Ao)
y— S0 sup (5, (2)] | < Am.
}mln(A Ap) Ze®y
Therefore, we have

2E2 (Ad Ao)
Pl <O}<Py ————— sup [p,,(2)| =V
/me(Ao Ap) zeo,

42 4
+ P M sup 1p,,(2)|<v, and
imln(Ao Ao) ZeOy

21/2 4T 2

12 (Aq Ao) -

v— % sup 1P, (21| <Amy .
}mln(AQ Ao) ZeOy

Using (8.10) forp,, (Z), we have

Jmax(Ad Ao)\ J2(AT A
P{,, <0}<cons f;Lg()) +P v<2—( 0) sup [p,,(Z)|
Zmin(Ag Ao) /Lmln(Ao Ap) zeoy,

Ym  (SUpseo, 1En(Z2)DY?
JH2 (AT Ag) Ve

m|n

ad a0\ !
< const ir:aX( 0 A0) + \/%T .
/lmin(Ang) ;»min(Ao Ao)

And for p,,, defined in (7.1),
P{+Z,, <0} <consty,,)?. (9.7)

By conditions (ix) and (x), this implies (9.6). Then, in probability fotending to infinity,
inf Q(Z2)= inf 0(2),

ZeOyz ZeOz, ||Z||<co
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and the last lower bound is attained, beca@s$€) is continuous on the compact §ét
Oy : ||Z]| <co}. Thus the solution of (5.9) exists with probability tending to one. Moreover,
P{Z = 0o or || Z|| > co} < P{/m < O} < cOnsty,)?. (9.8)
HereZ is a solution of (5.9), and = oo if in (5.9), @ minimum is not attained.
9.2. Proof of Theorem 3
The results of Section 9.1 imply that there exists a solution of problem (5.9) with proba-
bility tending to one, asntends to infinity. Now, introduce the event
B =121 <col,
with ¢g defined in (9.3). We mention that due to (9.8)
P{%B) <P{AL, <0 and P{%,} — 0 asm — occ. (9.9)

Assume that,, holds. From (8.8) and the definition @f we haveQ(Z) — Q(Zo) <0,
and forAV .= Z — Zy,

12 4T
- 0) - A
IAV[[E<const M0 sup |p,,(2)] - ||AV ||
Imin(A§ Ao) zeo,

+cons¢ sup 1&,(2)|.
/min(Ag Ao) zeo,

This implies that

. 22 (Af Ao) N Ym . vz
17| [e<const | 224049 gup 7y, VM ((qup z) .
/min(Ag Ao) zeo, Jnfin (A Ao) \zeo,

min

Therefore, see (8.9) and (8.10),
5 — Jmax(A§ A0)\ ’
PUIAT [Ig > 6 <P(Zy) + const—- (( max(Ag °)> +< Vm ))

6% \\ 22,,(A] Ao) Jmin(Ag Ao)
<consty,,)? (1+1/6%) for §>0. (9.10)
In the last inequality, we used (9.9) and (9.8). Now, (9.10) implies that
AV —P> 0 asm — oc.

From (8.1), we get
7'+ XOZ”—P> 0 asm — oo.

To complete the proof of the convergenffei Xo, asm — oo, we have to show that in
probability formtending to infinity,

rank(Zz"y=d and (Z")"1=0p(). (9.11)
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Indeed once we show this, then raik) = d, impliesZ € {Xext(Xd Xs)™%2: X € Ox},
and

X ==2/(Z")"" = (XoZ" + op(W)(Z") ™ = Xo + 0p(1)

and Theorem 3 is proved. Thus we have to prove (9.11).
Consider function (9.1) on the set

O1:={Z € Oz :||Z]|<co}.

_XO
Iy
const. Hereafter, we writé(Z") ||z = oo if Z” is singular.

The set®; is compact ang (2) is continuous, then

If 4(2)=0, thenZ:[ } 2", Zs=—XosZ", (2") L =—2] Xos and||(Z") " ||p <c1=

1 112 2
it AVIE=E>0.
21 <2 Lig< oo
We have
P(2c1<I(Z") " Yg< oo, and,, happens<P{||AV[Z>3), (9.12)

and this tends to zero. Therefore (9.11) is shown and the converﬁegcao, asm — oo,
is proved.
Now, we show the second statement of Theorem 3. Bounds (9.12) and (9.10) imply that

P{2c1<[|(Z") " Y|g < oo, and 4, happens< consty,, ). (9.13)
Because of

X — Xo=AV(Z"H1,
we have

P{l|1X — Xol|g > 0})=P{Z" is singular or||AV (Z") Y| | > 5}
<P{p <0} + P{2c1<|[(Z") g <00, and#,, happens
+ P{I|VIlg > 6/(2c1)

and hence with (9.10), (9.13), and (9.7),
P{||X — Xol|g > 6} <cons(l + 1/6%)(u,,)% . (9.14)

then

I1X — Xolle 2, 1
P:T>5 <const( (w,,) +ﬁ

and the second statement of Theorem 3 follow&.l
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If the error-free columns iA andB are absent, the proof of Theorem 3 is simpler. In that

case® = Osis compact, an®, = Oz, C O, Oz is compact as well. As a result of this,
part in Section 9.1 is not needed any more for the proof of Theorem 3.

9.3. Proof of Theorem 4
From (9.14) and conditions (xi), (xii), we have for sugh, that/lmin(Ang) >0,m>mg,
o0
> P{IX — Xol|g > 6} < oc.
m=mgo
By the Borel-Cantelli lemma, this implies that

[IX — Xollg — 0, asm — oo, a.s.

10. Algorithm

Based on Theorem 1 and the cost funct@ngiven in (3.5), we describe a numerical
scheme to compute the STLS estimator. We have to minimize the fun@ion @y.
Suppose thaXg is an interior point 0f® . Then by Theorem 3 with probability tending to
one, X is a root of the equation@(X)/dX = 0.

We have forH € R"*¢,

(X T HT T
1 1(.) B .al 1 r.l L /dr 3 r
ZQ0/(X)H = : I : — = : r —H | T
2 : ~ 2| - dx
rm (X) H' ay 'm Fm
Now,
XTc~Z1—l;1
r=e : [a X —b{ ---alX—b]]
XTay — by
and
HTfll
ar . ~T o ~T rT
o H=E| & |@alx=b - ayX—by
H'a
m ~
XTflj_—b]_
+E : [a, H---a) H].

XTa,, — by,



A. Kukush et al. / Journal of Statistical Planning and Inference 133 (2005) 315-358 339

Then

! "X)H
EQ()

m m
—t | S TMyHTa;— > My HEdjla) Ell[ﬂMkm
—4d

ij=1 i jl=1
m m x
=1r Z ajrl-TM,','HT— Z V; |: i|Mk]r1}’TM,‘,‘HT s
! —1Iy i :
ij=1 ijki=1

whereV;, := E[d;a] a;b] . Denote also

m m
Nyj i= Z Mygr Z M= (F_lrrTF_l)kj-
=1 i=1
Then forX = X,

1dO(X c ooy X
5 Qd; ) (X, %) = Y aja X =bDHM(X) = Y Vi [—ﬁd} Nij (X0
i,j=1 Jk=1

We have to solve the equatidi X, X)=0. The proposed iterative algorithmis as follows:

(1) Compute an approximatiaxi©, using, e.qg., the TLS estimator.
(2) Given an approximatio ©, we find X D from the linear equatiot? (X, X®) = 0.

On each step, we have to check whetki€? is in the se® . If for certaink, X ® is not
in the set@y, then we change it t& ©’ which is the point in@y, nearest tox .

In Markovsky et al. (2004Wwe implemented the proposed algorithm and compared it
with the algorithms based on the structured total least norm apprbaaimgerling, 1999
Mastronardi, 200L The comparison shows that in term of computational efficiency our
proposal is competitive with the fast algorithmawdistronardi (2001 We mention that the
procedure proposed here is similar to the one for the EW-TLS problem, proposed initially
in (Premoli and Rastello, 2002; Kukush and Van Huffel, 208dd developed later on in
Markovsky et al. (2002a)n Kukush et al. (2002it is proven that the proposed algorithm
for the EW-TLS problem is a contraction. For the STLS problem, this has not been shown
yet.

11. Examples
11.1. Scalar model with Hankel structure

Letn =d =1, nf =0, ng = 1. The model isix ~ b, wherea € R™*1, x € R, and
b e R™<L,
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We observe the da@ = ao; + @, b; = boi + b;, with agixo = bo;, i = 1, ..., m, and
want to estimatag € R. Impose the Hankel structure

Pl p2

p2 P3
labl=| . )

Pm  Pm+1

Here the number of structural parametera js=m -+ 1 and is greater thamd = m, so
that we have enough parameters in the structure, compare with the demaned from
assumption (ii).
We suppose thdtp;, i=1,2,...,m+1}areindependent, with zero mean andyay=
02 >0, ands? does not depend dnThe true values op; arepg;, fori =1,2, ..., np.
We state a version of Theorem 4 for this scalar case.

Theorem 5. Let the following conditions hold

(a) The true valueg € (—oo, —1 —¢]U[1+ ¢, o0) := O, ande > 0 is known
(b) sup-4E pf < oc.
(¢) po1 #0.
Then the STLS estimatérconstructed for the parameter s@t, converges tag a.s, as
m grows to infinityi.e.,

X — X0, as m — 00, a.s.

We explain why condition (vii) holds now. We havgx) = pjx — pi+1,i =1,...,m,
and
x24+1 —x 0
r=e2.| e ™,
P . . —X
0 —x x%241
Then

fe@) =—xot+ x%+1) —xw, forwe C\{0}
For|w| =1, we have,

fr(w) = (x — cosp)? + sirfp  whereo := argw.
In our case assumption (vii) takes the form

(x — cosp)? +sin’ ¢
x2+1

T(x, ) = >A>0 forall|x|>1+¢, ¢ €][0,2x].

But this holds because

T(x,p) — 1 asx — oo,
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uniformly in ¢ € [0, 2x], andY (x, ¢) > 0 on each set  ¢<|x| <L, ¢ € [0, 2x]. We
have,T(x, ) =0ifand only if¢o =0 or 2t andx = 1, oro = w andx = —1, but®, is
separated frort1, see condition (a) of Theorem 5.

Now we explain why assumption (xi) and (xii) hold, foe= 2. Indeed, in our model

po.i+1=po,ixo fori>=1, sothat po;= Po,1X6_1 fori>1

Then agao = Z;’l:l(po’i)z grows exponentially for|xp| > 1, and both zmm(agao)
= )vmax(agao) grow exponentially. Therefore conditions (xi) and (xii) hold wjth= 2.

Defining ©, in (a), we excluded the intervdk| < 1. Indeed, in the casgg| <1,
agao < (po,l)z/(l - xg), and condition (ix) does not hold, becads@n(agao)w — 0,
asm — oo.

11.2. A model with two variables and Hankel structure

Letn =2,d =1,n;f =0,ns=1. The model is

a1 ai by
. X1 |
X2
aml Aam2 bm
We observe

ajj = ao,ij + a;j, b[zbo,i-f-gi, fori=1...,m, j=12,
with

ao,i1xo,1 + ao,i2x02 =bo;, fori=1,....m
o]

01| o m2xt

X0,2 |

Impose the Hankel structure

and we want to estimate) :=

pP1 P2 pP3
p2 P3 pa

[A b]=
Pm  Pm+1 DPm+2-
and suppose thdp;, i =1, 2, ..., m + 2} are independent with zero mean and(ygy =
0'% >0, anda% does not depend drand is unknown.
In this case,
Fi(x) = pix1+ piv1x2 — pive foralli=1, ..., m,

and

fe(@)=— 02+ (x1x2 — x2)0 L+ (Ix]12 + 1) + (x1x2 — x2)0 — &
forall w € C\{0}.
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For|w| = 1, we have withp := arg o,

fr(@) =11x]1? + 1+ 2(x1x2 — x2) COS @ — 2COS 2.

Theorem 6. Let the following conditions hold

(a) The true valuer := [im} € 0, c R where®, is a known closed set.
0,2

() it [|x]1% + 14 2(x1x2 — x2) COS @ — 2 COS 2p
>

5 0.
x€0,, ¢el0,2n] x|+ 1

(c) There exists > 2, such thatsup - ; E| 5;|% < cc.

(d) )~max(A(—)rAO)
Jm

€  JZin(Ad A0

Jmax(Ag Ao)

Then the STLS estimatéiconverges in probability to the true valug of the parameter
as m grows to infinityi.e.,

— 00, as m — o0.

— 00, as m — 0.

~ P
X — X9, asm — oQ.

We mention that condition (b) can be written in a more explicit form, because the numer-
ator is a quadratic function of cag.

11.3. A model with A structured and B unstructured

As another particular case, we consider model (1.2) and in assumption (i), we demand
thatA =[As Asl, Af =0, andAs is independent oB. In assumption (i), we suppose that
S : R"» — R™*"s, is such thatAs = S(p) for somep € R"», andV; is positive definite;
moreover, forB, we suppose thdth;, i = 1,2,...,m} are independent, arigh;b;" :=
V;; does not depend dnandV; is positive definite.

Then the total number of structural parametersdg B] equals:, + md >md, and the
requirement from assumption (i) holds.

Now, we specify condition (vii). We have fdr;_;, defined in (4.1),

SJ

0 0 0 0
w_j:E[@g}[oaT BT1=|0 Edsdj 0 |eRurdxomed,

bi 0 0  Ebib]
Thus forV;;_; := Eagag;, we have
0 O 0 0O 0 O
Vo= |:0 V,;’O O:|, Vi = |:0 V,;’k 0:| forall k € Z, k;ﬁO.
o 0 v 0 0 0

Remember that due to condition (iW, = 0, for |k| > ns.
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DenoteXex=[X{ XA —1I41".Then

ns+1 ns+1
T k T k
Xext E Viad" | Xext= Xp E Varo" | Xa + VE'
k=—ns+1 k=—ns+1

Now Xs=[X, —I,1", and condition (4.3) takes the form

ns+1

XY Varo® | Xav+ 0T Vv oI Xavl? + [ull?) (11.1)
k=—ns+1

for eachX € Oy, v € R¥*! andw e T; here/o> 0 is fixed. One of the following two
conditions is sufficient for (11.1):

(A) There exists constantia> 0, such that|Xal|lg < L, for eachX € Oy.
(B) There exists constant/a > 0, such that

ns+1

TyvT 2
vIXA | DD Vaso | Xav=allXavll
k=—ns+1

for eachX € O, v € R andw € T.

Indeed, assume that (A) holds. L&f be the left-hand side of (11.1), arél, be its
right-hand side. We have

Wi > Zmin(Vy) [lv]? and Wi <io [[v][*(1+ L?).

For Zo := /min(V3)/(1+ L?) > 0, inequality (11.1) holds.
Now, suppose that condition (B) holds. We consider two cases for fixed

(@) [IXavl[=y[lvl], and
(b) I XavII<yllvll.

In case (a), we hav®| > 11|| Xav]||?, and forv # 0

1l Xav|? i?
IXav|®+ [Jv]?~ 72 +1

/o> 0.

Thus (11.1) holds withg = 4.
In case (b), we have

Wi = min(Vp) 1lvl1? and W <Jo |lv]I2(? + D).
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Thenforig=/1g := imin(Vt;)/(y2 +1), inequality (11.1) holds. In order to cover both cases
(a) and (b), we can set

T 1 . ,
40 := Min(4g, 4g) = 2 +1 min(Z17%, Amin(V;)) > 0,

and then (11.1) is proved.

Thus Theorems 3 and 4 are applicable, if at least one of conditions (A) or (B) hold.
We mention that in an univariable cage= 1, condition (B) is equivalent to the following
condition:

ns+1
inf — \x/ Vi o* | Xa | >0.
ol fial? (4| 2"
weT =—ns+

Also, under condition (A), the moment assumption (viii) can be relaxed. namely, itis enough
to demand that (5.11) holds for certain fixed real 2, y > dns. The reason is that under
condition (A), the se{ Xa : X € Oy} is already compact, and the regularized problem
(5.9) is not needed. The proof of Theorem 3 now goes in the same line as in Sections 8
and 9, and Appendix A but in terms ¥frather therZ. The modified moment condition is
used, e.g., to bound the correspondingX) andU>(X). To bound/11(Xa) (compare with
Section 3)we neegd> dns, wheredns is the dimension ofXa € RI*7s 1 Xalle<L}.

12. Applications

The STLS problem formulation, given in Section 2, covers a wide number of applications.
In particular, discrete-time linear dynamical models can be described by a structured sys-
tem of linear equations and subsequently the identification problem rephrased as an STLS
problem. We show three examples of linear discrete-time system identification problems
that reduce to the STLS problem described in the paper.

12.1. FIR system impulse response estimation
Consider the finite impulse response (FIR) system
F(t) = hQi(t) + -+ h(g)i(t — g + 1).

Hereh is the systenimpulse responsé is theexact inputandy is theexact outputNoisy
measurements andy are obtained from the true input/output signalsndy, i.e.,

u=i+u and y=3y+7y

whereu andy are zero-mean random signals with i.i.d. samples. The problem we are
interested in is: given the measuremeqisy), estimate the system impulse respohse
The impulse response lengihis assumed known.
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Over a finite horizon 01, ..., 7y — 1, the response of the system can be written as a
matrix—vector multiplication:

u(0) u(=1) - u(=g+1 h(0) y(0)
12('1) 12('0) . ﬁ(—q‘ +2) h(.l) _ y('l) (121
a(tf'— 1) a(rf'— 2) - i(0) E(q.—l) y(tf'— 1)
(The negative time samplas—1), ..., iu(—q + 1) are the system initial conditions, which

are also assumed measured with additive noise.) System (12.1) is satisfied for the exact
input/output signals and the exact impulse response. If we replace the exact signals with
the measured ones, (12.1) defines an STLS problem for the estimation of the unknown
impulse response. The problem is with a Toeplitz structéradatrix and unstructured

matrix. The STLS estimaté provides a consistent estimator of the FIR system impulse
responsé:.

12.2. ARMA model identification

Consider the ARMA system
q q
D e +va@ =) alt + b (12.2)
=0 =0

As beforey is theexact outputindz is theexact inputWe measure the input and the output
with additive noises

y=y+y u=u+tu

and assume that the noise samplés andi(t) are zero mean i.i.d. The problem is to
estimate the parameters

a:=lalq) alg—1 --- a(®], and b:=[b(g) bg—1) --- b(0)]

from a given set of input/output measuremefte), y(;)}ﬁg)l. We assume that the order
g of the model is known.

This identification problem is naturally expressed as an STLS problem; moreover the
resulting problem satisfies our assumptions. From (12.2), we have

q q-1
D ia+ b+ Y =5t +ak) =5t + g)a(q).
=0 =0

The parameters can be normalized by settitig) = 1. Then for a time horizon =
0,1,....ty — 1, the system equations are written as a structured linear system of
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equations:
a0) a(l) - alg) | yO) ¥ - ¥g—1)
a(l) — u(2) a(g+1) | y(1)  ¥2) ¥(q)
ia(m) a(m+1) - alm+gq)|ym) ym+1) -+ Fm+q—1)
b(0) (12.3)
¥(q)
blg) | _ ¥(1+q)
—a(0)
y(m+q)
| —alg—1)]

wherem =ty — 1 — q. The number of estimated parameters is 2¢ 4+ 1. We assume that

the time horizon is large enough to ensure-n. System (12.3) is satisfied for the exact

input and the exact output. The unique solution is given by the true values of the parameters.
If we replace the exact input/output data with the measured one, in general system (12.3)

is no longer compatible. The STLS approach can be applied to simultaneously correct

the measurements ammbnsistentlyestimate the parameters. The resulting problem has

structured[A B] matrix, where the structure is given by two Hankel blocks. If the input

is measured without additive noise, then the structure is given by a Hankel block and a

noise-free block.

12.3. Hankel low-rank approximation

Let # : R™"~1  R™*" m > n, be a function that constructs anx n Hankel matrix
out of its parameters (the elements in the first column and the last row). The problem we
consider is: given a full rank Hankel matrif (p), find a singular Hankel matri¥ (p),
such that|p — ﬁ||§ is minimal. ThusH (p) is the best (in the above-specified sense) low
rank approximation off (p). This abstractly defined problem is related to the linear system
realization and the model reduction problems in system thd<aitgth, 198).

The Hankel low-rank approximation problem can be rephrased as an STLS problem.
Indeed the problem is equivalent to

min[|p - pli3 st Hp)| | =0, (12.4)
X,p 1

because the constraint ensures that the nonzero wgcted) is in the null space off (p).
Clearly, (12.4) is an STLS problem with Hankel structufddB] matrix. Note that here
the structure parameter estimgtéand notr) is of interest.
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The solutionp of problem (12.4) guarantees thdt p) is singular. If the rank ofd (p)
has to be lowered by more than one (this is of interest for the model reduction problem),
then a problem with multiple right-hand sides should be considered. YithR"*?, the
solution of

min [|p - pll st H(p)[_,]:o,
X.p

ensures that rari (p)) <n — d. (By assumption (vi)X is of full rank.)

Inthe realization and the model reduction problems, the Hankel n¥dti» is composed
of measurements of the Markov parameters of the system. For single-input/single-output
systems they are scalars, but in the multivariable case they become matrices with dimension
(number of outputs) (number of inputs). This motivates an extension of the results of the
paper for block Toeplitz/Hankel structured problems. Such a generalization is described in
the next section.

13. A model with block-Hankel/Toeplitz structure

Consider model (1.2). We fix a natural numlger 2, the size of the blocks (assumed
square), and suppose that= ¢/, wherel € N. Denote

AT =:[A1---A;] and BT =:[B;--- B/,

whereA; € R"™4 andB; € R¥*?, i =1, ...,1.We use the same notation for the blocks of

A, Ao, B, By, As, andBs.
Next, we introduce the new assumptions. We still assume that conditions (i)—(iii) hold.

(iv)’ The sequence[A] BJ1", i = 1,2,...,1} is stationary in a wide sense and
s-dependent.

A centered sequend®;, i =1, 2, ...} ofrandom matrices is called stationary in a wide
sense if the sequenéeed D;), i =1, 2, ...} is stationary in a wide sense, see Section 2.

We still assume that conditions (v) and (vi) hold. Now, we state an analogue of assumption
(vii). Consider the matrix{’, see (3.4). It consists of the blocks

Fij = EvedXguCi) vec (XguC;) € RIT* fori, j=1,...,1.

HereCT =: [Cy--- (], whereC; € R"*+9*4 and according to assumption (iv} C; :
i=12,...,1}formawide sense stationary ardependent sequence. Therefbre=F;_;
is a function of the difference— j, andF;; = 0 for suchi, j that|i — j| >ns+ ds. ThenI’
has the block-banded structure (4.2) d@ng = FkT, fork=0,1,...,s.
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The functionfx, defined in (4.4), is related tb. A new condition is stated in terms of
fx (w), however.

(vii)’ There existslg > 0, such that for eacli € Oy, v € R¥“*! andw e T,

stl 2
v fx(@w=lof| :
stq
wherev =: [vi'— e v;]T, withv; € R =1, ..., q.

Under conditions (vi) and (vii) I" is non-singular, an&(I") C J,c70(fx(®)) C
(0, 00).
We state the consistency results similar to Theorems 3 and 4.

Theorem 7. Assume that conditior{g—(iii), (iv) ", (v), (vi), (vii)’, and(viii))—(x) hold. Then
the STLS estimataX converges in probability to the true valué&y, as! := m/q goes to
infinity, i.e.,

X —P> Xo, asl— oo.
Moreover
1Xm — Xollg =t - Op(D).  for m=Iq. I €N,
wherep,, is defined in(7.1).
Theorem 8. In the assumptions of Theorehreplace(ix) and(x) with (xi) and(xii). Then

X - Xo, asl=m/q — oo, a.s.

Theorems 7 and 8 are applicable for the block-Hankel/Toeplitz strucfure®l. e.qg.,

P P
P, P3

[A B]= .|, whereP; e R7*
P Py

and there is no additional structure insife

14. Conclusions

Consistency results for the STLS estimator were presented. An affine structure was con-
sidered, with the additional assumptions that the errors in the measurements are stationary
in a wide sense arngldependent for certaine N. The assumptions are mild; for example,
they allow Toeplitz/Hankel structured, unstructured, and error-free blocks together in the
augmented data matrix.
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An optimization problem equivalent to the one defining the STLS estimator was derived
by analytic minimization over the nuisance parameters, defining the structure. The resulting
problem mirxcp, Q(X) has as decision variables only the estimated parameters. The cost
function Q was used in the analysis. It has the struct@€X) = r'I'"1r, wherer is
an affine function ofX and the elements af are quadratic functions of. Under the
s-dependence assumption, the matiis block banded. In addition, the blocks bf*
have exponential decay, away from the main diagonal. This property was used to bound the
quantityQ (X)— Q(Xo), whereXg is the true value of the estimated parameter. Based on the
bound, weak and strong consistency of the STLS estimator were proven. The significance
of the assumptions were illustrated with examples.

Based on the analysis of the cost functi@an iterative algorithm for the computation of
the STLS estimator was proposed. The performance of the proposed algorithmis comparable
with this of the currently best known STLS solvers. It is an open problem to show that the
presented algorithm is a contraction.
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Appendix A. Bounds for the summands inQ(Z) — EQ(Z)

We start withU, and use representation (6.10). kgt= [rg;---rg, 1", Wherery; are
defined in (8.2). Then

m
Uy = Z a(;AV(P,'ij — }”OTF_:I‘D}7 =: Uz1 — Ups.
i, j=0

A.1. Bound foiUz1

We consider an elementary summand/ef. ForZ" =[XT — I;]=[z1---zn4a], We
have

m n nf+s+1
T

V1= Z Z ao’ilev.il D;j Z ijéjjz

ij=1 \j=t Je=nt+1

and
m

U21= Z 24j,M0j1p Z a0.ij1[Pij1pg9jjp- (A1)

1<p.g<d, 1<j1<n i,j:l

nf+1< jop <nf+s+1

We consider a random field which is generic for an elementary summand of (A.1),

m m
Upy=Up(Zs) =Y 8jj, Y a0ij,[Dijlpg forall Zs e Oz (A.2)
j=1 i=1

(Dueto (5.2)I" depends o through its componer#s, therefored;; depends o through
Zs as well.) We apply Lemma 1 from Appendix B to boufid,,(Zs)|.

Rememberthdb;;,, j=1,2,...}isans-dependentsequence sothatwe canuse Lemma
2 (b). Fory from condition (viii), we have

m m 2\7
2«,-
E|U,,|% <cons Z( ao,i.,-l[qz-j]pq)
1

j=1 \i=

m m 2 "/'

<cons Z ( lao,ij, | - ||¢ij|||:) :
j=1 \i=1

By (6.1),11®;;llr <ciexp(—cz - [i — j|). Then

m m

2y , . . .
ElU51/% <constt Y >~ lao.iyjs |- lao.iyjy |€Xp(—c2 - li1 — j|) explez - liz — j])
Jj=1liy,i=1
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We bound the sum in the brackets.

m m
Y > lail-acy | €xp—ca- i1 — j) explcz - liz—j)
Jj=1liq,ix=1
o o0
Y ) expcalkahexp—cza-lkal) Y laokytial - a0kl
k1=—00kp=—00 1<j<m
Ik < j <m—kq
Iko < j <mkp
m
2 T
< constz ag,;j, <CoNstimax(Ag Ao).
i=1
Then
E|US4 | < consth.(Ad Ao). (A.3)

Now, we bound the moments of the incrementigf. There exists amp > 0 such that
(compare with (5.7) and (5.8))

. . , 40

inf inf i > — . A.4

Jnt Zetibos, Amin(f7zerprs (@) | = > >0 (A.4)
[1Zs—Ys|lF <¢g

Ap=1, ,pu=0

Here we used that the functiofy, defined in (5.8), depends ahthrough the component
Zs. LetZs, Ys € Oz, and||Zs — Ys||g < eo. For an increments ob;;, we have

[ Dij]pg(Zs)

N1Zs—Yslle. (A5
IR 1Zs = Yslle.  (A.5)

[Pijlpg(Zs) — [Pijlpg(Ys)| < Sup
Zs=)Zs+uYs
Iu=1, Au=0

This supremum has an exponential decay asj| grows. Indeed, from representation (6.3)
we have

a[éij]pq(zs) _ i %

dw
625 - 27_“ A [f ( )]pq l J+1 (A6)

lo|=14¢/2 aZs
And due to (A.4)

<const forall |w|=1+¢/2

o

ZS S {;\,Zs—f— ,UYs : ;»-{- H= 1, /1, ,u}O, Zs, Ys S @Zs}'
Therefore similarly to bound (6.1), we obtain from (A.6), that

‘ A ®ij1,(Zs)

<cp exp(—cz- i — jl), wherecy, c2>0.
0Zs
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We showed the exponential decay of the supremum in (A.5). From (A.5), we have
[[Dijlpg(Zs) — [®ijlpq(Ys)| <const exp—cz - i — jI) - [|Zs — Ysl|g. (A7)
Using (A.2) and (A.7), we obtain by Lemma 2(b), see Appendix B,

E|Uj(Zs) — Upy(Ys)|?

m m 2 7
<cons(2 (Z lao,ij, | 11Pij1pg (Zs) — [@ij]pq(YsN) )

j=1 \i=1

m m 2 U
~ . . 2
<cons<2 (Z la,ij, | eXp(—C2 - |i —J|)) ) 11Zs = Yl
j=1

i=1
Similarly to (A.3), this implies folZs, Ys € Oz, || Zs — Ys||g < ¢ that
’ / 2y T y 2y
E|U5(Zs) — Uy (Ye) | <constimax(Ag A0)) - |1 Zs — Yol (A.8)

But @, is compact, therefore (A.8) holds for arbitraty, Ys € O ..

Now, we apply Lemma 1, see Appendix B, to the stochastic tigldZs) on © 7, defined
in (5.4), (5.5), withp := d(ns + ds — (d + 1)/2), though formally®,, € RsTds)xd |t
is possible to extend Lemma 1 8@z, C Os, see (5.6), using spherical coordinates and
to apply Lemma 1 directly for these coordinates. Hétes + ds — (d + 1)/2) equals the
dimension of@s as a manifold, se&kukush and Van Huffel, 2004, Section §.2

We mention that in (A.5) and (A.3), the exponent2d(ns + ds — (d + 1)/2), due to
assumption (viii). Therefore from Lemma 1, we have

SUp |Uby(Zs)| = Inad Ag Ao) - P}, (A.9)
ZSE@ZS
where
P{p,, > a}<consta~? forall a > 0. (A.10)

Now, from (A.9), (A.10), and (A.1), and taking into account that in (Al1);,| <1, we
have

SUp |Uby(Zs)| = 2HZ(AL Ao) - 1AV IIg - o), (A.11)
Zse@zs

wherep! satisfies (A.10).
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A.2. Bounds folJ2o and Uz
We have, see (6.8), that

— m ~

Zj:lﬁljrj

m -
Zj:lﬁs—i—l,jrj

0

DF = . _ (A.12)
0
Z;'nzlﬁmfs,jf/
L ZT:lﬁmjf] -

For Uz, we can consider an elementary summand, corresponding to the upper part of the
right-hand side of (A.12),

m

m
Upy(Z) := Z ro: Mij, Z B;,7i. forall 1< ji<s + 1.
i=1 j=1
We bound these two sums separately.

2
@) |Xiyr Mij, | "< iy llag AVIIZ - 30y |1Mi;,|[2. But

m
Z 1M, 12 <d2 . (I'™h <const
i=1
therefore
2
<ConstiZ(Ag Ao) - AV (A.13)

m

.
ZrOiMijl

i=1
(b) Next, consider the field

m
U(Z9) = 3 _ B

i=1
We have fory, from condition (viii),

Y

m
2 2
El|UZl1% <const > 118,17 | <const
j=1

due to (6.9). Similarly foiZs, Ys € Oz,
N 27
El|US5(Zs) — Uga(Ys)| |7 <const| Zs — Ys| I
Then, like in (A.9),

sup [1Uz(Z9)ll = pys (A.14)
ZSE@ZS



354 A. Kukush et al. / Journal of Statistical Planning and Inference 133 (2005) 315—-358

wherep!” satisfies (A.10). Now from (A.13) and (A.14), we have fore @2, (we

m

write it already forUs», rather than fol/;,)

U22(Z)| < i (AG A0) - 1AV [[E - By (A.15)
wherep,, satisfies (5.1). Summarizing (A.11) and (A.15), we have

U2(2)| < Apa(Ag Ao) - 1AV [[E - py. (A.16)

wherep,, satisfies (5.1).
Now, we pass to

Ur=7'&F —Ef ' &F —F ' T 'DF + EF ' I 'DF =: U1y — U12+ Usa.
N— —— S e’
U1 U12 Uiz

A.3. Bound forU11

As @,‘j =H;_j,we have

m—1
Un(Zs= Y > Gl jHG — ER] HF)).
k=—m+1 1<js<m
1-k<j<m—k

For a random variablé, denote

11E]1, == (EIENHY7,
wherey comes from condition (viii). Denote also

aVvb:=maxa,b) and a Ab:=min(a,b).

Then

m—1 mA(m—k)

~T ~ ~T ~
[1U1ll, < E E Ty jHePj — B jHir
k=—m+1 || j=1v(1-k)

)
/

In the inner sum the variables as@lependent. Then by Lemma 2(a), we have

m—1 mA(m—k)
~T - T -2
NUull,< > const ma Y EGLHii; — EFl, HiF))
k=—m+1 j=1v(1—k)
mA(m—k) 1/y
~T ~ ~T ~ 7
X Z E|rk+ijrj _Erk+ijVj|'
j=1v(—k)

From (6.1), we have for certairy > 0,

o8]

1Unll, < ) const/m exp(—cs - [k]) < const/m

k=—o00
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and
E|U11|” < constm?/2.
Using (A.7), we have similarly, that for alfs, Ys € @ £,
E|U11(Zs) — U11(Ys)|7’<00nstm3’/2 || Zs — Ys||;’;. (A.17)

Due to our assumptions> d(ns + ds — (d + 1)/2), andd (ns + ds — (d + 1)/2) is the
dimension of@s as a manifoldPs D> O ..
From (A.17), by Lemma 1, we have that,

sup |U11(Zs) — Ur1(Zos)| =v/m&,,,
ZSGQZS

whereZosis Zs-component oZ = Zg, and

P{¢ >a}<consta™’ foralla>0.
A.4. Bound foU12

Due to the structure db, it is enough to consider an elementary summantof

m m
Upi= Y FiMij, » Bj;i; forall 1< ji<s + 1. (A.18)
i=1 j=1

(The corresponding summands far— s < j1 <m can be treated similarly.) The second
factor in (A.18) is denoted above ¥),(Zs), and it permits the bound (A.14). Let

m
Ui/Z(ZS) = Z ;iMi./l’ for all ZS € @ZS C @5.
i=1

Fory from condition (viii), we have due to (6.1) and Lemma 2(b) from Appendix B,

m
EllU12(Z9)[|% <const)  exp(—&2li — ja|) <const
i=1

and for allZs, Ys € @z
ny 27
El|U{(Zs) — Utp(Ys)|[?) < const| Zs — Ye||F .
Therefore

sup ||Ui/2(Zs)|| = /:)m’

ZSE@ZS
wherep,, satisfies (A.10). Then

SUp |Usx(Z9I< sup [|Uix(Z9Il sup |1US(ZS)| = Py =: &

ZSGQZS ZSGQZS ZSGQZS
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and

P(&), > a} <P{(p,, >/a} + P{p}, >v/a} <const/a)~>
=consta™’ for a>0.

A.5. Bounds fot/13 and U;

It is enough to consider an elementary summand frji<s + 1

m m
Ui3(ZS) :ZEZFI'TMijl Zﬁjljfj‘
i=1 j=1

But {7;} ares-dependent. Therefore,
~T ~
U13= Z Eri Mijlﬁjljrj’

1<i, j<m
li—jl<s+1

Recall that|§ ;, :||g <const exp—cz2 - j), 1< j1<s + 1, we have

J1j

o
|Usl<const Y exp(—c2l;j|) = const

j=—00

Thus|U13| < const. Summarizing, we have,

sup |U1(Zs) — U1(Zo9)| =v/m&,,, (A.19)
ZSE@ZS
where
P{¢,, >a}<const.a™7, fora=>O0.

Appendix B. Results on stochastic fields and moment inequalities
We recall the following result on stochastic fieldisragimov and Hasminskii, 1981

Lemma 1. LetT(p) be a separabl@measurable stochasticjield defined on the compact
setK C R”. Suppose that for an§, § (for whichff € K, f+ f € K)

EITB+B)— TR <LIBI
for somey >y’ > p positive constant L. Then for amy> 0,

P{L™Y" sup |T(By) — T(B)|>a}<koa ™,
B1. BrekK

wherekg depends on, /, p, and K but does not depend on L and a

We give also the following version of the Rosenthal inequaRggenthal, 1970
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Lemma 2. Let{v,, k>1} be a sequence of g-dependent random vectoRirEv; = 0,
forall k>1.Then

(a)for eachy, y>2, and for allm > 1, the following inequality holds

Y 2 m

m m
2 y
E E Vk|| Scimax E Ellvell , E Ellvell” ¢,
k=1 k=1 k=1

(b) for each realy, y> 2, for everym >1,and{as, ..., an} C R, the following inequality
holds
/2

m 1/, m
E Z apVr|| <c2 Z a,f sup  Eljull”,
k=1 k=1

1<k<m

wherec; andcz depend ory, p, and q but do not depend on m and the choicof . ., a,,.
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