
Thermal-Aware SoC Test Scheduling
with Test Set Partitioning and Interleaving

Zhiyuan He, Zebo Peng, Petru Eles
Embedded Systems Laboratory (ESLAB)

Linköping University
SE-581 83 Linköping, Sweden

{zhihe, zebpe, petel}@ida.liu.se

Paul Rosinger, Bashir M. Al-Hashimi
School of Electronics and Computer Science

University of Southampton
United Kingdom SO17 1BJ

{pmr, bmah}@ecs.soton.ac.uk

Abstract1
High temperature has become a major problem for system-on-chip testing. In order to reduce the test

time while keeping the temperature of the chip under test within a safe range, a thermal-aware test
scheduling technique is required. This paper presents an approach to minimize the test time and, at the
same time, prevent the temperature of cores under test going over the given upper limit. We employ test set
partitioning to divide test sets into shorter test sequences, and add cooling spans between test sequences,
so that overheating can be avoided. Moreover, test sequences from different test sets are interleaved, in
order to utilize the cooling spans and the test bus bandwidth for test data transportation, hence the total
test time is reduced. The test scheduling problem is formulated as a combinatorial optimization problem,
and we use constraint logic programming (CLP) to solve it in order to obtain the optimal solution. As the
CLP approach needs relatively long time for execution, we have also developed a heuristic to generate the
near-optimal test schedule with much shorter computation time. Experimental results have shown the
efficiency of both the CLP and heuristic approach.

1 This work has been partially supported by the Swedish Foundation for Strategic Research (SSF) under the Strategic
Integrated Electronic Systems Research (STRINGENT) program, and partially supported by the EPSRC, U.K., under grant
GR/S95770 and GR/S05557

1. Introduction and related work

Integrated circuits have become more and more complex in order to meet the increasing application
requirements, consequently raising the production cost. Recently, a core based system-on-chip (SoC)
design methodology has been proposed to reduce the design complexity by integrating pre-designed and
pre-verified intellectual property (IP) cores. Although the design cost of such core-based systems has been
reduced, the cost of testing increases instead, since a larger quantity of test data is required and therefore a
longer test time is expected [1]. In order to reduce the test time, a lot of research efforts have been devoted
to increasing the test concurrency by developing advanced test architectures and test scheduling algorithms
[2, 3, 4, 5, 6, 7, 8, 9]. It is known that the power consumption of a chip during test is much higher than in
normal operation mode, because of the increased switching activities in the circuits [10, 11]. As a result,
thermal-safe testing has become more and more important.

The thermal problem becomes more severe since deep submicron technology is used. The power density
of the chip dramatically increases since more transistors are integrated into the same area. A direct
consequence of the increasing power density is the higher junction temperature that poses several problems
[12, 13, 14, 15]. High junction temperature decreases the carrier mobility of electrons and therefore
reduces the driving current of CMOS transistors, which consequently degrades the circuit performance.
The reliability and lifespan of the circuits are also decreased at high temperatures.

In this paper, we aim to minimize the test time by generating efficient test schedules, while taking into
account the thermal issue in order to avoid overheating the chip. In the case that the core temperature goes
beyond an upper limit before the test completion, a test set will be partitioned into shorter test sequences
and a cooling span is introduced between two consecutive test sequences. Because of the test set
partitioning and the cooling phase, the test time is substantially increased. Thus we allow the interleaving

of test sequences that belong to different test sets, so that test time can be reduced. Based on the test set
partitioning and interleaving, we propose a test scheduling technique to minimize the test time.

Several optimization techniques have been proposed to solve the constrained SoC test scheduling
problem. The optimization objectives can be the test time, memory size, area size, energy/power
consumption, number of pins, or the number of wires in the test access mechanism (TAM), etc. The
constraint(s) can be one or multiple factors such as the memory size constraint in a problem of minimizing
the test power consumption. Usually such constrained optimization problems can be formulated as an
existing optimization problem, such as the bin packing problem or rectangular packing problem [16, 17].
Our previous work [9] solved a test time minimization problem with a power constraint, which was
formulated as a non-classical two-dimensional rectangular packing problem.

Recently, thermal-aware test scheduling has attracted a lot of research interests, since this issue has
become more and more critical for testing high-performance systems. In [26], Liu et al. propose a
technique to evenly distribute the generated heat across the chip during tests, so that high temperature can
be avoided. In [27] Rosinger et al. propose algorithms based on clique partitioning to generate thermal-safe
test schedules with minimized test time. They take into account the adjacency of cores and utilize this
information to drive the test scheduling and reduce the temperature stress between cores. In this paper, we
utilize test set partitioning and interleaving to generate thermal-safe test schedules, and provide an
approach to find the test schedule with the minimum test time.

The rest of this paper is organized as follows. The next section presents the assumed test architecture. In
Section 3, the temperature simulation for system-on-chip cores is introduced. In Section 4 the test set
partitioning and interleaving approach is demonstrated, and a motivational example is given to illustrate
the thermal-aware test scheduling problem. Section 5 gives the problem formulation. In Section 6, the
constraint logic programming model used in our work is described, and a heuristic is proposed in Section 7.
Experimental results are shown in Section 8 and the paper is concluded in Section 9.

2. Basic test architecture

We have assumed a test architecture using a test bus to transport test data between the cores under test
and an embedded tester or an external automated test equipment (ATE). Each core on the chip is connected
to the test bus through a number of dedicated TAM wires. The tester has a local memory that stores a
generated test schedule and all the test patterns for all cores. During the test, the test controller sends the
test patterns to the test bus, at particular time moments, according to the test schedule. The cores under test
then get the test patterns transported through the test bus and the test patterns for each activated core are
applied. Test responses are also transported through the test bus from the core to the tester for analysis.

Figure 1 gives an example of the assumed test architecture for a system with five cores. In this example,
an embedded tester consisting of a test controller and a tester memory is integrated on the chip. Test
patterns are stored in an on-chip memory and are applied through a test bus, such as a dedicated TAM or
the advanced microcontroller bus architecture (AMBA) [18]. Note that the embedded tester in the example
can be replaced by an ATE.

SoC

Embedded
Tester

Test
Controller

Tester
Memory

Core 2

Core 5Core 4Core 3

Core 1

Test Bus

Figure 1. Basic test architecture

3. SoC temperature simulation
In order to obtain the temperature of a core during tests, we have employed an architectural-level

temperature simulator, Hotspot [19,20], to simulate the thermal behavior of the chip under test. HotSpot
uses a compact thermal model [21] for an assumed circuit packaging configuration which consists of the
following layers from top to bottom, the heat sink, the heat spreader, thermal interface material, the silicon
bulk, interconnect layers, I/O pads, the ceramic substrate, and joint balls. There are three major heat flow
paths in the chip package [20,21]. In the vertical direction to upper layers, heat is generated on the silicon
bulk and transferred through the thermal interface material, heat spreader, and heat sink to the ambient. In
the vertical direction to lower layers, heat is conducted from the silicon bulk through the interconnect
layers, I/O pads, ceramic substrate and joint balls to the printed-circuit board. In the lateral direction, heat
is conducted between blocks at the same layer.

Temperature simulation in HotSpot is based on the duality between thermal and electrical quantities [15]
and the proposed compact thermal model. It divides large blocks into smaller units at different layers and
builds a network of thermal resistances and capacitances for all units. Taking the chip floorplan and the
average power consumption of each functional block unit as inputs, HotSpot calculates the instantaneous
temperature for each unit by deducing the RC network into lumped RC values and solving the first-order
differential formula with the 4-th order Runge-Kutta method.

We utilized HotSpot to simulate instantaneous temperatures for the cores being tested. As mentioned
above, the heat can be transferred vertically and/or laterally. Although both of the two heat flow paths
conduct heat from the active core to its adjacent unit, they play different roles. The vertical heat transfer
mainly takes away the heat to the ambient, while the lateral heat path conducts the heat from one core to
another. Consequently, there are two different scenarios on the temperature distribution across the chip.
When the vertical heat transfer dominates, the temperature of a core has very little impact on its adjacent
cores. On the other hand, if the lateral heat transfer is not neglectable, the temperature of a core can have an
impact on its adjacent cores. Whether this is the case depends on the package construction, materials at
different layers, and also the physical dimension of the units.

We assume in this paper that the same packaging configuration as modeled in HotSpot is used for the
SoC designs, and the contact area size of a core in the vertical direction is much larger than that in the
lateral direction. Thus the vertical heat transfer dominates the whole heat exchanges in the system and the
temperature influence between cores is neglectable. This is a typical situation which is the characteristic in
the most widely used circuits. In Figure 2, the temperature profiles of two adjacent cores under test are
depicted from the temperature simulation results. Figure 2(a) illustrates the case that Core 1 is tested while
Core 2 is not. It can be observed that the temperature of Core 2 remains nearly constant even when the
temperature of Core 1 increases rapidly while it is tested. Figure 2(b) shows the situation that both Core 1
and Core 2 are tested. By comparing with the temperature curve of Core 1 in Figures 2(a) and 2(b), we can
see that the temperature of Core 2 does not significantly influence the temperature of Core 1, even when
Core 2 is tested in parallel.

Core 1

Core 2

Temperature

Time
Test Completion Time of Core 1

Core 1

Core 2

Temperature

Time

Test Completion Time of Core 1

Test Completion Time of Core 2
 (a). The case that only Core 1 is tested (b). The case that both cores are tested

Figure 2. Temperature profiles of two adjacent cores under test

4. Test set partitioning and interleaving
As mentioned in the introduction, the temperature of a core being tested increases as the test time elapse

until it reaches a steady state temperature. The steady state temperature is usually much higher than an
upper allowed limit, beyond which the core may be damaged. Therefore, when the temperature of the core
reaches the upper allowed limit, the test has to be stopped for a period in order to let the core be cooled
down. When the required cooling has been achieved, the test is restarted. Thus the entire test set is
partitioned into several test sequences so that the temperature upper limit is not violated. The example in
Figure 3 illustrates a situation in which a test set TSi is partitioned into four test sequences, namely TSi1,
TSi2, TSi3, and TSi4 , which successfully avoids violating the upper temperature limit.

Temperature

Time

Upper Temperature Limit Test Completion

TSi1 TSi2 TSi3 TSi4Cooling Cooling Cooling

Figure 3. An example of test set partitioning

It is useful to generate test partitions of equal length and to keep the cooling spans of identical length as
well. This significantly reduces the complexity of the test controller. In Figure 3, test sequences TSi2 and
TSi3 have equal length and all cooling spans between two consecutive test sequences are identical. Note
that the first test sequence, TSi1, is longer than the normal length, since the core starts with the initial
temperature which is much lower than the operation temperature during the test. And the last test sequence,
TSi4 in this example, is usually shorter, since the entire test set has been nearly completed.

It is obvious that after partitioning a test set into several test sequences, the test bus bandwidth is not
efficiently utilized, since the bandwidth of the test bus allocated to this test is not utilized during the
cooling spans. A direct consequence of this is the increased test time. In order to avoid low utilization of
the test bus and long test times, we use the bus bandwidth allocated to core Ci , during its cooling spans, to
transport test data for another core Cj (j ≠ i)and test core Cj . Thus typically several tests are interleaved and
the total test time will be much shortened, without necessarily increasing the total amount of consumed bus
bandwidth. Figure 4 gives an example where two partitioned tests are interleaved.

Core 1

Core 2

Temperature

Time

TMmax
Test Completion

Cooling
TSij

Figure 4. An example of test set interleaving

Partitioning a test set into several test sequences can introduce time overheads for the partitioned tests
due to the switching of different tests that are interleaved [22]. Therefore, increasing the number of
partitions can lead to longer test time. On the other hand, less number of test partitions does not necessarily
reduce the test time, especially when the interference between the different test are considered. Therefore,
elaborately selecting the number of partitions for every test is very important to solve the problem of
minimizing the total test time. When the number of partitions for each test has been decided, the rest of the
problem is how to schedule all the test sequences such that the test time is minimized under the limitation
of the total available bus bandwidth. Note that our test scheduling problem is similar to a rectangular
packing problem, while the partitioning and interleaving of test sets and the introducing of cooling spans
between partitioned test sequences makes our problem even more complex.

Figure 5 gives a motivational example that explains the significance of our optimization problem. In
Figure 5(a), a feasible test schedule is generated for three test sets, TS1, TS2, and TS3. The three test sets are
partitioned into 5, 3, and 2 test sequences, respectively. In Figure 5(b), all the three test sets are
repartitioned, with the number of partitions 4, 4, and 3, respectively. A new test schedule is then generated
and the test time is reduced. This example shows the possibility to find a better solution among alternative
partitioning schemes and test schedules. Note that by selecting different number of partitions, the cooling
spans between test sequences are also changed. For example, the cooling spans between the partitioned test
sequences of the test set TS1 in Figure 5(a) is longer than that in Figure 5(b), since the test sequences in
Figure 5(a) have longer length.

Bandwidth

0 Time

Bandwidth Upper Limit

TS32TS31

Test Completion

TS11 TS12 TS13 TS14 TS15

TS22TS21 TS23

(a) A feasible test schedule

Bandwidth

0 Time

Bandwidth Upper Limit

TS23TS21 TS22 TS24

TS11 TS12 TS13 TS14

Test Completion

TS31 TS32 TS33

(b) An alternative test schedule with a shorter test time

Figure 5. A motivational example that illustrates our optimization problem

5. Problem formulation

Suppose that a system S, consisting of n cores C1, C2, ... , Cn, has the test architecture illustrated in
Figure 1. Each core in the system is connected to the test bus with a constant number of TAM wires Wi.
The total test bus bandwidth is B (∀Wi ≤ B). The system has the maximum tolerable temperature TMmax
which should not be violated for any cores at any time. Each core Ci (i = 1, 2, ... , n) is assigned a test set
TSi which consists of li (li > 0) test patterns. Moreover, a test set can be partitioned into a number of test

sequences. Suppose that test set TSi is partitioned into mi (1 ≤ mi ≤ li) test sequences. With TSij
(j = 1, 2, ... , mi) we denote the j-th test sequence of test set TSi. Note that when mi = 1, the test set has only
one partition and the term “test sequence” is referred to the entire test set in this case, if not mentioned
otherwise.

In order to reduce the required memory for storing the start time and length of each partition, and also to
reduce the complexity of the test controller, we assume that the test partitions in the same test set have
identical time durations except the first one2 and the last one. For the same reason, the cooling span
between two consecutive test sequences from the same test set should be of identical length as well.

Each partitioning scheme has three parameters, the number of partitions mi, the time duration of the first
test sequence li1, and the cooling span di between two consecutive test sequences. Each test starts at time ti
which is equal to the start time of the first partition in the same test set.

ti = ti1
The number of partitions and the test start time is decided during the optimization. The start time tij and

finishing time eij of the test sequence TSij can be calculated as follows. Note that oi is the time overhead.
tij = ti,j-1 + li,j-1 + di + oi (2 ≤ j ≤ mi , 1 ≤ i ≤ n) ,

eij = tij + lij (1 ≤ j ≤ mi , 1 ≤ i ≤ n)
The last test sequence in each test set is special since its finishing time is the end of the whole test set.

Thus the finishing time ei of the test set TSi is

imii ee ,=

and the total test application time TTT for testing all cores is the maximum of all single test finishing times.
()

imini
eTTT ,1

max
≤≤

=

The total test application time TTT is the cost function of our optimization problem, and our objective is
to find the optimal solution {(mi

* , ti
*) | i = 1, 2, ... , n} such that the total test application time is minimized,

subject to the following two constraints:
1. the total amount of test bus bandwidth used by the concurrent test sequences at any time moment is

less than the total allowable bandwidth, that is

BWxp

k k ≤∑ =1
where px is the number of concurrent test sequences at any time moment x.

2. the temperature of each core TMi,x at any time moment x should be less than the temperature upper
limit TMmax , i.e.

TMi,x ≤ TMmax
We assume that a test TSi is started when the core has the ambient temperature TMamb , and the test set

has to be partitioned into a number of test sequences if the entire test is so long that the temperature of the
core goes over the TMmax before completion. The length of each partition and the total number of test
sequences also depends on the cooling span di between two consecutive test sequences. This is because a
longer cooling span leads to a lower temperature for the succeeding test sequence to start at, and therefore
the succeeding test sequence can be longer which leads to a smaller number of test sequences. It is
important to find a possible interval of the number of partitions for each test set, since our optimization
algorithm explores alternative partitioning schemes between the minimum and maximum values in the
interval: Ii = [Ii,min , Ii,max] (i = 1, 2, ... , n)

We used the temperature simulation to find the interval Ii of the number of partitions for each test set TSi.
It is obvious that a relatively long time is needed in order to cool down a core to the ambient temperature,
as the temperature decreases slowly at a lower temperature level (see the dashed curve in Figure 6). Thus
we let a core to be cooled down until the slope of the cooling curve reaches (-1), and then we start the next
test sequence. We define the number of partitions obtained by using this approach as the minimum value of
the exploration interval Ii, denoted with Ii,min, which is applicable for our problem. In Figure 6, the example
illustrates a test set TSi partitioned into four test sequences (TSi1 to TSi4), which gives the minimum number
of partitions. Through experiments, we have found that the actual number of partitions for a test set in the

2 We assume the first test partition starts from the ambient temperature and is not terminated until the core temperature
reaches the allowed upper limit.

optimal solution is close the minimum value Ii,min. Thus we consider the upper limit of the interval Ii as
Ii,max = K + Ii,min, where K is a constant fixed by the designer. Thereafter, the exploration interval Ii = [Ii,min ,
Ii,max] (i = 1, 2, ... , n) for core Ci is taken as an input to the optimization algorithm.

Temperature

Time

TMmax

TMamb

Test Completion

TSi1 TSi2 TSi3 TSi4Cooling Cooling Cooling

Figure 6. An example of test set partitioning

6. Constraint logic programming model

We have used constraint logic programming (CLP) to model the test set partitioning and scheduling
problem and find the optimal solution.

CLP provides supports to define relationships or constraints among entities and let programmers focus
on formulating the problems in their application domains [23]. CLP usually uses logic programming
language to describe the constraints and finds feasible solutions for the specified problems. Some CLP
tools also provide solvers to find the optimal solution using branch and bound or exhaustive search. We use
CHIP [24] in our work.

In our work, there are two sets of decision variables, one is the number of partitions mi for core Ci and
the other is the start time ti of the test for the core Ci. For a particular number of partitions, a test
partitioning scheme is generated for the corresponding core. The two decision variables are instantiated
during the optimization, and test schedules that satisfy the constraints are explored. In the end, the solver
finds the optimal solution which provides the minimal total test application time.

We formulate the constraints for our problem as:
• Test sequences belonging to the same test set have to be applied in a particular order, i.e. the start

time of a test sequence is equal to the finish time of the previous test sequence belonging to the
same test set plus the cooling span.

ti,j+1 = eij + di + oi
• The finishing time of a test sequence is equal to its start time plus the duration of the test sequence.

eij = tij + lij
• The finishing time of a test is equal to its start time plus all the test sequence duration and the all the

cooling span between any two consecutive test sequences.

()1
1

−×++= ∑ = ii
m

j iii mdlte i

• The total amount of bandwidth consumed by all the test sequences applied in parallel should be less

than the test bus bandwidth limit.
BWk ≤∑

7. A heuristic approach
By using the exact approach with CLP, we can obtain the optimal solution for our test set partitioning

and scheduling problem. However, the computation times are relatively long, especially for large designs
(see experimental results). Therefore, we proposed a heuristic to generate test schedules which are of
slightly longer test application times but need much less computation times. The heuristic chooses the
partitioning scheme which has the minimum number of partitions for each design and schedule every test
set to the earliest possible time. Based on the selected partitioning scheme, the heuristic fixes the order of
all the test sets to be considered for scheduling by giving higher priorities to the test sets with larger sizes.
The size of a test set is defined as the product of the time duration of the entire test set and the dissipated
test bus bandwidth. Each test set is then scheduled to the earliest possible time moment, and all the
partitioned test sequences belonging to the same test set remains their regular length and keeps identical
cooling period between its predecessor and successor. The pseudo-code of the heuristic is depicted in
Figure 7.

Figure 7. Pseudo-code of the proposed heuristic

8. Experimental results

We have used the ISCAS’89 benchmarks as cores for the SoC designs to our experiments. Table 1
shows the experimental results for five different SoC designs. The number of cores composing each
generated SoC is listed in the first column of Table 1. For each SoC design, test patterns are generated for
all cores in the design, and the switching activities are calculated for each test pattern. We used the
approach in [25] to obtain the power consumption values, taking the switching activities of test patterns as
inputs. HotSpot is used to find the total number of partitioning schemes for each SoC design, which are
listed in the second column of Table 1. The imposed temperature limit is 90°C.

We used the developed CLP formulation to generate the optimal test schedule by selecting the number
of partitions and the start time for each test. The third column of Table 1 is the problem size of each design,
which is the number of partitioning schemes multiplied by the number of cores. The total test time of the
optimal solution for each design is shown in the fourth column and the optimization time is listed in the
fifth column.

When the test schedule for a design has been generated, we run the HotSpot temperature simulator for
the generated test schedules to check if the temperatures of the cores were went over the upper limit. The
simulation results confirm that the temperatures of cores are below the upper limit.

Table 1. Experimental results for 5 different designs using the CLP approach

Number of Cores
Total Number of

Partitioning Schemes
Problem Size

Total Test Times
(# of clock cycles)

CPU Times
(ms)

4 7 28 2775 2141
12 8 96 8306 35359
24 20 480 9789 47500
36 20 720 10017 120219
48 20 960 10941 881766

for (each test set TSi) do
 choose the partitioning scheme with the minimum number of partitions;
 calculate the size of the entire test set based on the selected partitioning scheme, where
 size(TSi) = length(TSi) * bandwidth(TSi);
end for
Sort TS = [TSi | i = 1, 2, ... , n] decreasingly by size(TSi);
for (each test set TSi in TS) do
 Schedule TSi to the earliest possible time moment;
end for

We also did experiments to see how the optimization result is impacted by the given total number of
partitioning schemes. In Table 2, four different number of partitioning schemes have been given to the
optimization algorithm for the same design consisting of 6 cores. The optimal solution is the same in the
three cases where the total number of partitioning schemes is 7, 10, and 15, respectively. In the case that
the number of partitioning schemes is only 5, the total test time of the obtained solution is larger than those
in the other three cases. This experiment shows that, for this design, the best solution does not correspond
to the partitioning scheme found among the five alternative partitioning schemes, as indicated in the first
line in Table 2. If we introduce 2 additional alternative partitioning schemes (see line 2 in Table 2), a better
solution is found. However, more additional alternatives, up to 15, do not lead to better solutions.

Table 2. Experimental results for one design with different number of partitioning schemes

Number of Cores
Total Number of

Partitioning Schemes
Problem Size

Total Test Times
(# of clock cycles)

CPU Times
(ms)

5 30 9574 10156
7 42 9570 26031

10 60 9570 31875
6

15 90 9570 39797

We also ran the proposed heuristic to generate test schedules for the same SoC designs used in the

experiments with the CLP approach. The experimental results are listed in Table 3. Comparing the results
in Table 3 and Table 1, we can see that the test schedules generated by the heuristic is in average 14%
longer than those by the exact approach, however the execution times are much shorter.

Table 3. Experimental results for 5 different designs using the proposed heuristic

Number of Cores
Total Number of

Partitioning Schemes
Problem Size

Total Test Times
(# of clock cycles)

CPU Times
(ms)

4 7 28 3384 1
12 8 96 9682 15
24 20 480 10657 15
36 20 720 11524 31
48 20 960 11694 47

9. Conclusions
In this paper, we have presented an exact approach to minimize the total test time for core-based

systems which have a temperature upper limit and a bus bandwidth limit. Based on the proposed test set
partitioning and interleaving technique, we have used constraint logic programming to solve the
optimization problem and obtained the optimal solution. Nevertheless, the optimization times for large
designs are long. Therefore, a heuristic approach have been proposed to generate near-optimal solutions
with much less computation time.

References
[1] B. T. Murray, and J. P. Hayes. “Testing ICs: Getting to the core of the problem”. IEEE Transactions on

Computer, Vol. 29, pp. 32-39, Nov. 1996.
[2] Y. Zorian, E. J. Marinissen, and S. Dey. “Testing Embedded Core-Based System Chips”. IEEE International Test

Conference (ITC), 1998, pp. 130-143.
[3] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman, Y. Zaidan, and S. M. Reddy. “Resource

Allocation and Test Scheduling for Concurrent Test of Core-based SOC Design”. IEEE Asian Test Symposium
(ATS), 2001, pp. 265-270.

[4] E. Larsson, and Z. Peng. “An Integrated Framework for the Design and Optimization of SOC Test Solutions”.
Journal of Electronic Testing; Theory and Applications (JETTA), Vol. 18, No. 4/5, pp. 385-400, 2002.

[5] J. Aerts, and E. J. Marinissen, “Scan Chain Design for Test Time Reduction in Core-Based ICs”, International
Test Conference (ITC), 1998, pp. 448-457.

[6] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test Access Mechanism Optimization, Test Scheduling, and
Test Data Volume Reduction for System-on-Chip”, IEEE Transactions on Computer, Vol. 52, No. 12, Dec. 2003.

[7] P. Varma, and B. Bhatia, “A Structured Test Re-use Methodology for Core-based System Chips”, International
Test Conference (ITC), 1998, pp. 294-302.

[8] R. Chou, K. Saluja, and V. Agrawal. “Scheduling tests for VLSI systems under power constraints”. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 5(2):175-184, June 1997.

[9] Z. He, Z. Peng, and P. Eles. “Power Constrained and Defect-Probability Driven SoC Test Scheduling with Test
Set Partitioning”. Design Automation and Test in Europe Conference (DATE), 2006, pp. 291-296.

[10] B. Pouya and A. Crouch. “Optimization trade-offs for vector volume and test power”. International Test
Conference (ITC), 2000, pp. 873-881.

[11] C. Shi and R. Kapur. “How power aware test improves reliability and yield”. EETimes, Sep. 15 2004.
http://www.eetimes.com/news/design/features/showArticle.jhtml?articleId=47208594&kc=4235.

[12] S. Borkar. “Design challenges of technology scaling”. IEEE Micro, Vol. 19, Issue 4, pp. 23-29, 1999.
[13] S. Gunther, F. Binns, D. M. Carmen, and J. C. Hall. “Managing the impact of increasing microprocessor power

consumption”. Intel Technology Journal. 2001.
[14] R. Mahajan. “Thermal management of CPUs: A perspective on trends, needs and opportunities”. Keynote

presentation at the 8th Int’l Workshop on THERMal INvestigations of ICs and Systems. 2002.
[15] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D. Tarjan. “Temperature-aware

microarchitecture: Modeling and implementation”. ACM Transactions on Architecture and Code Optimization
(TACO). Vol. 1, Issue 1. pp. 94-125, Mar. 2004.

[16] B. S. Baker, E. G. Coffman Jr., and R. L. Rivest. “Orthogonal Packings in Two Dimensions”. SIAM J. of
Computing, Vol. 9, Issue 4, pp. 846-855, 1980.

[17] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher. “Exhaustive Approaches to 2D Rectangular Perfect
Packings”, Elsevier Information Processing Letters, Vol. 90, Issue 1, pp. 7-14, 2004.

[18] D. Flynn. “AMBA: Enabling Reusable On-Chip Designs”. IEEE Micro, Vol.17, No.4, 1997,pp. 20-27.
[19] W. Huang, S. Ghosh, K. Sankaranarayanan, K. Skadron, and M. R. Stan. “HotSpot: Thermal Modeling for

CMOS VLSI Systems.” IEEE Transactions on Component Packaging and Manufacturing Technology. 2005. (to
appear).

[20] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan. “Temperature-Aware
Microarchitecture.” Int’l Symposium on Computer Architecture, 2003, pp. 2-13.

[21] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, and S. Velusamy. “Compact thermal
modeling for temperature-aware design”. Design Automation Conference (DAC), 2004. pp. 878-883.

[22] S. K. Goel, and E. J. Marinissen. “Control-aware test architecture design for modular SOC testing”. European
Test Workshop (ETW), 2003. pp. 57-62.

[23] J. Jaffar, and J.-L. Lassez. “Constraint Logic Programming”. 14th ACM Symposium on Principles of
Programming Languages (POPL), 1987, pp. 111-119.

[24] P.Van Hentenryck, “The CLP language CHIP: constraint solving and applications”. Compcon Spring '91. Digest
of Papers, 1991, pp. 382 -387.

[25] S. Samii, E. Larsson, K. Chakrabarty, and Z. Peng. “Cycle-Accurate Test Power Modeling and its Application to
SoC Test Scheduling”. IEEE International Test Conference (ITC), Oct. 2006. (to appear).

[26] C. Liu, K. Veeraraghavant, and V. Iyengar. “Thermal-aware test scheduling and hot spot temperature
minimization for core-based systems”. IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT), 2005, pp. 552-560.

[27] P. M. Rosinger, and B. M. Al-Hashimi. “Thermal-Safe Test Scheduling for Core-Based System-on-Chip
Integrated Circuits”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
(Accepted for future publication).

	1. Introduction and related work
	2. Basic test architecture
	3. SoC temperature simulation
	4. Test set partitioning and interleaving
	5. Problem formulation
	6. Constraint logic programming model
	7. A heuristic approach
	8. Experimental results
	9. Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

