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Ellipsoid estimation is an issue of primary importance in many practical areas such as
control, system identification, visual/audio tracking, experimental design, data mining,
robust statistics and novelty/outlier detection. This paper presents a new method of
kernel information matrix ellipsoid estimation (KIMEE) that finds an ellipsoid in a kernel
defined feature space based on a centered information matrix. Although the method is
very general and can be applied to many of the aforementioned problems, the main focus
in this paper is the problem of novelty or outlier detection associated with fault detection.
A simple iterative algorithm based on Titterington’s minimum volume ellipsoid method
is proposed for practical implementation. The KIMEE method demonstrates very good
performance on a set of real-life and simulated datasets compared with support vector
machine methods.
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Chapter 1

Introduction

In practice, there are many applications such as control, system identification, visu-
al/audio tracking, experimental design, data mining, robust statistics and novelty/out-
lier detection that can be solved by computing the minimum volume covering ellipsoid
(MVCE) [32, 36, 34, 10] from training data {xi}`

i=1. The MVCE must contain the
entire training dataset. The problem becomes extremely difficult in multi-dimensional
(possibly, infinite dimensional) space and in the presence of outliers [30, 24].

The MVCE problem is significant and has been extensively studied for over 50 years [32].
It can be considered as a special case of the more general maximum determinant problem
[32, 36] and is related to D-optimum experimental design when the ellipsoid is centered
at the origin [34, 36] (see [16] for an application of D-optimum experimental design
to regression and model selection problems). There are a number of problems, such as
novelty detection, in which it is possible to fit the minimum volume covering hypersphere
(MVCS) around the data [27, 26, 28, 30]. Obviously, a hypersphere is a particular type
of hyperellipsoid and therefore the volume contained by the hypersphere is usually larger
than that estimated by the MVCE algorithm. Therefore, more outliers could be accepted
by the MVCS algorithm than by the MVCE. In order to address this problem one can
perform pre-whitening of the data points {xi}`

i=1. Howerever, in the presence of outliers
it is difficult to find such a linear transformation that will map the data with ellipsoidal
support in the original space or in the kernel defined feature space to spherical-like
support. The main reason for this observation is that, in practice, any method that
finds this linear mapping, such as principal component analysis (PCA)[1, 7], is sensitive
to outliers. The MVCE problem involves many interesting and sound theoretical results
and optimization algorithms [32, 36, 34].

Our approach is mainly motivated by the theory of optimal experimental design, mini-
mum volume ellipsoid estimation, ellipsoidal trimming, outlier detection [35, 34, 19, 20,
23, 15, 2] and treatments of the novelty detection or so-called one-class classification
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Chapter 1 Introduction 2

problem [9, 3, 27, 26, 28, 4, 38, 21, 33]. The proposed KIMEE method finds an ellip-
soid in the kernel defined feature space based on the centered information matrix. In
this paper we do not try to find the most robust method for dealing with outliers, for
example using the so-called soft margin approach and slack variables [28, 4, 32, 30, 10]
or methods based on robust statistics [6, 7, 8, 24, 23, 25, 18]. A choice of robust method
should be based on the problem we are trying to solve. The main objective of this paper
is to show how the minimum volume covering ellipsoid can be found in the kernel-defined
feature space [28, 4, 30]. We have chosen the outlier or novelty detection [3] context in
order to demonstrate our method but it can be adapted to optimal experimental design
for kernel ridge regression [19, 30], for example.

The paper is organized as follows. The MVCE model is described in Section 2. The
main theoretical results of this work are given in Section 3. The iterative algorithm
based on Titterington’s minimum volume ellipsoid method is proposed in Section 4. The
performance of the one-class support vector machine (SVM), the linear programming
novelty detection algorithm (LPND) and the KIMEE method for the novelty/outlier
detection problem is analyzed in Section 5 followed by conclusions and acknowledgements
in Section 6.



Chapter 2

The Minimum Volume Ellipsoid

Assume that we have a training dataset containing ` samples, {xi ∈ Rk×1}`
i=1. In order

to solve the MVCE problem we need to obtain a (k × k) positive definite matrix M ∈
Rk×k and the center of the ellipsoid c so as to minimize detM subject to [35, 34, 32, 36]

(xi − c)′M−1(xi − c) ≤ k. (2.1)

The dual optimization problem of the MVCE calculation (see (2.1)) has its roots in
D-optimum experimental design and is that of maximizing log detM with respect to
α, where M =

∑`
i=1 αi(xi − c)(xi − c)′ and c =

∑`
i=1 αi xi; α = {α1, α2, ..., α`} are

nonnegative numbers summing to 1. The matrix M might be called the “corrected”
information matrix for the probability measure α (see [35, 34, 32, 36] for details). The
MVCE for the dataset {xi}`

i=1 must go through at least k +1 and at most 1
2k(k +3)+1

support points, that is, points xi such that the corresponding αi is greater than zero
[35, 34, 19]. There could be more than 1

2k(k + 3) + 1 points, for example, if all the data
were on the surface of an ellipsoid. However 1

2k(k + 3) + 1 is the largest number that
are necessary.

The MVCE model with slack variables allows a fraction ν of data be outside the ellipsoid
[10, 32]. In this case we obtain the following dual optimization problem (for a primal
problem see the so-called MVCEP optimization method in [32], page 701) to be satisfied
by the Lagrangian multipliers α [10]:

min ε(α) = Ψ(M) (2.2)

s.t.
∑̀

i=1

αi = 1, 0 ≤ αi ≤ 1
ν`

,

where Ψ(·) = − log det(·), M =
{∑`

i=1 αixix′i − cc′
}

and c =
∑`

i=1 αixi. The op-
timization criterion − log detM is strictly convex on the set of possible nonnegative
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Chapter 2 The Minimum Volume Ellipsoid 4

definite matrices M and therefore the optimization problem has a unique optimal so-
lution for M and c but not necessarily for α. After obtaining values α (see (2.2)) in
order to check if the test point xt belongs to the estimated support we should employ
the following rule (xt − c)′M−1(xt − c) > R2, where R2 is the threshold; for example,
R2 = k.

Note that, if the function Ψ(·) is the trace of he centered information matrix M, Ψ(M) =
−trace(M), then the optimization problem (2.2) is a standard quadratic optimization
problem that finds the MVCS in an original [14, 13, 35] or a kernel-defined feature space
[28, 33]:

min −trace(M) =
∑̀

i,j=1

αiαjx′ixj −
∑̀

i=1

αix′ixi (2.3)

s.t.
∑̀

i=1

αi = 1, 0 ≤ αi ≤ 1
ν`

.

In the following section and section 4 we propose a method of kernelising the optimization
problem (2.2) and a decision rule (of whether or not a test point is an outlier) that are
different from the method used to find the MVCS [28, 33].



Chapter 3

Working in high-dimensional

feature spaces

One way of applying the ellipsoid algorithm in high-dimensional feature spaces is first to
project the data into a low-dimensional subspace and then to apply the primal algorithm
to the projected data. Perhaps the most natural way to do this is to use PCA. The kernel
PCA algorithm makes it possible to perform such a projection in a kernel defined feature
space by noting that the eigenvectors of the kernel matrix form a dual representation of
the eigenvectors of the outer product matrix when suitably rescaled [11]:

ui =
1√
λi

X′vi,

where vi is the ith eigenvector of the kernel matrix with eigenvalue λi, ui is the ith
eigenvector of the outer product matrix and the rows of X are the feature vectors
φ(x1), . . . , φ(x`). Here, we assume a feature projection φ with corresponding kernel κ:

κ(x, z) = 〈φ(x), φ(z)〉 = φ(x)′φ(z).

Here we consider applying the ellipsoid algorithm directly in the kernel-defined feature
space. As it has been shown in [34] the key computation required in Titterington’s
algorithm is the computation of the Mahalanobis norm

‖x‖2
α = φ(x)′M−1φ(x),

defined by the matrix

M =
∑̀

i=1

αiφ(xi)φ(xi)′ = X′A2X,

5



Chapter 3 Working in high-dimensional feature spaces 6

where A is a diagonal matrix with Aii =
√

αi. This is the outer product matrix for the
training set

Sα = {√αiφ(xi) : i = 1, . . . , `} .

It follows that we can obtain a dual representation of its ith eigenvector ui using kernel
PCA of Sα:

ui =
1
λi

X′Avi,

where vi is the eigenvector corresponding to the eigenvalue λi of the corresponding kernel
matrix

AXX′A = AKA,

with Kij = κ(xi,xj). Note that the vectors ui and vi are now dependent on α. We
have suppressed this dependence to enhance readability, though we leave α as an index
of the norm. Now consider the Mahalanobis norm computed using the matrix M for a
point φ(x):

‖x‖2
α = φ(x)′M−1φ(x) = φ(x)′UΛ−1U′φ(x),

where U is the matrix with the eigenvectors ui as columns and Λ is a diagonal matrix
with Λii = λi. Hence,

‖x‖2
α =

k∑

i=1

λ−1
i

(
u′iφ(x)

)2

=
k∑

i=1

λ−2
i

(
v′iAk

)2
,

where kj = κ(xj ,x), for j = 1, . . . , `, and we assume truncation at some k ≤ `.

This computation forms the basis of the kernel version of the ellipsoid algorithm used
in the experiments described below.

Following the approach adopted in the analysis of [31] we can view ‖x‖2
α as a linear

function in the space defined by the kernel κ̂(x, z) = κ(x, z)2 since

‖x‖α =
k∑

i=1

λ−2uiφ(x)φ(x)′ui

=

〈
k∑

i=1

λ−2uiui, φ(x)φ(x)′
〉

F

=:
〈
w, φ(x)φ(x)′

〉
F

,

where 〈·, ·〉F denotes the Frobenius inner product and

κ̂(x, z) = 〈φ(x)φ(x)′, φ(z)φ(z)′〉F =
(
φ(z)′φ(x)

)2 = κ(x, z)2.



Chapter 3 Working in high-dimensional feature spaces 7

The norm of the weight vector w is given by

‖w‖2 =

〈
k∑

i=1

λ−2
i uiu′i,

k∑

j=1

λ−2
j uju′j

〉

F

=
k∑

i=1

λ−4
i ‖ui‖2 =

k∑

i=1

λ−4
i .

With k as the dimensionality of the space and ` as the number of data points, it is now
easy to show the following identities:

log det
(
X′A2X

)
=

∑

i:λi 6=0

log(λi) + (k −#{λi 6= 0}) log(0) (3.1)

log det (AKA) =
∑

i:λi 6=0

log(λi) + (`−#{λi 6= 0}) log(0) (3.2)

These equations suggest that we need to deal with the problem that a few eigenvalues
λi are equal to zero. Therefore, we need to introduce some form of regularisation or to
reduce the dimensionality of the space under considaration. In the case of the smallest
enclosing sphere this problem does not arise because the MVCS uses a different objective
function, Ψ(M) = −trace(M) (see (2.2) and (2.3)). But in both cases, the MVCE and
the MVCS, the objective function depends on the centered information matrix only.

Note that, if we use trace as the objective function, then we obtain

trace
(
X′A2X

)
=

∑

i:λi 6=0

(λi) + (k −#{λi 6= 0}) (0) =
∑

i:λi 6=0

(λi), (3.3)

trace (AKA) =
∑

i:λi 6=0

(λi) + (`−#{λi 6= 0}) (0) =
∑

i:λi 6=0

(λi), (3.4)

which implies that (3.5)

⇒ trace (AKA) = trace
(
X′A2X

)
= trace

(
KA2

)
=

∑̀

i=1

αik(xi,xi). (3.6)

Essentially, for appropriate choice of the objective function Ψ(M), the kernelisation
method proposed in this paper contains the MVCS method [13, 33] as a special case.
Our method can also be used for the criterion that is used in A-optimal experimental
design, namely trace(M)−1.

Recall that the MVCE for the dataset {xi}`
i=1 must go through at least k + 1 and at

most 1
2k(k + 3) + 1 support points, for which αi > 0 [35, 34, 19]. Therefore, in the case

of the MVCE method the choice of k can be also dictated by the following two extreme
cases: 1) k + 1 ≤ `; and 2)

⌊
1
2k(k + 3) + 1

⌋ ≤ `. We will also discuss the choice of k in
the applications to artificial and real life datasets in Section 5.



Chapter 4

Some implementation details

4.1 Some implementation details

The optimization algorithm for the KIMEE method without upper bound for Lagrangian
multipliers α (ν = 0) can be derived using the Titterington’s simple but effective algo-
rithm for the minimum volume ellipsoid [34]. In this case, in order to update αj and to
find supports points xSV s it is necessary to evaluate the only Mahalanobis norm ‖xj‖2

α

of each training point xj . After a few iterations the algorithm converges. Note that
the Mahalanobis norm ‖xj‖2

α of the training points xj is a gradient of the objective
function log detM (see (2.2)): ∂ log detM

∂αj
= (φ(xt) − φ(c))′M−1(φ(xt) − φ(c)) = ‖xt‖2

α,

where M =
{∑`

i=1 αiφ(xi)φ(x′i)− φ(c)φ(c)′
}

and φ(c) =
∑`

i=1 αiφ(xi). We propose
the following algorithm in which 1` denotes the column vector of ` ones.

If optimization functions require the calculation of the objective function log detM then
log detM =

∑k
i=1 log λi where λi are the eigenvalues of the matrix AK̂A; see Algorithm

1.

After obtaining the values α we can use the following rules to check if the test point xt

belongs to the estimated support

(φ(xt)− φ(c))′M−1(φ(xt)− φ(c)) = ‖xt‖2
α < R2 indicates a target point; (4.1)

(φ(xt)− φ(c))′M−1(φ(xt)− φ(c)) = ‖xt‖2
α = R2 indicates a boundary point;(4.2)

(φ(xt)− φ(c))′M−1(φ(xt)− φ(c)) = ‖xt‖2
α > R2 indicates an outlier. (4.3)

Here R2 is a squared distance, normalized by the matrix M, from the center of the
ellipsoid in feature space to one of the support vectors xbsv that lies on its boundary
[35, 34]:

R2 = (φ(xbsv)− φ(c))′M−1(φ(xbsv)− φ(c)) = ‖xbsv‖2
α. (4.4)

8



Chapter 4 Some implementation details 9

Algorithm 1 Kernel Information Matrix Ellipsoid Estimation (KIMEE) Algorithm
Initialization: Define the kernel matrix K, the number of iterations rmax, the thresh-
old t and α. For example, in the condition monitoring experiment (see Section 5.2)
K was a Gaussian kernel with ρ = 320, rmax = 150, t = 0.0001, and αj = 1/`, for
j = 1, . . . , `).
for r = 1, . . . , rmax do

1. b =
∑`

i

∑`
j Bij , where B = ÂKÂ and Â = diag(α1, ..., α`).

2. Find the ‘centered’ kernel K̂
K̂ = K− 1`α

′K−K′α1′` + b1`1′`.
3. A = diag(

√
α1, ...,

√
α`).

4. Obtain eigenvectors vi ∈ V and eigenvalues λi ∈ λ of the matrix AK̂A:
VDV′ = AK̂A, where V is an `× ` matrix and D = diag(λ).

5. Sort λ in decreasing order and the correspondingly permute the columns of the
matrix V.
if r=1 then

Set k equal to the number of eigenvalues that are greater or equal to t.
end if
6. αold ← α.
for j = 1, . . . , ` do

7. Calculate the Mahalanobis norm ‖xj‖2
α for the training point xj :

‖xj‖2
α =

∑k
i=1 λ−2

i

(
v′iAk̂j

)2
, where k̂j

s = κ̂(xs,xj), for s = 1, . . . , `.
8. Obtain new values for αj using the Titterington’s algorithm [34, 19]: αj =
αold

j ‖xj‖2
α/k.

end for
end for
return α

There are many other choices for R2, for example, there could be the following three
methods: (a) R2 = k [34]; (b) R2 based on χ2(k) [24, 22] or on extreme value statistics
[21]; (c) R2 obtained by cross validation.

If the point of the training dataset is inside the ellipsoid then the corresponding La-
grangian multiplier αj is 0 but for a support point on the boundary (outside the ellipsoid)
we have 0 < αj < 1

ν` (αj = 1
ν`).



Chapter 5

Experiments

In this section the performance of the KIMEE method is analyzed on simulated and
real-life datasets. Two datasets contain outliers in the training sample.

5.0.1 Simulated dataset

In order to illustrate the performance of the proposed KIMEE for novelty/outlier de-
tection we use an artificial dataset that is similar to that previously reported by C.
Campbell and K.P. Bennett for novelty detection based on the linear programming ap-
proach [4]. In our experiment we generate a sample from the Gaussian distribution with
mean (10, 5)′ and covariance matrix M = (0.0163,−0.0062;−0.0062, 0.0163). There are
4 outliers (see Fig.5.1). We use the simple inner product kernel κ(x,y) = x′y with
t = 0.001 (which gives k = 2). We first find the ellipse that encloses all points. Then
we remove from the training sample points on the boundary of that ellipse. We then
find the ellipse that does not include the outliers. This approach of removing outliers is
extensively used in statistics [32, 34].Clearly our method successfully removed the four
outliers. We used this approach to remove outliers from the training dataset for the
condition monitoring example that we describe below.

The novelty detection approach based on slack variables [33, 37, 28, 30] is sensitive to
outliers [32]. In some cases it can be useful to re-train the model as described above
even when using the MVCE with slack variables [32, 10]. Fig.5.2 demonstrates this idea.
Note that, in practice, the novelty detection methods [33] based on a Gaussian kernel,
k(xi,xj) = exp(−‖xi − xj‖2/2ρ2), can be more robust than, for example, a polynomial
kernel, because ‖x‖2 = 1 for the Gaussian kernel. Therefore, the values of slack variables
are implicitly bounded above.

An application of our approach is also demonstrated using data with a nonconvex sup-
port (see Fig.5.3) and a Gaussian kernel, k(xi,xj) = exp(−‖xi−xj‖2/2ρ2). The sparsity

10
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Figure 5.1: In this example 4 outliers are ignored by the KIMEE method after re-
training. Both the larger and smaller ellipses were found by Algorithm 1 using the
simple inner product kernel κ(x,y) = x′y and t = 0.001. Support points on the
boundaries of these two ellipsoids are denoted by triangles and circles, respectively.
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Figure 5.2: In this example the sample of 100 points from a Gaussian distribution
was contaminated by 10 outliers that belong to a Gaussian distribution with a different
mean and covariance matrix. By the tuning parameter ν we can exclude the outliers

but the ellipse is still not centered around the original data.

of the solution (i.e. the number of support points) of the MVCE method depends on the
value of the smoothing parameter ρ. This has a very simply explanation. By increas-
ing the value ρ we decrease the number of eigenvalues that are above t (see (3.1), Fig.
5.3,5.4 (a) and Algorithm 1). In other words, by increasing the value ρ we decrease the
dimensionality k of the space of the data. However as mentioned before the number of
support points depends on the dimensionality of the space: the MVCE for the dataset
{xi}`

i=1 must go through at least k +1 and at most 1
2k(k +3)+1 support points. It can

be seen that by tuning the parameter ρ we can find the more tight data support (see
Fig. 5.3).
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Figure 5.3: Illustration of the banana dataset with ` = 50. In this example we
use Algorithm 1 with the threshold t = 0.001 and a Gaussian kernel, k(xi,xj) =

exp(−‖xi − xj‖2/2ρ2), with (a) ρ = 21, (b) ρ = 7.
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Figure 5.4: Illustration of dimensionality reduction and feature selection using a
Gaussian kernel, k(xi,xj) = exp(−‖xi−xj‖2/2ρ2), for (a) the banana and (b) condition

monitoring datasets.

5.0.2 Condition monitoring

We analyse the comparative performance of one-class SVM using LIBSVM implementa-
tion [5], the proposed KIMEE method (see Algorithm 1) using Titterington’s algorithm
[34] and the LPND algorithm [4] on a real-life dataset from the Structural Integrity
and Damage Assessment Network [39, 4]. The LPND method used on this dataset was
reported in [4]. There are vibration measurements in this dataset that correspond to
“healthy” measurements (without fault) and 4 types of malfunction of machinery (see
Fig.5.5): 1) Fault 1 (the bearing had an outer race completely broken); 2) Fault 2 (bro-
ken cage with one loose element); 3) Fault 3 (broken cage with four loose elements);
4) Fault 4 (a badly worn ball-bearing with no apparent damage). Seven hundred data
samples of time series are shown in Fig.5.5 for each of these five situations together with
an example of extracted features in Fig.5.6
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Figure 5.5: Condition monitoring experiment. In this example measurements, one
channel, are obtained from a healthy machine and when four different faults are present

[4, 39].

In order to compare our KIMEE method with the LPND method and the one-class
SVM method, we performed experiments in the same way as described in [4], using the
same Gaussian kernel, training set, validation set and test set. In the experiments we
use the same kernel matrix K (Gaussian kernel with standard deviation equal to 320)
for LPND, the one-class SVM and the KIMEE method. After training, the KIMEE
algorithm showed really poor performance for Fault 1 (see Fig.5.5,5.6). The method
labels almost 100% of the points from this class as ‘Healthy’ (no fault). It suggests that
the training sample contains outliers (for example, there are large vibrations between
0.2s and 0.3s, see Fig,5.5).

In order to remove these outliers we carried out the same steps as with the artificial
dataset in Section 5.1 (Fig.5.1): 1) we removed the points on the boundary; 2) we re-
trained our novelty detector based on KIMEE using the remaining 793 points, 60 of
the 793 eigenvalues of the kernel matrix are shown in Fig.5.4(b); 3) we scaled a newly
obtained ellipse using a different R2 in order to achieve desirable errors of the first and
second kinds. It can be seen that for approximately the same correct classification of the
‘Healthy’ class (R2 = 140) our method performs better than the soft margin one-class
SVM method, and when R2 = 180 or R2 = 190 our KIMEE method is significantly
better than the LPND method [4]. Note that one-class SVM using a Gaussian kernel is
equivalent to finding the hypersphere around the data points.

In robust statistics and signal processing there are two approaches to remove outliers:
1) apply a robust method that uses the outliers to obtain the estimate of the parameter;
and 2) detect the outliers by another method, exclude them from the training dataset
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Figure 5.6: Illustration of the features used in the condition monitoring experiment
[4, 39].

Table 5.1: The percentage of correctly labelled classes using LPND, one-class SVM
and KIMEE methods

Method Healthy Fault 1 Fault 2 Fault 3 Fault 4

LPND 98.7% 100% 53.3% 28.3% 25.5%
one-class SVM 97.9% 100% 84.3% 57.3% 61.1%
KIMEE, R2 = 190 99.8% 100% 79.2% 50.5% 52.4%
KIMEE, R2 = 180 99.6% 100% 82.9% 54.4% 57.7%
KIMEE, R2 = 140 97.7% 100% 93.9% 72.8% 76.8%
KIMEE, R2 = 64 79% 100% 100% 97.5% 98.8%

and estimate the parameter using this reduced dataset and a non-robust estimator. In
this case soft margin algorithms belong to the first approach but ellipsoid trimming and
hard margin methods belong to the second approach. Both approaches are valid to some
extent.

All three methods (LPND, 1-class SVM and our method) were trained using, cross
validation in such a way that they about 2% of the target data are rejected rate (see
the column ”Healthy”, Table 1) and such that all cases of ”Fault 1” are detected. Thus
all three methods behave equally in this sense while using different approaches to deal
with outliers. We do not use any manual or visual inspection to remove outliers before
applying our method. To deal with outliers in our simulations we use the soft margin
LPND method [4] and the soft margin 1-class SVM algorithm [28].
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Similarly to the minimum volume covering sphere R2 is equal to the distance (in our
case Mahalanobis distance) to the support point xi on the boundary of the ellipsoid,
that is, corresponding to αi > 0 [28, 33].

It has been reported by many authors a Gaussian kernel is a good choice for novelty
detection but the choice of the kernel could depend on the problem. For example, if it
is known that the target data cloud is are ellipsoidal then we can use the simple inner
product kernel (see Fig. 1). In a high-dimensional feature space, the algorithm benefits
significantly if the distribution of the data is nonconvex or multimodal.



Chapter 6

Conclusions

We have proposed the new Kernel Information Matrix Ellipsoid Estimation method and
have shown how it can be applied for the outlier detection. The proposed algorithm
is a very general method. For example, if we use a different form of regularisation
the proposed method can be further developed for the D-optimum experimental design
for the kernel ridge regression model. We have demonstrated that it is not always
necessary to specify an accurate estimate of the proportion of outliers in advance. We
have proposed a very simple but effective iterative algorithm, based on Titterington’s
minimum volume ellipsoid method, that can be used both for novelty detection and
experimental design problems. The KIMEE method has demonstrated a better or similar
performance on the real-life condition monitoring problem compared to the one-class
SVM model and the LPND method. We have that for the appropriately chosen objective
function the method of kernelisation proposed in this paper includes the MVCS as a
special case and therefore it is related to the one-class SVM model as well. In future
work it would be interesting to see how much we can increase robustness of the proposed
method if we adapt the methodology that is successfully used by Rousseeuw’s minimum
covariance determinant estimator [25].
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