Under consideration for publication in Formal Aspects of Computing

An Incremental Development of the
Mondex System in Event-B

Michael Butler and Divakar Yadav

School of Electronics and Computer Science
University of Southampton

Abstract. A development of the Mondex system was undertaken using Event-B and its associated proof
tools. An incremental approach was used whereby the refinement between the abstract specification of
the system and its detailed design was verified through a series of refinements. The consequence of this
incremental approach was that we achieved a very high degree of automatic proof. The essential features of
our development are outlined. We also present some modelling and proof guidelines that we found helped us
gain a deep understanding of the system and achieve the high degree of automatic proof.

Keywords: Event-B; system design; refinement; mechanical proof; methodological guidelines

1. Introduction

We undertook an Event-B development of the Mondex system using the B4free [5] and Click'n’Prove [2] tools
for support. B4free is a proof obligation generator and proof tool for B. Click'n’Prove provides a sophisticated
front-end to B4free that increases productivity considerably when doing interactive proofs. The ‘classical’
B-Method developed by Abrial [1] is geared towards the development of correct non-concurrent programs.
Event-B [3] is an evolution of B that is geared towards understanding and reasoning about systems (as
opposed to programs) including reactive and concurrent systems. Event-B is influenced by the action system
approach of Back and others [4].

A major goal for us in tackling the Mondex system with Event-B was to achieve a high degree of au-
tomatic proof. Thus a key feature of our development was the use of many levels of refinement in order
to factor the proof effort into small, easily manageable steps. Our complete development consists of an ab-
stract specification and a further nine levels of refinement. Through careful use of small refinement steps
and appropriate intermediate abstractions, we were able to achieve an impressive degree of automatic proof
using B4free. The full development resulted in 679 proof obligations. Of these, 662 were proved completely
automatically by B4free. That is over 97% were proved automatically. The remaining 17 were proved inter-
actively using B4free. This refinement approach together with the B4free tool supports an incremental style

Correspondence and offprint requests to: Michael Butler, School of Electronics and Computer Science, University of Southamp-
ton, Highfield, Southampton SO17 1BJ, UK email mjb@ecs.soton.ac.uk

2 M. Butler and D. Yadav

of system development. Through successive refinements we incrementally add more features to the models
and we incrementally achieve a proof that our abstract model is refined by the final detailed system model.

When presenting a completed refinement chain it is natural to present it from top to bottom. But
it is important to emphasis that our refinement chain was not constructed in a top-down manner. We
started with the highest level specification and then produced a model approximating the lowest level in
the completed chain. However in attempting to prove refinement between these models it was clear that the
abstraction gap was too large would have required a complex gluing invariant. Instead we decided that some
intermediate abstraction was required. Having made proof progress with that intermediate model, it was
observed that further intermediate models were required to ease the completion of the chain. Furthermore,
as our understanding of the system deepened through this modelling and reasoning, situations arose whereby
it was necessary to modify models higher up the chain. Any modifications to the refinement chain had an
impact on the existing proofs. Luckily, the high degree of automatic proof, together with the proof re-run
facilities of tool, made re-establishing the correctness of the chain relatively painless.

The development took approximately two weeks of total effort spread over several months. Most of the
effort was in constructing models at different levels of abstraction and in constructing appropriate gluing
invariants. We did not attempt to use the invariants from the existing Z development. Instead we made
very heavy use of the B4free interactive prover to guide the construction of gluing invariants. That is, by
attempting an interactive proof of an unproved proof obligation and using the built-in simplifiers, one can
usually identify an invariant property that would help to discharge the unproved proof obligation. By adding
that invariant to the model in a form that closely matches the proof obligation, one usually finds that the
proof obligation is subsequently discharged automatically. Most of the interactive proof effort was used to
discover invariants rather than to discharge proof obligations.

Rather than trying to translate the existing Z development [10] into Event-B, we essentially treated the
7 development as a requirements document. Nonetheless our abstract model captures the same security
property as the abstract Z specification (no money is created) and our most refined model captures all the
behaviour of the protocol, including error and error recovery behaviour.

Our abstract specification includes events modelling atomic transfer of value between purses, loss of value
from a purse, recovery of lost value and checking of purse balances. The security property is represented
by not allowing money to be created only transferred or recovered. The nature of the refinement that we
verified using B4free is safety refinement, that is, any behaviour (trace of events) of a refined model must be a
behaviour of the abstract model. Thus, since a behaviour which results in the creation of money is prevented
in the abstract model, it is also prevented in a correctly refined model. Note that we have not verified that
liveness is preserved by our refinement, that is we have not verified the absence of divergence and we have
not verified that our refinements preserve the enabledness of abstract events. Indeed some behaviours that
are possible in the abstract model are not possible in the most detailed refinement. For example, in the
abstract model it is possible for a purse to be involved in several transactions simultaneously whereas this
is not possible in our detailed refinement (similar to the Z development).

Our refinements break the atomicity of the transfer into several steps following the definition of the
Mondex protocol. At any stage a purse can abort a transaction. Where appropriate, aborted transactions
are logged in a purse archive. If the logs of a transaction from both purses can be reconciled, then the lost
value can be recovered. Our refinement includes explicit message transfer between purses. Our model of
messaging allows for replay attempts by an intruder. Through refinement we verify that replay attacks are
prevented by the unique sequence number each purse gives to a transaction.

We proceed by describing the abstract specifications in Section 2. In Section 3 we describe the first
refinement step in which the atomicity of transfer is broken. In Section 4 we outline the main features of the
remainder of the chain. The remaining sections cover specific issues such as discovering invariants, discovering
modelling errors and treating other features of the models. We conclude by outlining some general modelling
guidelines that we found useful in this work.

2. Abstract Specification of Transfer, Loss and Recovery

Our abstract B model of the purse system introduces a type PURSE to distinguish purses. The specification
consists of just three state variables, purse, abal and lost, typed as follows:

purse C PURSE

An Incremental Development of the Mondex System in Event-B 3

TransferOK = TransferFail = Recover =
ANY pl,p2,a WHERE ANY pl,a WHERE ANY pl,a WHERE
pl € purse pl € purse pl € purse
p2 € purse abal(pl) > a lost(pl) > a
pl # p2 THEN THEN
abal(pl) > a abal(pl) := abal(pl) —a || lost(pl) :=lost(pl) —a ||
THEN lost(pl) :=lost(pl) + a abal(pl) := abal(pl) + a
abal(pl) := abal(pl) —a | END END
abal(p2) := abal(p2) + a
END

Fig. 1. Abstract value changing events

abal € purse — N
lost € purse —» N

The variable purse represents the set of purses that currently exist in the system. It is a variable since
purses can be created and destroyed. The monetary balance on each purse is represented by the variable abal,
a total function from purse to naturals. The third variable lost is a very abstract representation of money
that has been lost to a purse as a result of some previous failed transactions. It is included at the abstract
level in order to be able to model the recovery mechanism whereby money lost to a purse in a transaction
may be recovered at a later stage.

Three significant events of the abstract model are given in Fig. 1. TransferOK represents the successful
transfer of an amount a from purse pl to purse p2. The guard of TransferOK states that provided pl and
p2 are different valid purses and there are sufficient funds, then the amount is transferred in an atomic step.
The TransferFail event models the loss of money as a result of transaction failure. The cause of transaction
failure is made more specific in the refined layers. The TransferOK and TransferFail events should be viewed
together are modelling the possible outcome of a transaction which either succeeds or fails. The third event
in Fig. 1, Recover, is an abstract model of the mechanism whereby money previously lost to pl is recovered

by pl.

3. Breaking the Atomicity of Transfer

In the abstract model, we saw that value is transferred between two purses in a single atomic step. This
provides for a clear and simple specification of the essence of the protocol. However, in the real protocol,
the transfer of value is not atomic. Instead, the money is first deducted from the source account and then at
a separate later stage may be added to the target account. The system consist of many purses engaged in
value transfer so multiple parallel protocol runs will be interleaved and many events may occur in between
deduction and addition of value.

The main stages of the protocol are outlined diagrammatically in Fig. 2. A protocol runs starts when two
purses come together in a terminal device. The terminal device will send a start message to both purses.
After that, the target purse sends a request message req to the source account. On receipt of the req message,
the source purse pl deducts the amount from its balance and sends a val message to the target account.
The money is now in transit. At some stage later, the val message may be received by the target purse
p2 which proceeds to add the amount to its balance and send an acknowledgement to pl. Receipt of a val
message by the target purse represents successful completion of a balance transfer. For purse p2 the protocol
run ends after it sends the acknowledgement while for purse pl the protocol run ends after it receives the
acknowledgement. A protocol run may fail when it is aborted by either side. An abort might be caused by a
timeout or by a customer removing their purse from a terminal device. The diagram in Fig. 2 also includes
the states that a purse may be in during a protocol run. For example, the source purse is in the state epr
(expecting request) in between receipt of a start message and receipt of a req message. The other significant
states are epv (ezpecting value) and (expecting acknwledgement).

Our view was that the abstraction gap between our abstract specification and concrete model involving
all the details of the protocol events and states is too large for the refinement to be proved easily. Rather
than attempting to prove such a refinement, we instead introduced an intermediate transaction abstraction.

4 M. Butler and D. Yadav

From purse To purse
req .
oor| '© g.
decrease balance p1 —‘ epv
.......... val
epa ""'.','..A—increase balance p2
......... ok end
=
end

Fig. 2. Overview of the Mondex protocol

We will see that this intermediate abstraction provides sufficient structure for us to break the atomicity of
the money transfer without overwhelming our reasoning with too much detail. A transaction consists of a
source and target purse as well as an amount so we introduce a record type TRAN S modelling transactions
as follows:

TRANS :: from € PURSF;
to € PURSE;

amount € N

Note that record declaration are not part of B but [6] shows how record declarations like the above may be
represented in B in a straightforward way. The fields of a record declaration represent projection functions
mapping transactions to values of an appropriate type, e.g., this declaration specifies that from is a function
from TRANS to PURSE.

Once it has been created, a transaction can be in one of following four states: Idle, Pending, Recover
or Ended. A transaction is idle on creation while a transaction is pending in between deduction from the
source and addition to the target. From the pending state, a transaction may go to the ended state on
successful completion or to the recover state because of an abort. Note that these states are not explicit
states in the Mondex protocol. These are states we introduced as part of our intermediate abstraction. A
variable trans C TRANSACTION is introduced to model the set of transaction that have been created.
We also need to model the states a transaction may be in. One possible approach is to introduce a variable
representing a function mapping current transactions (trans) to an enumerated set of states:

status € trans — { Idle, Pending, Recover, Ended }

However, as we discuss later, we found it more effective (in terms of ease of proof) to represent the purse
states as disjoint sets of transactions as follows:

idle C trans

pending C trans

recover C trans

ended C trans

disjoint(idle, pending, recover, ended)
The event modelling the creation of a transaction is modelled in Fig. 3, putting the new transaction in the
idle state. The guard ensures that the value selected for the transaction ¢ is fresh. i.e., not contained in trans,

and has appropriate field values, e.g., from(t) = pl.
The concrete variable cbal introduced in the first refinement replaces the abstract variable abal. These

An Incremental Development of the Mondex System in Event-B

Deduct =
ANY pl,a,t WHERE
pl € purse
t €idle
from(t) = pl
am(t) =a
cbal(pl) > a
THEN

pending := pending U {t}

idle :=idle\ {t}

pendF := pendF U {pl — t}

cbal(pl) := cbal(pl) — a
END

StartTrans =
ANY pl,p2,a,t WHERE
pl € purse
p2 € purse
pl # p2
t €e TRANS \ trans
from(t) = pl
to(t) = p2
am(t) =a
THEN
trans := trans U {t}
idle :=idle U {t}
END

Fig. 3. Starting a Transaction

Increase =
/ * refines TransferOK « /
ANY p2,a,t WHERE
p2 € purse
t € pending
to(t) = p2
am(t) =a
THEN
ended := ended U {t}
pending := pending \ {t}
pendF := pendF \ {pl — t}
cbal(p2) := cbal(p2) + a
END

TransferFail =
/ xrefines TransferFail x /
ANY pl,a,t WHERE
pl € purse
t € pending
from(t) = pl
am(t) =a
THEN
recover := recover U {t}
pending := pending \ {t}
lostF :=lostF U {pl — t}
pendF := pendF \ {pl — t}
END

Fig. 4. Starting a Transaction and Deduct events

two variables will not always be equal because of the splitting of the atomicity of value transfer between
the Deduct event and the Increase event shown in Fig. 4. The Increase event is a refinement of the abstract
TransferOFk event and represents successful transfer of value. The role of the pendF' variable will be explained
later. Since the concrete balance is decreased in the separate Deduct event, the abstract balance of a purse p
will be equal to its refined balance plus the sum of the amounts of all values in transit from p. This relationship
between abstract and concrete balance is made explicit in the gluing invariant for the refinement. The refined
TransferFuail event changes a pending transaction to the recover state. Notice that the abstract lost variable
is not used in the refinement. Instead lost value is embodied in the amounts of all transactions that are in
the recover state. The relationship between this and the abstract lost variable will be made clear below.
Given that from is a function from transactions to purses and pending is a set of pending transactions,
the domain restriction expression pending < from (of type pending — PURSFE) is a function mapping
pending transactions to their source purse. This means that (pending <t from)~'[{p} | represents the set
of pending transactions for which p is the source purse. In order to express the summation of transaction
amounts, we introduce a constant function sum that takes a finite set of transactions and returns the sum
of the amounts of each of the transactions in the set. The sum function is defined by the following axioms:

sum € F(TRANS)—N
tds = sum(sU{t}) =sum(s)+t
tes = sum(s\ {t}) =sum(s) —t

We can now define the gluing invariant linking the abstract and concrete balances:

abal(p) = cbal(p) + sum((pending < from)*l[{p}1])

Our experience with this invariant was that the complexity of the expression over which we sum impedes the

6 M. Butler and D. Yadav

mechanical proof. We chose to introduce a redundant variable pendF corresponding to (pending <I from)=!.

This allows the gluing invariant to be simplified to the following:
abal(p) = cbal(p) + sum(pendF[{p}])

The redundant variable is removed in a subsequent refinement step using the gluing invariant
pendF = (pending < from)~!

The gluing invariant linking the abstract lost variable and the recoverable transactions is defined as
follows:

lost(p) = sum((recover < from)™*[{p}])

As with pendF’, we introduced a redundant variable lostF’ which is removed in a subsequent refinement step
using the gluing invariant

lostF = (recover <I from)™"

4. Overview of the Full Refinement Chain

So far we have described our abstract model of the Mondex system and the first refinement. Rather than
presenting the other eight refinement stages in similar detail, we will just present a sufficient overview of the
remaining refinement stages in order to help the reader understand the rationale for each refinement stage.

Level 1 As we have seen our first model captures atomic transfer of money, transaction failure and recovery
of lost value. It also models creation of new purses and balance query on a purse. We will look at balance
query in more detail later in Section 6.

Level 2 This level has been outlined in the previous section. An abstract notion of transaction is introduced
with end-to-end state (Idle, Pending, Recover or Ended). Each transaction has a balance and a from and a
to purse. The money transfer process is split into two separate events, one which decreases the source purse
and the other which increases the target balance. Freshness of a new transaction ¢ is specified by ensuring ¢
is not contained in the set of existing transactions trans.

Level 3 This is a very simple refinement in which the redundant variables pendF and lostF' are removed
using the invariants described previously.

Level 4 This is a relatively complex refinement in which the the end-to-end state of transactions (Idle,
Pending, ...) is replaced by dual states in which both parties to a transaction each have their own local
protocol state. Some of these local states were illustrated in Fig. 2. For example the source purse pl of a
transaction ¢ is in the epr (expecting request) state in between receiving a start message from a terminal
and receiving a req message from the target purse. Formally this is modelled by the condition ¢ € epr where
from(t) = pl. Level 4 also models abort states for purses in a transaction. For example, ¢ € abortepv models
the situation in which the target side of transaction ¢ aborted having previously been in the state epv.

Fig. 5 shows three of the events of Level 4. The StartTrans event models the initiation of a new transac-
tion. The ‘..." indicates that the guard of StartTrans is the same as in the previous level (Fig. 3). Instead of
adding the new transaction to the abstract idle set, it is added to both idleF and idleT. This models both
source and target sides being initialised to idle and allows the purses to leave the idle state asynchronously
via separate events.

The StartTo event models the transition in the target purse to the epv (expecting value) state. The
target side of the transaction should be in the idle state (¢ € idleT in the guard of StartTo) allowing the
target side to change to the epv state (the actions of StartTo move t from the idleT set to the epv set).

The Deduct event models the transition in the source purse when it receives a request message. There are
three conditions that should hold for Deduct to be fired. The source side of the transaction should be in the
idle state (¢ € epr), there should be sufficient funds in the source side and the target side of the transaction
should already have made the StartTo transition. The target side can abort from the epv state so it will be
in the epv state or the abortepv state after making the StartTo transition (¢t € (epv U abortepv)). These

An Incremental Development of the Mondex System in Event-B 7

StartTrans = StartTo = Deduct =
ANY pl,p2,a,t WHERE ANY p2,t WHERE ANY pl,a,t WHERE
p2 € purse pl € purse
THEN t € idleT t €epr
trans := trans U {t} p2 = to(t) t € (epv U abortepv)
idleT :=idleT U {t} THEN pl = from(t)
idleF :=idleF U {t} epv 1= epv U {t} a = am(t)
END idleT :=idleT \ {t} a < cbal(pl)
END THEN

epa :=epa U {t}

epr = epr \ {t}

cbal(pl) := cbal(pl) —a
END

Fig. 5. StartTrans, StartTo and Deduct events for Level 4

StartTrans = StartTo = Deduct =

ANY pl,p2, a,t WHERE ANY p2,t WHERE ANY pl,a,t WHERE
pl € purse

THEN t € startFromM t € epr
THEN t € reqM
startfromM := startfromM U {t} pl = from(t)
startToM := startToM U {t} reqM = reqM U {t} a = am(t)

END END a < cbal(pl)

THEN

valM = valM U {t}
END

Fig. 6. StartTrans, StartTo and Deduct events for Level 5

conditions allow the source side to deduct the transaction amount from its balance and to change to the epa
(expecting acknowledgement) state.

The relationship between the abstract end-to-end states and the more concrete dual states of a transaction
will be elaborated in Section 5. As a taster, one of the gluing invariants linking these representations is the
following:

(epa U abortepa) Nepv C pending

This can be read as specifying that when the source purse of a transaction is in the epa or abortepa state
and the target purse is in the epv state then the abstract end-to-end state of the transaction is pending.

Level 5 In the previous Level 4, events that change the state of pl, e.g., Decrease, were allowed to access the
state of p2 directly and vice versa. In practice this is not possible of course. Instead the purses send messages
to each other as outlined in Fig. 2 to indicate changes to their state. Level 5 introduces explicit messaging
between purses corresponding to the messages illustrated in Fig. 2. Now, instead of directly accessing the
state of the other purse, one purse gains information about the other purse when it receives a message.
For example, when the source purse of a transaction receives a req message it knows that the target purse
is either in the epv state or the abortepv state for that transaction. Variables are introduced to represent
messages that have been sent as part of a transaction. At this level, rather than having a single ‘ether’
containing all the different kinds of message that can be sent (req, val,...), we have separate variables for
the different kinds of messages. For example the variable reqM C trans represents req messages that have
been sent: t € reqM means that purse from(t) has sent a req message to purse to(t) for transaction t.

Fig. 6 shows the Level 5 refinements of the Level 4 events of Fig. 5. In Fig. 6 it can be seen that the Level
5 StartTrans event adds t to both the startfromM and starttoM sets. This is an abstract representation of
the sending of start messages to both sides by the terminal equipment. The StartTo event adds t to the reqM
set. This is an abstract representation of the sending of a request message by the target side. In Fig. 5, the
Deduct event, which occurs on the source side, sees the state of the target side directly (¢ € (epvUabortepv)).

8 M. Butler and D. Yadav

StartTrans = StartFrom =
ANY pl, p2, a,t WHERE ANY pl,t WHERE
pl € purse \ active pl € idleF P
p2 € purse \ active t € startfromM
t e TRANS \ trans t = currentF (pl)
pl = from(t) pl = from(t)
p2 = to(t) THEN
a = am(t) eprP :=eprP U {pl}
THEN idleF'P :=idleF P\ {pl}
trans := trans U {t} END

active := active U {pl} U {p2}

idleFP = idleFP U {pl}

idleT P :=idleT P U {p2}

currentF(pl) ==t

currentT (p2) :=t

startfromM := startfromM U {t}

startToM := startToM U {t}
END

Fig. 7. StartTrans and StartFrom events for Level 6

In the refinement of Deduct in Fig. 6, the source side instead infers the state of the target side through the
receipt of a message for the transaction (¢ € regM). Since the guard of an event cannot be weakened when
we refine it, we use the following invariant to verify this refinement:

epr NregM C epv U abortepv

That is, if the source side of ¢ is in the epr state and a request message has been sent for ¢, then the target
side is either in the epv state or the abortepv state. The Level 5 Deduct event also adds t to the valM set
modelling the sending of a val message to the target.

Level 6 Up to Level 5 our models allow a purse to be involved in multiple simultaneous transactions.
With the purse usage model in which two purses come together to exchange value by being placed in the
same physical terminal, the purses are physically constrained to being involved in at most one transaction.
This constraint is introduced in Level 5 by introducing for each purse a single current transaction and
an archive of aborted transactions. So a purse either has a current transaction for which it is the source
currentF € purse - trans or for which it is the target currentT € purse - trans. Instead of representing
the state of each transaction (idleF, epr, epa...) as in previous levels, we only need to represent the state of
the current transaction for each purse. Thus, for example, the variable idleF C trans (representing the set
of transactions whose source side is idle) is replaced by the variable idle ' P C purse (representing the set of
purses acting as a source and in the idle state for their current transaction). These variables are linked by
the following gluing invariant:

currentF[idleFP] C idleF

That is, if a purse is in the idle F'P state at Level 6, then the current transaction of that purse is in the idleF’
state at Level 5. If a transaction aborts, then both sides will asynchronously place a log of that aborted
transaction in their respective archives.

Fig. 7 shows the StartTrans and StartFrom events of Level 6. The guard of StartTrans means that
neither purse can be active, i.e., involved in a transaction. Both purses are made active and are added to
idle F'P and idleT P sets respectively. The current transaction of both purses is set to the the new transaction
t and Startfrom and StartTo messages are sent. In the StartFrom event, a source purse pl that is idle
(pl € idleF P) and receives a Start from message corresponding to its current transaction (¢ € currentF (pl)
and pl = from(t)) can progress to the epr state.

It is interesting to note that it is not quite the case that a purse is only ever involved in one transaction.
For example, once a target purse P2 sends an acknowledgement to source purse P1 it is finished with the
transaction. P2 could then start a new transaction with a purse P3 before P1 receives the acknowledgement
(probably a rare occurrence). So P1 would still be involved in a transaction with P2 though P2 is also

An Incremental Development of the Mondex System in Event-B 9

involved in a transaction with P3. Luckily this does not cause us any difficulty since up to Level 6 we
allowed for a purse being involved in any number of transactions simultaneously.

Level 7 Up to Level 6, the variable trans represents a history of all the transactions ever created in the
system and was used to define the freshness of new transactions. In practice no such central history exists so
global freshness needs to be ensured by the two purses involved in any new transaction. This is achieved by
each purse providing a sequence number that is locally fresh for that purse. The combination of both locally
fresh sequence numbers and the identity of the purses is sufficient to ensure global freshness. In Level 7 the
global history trans is removed and instead each purse is given a local history of the sequence numbers that
it has used. The variables used € purse <+ N maps each purse to the set of sequence numbers it has used.
The transaction record type is extended with two fields of type N, the source and target sequence numbers
(F'seqno and T'seqno respectively). The following gluing invariant specifies that for any transaction ¢ in the
abstract history variable trans, the source sequence number of that transaction will be in the used set of
the source purse:

tetrans = (from(t) — Fseqno(t)) € used

There is a similar invariant for target sequence numbers.

Fig. 8 shows the StartTrans and StartFrom events of Level 7. In the guard of StartTrans, the more
abstract freshness condition ¢t ¢ trans is replaced by the condition that the sequence numbers nl and n2
where not previously used by their respective purses (pl — nl € used and p2 — n2 ¢ used). In the previous
level (Fig. 7), the current transaction of the purses was set by the StartTrans event (currentF(pl) :=t
and currentT(p2) := t). In the Mondex protocol, the source purse does not receive the full details of the
transaction until it receives the StartFrom message. Before then the source purse knows only its sequence
number but not the target sequence number nor the amount. To reflect this, the Level 7 refinement sets
currentF(pl) in the StartFrom event rather than the StartTrans event. Because the Level 6 StartFrom
does not set currentF(pl), currentF is replaced by currentF2 with the following gluing invariant:

p € (active \ idleF'P) = currentF(p) = currentF2(p)

The source purse accepts a transaction provided the source sequence number of the transaction corresponds
to the purse’s current sequence number (F'seqno(t) = currentSeqNo(pl) in the guard of StartFrom). The
setting of the current transaction on the target side to moved to the StartTo event in a similar way.

The reader may have observed that a single sequence number coming from say the source purse would
be sufficient to ensure uniqueness of the transaction. In fact the sequence numbers serve a further purpose:
they act as challenge values that prevent message replay attacks. For this to be effective, both purses need to
provide challenge values. We treat replays in a very simple way. A replay attack involves resending messages
that were previously sent. In our model messages are never removed from the message buffers. This means
that a message replay only ever adds messages to the buffer that are already in the buffer. A replay is thus
a skip and has no effects at the abstract level.

Level 8 In Level 8, instead of maintaining a history of used sequence numbers, each purse stores just a single
sequence counter (currentSeqNo(p)) which is increased by an arbitrary amount each time it is involved in
starting a new transaction. The gluing invariant is as follows:

p—n€used = n<currentSeqNo(p)
Fig. 9 shows the StartTrans event of Level 8. It can be seen that the Level 7 freshness condition

pl — nl & used is replaced by nl > currentSeqNo(pl) in Level 8.

Level 9 In Level 6, the state of the current transaction of each purse was represented by the disjoint variables
eprP, epaP, etc. In Level 9, this disjoint sets model of transaction states is replaced by ‘status’ functions
mapping each purse to an enumerated set of states. If p is involved in a transaction as the source purse,
then statusF(p) represents the transaction state of that purse {IDLE, EPR, EPA}. The relevant gluing
invariant is as follows:

eprP = statusF~'[{EPR}]

There are similar invariants for the other disjoint state sets.

10 M. Butler and D. Yadav

StartTrans = StartFrom =
ANY pl,p2,a,t,nl,n2 WHERE ANY pl,t WHERE
pl € purse \ active pl € idleF P
p2 € purse \ active t € startfromM
te TRANS Fseqno(t) = currentSegNo(pl)
pl = from(t) pl = from(t)
p2 = to(t) THEN
a = amf(t) eprP = eprP U {pl}
nl = Fseqno(t) idleFP :=idleFP\ {pl}
n2 = Tseqno(t) currentF2(pl) :=t
pl — nl & used END
p2 — n2 &€ used
THEN

active := active U {pl} U {p2}
idleF'P := idleF'P U {pl}
idleTP := idleTP U {p2}
start fromM := startfromM U {t}
startToM := startToM U {t}
used := used U {pl — nl} U {p2 — n2}
currentSeqNo(pl) :=nl
currentSeqNo(p2) := n2

END

Fig. 8. StartTrans and StartFrom events for Level 7

StartTrans =
ANY pl,p2,a,t,n1,n2 WHERE

nl = Fseqno(t)

n2 = Tseqno(t)

nl > currentSeqNo(pl)

n2 > currentSeqNo(p2)
THEN

startToM := startToM U {t}

currentSeqNo(pl) :=nl

currentSeqNo(p2) := n2
END

Fig. 9. Part of StartTrans event for Level 8

Level 10 In Level 10, the separate variables for the different kinds of messages introduced in Level 5
are merged into a single ‘ether’ variable representing the messages that have been sent. A message type
MESS is introduced, and several disjoint subsets of the message type are defined as constants. For example
REQ_MESS C MESS represents the type of request messages. The type MESS is a record with a
transaction field trn € MESS — TRANS. Given that ether C MESS is the variable representing all
messages ever sent, the set of request messages sent is represented by the expression ether N REQ_MESS.
In Level 10, the abstract variable reqM is represented by extracting the transaction field of all request
messages sent as described by the following gluing invariant:

regM = trn[ether N REQ_-MESS |

Similar invariants are used for the other message types.

Fig. 10 shows the StartFrom and Deduct events of Level 10. It can been seen that the state of a
source purse is represented by the statusF function (e.g., statusF(pl) = IDLEF in StartFrom). The
use of the message type of the ether variable can also be seen. In the StartFrom event, source purse pl
accepts and message m € ether of type SF_MFESS and extracts the transaction details ¢ from the message

An Incremental Development of the Mondex System in Event-B 11

StartFrom = Deduct =

ANY pl,t,m WHERE ANY pl,a,t,ml,m2 WHERE
statusF(pl) = IDLEF statusF(pl) = EPR
m € ether ml € ether
m € SF_MESS ml € REQ_MESS
t =trn(m) t =trn(ml)
Fseqno(t) = currentSeqNo(pl) pl = from(t)
pl = from(t) a = am(t)

THEN a < cbal(pl)
statusF (pl) := epr m2 e VAL_MESS
currentF(pl) :==t t = trn(m2)

END THEN

statusF(pl) := EPA

ether := ether U {m2}

cbal(pl) := cbal(pl) — a
END

Fig. 10. StartTrans and StartFrom events for Level 10

Level POs iPOs

L1 24 0
L2 91 15
L3 14 0
L4 143 0
L5 57 0
L6 183 0
L7 25 0
L8 23 2
L9 73 0
L10 46 0
Total 679 17

Fig. 11. Statistics from the mechanical proof effort

(t = trn(m)). In the Deduct event, source purse pl accepts a REQ_MESS message m1 from the ether and
adds a VAL_MUESS message m2 to the ether.
This completes our overview of the full refinement chain.

5. Proof and Invariant Discovery

All the proof obligations for all ten levels were generated and proved using the B4free prover. The statistics
from the mechanical proof effort for all of the refinement levels are outlined in Fig. 11. In the table, the
POs column represents the total number of proof obligations generated for each level. The iPOs column
represents the number of those proof obligations that had to be proved interactively. Those proof obligations
that were not proved interactively were proved completely automatically by the prover. So, all the proofs were
completely automatic for all levels except at Levels 2 and 8. It is worth commenting on the interactive proofs
that were required at Level 2. All these proofs involved either the sum function that sums the amounts of a
finite set of transactions or finiteness constraints on sets of transactions. The main interactive steps involved
instantiating the axioms for sum described in Section 3. The automatic prover did not manage to instantiate
these axioms appropriately and instead the instantiation had to be done manually through the interactive
prover.

We now outline the way in which the invariant used to prove the refinement between Levels 3 and 4.
Recall that Level 3 models transaction states by an abstract end-to-end state (pending, recover,...) while
Level 4 replaces this by dual local states for both the source and target purses of a transaction. Initially the
model at Level 4 was constructed with just a basic typing invariant and no gluing invariant. The first pass of
automatic proof resulted in several proof obligations that could not be proved automatically. Some of these

12 M. Butler and D. Yadav

Deduct(PO1) TransferOK(PO2) TransferFail(PO3)
t € trans t € trans t € trans

t € epr t € (epa U abortepa) t € abortepa

t € (epv U abortepv) t € epv t € epv

= = =

t €idle t € pending t € pending

Fig. 12. Proof Obligations- I

epr Cidle idleF" C idle epr NidleF = ¢

epv N (epa U abortepa) C pending idleT N (epa U abortepa) = ¢ idleT NendT = ¢

epa N (epv U abortepv) C pending idleT N (epv U abortepv) = ¢ endT C ended

epa N abortepa = ¢ pending C (epa U abortepa) abortepa Nepr = ¢

epv N abortepy = ¢ endI N pending = ¢ epaNepr = ¢

abortepa N abortepv C recover (epv U abortepv) NendT = ¢ idleF Nepa = ¢
Fig. 13. Invariants-I Fig. 14. Invariants-IT Fig. 15. Invariants-ITT

are shown in Fig. 12. Obligation PO1 arises from the need to show that when the refined Deduct operation
is enabled, then the abstract Deduct event is also enabled. Similarly for the other obligations.

If we were to add PO1, universally quantified over variable ¢, as an invariant then PO1 is discharged
automatically. However, in this case, our intuition tells us that it is sufficient to have ¢ € epr at the concrete
level in order to have t € idle at the abstract level. So we try the simpler invariant

Vi-(t€epr = teidle)
Furthermore, this invariant can be represented in a point-free way using subset ordering:
epr C idle

We chose this point-free form as our experience with the automatic prover is that is usually very good at
dealing with quantifier-free goals. The full set of invariants introduced in this first round of proof is shown
in Fig. 13. All of these were ‘discovered’ by examining the non-proved proof obligations as described above.

When the invariants given as Invariants-I are added to the model, new proof obligations associated with
these new invariants are generated. In order to discharge these additional proof obligations we added another
set of invariants to our model given as Invariants-II (Fig. 14). When Invariants-II are added to the model,
further proof obligations are generated. These proof obligations are discharged by adding another set of
invariant given as Invariants-III (Fig. 15).

After three iterations of invariant strengthening we arrived at set of invariants that are sufficient to
discharge all the proof obligations for this refinement stage automatically. An appropriate gluing invariant is
key to proving the correctness of a refinement step. In this section we outlined how we used the non-proved
proof obligations and the interactive prover to guide us in constructing a gluing invariant. As well as easing
the burden of inventing the gluing invariant, this approach also has the consequence that the form of the
gluing invariant we use closely matches the form of the proof obligations thereby making the mechanical
proofs much easier and in many cases completely automatic.

6. Other Issues: Errors, Recovery and Balance Check

In this section we outline how we addressed some additional features of the protocol including modelling
aborts, recovery and balance checking.

6.1. Errors

Fig. 16 shows abort events for when a source purse is in the epa state. Both AbortEPA1 and AbortEP A2
are from Level 4 of the refinement chain. Event AbortEPA1 represents the occurrence of an abort from
state epa when the target side has already aborted from the epv state. Event AbortEPA2 represents the
occurrence of an abort from state epa when the target side has not aborted from the epv state. The reason

An Incremental Development of the Mondex System in Event-B 13

AbortEPA1 = AbortEPA2 = AbortEPA =
/ * refines TransferFail * / / x refines skip x / / * refines AbortEPAL,
ANY ¢t WHERE ANY ¢t WHERE AbortEPA2 x [/
t € epa t € epa ANY t WHERE
t € abortepv t & abortepv t € epa
THEN THEN THEN
abortepa := abortepa U {t} abortepa := abortepa U {t} abortepa := abortepa U {t}
epa := epa \ {t} epa = epa \ {t} epv := epa \ {t}
END END END

Fig. 16. Level 4 and 5 AbortEPV events

we make the distinction between these two cases is that the different cases refine different abstract events. In
the first case (t € abortepv), aborting from the epa state is a refinement of the abstract Trans fer Fail event.
At Level 4, we regard a transaction as having failed when both sides have aborted. Abort of just one side
is not sufficient since a transaction can succeed even if the source side aborts from the epa state. Execution
of AbortEPS1 results in both sides being in aborted states and thus it refines the abstract TransferFail
event. Execution of AbortEPA2 results only in one side being in an aborted state and thus refines skip.
Note that the bodies of the events for both cases are identical.

In the real system, since an abort is local to a purse, we cannot distinguish between cases that depend
on the state of another purse. This means we should merge the two cases of AbortEPA into a single event
that is independent of the state of a target purse. In Event-B we can do this through a refinement: a refined
event can refine several abstract events [7]. In Fig. 16, AbortEPA is a Level 5 event that merges both of the
Level 4 events and is independent of abortepv. The conditions under which this merge is valid is that both
abstract events must have identical bodies and the guard of the refined event must imply the disjunction of
the guards of the abstract events. These conditions indeed hold between the events of Fig. 16.

This treatment of abort events highlights the importance of the ability to reason globally that Event-B
refinement supports. At Level 4 we were able to distinguish between the two cases of AbortEPA by taking
a global view, i.e., including representations of the state of the target purse in events of the source purse.
The two cases refine two different abstract events. In a subsequent refinement we remove the distinction by
merging the cases and removing the dependence on the state of the target purse. The distinction is being
made at design time, through modelling and refinement proofs, but is not being made at run time.

6.2. Recovery

Fig. 17 shows the events modelling recovery of lost money at four different levels of abstraction. As explained
in Section 1, the Level 1 event is very simple: an amount a can be recovered by purse pl provided at least
that amount is in lost(pl). Transactions were introduced at Level 2 with the abstract end-to-end states
including pending and recover. The Level 2 recover event is allowed if a transaction is in the recover state.
The gluing invariant required to prove this refinement (linking the abstract lost variable with recoverable
transaction) was shown at the end of Section 3. At Level 4 we distinguished between source and target purse
states. Now a transaction is recoverable when the source side has aborted from the epa state and the target
side has aborted from the epv state, hence the guard of the Level 4 recover event. This refinement requires
the following gluing invariant:

abortepa N abortepv C recover

In Level 10, we do not maintain information about all transactions. Instead a purse will log only those
transactions that have aborted from the epa state (in archF) or the epv state (in archT). The Level 10
recover event is allowed when both purses in a transaction have a log for that transaction in their archive.
The gluing invariants that are used to prove the refinement are:

dom(archF) C abortepa
dom(archT) C abortepv

14

(L1) Recover =
ANY pl,a WHERE
pl € purse
lost(pl) > a
THEN
lost(pl) :=lost(pl) —a ||
abal(pl) := abal(pl) + a
END

(L4) Recover =
ANY pl,a,t WHERE
pl € purse
t € abortepa
t € abortepv
from(t) = pl
am(t) =a
THEN
endF := endF U {t}
endT = endT U {t}
abortepa := abortepas \ {t}
abortepv := abortepvs \ {t}
cbal(pl) := cbal(pl) + a

M. Butler and D. Yadav

(L2) Recover =
ANY pl,a,t WHERE
pl € purse
t € recover
from(t) = pl
am(t) =a
THEN
end := end U {t}
recover := recover \ {t}
cbal(pl) := cbal(pl) + a
END

(L10) Recover =
ANY pl,p2,a,t WHERE
pl € purse
P2 € purse
t — pl € archF
t— p2 € archT
from(t) = pl
to(t) = p2
am(t) =a
THEN
archF := archF \ {t — pl} |
archT := archT \ {t — p2} ||

cbal(pl) := cbal(pl) + a
END D

Fig. 17. Recover events

6.3. Balance Checking

We included a balance check feature in our development. Recall that we have an abstract and concrete
balance related by :

abal(p) = cbal(p) + sum(pendF[{p}])

The abstract and concrete balances are equal when pendF[{p}] is empty. In the implementation, the balance
query for purse p returns cbal(p). We then considered how to model the balance query in terms of the
abstract balance. The approach we adopted was to introduce an exact balance check and an approximate
balance check giving an under-approximation of the balance. These events are modelled in Fig. 18. In Fig. 18
we do not distinguish the conditions under which an exact or approximate balance is returned as we don’t
have enough information available to make the distinction at the abstract level. Fig. 19 shows Level 10
concrete versions of the balance check events where disjoint conditions under which these are distinguishable
are made explicit. The GetBalanceEzact of Fig. 19 shows that when a purse is not in an EPA state and its
archF' is empty, then balance check on the purse returns exactly the same balance as the abstract model
would. In other cases balance check may be an under approximation of the balance. In the real system, no
distinction is made between exact and inexact balance checks and thus the two events could be merged in a
subsequent refinement to the GetBalance event of Fig. 19. As with the treatement of aborting transactions
in Section 6.1, we can distinguish the cases at design time, though we don’t distinguish them at run time.
Interestingly in this case we could also distinguish them at run time since the distinguishing condition is
based on state that is local to a purse. A purse could indicate whether there may be money that could be
recovered later. It is less clear that this would be an attractive feature.

An Incremental Development of the Mondex System in Event-B 15

GetBalance Exact = GetBalance Approx =
ANY p,a WHERE ANY p,a WHERE

p € purse p € purse

a! = abal(p) a! < abal(p)
THEN THEN

skip skip
END END

Fig. 18. Abstract balance query events

GetBalanceFExact = GetBalance Approx = GetBalance =
ANY p,a WHERE ANY p,a WHERE ANY p,a WHERE
D € purse D € purse D € purse
statusF(p) # EPA (statusF(p) = EPA V al = cbal(p)
p & ran(archF) p € ran(archF)) THEN
a! = cbal(p) a! = cbal(p) skip
THEN THEN END
skip skip
END END

Fig. 19. Concrete balance query events

7. Invalid Modelling, Modification and Reproof

After we had achieved our first fully proved complete refinement chain, we discovered that we had made
an invalid modelling assumption at Level 7 when the sequence numbers were introduced. In our model
we assumed that the sequence numbers were exchanged between both purses as part of the StartTrans
event. In the real protocol one purse only becomes aware of the the sequence number generated by the
other purse when it receives a start message and start messages are sent after the StartTrans event. A
consequence of our invalid modelling assumption was that re-play attacks were prevented without requiring
both purses to provide a sequence number. Now sequence numbers were only required to ensure uniqueness
of the transaction and, as pointed out above, a single sequence number is sufficient for that. Under the invalid
modelling assumption, our refinement proof only required one sequence number.

We observed that only one sequence number was required for the proof without understanding why this
was. At that point the dual role of the sequence numbers in ensuring uniqueness and in preventing replays
was not fully clear to us. Luckily Gerhard Schellhorn pointed out an attack that that would arise were there
only one sequence number. This attack didn’t arise in our models because of the invalid assumption we made,
but it did lead us to realise the modelling error we had made. This highlights the importance of informally
reviewing all modelling assumptions during formal development to ensure their validity. There is a danger
of focusing solely on the correctness of proofs as a measure of the validity of models.

Once we realised our error we modified the refinement chain to so that we correctly modelled the protocol.
We did not need to change the chain up to Level 5. Only Levels 6 to 10 needed modification. The modifications
required were relatively small and the only significant new invariants required were at Level 6. It took less
than half a day to make the modifications and re-establish a fully proved refinement chain. We believe the
relative ease with which this change was achieved was because of our use of multiple refinement levels with
small abstraction gaps. This meant that the impact of the change was reasonably well localised and that
therefore the re-proof effort was relatively small. The high degree of automatic proof that our approach
entailed also meant that most of the re-proof required was achieved automatically in any case.

As with the original Z development, our Event-B development ignores details of the set up phase of the
protocol. Schellhorn et al [9] describe the set up phase in more detail. This involves the terminal asking
each purse for its current sequence number. On producing the final revision of this paper we realised that
we had made one final error in our modelling. In our model, each purse increases its sequence number in
the StartTrans event. In fact in the protocol, a purse only increases its sequence number on receipt of a
StartTo or StartFrom message. This means that if an interaction aborts before this stage, a purse will not
increase its sequence number. Our developmetn could be adjusted to deal with this by making the StartTo
and StartFrom events both be refinements of StartTrans.

16 M. Butler and D. Yadav

8. Modelling Guidelines

Our main guideline is that incremental development is a good way of achieving automatic proof. The cost
of an incremental approach over a big-step approach is that we need to construct more models. But if we
manage to achieve a higher degree of automatic proof as a result then the overall cost can be reduced.
We believe that we achieved a large reduction in overall effort in our Mondex development than we would
otherwise have achieved had we taken a big-step approach. It might seem that having a large refinement
chain makes it very difficult to make any changes. In fact our experience was the opposite. By having such
a high degree of automatic proof, when making changes to the chain, the cost of reproving the correctness
of the chain was small. This was highlighted by the need to fix our modelling error as outlined in Section 7.
Of course this ease of modification depends on how big any change is and very large changes might not have
such a low reproof cost. In general however, an incremental approach means that we are more likely to be
keeping on top of any complexity and that any changes required will be relatively small. We now outline
some additional more specific guidelines.

Refining Atomicity : Our approach to refining atomicity is simple but effective. Breaking atomicity in-
volves replacing an abstract atomic event by appropriate sequencing of several concrete events. The technique
we used is to match the abstract atomic event to the concrete events whose occurrence represents the achieve-
ment of the abstract events. The other events are treated as refinement of skip. For example, the abstract
Level 1 TransferOFk event is matched with the Level 2 Increase event, i.e., Increase is treated as a refinement
of TransferOk. This is because the transfer always succeeds once the target side receives a val and increases
its balance. Often the abstract event is matched to a completion of a transaction or protocol run though this
is not necessary. For example, in our case further events can occur after the Increase event, i.e., the source
side can receive an ack or can abort.

A further aspect to note is that a transaction typically has more than one outcome, e.g., success or
failure. We deal this by having separate abstract atomic events for the different cases, e.g, TransferOk or
TransferFail. In some cases, an aborting final outcome will be a refinement of skip at the abstract level.

Ensure your formal models are valid: The modelling error outlined in Section 7 highlighted the im-
portance of reviewing all modelling assumptions made in constructing the refinement chain. Our experience
from other case studies is that this is facilitated by having good requirements and design documents. The
(informal) process of reconciling requirements and design documents with the formal models helps in the
discovery of invalid modelling assumptions.

As abstract as possible: When introducing more computational structure in a refinement step, it is good
to keep the state representation as abstract as possible. That is, the refined state representation should be
sufficiently detailed to allow for the new computational structure to be represented, but no more detailed
than that. Splitting the atomicity of the money transfer is an example of what we mean by introducing
more computational structure. To do this we introduced the representation of a transaction. Rather than
doing this by using the detailed dual transaction states of the parties to a transaction, we instead used the
simple end-to-end transaction states. This representation was sufficient to allow us to split the atomicity of
the transfer but was much simpler than the more detailed dual state representation.

Redundancy can be useful: At some levels of the chain we found it useful to employ redundant variables.
For example the pendF variable used in the first refinement (Section 3) was redundant in that its value could
be extracted from other variables of the model. However, making it an explicit variable allowed us to simplify
the gluing invariant and hence ease the proof. Redundant variables can be removed in subsequent refinement
steps and often the proof is completely automatic provided the appropriate extraction invariant is provided.

Let the proof obligations guide you: In Section 5 we outlined how we used the proof obligations and the
prover to construct a sufficient invariant to prove the refinement. By using invariants that are close to the
form of the proof obligations, the proof effort is usually eased. However, this must not be done blindly. One
needs to convince oneself informally that a newly discovered invariant really is expected to be an invariant.
In some cases it will become clear from inspecting a proof obligation that it can never be proved and that
the models or existing invariants need to be ‘fixed’.

An Incremental Development of the Mondex System in Event-B 17

Keep separate structures separate: In Sections 3 and 4 we explained how we used disjoint sets to model
transaction states. For example, at Level 4 the variable epr C trans was introduced to represent the set
of transactions whose source purse is expecting a request. An alternative representation of the transaction
states (like that introduced in Level 9 for purse state) would be a function from transaction to a set of
enumerate values:

cstatusF € trans — {IdleF, Epr, AbortEpr, ...}

Now, recall from Section 5 that we needed an invariant specifying that if a transaction at Level 4 is in the epr
request, then at Level 3 the transaction must be in the idle state. Using the state function representation,
this could be expressed in one of the following forms:

Vit - (t € trans A cstatusF (t) = Epr = astatus(t) = Idle) (1)
cstatusF~ [{Epr}] C astatus™'[{Idle}] (2)

With the disjoint sets representation that we used, the gluing invariant is expressed more simply as follows
epr C idle (3)

Clearly, (3) is simpler than either (1) or (2) and therefore the proof effort is eased. But the disjoint set
representation has a further significant property. Consider the AbortEPA event that changes the state of a
transaction from the epa state to the abortepa state. With the disjoint set representation this event will be
independent of the epr variable and so no proof obligation will arise from invariant (3) for that event. With
the state function representation, the AbortE P A event will change the cstatusF variable and therefore will
give rise to a proof obligation for invariants (1) and (2). So what is going on here? The single state function is
effectively bundling transactions with different states into single function. But to specify the gluing invariant
we need to separate these out using some non-trivial expression. By keeping them as separate variables we
don’t need to use some non-trivial expression and furthermore concepts that are separate are kept separate
and less proof obligations result. Once we no longer need to keep them separate for the proof effort, we
can bundle the separate variables into a single variables using an appropriate gluing invariant and, as with
eliminating redundant variables, the proof is usually automatic. Note that we used a similar technique when
the different kinds of messages were modelled as separate variables at Level 5 and then merged into a single
‘ether’ at Level 10.

9. Concluding

We used the original Z development [10] as a requirements document rather than trying to faithfully repro-
duce it and we did not use invariants of that development. Unlike the original Z development, we did treat
balance recovery and balance checks. The original Z development used backwards data refinement rather
than the more usual forwards data refinement (see, for example, [8]). Backwards refinement is typically re-
quired when nondeterminism in the abstract model is moved to a later point at the concrete level. In the
case of the Z development, the abstract completion events were refined by the start of the transaction at the
concrete level. The abstract choice between a balance transfer succeeding or failing is made to correspond
to the start of the transaction at the concrete level. At the concrete level success or failure is not known
until the completion of a transaction. This arrangement requires the use of backwards refinement. In our
development the abstract completion events are mapped to the completion events of the transaction at the
concrete level, i.e., nondeterminism is not moved around between levels. This means that forward refinement
can be used (and the B provers only support forward refinement).

We have outlined how an incremental refinement approach to the Mondex system allowed us to achieve
a very high degree of automatic proof. In addition to the incremental approach, the use of the guidelines
outlined in Section 8 also contributed to the high degree of automatic proof. The approach we have taken is
not specific to Event-B. We believe a similar approach could be taken using other state-based notations such
as ASM, TLA or Z. The powerful support provided by the B4free tool was essential to achieving what we
believe was a very successful development. B4free was used to generate the hundreds of proof obligations and
to discharge those obligations automatically and interactively. Another key role of the tool was in helping us
to discover appropriate gluing invariants to prove the refinements. Without this level of automated support,
making the changes to the refinement chain that we did make would have been far too tedious. In summary

18

M. Butler and D. Yadav

some key lessons are that incremental development with small refinement steps, appropriate abstractions at
each level and powerful tool support are all invaluable in this kind of formal development

References

[1] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.

2] Jean-Raymond Abrial and Dominique Cansell. Click’n’Prove: Interactive Proofs within Set Theory. In Theorem
Proving in Higher Order Logics, volume 2758 of LNCS, pages 1-24, 2003.

[3] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, decomposition and instantiation of discrete models.
Fundamentae Informatica, 2006. To appear.

[4] Ralph Back. Refinement calculus, part II: Parallel and reactive programs. In J. W. de Bakker, W.-P. de Roever,
and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems, volume 430 of Lecture Notes in Computer
Science, pages 67-93. Springer-Verlag, 1990.

5] Clearsy. B4free tool homepage. www.b4free.com.

[6] Neil Evans and Michael Butler. A proposal for records in Event-B. In Jayadev Misra, Tobias Nipkow, and Emil
Sekerinski, editors, FM 2006: Formal Methods, 14th International Symposium on Formal Methods, Hamilton,
Canada, August 21-27, 2006, Proceedings, volume 4085 of Lecture Notes in Computer Science, pages 221-235.
Springer, 2006.

[7] Stefan Hallerstede. Justifications for the Event-B modelling notation. In Jacques Julliand and Olga Kouchnarenko,
editors, B, volume 4355 of Lecture Notes in Computer Science, pages 49-63. Springer, 2007.

8] Jifeng He, C. A. R. Hoare, and Jeff W. Sanders. Data refinement refined. In Bernard Robinet and Reinhard
Wilhelm, editors, ESOP, volume 213 of Lecture Notes in Computer Science, pages 187—196. Springer, 1986.

9] Gerhard Schellhorn, Holger Grandy, Dominik Haneberg, Nina Moebius, and Wolfgang Reif. A systematic verifica-
tion approach for Mondex electronic purses using ASMs. In Dagstuhl Seminar on Rigorous Methods for Software
Construction and Analysis, volume (to appear) of LNCS, 2007.

[10] Susan Stepney, David Cooper, and Jim Woodcock. An electronic purse specification, refinement, and proof.

Technical Report PRG-126, Oxford University Computing Laboratory, 2000. www-users.cs.york.ac.uk/ su-
san/bib/ss/z/monog.htm.

