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Automatic Recognition by Gait
Recognizing people by the way they walk promises to be useful for identifying

individuals from a distance; improved techniques are under development.

By Mark S. Nixon, Member IEEE, and John N. Carter, Member IEEE

ABSTRACT | Recognizing people by gait has a unique

advantage over other biometrics: it has potential for use at a

distance when other biometrics might be at too low a

resolution, or might be obscured. The current state of the art

can achieve over 90% identification rate under situations

where the training and test data are captured under similar

conditions, while recognition rates with change of clothing,

shoe, surface, illumination, and pose usually decrease perfor-

mance and are the subject of much of the current study.

Recognition can be achieved on outdoor data with uncon-

trolled illumination and at a distance when other biometrics

could not be used. We shall show how this position has been

achieved, covering most approaches to recognition by gait and

the databases on which performance has been evaluated. We

shall describe the context of these approaches, show how

recognition by gait can be achieved and how current limits on

performance are understood. We shall describe results on the

most popular database, showing how recognition can handle

some of the covariates that can affect recognition. We shall also

investigate the supporting literature for this research, since the

notion that people can be recognized by gait has support not

only in medicine and biomedicine, and also in literature and

psychology and other areas. In this way, we shall show that this

new biometric has capability and research and application

potential in other domains.

KEYWORDS | Biometrics; covariate factors; gait; gait analysis;

gait database; gait recognition

I . INTRODUCTION

A unique advantage of gait as a biometric is that it offers

potential for recognition at a distance or at low resolution

when the human subject occupies too few image pixels

for other biometrics to be perceivable. In gait recogni-

tion, we seek to process video images, to derive numbers
that reflect the identity of the moving subject. By using a

silhouette, a subject is described not just by shape but also

by motion; an alternative is to model features, here limb

movement. A selection of approaches to automatic rec-

ognition by gait is shown in Fig. 1. The taxonomy is not as
clear as the diagram suggests since a number of approaches

straddle the boundaries. Moving shape techniques are

mainly silhouette-based approaches and later approaches

used the motion (the sequence of the silhouette’s

appearance).

The current state of the art is that databases of over

100 subjects imaged walking outdoors can be recognized

with well over 90% identification rate (equaling many
biometrics) and factors which affect gait are understood,

there is capability to handle application environment

and understanding of the measures’ potency for recog-

nition purposes. An example of the progression in per-

formance is shown in Table 1, for classification by the

k-nearest neighbor on datasets of increasing size. Here,

the (Southampton) databases existing around 2001 were

near 30 subjects, rising to over 100 subjects later. This
performance level has been maintained since the earliest

approaches.

Recognition by gait is actually one of the newest bio-

metrics, since its development only started when com-

puter memory and processing speed became sufficient to

process sequences of image data with reasonable per-

formance. Recognition approaches to gait were first

developed in the early 1990s and were evaluated on
smaller databases than those in Table 1, and showed

promiseVthese are the techniques prior to the horizontal

divide in Fig. 1. DARPA’s Human ID at a Distance program

[31] then collected a rich variety of data and developed a

wide variety of technique and showed not only that gait

could be extended to large databases and could handle

covariate factors. Since the DARPA program, research has

continued to extend and develop technique, with especial
consideration of practical factors such as feature potency.

Naturally, its development has benefit from comple-

mentary studies which support the notion of gait as a

biometric: there is considerable evidence in biomechanics,

psychology, and literature for the notion that people can be

recognized by the way they walk. Naturally, this survey is

as inclusive as possible, covering most main approaches to
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automatic recognition by gait, its performance, and

background studies; much greater detail and context is
available elsewhere [29].

II . SUBJECTS ALLIED TO GAIT

A. Literature
The usual meaning of Bgait[ is Bmanner of walking,[

though this is sometimes given as a Bmanner of moving on

foot,[ since this can subsume running. It is mainly given as

derived from the Middle English gate, meaning path or

gait, as derived from the Old Norse gata, meaning path.

Shakespeare made several references to the individuality

of gait, e.g., in Henry IV Part II BTo seem like him: so that,

in speech, in gait, in diet, in affections of delight, in mil-
itary rules, humours of blood, he was the mark and glass,

copy and book.[

B. Other Gait Analysis

1) Medical and Biomechanical Analysis: The biomechan-

ics literature makes observations concerning identity: BA

given person will perform his or her walking pattern

[Fig. 2] in a fairly repeatable and characteristic way,

sufficiently unique that it is possible to recognize a person
at a distance by their gait[ [45]. The aim of medical

research has been to classify the components of gait for the

treatment of pathologically abnormal patients. Murray
et al. [28] produced standard movement patterns for

pathologically normal people which were used to compare

the gait patterns for pathologically abnormal patients [27].

In all there appear to be 20 distinct gait components, some

of which can only be measured from an overhead view of

the subject. Murray found Bthe pelvic and thorax rotations

to be highly variable from one subject to another[ [27].

These patterns would be difficult to measure even from an
overhead view of the subject, which would not be suited to

application in many practical situations and, unlike

biometrics, these studies required markers attached to

the subject.

The rotation of the inclination of the thigh, Fig. 3(a), is

characterized by one period of extension and one period of

flexion in every gait cycle. Fig. 3(b) gives the average

rotation pattern [27] where the upper and lower lines
indicate standard deviation. In the first half of the gait

cycle, the hip is in continuous extension as the trunk

moves forward over the supporting limb. In the second

half, once the weight has been passed onto the other limb,

the hip flexes in preparation for the swing phase. This

flexing action accelerates the hip directing the swinging

limb forward for the next step.

Running has significant biomechanical differences
from walking and you cannot just walk fast to claim that

Fig. 1. Approaches to automatic gait recognition.

Table 1 Progression of Gait Recognition Results by Symmetry [14]
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you are running. By biomechanics definitions, walking and
running are distinguished firstly by the stride duration,

stride length, velocities, and the range of motion made by

the limbs. That is, the kinematics of running differ from

those of walking where the joints’ motion increases

significantly as the velocity increases. A second difference

concerns the existence of periods when neither foot is in

contact with the ground, which does not occur in walking.

2) Variation in Gait/Covariate Factors: Load and footwear

can affect gait as can alcohol. Naturally, tight clothing can

affect gait, whereas loose-fit clothing can affect the per-

ception of gait by video. Intuitively, gait will change with

age as do most biometrics, except ears. These changes can

be due to compound changes in physiology, neurology,

and/or illness. Without rapid and convenient analysis, it is

unlikely that study of effect of aging will progress much
further and this is one area where automated gait analysis

via computer vision can make contributions beyond those

associated with biometric issues.

C. Psychology
Psychological studies support the notion that gait can

be perceived by human vision as unique. In early studies

[17] participants were presented with images produced
from points of light attached to body joints, as in Fig. 4.

When the points were viewed in static images (one of the

frames in Fig. 4) they were not perceived to be in human

form, rather that they formed a pictureVof a Christmas

tree even. Motion is the recognition cue, without it all that

is perceived is a random pattern of points. When the points

(the frames) were animated, they were immediately

perceived as representing a human in motion. Later
work showed how by point light displays a human could be

rapidly extracted and that different types of motion could

be discriminated, including jumping and dancing.

One early study showed how gender could be per-

ceived, attributed to anatomical differences which result in

greater shoulder swing for men, and more hip swing for
women. Indeed, a torso index (the hip shoulder ratio) has

been shown to discriminate gender and the identification

of gender by motion of the center of movement was also

suggested. Gender identification would appear to be less

demanding than person identification which progressed to

showing how we could identify friends [9]. Essentially,

research into the psychology of gait has not received much

attention, especially using video, in contrast with the
enormous attention paid to face recognition. One more

recent study showed [34], using video rather than point

light displays, that humans can indeed recognize people by

their gait, and to learn their gait for recognition, but again

the databases are much smaller than the 100+ subjects in

modern gait-biometric databases.

III . GAIT DATABASES

In any pattern recognition study, the database used for
evaluation will reveal potency of recognition. Primary

concerns include uniqueness and practicality, which are

usually revealed by the number of subjects in the database

and the imaging conditions, respectively. If the primary

purpose of the database is to evidence basic practicality,

then data can be derived in a laboratory scenario; if the

main aim is to show that it can be achieved by computer

vision, then the data can be derived by filming subjects
outdoors. Databases seek to include enough samples of

enough subjects to allow for an estimate of inter- and

intrasubject variation. The data described here was de-

veloped especially for purposes of evaluation and is usually

freely available for evaluation.

The current databases have a number of subjects which

is smaller than that currently used in performance com-

parison in other biometrics (like face and fingerprint). The
databases do include covariate factors and application po-

tential. A more detailed description of some of the data-

bases currently available, and their construction, focuses

on their use in an analysis of performance [31]. They

Fig. 3. Hip inclination: measurement and pattern. (a) Measured hip

inclination. (b) Variation with time.

Fig. 2. The walking cycle.
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include the Universities of Maryland (UMD)Vwhich is
outdoor data, simulating a surveillance scenario, National

Institute of Standards and Technology (NIST)/South

Florida (USF), described next, Southampton [33] which

combined outdoor with indoor (video) ground truth by

chromakey, and Carnegie Mellon University’s (CMU’s)

Mobo data which is multiview of subjects walking indoors

on a treadmill [12].

The NIST/USF Gait Challenge database consisted [31]
of 1870 sequences from 122 individuals, with video

collected for each individual for two camera views in

differing surface conditions and shoe types. The data was

collected outdoors, reflecting the added complications of

shadows from sunlight, motion in the background, and

moving shadows due to cloud cover. This database was

the largest then available in terms of number of people,

number of video sequences, and variety of conditions
under which a person’s gait was collected. This database

has been used much for evaluation and comparison of

performance. One restriction is that there is little repeti-

tion within the data, restricting analysis of within-subject

(intraclass) variation.

Each subject walked around two similar sized elliptical

courses, one on concrete and the other on a grass lawn,

Fig. 5(c). Each course was viewed by two cameras located
about 15 m from each end of the ellipse. Information

recorded in addition to the video includes sex (75% male),
age (19–54 years), height (1.47–1.91 m), weight (43.1–

122.6 kg), foot dominance (mostly right), type of shoes

(sneakers, sandal, etc.), and heel height. A little over half

of the subjects walked in two different shoe types. Thus,

for each subject there were up to eight video sequences:

ðgrass ðGÞ or concrete ðCÞÞ � ðtwo cameras; L or RÞ �
ðshoe A or shoe BÞ. Two separate data collection sessions

were held, in May and November. The dataset is quite
demanding for other biometrics, since in some cases the

only biometric that can be seen is gait, as in Fig. 5(a), and

the imagery is wholly outdoors and the lighting is

uncontrolled. Clearly, face recognition, indeed any bio-

metric analysis, on this data would be a taxing exercise.

Originally, the gait challenge concerned analysis of the data

for which no briefcase was carried and later data was added

for subjects carrying a briefcase.
A later study used manual labeling [23] to gain insight

into the relationship between recognition capability and

silhouette quality. Silhouettes were created for one gait

cycle for 71 subjects under four different conditions, (shoe

type, surface, and time) and each pixel was also labeled

according to body segment. An example is shown in

Fig. 5(b). This allows for understanding of the contribution

to recognition capability not only of body labeling, but also
of the segments.

Fig. 5. NIST/USF gait challenge data. (a) Example subject. (b) Manually labeled. (c) General view.

Fig. 4. Marker positions in gait analysis.
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IV. SILHOUETTE-BASED APPROACHES

A. Current Approaches
The approaches derive the human silhouette by sep-

arating the moving object from the background. Then, the

subject can be recognized by measurements that reflect

shape and/or movement. Some techniques impose a model

of the gait sequence, and process a period of gait in-

formation whereas others derive the measures for a long
sequence of images. As we shall find, the simplest ap-

proach is to simply form an average of the silhouette

whereas the more complex impose a model on the motion.

We shall illustrate this range by considering techniques

that have operated on extensive data, or multiple datasets.

A prime example of a model-free approach is two

approaches from UMD: Kale et al. and Sundaresan et al.’s
deployment of hidden Markov models (HMM) [18], [35]
which consider two different image features: the width of

the outer contour of a binarized silhouette and the entire

binary silhouette itself. An indirect approach to forming a

feature vector uses a frame to exemplar distance (FED)

which captures a subject’s shape and their motion, under

the assumption that the camera is sufficiently distant that

the moving subject can be considered to be planar. The

information in the FED vector sequences is captured using
an HMM. A direct approach used the feature vector

directly (as opposed to computing the FED) for training an

HMM. The observation probability is estimated using the

distance between the exemplars and the image features.

Results analyzed on the Mobo, UMD, and USF/NIST

databases reveal good performance for gait recognition.

Rather than repeat similar performance figures for each

technique, the performance is usually of the capability that
recognition rates exceeding 90% are achieved. As in any

deployment of pattern recognition one can raise capability

to 100% on a selected dataset by specialized tuning.

BenAbdelkader et al.’s approach using self similarity

and structural stride parameters (stride and cadence) [1]

used PCA applied to self-similarity plots that are derived by

differencing. The self-similarity matrix encodes the

frequency and phase of gait and thus preserves the dy-
namics of gait. Classification was performed by k-nearest

neighbor and evaluated on the UCSD data showing that

recognition could be achieved. An extended analysis

confirmed performance on the Mobo and UMD data [2].

Sarkar et al.’s approach performs recognition by

temporal correlation of silhouettes [31]. The aim was to

develop a technique against which future performance

could be evaluated (Section IV-B). This was achieved by
semiautomatic definition of a bounding box from which a

silhouette was matched. Then, the gait period was

estimated for use in partitioning sequences for temporal

classification. The approach was then evaluated on the

Mobo data and on the NIST/USF data, in comparison with

a selection of other approaches. This allowed determina-

tion of the covariates with the greatest impact, which in

one test turned out to be the surface on which subjects
walked and the time interval between data recording. The

influence of the surface might be that the probe was

selected as grass which is rather more unforgiving

(uneven) than the concrete surface.

Vega et al. use the change in the relational statistics

among the detected image features (which can handle

running too) [39] and which removes the need for object

models, perfect segmentation, or part-level tracking. The
relational statistics are modeled using the probability that

a random group of features in an image would exhibit a

particular relation. These distributions are represented in

a space of probability functions, where the Euclidean

distance is related to the Bhattacharya distance between

probability functions. Different motion types sweep out

different traces in this space. As with other approaches,

this is generic to motion analysis and is used to recognize
by gait with evaluation on an early version of the NIST/

USF data with high confidence, especially with respect to

change in viewpoint. Liu et al. have also developed an

average silhouette [24] which is perhaps the simplest

recognition feature and had also been used by Veres et al.
[40] and by Han et al. [13], though in a study of potency

(Section IV-C). Recognition used the Euclidean distance

between the averaged silhouette representations and the
technique was shown to be considerably faster than the

baseline algorithm. Experiments with portions of the aver-

age silhouette representation showed that recognition

power is not entirely derived from upper body shape;

rather the dynamics of the legs also contribute equally to

recognition. As will be considered later on analysis of

potency, it then raises a feature selection problem: by what

can one, or should one, recognize gait?
Collins et al. used key frame analysis for sequence

matching [7] with innate viewpoint dependence. The key

frames were compared to training frames using normalized

correlation, and subject classification was performed by

nearest neighbor matching among correlation scores. The

approach implicitly captures biometric shape cues such as

body height, width, and body-part proportions, as well as

gait cues such as stride length and amount of arm swing.
The approach was evaluated on the Mobo dataset, and on

early versions of the UMD and Southampton and MIT

databases showing excellent performance. In another ap-

proach from CMU, Liu et al. used Bfrieze patterns[ [22]

derived from image sequences by compressing images into

a concatenated pattern, with some similarity to the earliest

approach [30]. Later, Tolliver et al. were to show [37] that

people could be recognized by shape with especial con-
sideration of noisy silhouettes.

The University of Southampton’s newer approaches

range from a baseline-type approach by Foster et al.’s
technique measuring area [10], to extension of technique

for object description including symmetry by Hayfron-

Acquah et al. [15] (with some justification from psychology

studies) and Shutler et al.’s statistical moments [32]. These
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integrate shape with motion, explicitly considering
measures derived from a single period in the gait cycle.

Lee et al. used ellipsoidal fits to human silhouettes [20].

Evaluation was performed on the MIT and the Mobo data,

also with consideration of gender classification (which was

achieved) and of potency for gender classification (for

which the thigh orientation was ranked as most potent).

Wang et al. developed an eigenspace transformation

of an unwrapped human silhouette [42]. For each image
sequence, an improved background subtraction proce-

dure is used to extract moving silhouettes of the walking

figure from the background. Temporal changes of the

detected silhouettes were then represented as an asso-

ciated sequence of complex vector configurations in a

common coordinate frame, and were further analyzed

using Procrustes analysis to obtain the mean shape for use

as a gait signature. The full Procrustes distance measure
was used for classification by nearest neighbor techniques.

This implicitly uses the action of walking to capture the

structural characteristics of gait, especially the shape cues.

The technique was naturally dependent on clothing and

on view, a factor common to most silhouette based tech-

niques. Almost contemporaneously, CASIA used eigen-

space transformation of distance signals derived from

sequences of silhouettes [43].
Bhanu et al. used kinematic and stationary features [4]

by estimating three-dimensional (3-D) walking param-

eters by fitting a 3-D kinematic model to two-dimensional

(2-D) silhouettes. Shape and structure was extracted

separately and then combined for recognition. Han et al.
[13] were also to use the Gait Energy Image formed by

averaging silhouettes and then deployed PCA and

multiple discriminant analysis to learn features for fusion.
These were deployed to good effect on the NIST data,

with performance generally exceeding the baseline

algorithm.

Of the more recent approaches, Zhao et al. [49] used

the mean amplitude of key poses, evaluated on the NIST/

USF gait challenge data, to achieve recognition. Lee et al.
separates gait into style and content by generating

temporally aligned gait sequences via local linear embed-
ding with separation by a bilinear model and achieved good

performance on the gait challenge database [19]. Boyd’s

more recent approach straddles model-based and model-

free approaches, by synchronizing the oscillation of pixel

intensity with those of arrays of phase-locked loops [6]

with patterns analyzed by Procrustes Analysis and

directional statistics, and evaluated on Carnegie-Mellon

Mobo and the Southampton databases.

B. Results on the NIST/USF Gait Challenge Data
The NIST data contains different covariate factors:

view concerns change in viewpoint, shoe concerns change

in footwear, surface concerns the nature of the surface the

subject walked on (either grass or concrete), time con-

cerns imagery of the same subject gathered at a different

time. Results here are for an automated technique, based
on averaging over a single gait cycle [11] with automatic

background/foreground segmentation, subject tracking,

period detection, and silhouette generation. The results

here are for identification PI quoted for the closest match

(rank 1) and the closest match within the five nearest

matches (rank 5), using a subset of the gait challenge data,

compared with those by the baseline approach [31].

Recognition was best for change in viewpoint and for
which at best 75% identification rate and 98% correct for

the subject to be within the five closest matches. Certainly,

tuning the analysis can improve the results; the issue here

is more the variation over the covariate factors. Clearly,

recognition can be achieved over most of the covariates

represented in the gait challenge data and this pattern of

performance is repeated over many studies using the NIST

data [31]. This analysis is demanding in that for outdoor
images the feature vector describes an average silhouette

automatically derived for a single gait cycle which is then

matched to the feature vector describing a single cycle

automatically derived from a different sequence. In

contrast the baseline approach used template matching,

with manual intervention. This provided a minimum per-

formance which a selection of automated approaches

rivaled on an earlier database release [31].
The receiver operator characteristic is shown in Fig. 6,

which reflects the analysis in Table 2 for the same

covariates. These are labeled from a to l and it can be seen

that recognition over different views quickly rises to 100%

(trace a) whereas recognition (at the lowest extreme) over

time only just reaches 100% over all samples (trace l).

There are many facets which complicate comparison of

performance, ranging from the data itself, to implemen-
tation of techniqueVespecially on automated template

generation, that exacerbate problems in comparing recog-

nition performance, but the Gait Challenge analysis

certainly showed that recognition by gait could be achieved

on outdoor data (on data where other biometrics could not

be deployed) and that some covariates could affect rec-

ognition more adversely than others.

C. Data Potency
First the Southampton databases (which include

covariates) were analyzed separately using ANOVA and

PCA to find out which image information (features) is

redundant, which features have a relatively high variation

between the subjects, and how the original feature set

could be reduced without reduction in the variance-

explained and the recognition rate. All databases have
redundant features and they are not necessarily all the

same. This is important in applications, since it suggests

areas on which a camera or feature extraction approach

might concentrate. However, to jointly compare disparate

databases, the datasets have to be reduced to the same

number of features. Therefore, the shared important fea-

tures between three databases were determined and we

Nixon and Carter: Automatic Recognition by Gait
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investigated how reduction in these features could affect

recognition. The recognition rate was calculated using
Euclidean distance and the nearest neighbor rule. A more

sophisticated classifier was not used, since the important

factor was only the relative reduction/increase in recog-

nition rate at this stage.

Two sets of important features, which are the same in

all three databases, were considered. First, the features

which explain 100% of variance in each data set, i.e., 236,

1001, and 217 features from the three databases. These
features contain 115 shared among the datasets. Fig. 7

shows the location of shared 115 features on silhouette at

the left top picture. The shared features cover the contours

of head, body, some legs, and some features of arm. The

bottom left picture in Fig. 7 shows how recognition rate

changes with adding additional features. Again here the

solid line describes dependency of significant features

versus recognition rate (46.3% for 115 features), while the
dashed line corresponds to recognition rate when all

features are considered (56.4%). In this case 17.9% of

recognition rate was lost. Then, further reduction was

tried. From each dataset 150 features obtained by PCA

earlier were compared and 79 shared features were

selected. It was found out that 79 features explain

approximately 84% of variance in each database. These

features were projected back onto silhouette and presented
in Fig. 7, top right. In this case the most important shared

features are contours of the head and body. The rec-

ognition rate versus the shared features is presented in

bottom right picture of Fig. 7. In this case recognition rate

for 79 features was 41.3% in comparison to 56.4% for all

4096 features, i.e., a reduction of 26.8%. Practically it

Fig. 6. Receiver operator characteristic: averaged silhouette on gait challenge data.

Table 2 Gait Challenge Analysis: Baseline Versus Averaged Silhouette

Nixon and Carter: Automatic Recognition by Gait

Vol. 94, No. 11, November 2006 | Proceedings of the IEEE 2019



means that it is not enough for a differential silhouette to

include only the static component of gait, in spite of the

fact that static components of gait account for 84% of

explained variance. This reveals an intimate relationship

between technique and observation: an averaged silhou-

ette reduces the contribution of the legs and this is re-

vealed in the potency of the measures used. The covariate

analysis here has included basic factors and not behavioral
factors.

V. MODEL-BASED APPROACHES

A. Overview
The model-based approaches aim to derive the move-

ment of the torso and/or the legs. Unlike the silhouette-

based approaches this usually concentrates on dynamics,

omitting body shape. The distinction of a structural ap-

proach is one which uses static parameters illustrated in

Fig. 8(a) whereas a model can be the (relative) motion of

the angles (�, �, and �) between the limbs, shown in

Fig. 8(b).
BenAbdelkader et al.’s approach using self similarity

and the use of structural stride parameters (stride and

cadence) [3] is a prime example of a model-based approach

which uses structural measures. Cadence was estimated

via periodicity; stride length was estimated as the ratio of

the distance traveled (given calibration) to the number of

steps taken. By analysis on the UMD data, the variation in

stride length with cadence was found to be linear and

unique for different people, and was used not just for

recognition, but also for verification.

Bobick et al. from GaTech used structural human stride

parameters [5] which is the other example of a structural

model-based approach. The method used the action of

walking to derive relative body parameters which de-

scribed the subject’s body and stride. The within-class and
between-class variation were analyzed to determine

potency and on motion capture data the relative body

parameters appeared to have greater discriminatory power

Fig. 8. Model-based approaches to gait description. (a) Structural.

(b) Modeling.

Fig. 7. Analyzing the potency of silhouette measures [40].
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than the stride parameters. Another structural approach,

by Tanawongsuwan et al., used joint angle trajectories,

derived by markers placed on joint positions in the legs and

on the thorax [36]. A simple method was used to estimate

the planar offsets between the marker positions and the

underlying skeleton and the variation in joint angles (such

as the orientation of the femur relative to the back) with
time was then derived. A variance compensated time

warping was used to compensate for temporal variations.

Yam et al. extended an earlier model-based system [8]

to describe both legs and to handle walking as well as

running [46]; an alternative model-based system uses

evidence gathering as an initial step, followed by model-

based analysis driven by anatomical constraints and data

and evaluated on the Southampton dataset with an analysis
of feature potency [41] was developed by Wagg et al.

In Wang’s other study [44], a model-based approach

derived the dynamic information of gait by using a Con-

densation framework to track the walker and to recover

joint-angle trajectories of lower limbs. The human body

model used fourteen rigid body parts, including upper and

lower torso, neck, two upper arms, two lower arms, two

thighs, two lower legs, two feet, and a head, each of which
was represented by a truncated cone except for the head,

which was represented by a sphere. Tracking was used to

derive joint angle trajectories which were normalized as in

an earlier manner [36]. The static body information is
derived from temporal pose changes of the segmented

moving silhouettes which were represented as an associ-

ated sequence of complex vector configurations and were

then analyzed using the Procrustes shape analysis method

to obtain a compact appearance representation. Both the

static and dynamic cues may be used independently for

recognition and were also fused on the decision level using

different combinations of rules to improve the identifica-
tion and verification performance. Experimental results

confirmed that body angle trajectories are indeed useable

for recognition, as expected.

Zhang et al.’s approach [48] concerned the change in

orientation of human limbs. The extraction is model-based

and the description is structural making this a blend of the

two model-based approaches described so far. The lower

limbs were represented by trapezoids and the upper body
was planar without the arms. Given distances normalized

by height of the thorax, the human body posture was

represented by a set of distance measurements and incli-

nations of its constituent parts. The gait features were

extracted from gait sequences by the Metropolis–Hastings

method to match body parts to the image data. The

sequence fit was achieved by minimizing an energy

functional which allows for derivation of elevation angles
which describe dynamics of gait and trajectories of joint

positions which describe spatiotemporal history. The

approach thus centered on capturing temporal differences

by extracting the elevation of the knee and ankle and the

width at the knees and ankles. As these are periodic, they

were described by Fourier analysis and then classified via

an HMM. The procedure was evaluated on the CMU

Mobo and on the NIST databases and shown to have
discrimination capability, with better results on the Mobo

database. Clearly it enjoys the advantages of model-based

techniques in that the data used for classification is

intimately linked to gait itself.

Again, there are emergent studies of the potency of

the various model-based measures which is important for

camera placement in application and for development of

new recognition techniques, here for an extended model
[41] shown in Fig. 9. The recognition measures were

analyzed by using ANOVA and for the performance on the

Southampton indoor and outdoor datasets [41]. This gives

for an analysis of potency, shown in Table 3, with the

Table 3 Potency of Model-Based Gait Measures [41]

Fig. 9. Extending the model in feature-based analysis.
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highest F-statistic giving greatest discriminatory capability
and hence the highest rank. This is then similar to the

earlier analyses of potency of silhouette measures and

suggests that the majority of the system’s discriminatory

capability is derived from gait frequency (cadence) and

from some static shape parameters. These shape para-

meters will be highly dependent on clothing, which may

limit the utility of performing recognition solely on the

basis of these parameters. These results may in part explain
why some approaches using primarily static parameters [5]

or cadence [3] achieve good recognition capability from

few parameters. There is a significant reduction in

discriminatory capability in the outdoor dataset compared

to the indoor dataset, resulting from the lower extraction

accuracy, but there is still a strong case for recognition

potential using this data.

VI. CONCLUSIONS AND FUTURE WORK

A. Overall Conclusions
The unique advantage of gait is that it can be used at a

distance when other biometrics could be obscured or at too

low a resolution to be perceived. Gait can be perceived for

identification purposes by analyzing a sequence of images
using extant or new computer vision techniques. Auto-

matic recognition by gait is now in a position where its

properties and potency are comparable with other

biometrics; it is very encouraging that the progression to

much larger databases has been accompanied by recogni-

tion performance that confirms that people can indeed be

recognized by their gait. The studies have concentrated not

only on the possibility of recognizing someone by their
gait, but also on the uncertainty associated with identifi-

cation. Two main classes of approach have emerged, as

common with many applications of pattern recognition: to

either use ensemble statistics or to model features, both

can be used to achieve high recognition rates on the

available databases. The current databases and techniques

arose mainly during DARPA’s Human ID at a Distance

program; the databases test a range of application
capabilities and lessons learned from developments in

other biometrics have led to the inclusion of covariate data

for evaluation of application potential. The new techniques

have been deployed to good effect on the new databases,

which contain at least 100 subjects. Further to the study of

covariates, researchers have addressed the potency of the

measures made of gait to determine which factors

contribute most to recognizing people by their body shape
and how it moves. Other factors germane to the study of

gait include viewpoint invariance and pure 3-D approaches

and we anticipate further developments to be made in

these. The study of covariates is innate to pattern rec-

ognition and we look forward to approaches which are not

only invariant to deployment, but also to the covariatesV
with an especial consideration of time, since this is innate

to any behavioral biometric. In application it is not
unlikely that these approaches, and other studies in

computer vision, will lead to the emergence of markerless

systems for analysis of human gait for other purposes, such

as for medical diagnosis and therapy. This will alleviate

some of the difficulty in deployment of gait analysis and

these studies have already started. Naturally, deploying

gait as a biometric implies processing sequences of images

and could not even have been addressed without the
continuing advance in processing power and availability of

storage. In this respect we look forward to the opportu-

nities that will arise from the improvements in computa-

tional capabilities. In all, it has been fascinating to have

seen a biometric evolve from a nascent stage when it

appeared possible to recognize people by the way they

walk, though only on very small databases, to the current

very sophisticated techniques which can handle demand-
ing databases to good effect. As such, we look forward to

developments in this emergent and fascinating new

biometric.

B. Further Work
As gait is fundamental to human motion, it is not

unlikely that gait could find deployment in many other

areas. In surveillance, gait has yet to find use and this is in
part due to development of technique. It is only recently

that gait has been demonstrated to be able to recognize

people on large databases of outdoor data. Even then, its

use in surveillance video analysis for forensic purpose

mandates the ability to perform 3-D analysis from images

derived by a single camera. There are viewpoint invariant

approaches and the model-based approaches do have

limited viewpoint invariance. These are insufficiently
generalized for forensic analysis. There is a consideration

that the likelihood of error, in analyzing single frames

derived from low-resolution surveillance video, is likely to

be sufficiently low so as to preclude forensic use. This

error will be reduced by analyzing sequences of video

data, though experimentation will be required to deter-

mine by how much this occurs. As such, we await devel-

opment for forensic deployment, though early and very
recent studies have shown that BSurveillance images from

a bank robbery were analyzed and compared with images

of a suspect. Based on general bodily features, gait, and

anthropometric measurements, we were able to conclude

that one of the perpetrators showed strong resemblance

to the suspect.[ [26]. There is of course concern at such

developments: DARPA’s HumanID at a Distance pro-

gram was even nominated as BPrivacy Villain of the
Week[ in 2002.

It is much more likely that the use of gait in sur-

veillance video will be to signal events likely to be of in-

terest. By way of example, the ability to discriminate

between litter blowing into a perimeter fence and a person

walking near it or climbing it would make an operator

focus on relevant data, and so long as the false alarm rate is
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sufficiently low then this will improve overall response of a
surveillance system. In this respect some of the approaches

to gait are already sufficiently simple, such as the averaged

silhouette or the use of area, to make video-rate analysis

possible. Certainly, the frameworks require viewpoint

invariance and ability to disambiguate articulated motion

but this is a much simpler target than full recognition by

gait. These technologies are largely ready for such de-

ployment, now.

Use in animation is likely to be longer away. Computer
vision researchers have been synthesizing human faces

for some time, and this has been used for face recognition

(by using it as a vector to achieve viewpoint invariance).

Further, approaches have moved to realistic depiction of

the human shape and these could use gait biometrics to

better model motion, reflecting the wider contribution

possible from these studies and the basic nature of gait in

human movement. h
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