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Abstract
Dielectric spectroscopy is a powerful tool for investigating the dielectric
properties of biological particles in suspension. For low volume fractions,
the dielectric properties of the particles are related to the measured properties
of the suspension by Maxwell’s mixture equation. A number of different
techniques can be used to measure the dielectric spectrum in the frequency
domain or the time domain. In time domain dielectric spectroscopy, data can
be converted into the frequency domain using convolution or Fourier
transform, prior to data analysis. In this paper, we present a general method
for transforming Maxwell’s mixture equation from the frequency domain to
the time domain allowing analysis of cell dielectric properties directly in the
time domain. The derivation is based on the Laplace transform of the single
shell model for a spherical particle, and can be extended to the multi-shell
model. For a single shelled cell two characteristic relaxation time constants
are derived. The results are compared with published analytical models. We
show that the original frequency dependent mixture equation can be
recovered by Fourier transform back to the frequency domain. As a result, a
general relationship for the dielectric response of a mixture of particles is
presented which links the frequency and time domains.

1. Introduction

The complex dielectric properties of suspensions of particles,
such as cells, bacteria, water–oil emulsions and viruses have
been studied extensively for many years. Measurements
provide information about the structure, function and electrical
characteristics of the system. The early work of Maxwell [1]
and Wagner [2], Fricke [3–5], Cole [6–8] and Schwan [9–12],
amongst others, laid the foundations for this field of research;
see [13] for a review. The frequency dependent dielectric
properties of a mixture of membrane-bound particles are
characterized by a pronounced dielectric relaxation in the 1–
100 MHz range which is due to interfacial charging, and was
termed the β-relaxation (for cells) by Schwan [10]. A cell has
a thin insulating membrane, and the measured permittivity of
a suspension of cells has a very high value at low frequencies
due to charging of this membrane. As the frequency increases,
the value of the permittivity decreases, approaching that of the
suspending medium.

1 Author to whom any correspondence should be addressed.

The most widely used technique for analysis of cell
suspensions is broad-band frequency domain dielectric
spectroscopy. For suspensions of low volume fraction, the
properties of the particles are related to the properties of the
suspension through the well-known mixture theory, developed
by Maxwell and Wagner 1. This approach works well for
volume fractions less than 10% and the analysis was extended
for higher concentrations by Bruggeman [14] and Hanai
[15–17]. For the specific case of a particle with a thin single
shell, i.e. a cell, suspended in a homogeneous suspending
medium, there are two characteristic relaxation frequencies
(or time constants in the time domain). This is because
the poorly conducting membrane separates the cytoplasm
and the suspending medium and it takes time to charge
the membrane through the conducting phase in and outside
the cell membranes [18]. The lower frequency dispersion
(<20 MHz) is related to the polarization of the cell membrane
and measurement of this parameter provides information
on the dielectric properties of the particle, particularly the
capacitance of the membrane. The higher frequency dispersion
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(>50 MHz) is the interfacial relaxation of the cell interior
and exterior, as the membrane is effectively short-circuited
at higher frequencies. The size of this dispersion is generally
very small and not evident in measurements except in specific
cases. For example, Zhang et al [19] measured the dielectric
relaxation of polystyrene microcapsules and measured two
relaxations, termed the P and Q dispersion.

Over the last decade, new high speed measurement
techniques have been developed [20] that are based on
time domain methods rather than frequency sweep methods.
These approaches enable broad-band frequency spectra to be
obtained in a short time period. Data is collected in the
time domain and then converted into the frequency domain
using methods such as convolution or Fourier transform. Data
analysis is generally performed in the frequency domain. In
certain cases it would be advantageous to be able to analyse
and simulate the time-dependent behaviour of a collection of
particles directly in the time domain. Examples include the
behaviour of particles (cells) that move in the electric field
or measurement of dynamic processes occurring in cells, for
example chemical or electric field-induced changes (e.g. lysis
or electroporation).

In this paper, we present a general method for the
derivation of Maxwell’s mixture equation in the time domain,
based on the Laplace transformation. The approach is similar
to that used by Kotnik et al [21] to analyse the transmembrane
voltage of a cell during electroporation and electrofusion, and
Foster [22] who used the Laplace transform to calculate the
impulse response for the inner and outer membranes of a
cell. In our work, the time constants for a single shelled
cell model are analytically solved, taking into account the
volume fraction. Finally, an analytical expression for the
dielectric properties of a cell in suspension is derived in the
time domain and compared with the well-known frequency
domain expression.

2. Theoretical calculations

The theoretical derivation of the time domain expression of
Maxwell’s mixture formula is based on the following three
assumptions.

A. The cell is assumed to be homogeneous and spherical and
modelled using the single shell model.

B. The cell is located in a uniform electric field.
C. The medium is considered non-dispersive in the frequency

range of interest.

For a spherical particle dispersed in a suspending medium at
a low volume fraction, ϕ (�1), Maxwell’s mixture equation
(see [23] for the derivation) gives the steady-state value of the
equivalent complex dielectric permittivity of the mixture in the
complex frequency (jω) according to

ε̃mix = ε̃m
1 + 2ϕf̃CM

1 − ϕf̃CM

, (1)

where ε̃mix, ε̃m, ε̃p are the complex permittivity for the mixture,
suspending medium and the particle, respectively, and f̃CM is
the complex Clausius–Mossotti factor

f̃CM = ε̃p − ε̃m

ε̃p + 2ε̃m
. (2)

Figure 1. Schematic diagram of a single shelled spherical particle in
a homogeneous suspending medium.

For a single shelled cell model, ε̃p is given by

ε̃p = ε̃mem
γ 3 + 2K23

γ 3 − K23
, (3)

where

K23 = ε̃i − ε̃mem

ε̃i + 2ε̃mem
and γ = R + d

R
.

Here ε̃mem and ε̃i are the complex permittivity of the cell
membrane and cytoplasm, respectively. R is the inner radius
of the cell and d (d � R) is the thickness of the membrane, as
shown in figure 1. A general complex permittivity is given by

ε̃(jω) = ε +
σ

jω
, (4)

where ε is the permittivity, σ is the conductivity and ω is the
angular frequency.

In order to link the frequency domain solution to the time
domain, we replace jω by the parameter s in equation (4),
leading to

ε̃(s) = ε +
σ

s
. (5)

Using this parameter in equation (3) gives

ε̃p(s) = εmems + σmem

s

×{
s[γ 3(εi + 2εmem) + 2(εi − εmem)] + γ 3(σi + 2σmem)

+2(σi − σmem)
}

×{
s[γ 3(εi + 2εmem) − (εi − εmem)] + γ 3(σi + 2σmem)

−2(σi − σmem)
}−1

.

(6)

Substituting equation (6) into equation (2) gives the Clausius–
Mossotti factor in terms of the parameter s:

f̃CM(s) = A(εmems + σmem) − B(εms + σm)

A(εmems + σmem) + 2B(εms + σm)
. (7)

The expressions for the coefficients A and B are given in
appendix I. Substituting equation (7) into equation (1) gives
the complex permittivity of the mixture in the s-domain as

ε̃mix(s) = (εms + σm)(C + 2ϕD)

s(C − ϕD)
. (8)
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Expanding the coefficients C and D, (given in appendix I) then
equation (8) is written as

ε̃mix(s) = (εms + σm)(a1s
2 + a2s + a3)

s(b1s2 + b2s + b3)

= a1(εms + σm)(s − s1)(s − s2)

b1s(s − s3)(s − s4)
. (9)

The coefficients an and bn (n = 1, 2, 3) are given in appendix
I. The zeros in the numerator and poles in the denominator sk

(k = 1, 2, 3, 4) are given by

s1,2 =
−a2 ±

√
a2

2 − 4a1a3

2a1
, (10a)

s3,4 =
−b2 ±

√
b2

2 − 4b1b3

2b1
. (10b)

For the inverse Laplace transform, equation (9) is written as

ε̃mix(s) = εma1

b1
+

c1s
2 + c2s + c3

b1s3 + b2s2 + b3s

= εma1

b1
+

c1(s − s5)(s − s6)

b1s(s − s3)(s − s4)
, (11)

where the coefficients cn (n = 1, 2, 3) are given by

c1 = εma2 + σma1 − εma1b2

b1
, (12a)

c2 = εma3 + σma2 − εma1b3

b1
, (12b)

c3 = σma3 (12c)

and the zeros s5 and s6 are given by

s5,6 =
−c2 ±

√
c2

2 − 4c1c3

2c1
. (13)

Applying the inverse Laplace transform to equation (11) gives
the time domain expression for the mixture equation

εmix(t) = εma1

b1
δ(t) + (k1 + k2e−t/τ1 + k3e−t/τ2)U0(t), (14)

where δ (t) is the unit impulse function, U0(t) is the unit step
function and the coefficients kn (n = 1, 2, 3) are given by

k1 = c1s5s6

b1s3s4
= σma3

b3
, (15a)

k2 = c1(s3 − s5)(s3 − s6)

b1s3(s3 − s4)
, (15b)

k3 = c1(s4 − s5)(s4 − s6)

b1s4(s4 − s3)
. (15c)

The two time constants τ1 and τ2 in equation (14) are given by

τ1 = − 1

s3
= 2b1

b2 −
√

b2
2 − 4b1b3

, (16a)

τ2 = − 1

s4
= 2b1

b2 +
√

b2
2 − 4b1b3

. (16b)

The complex permittivity and conductivity are related by

σ̃mix(s) = sε̃mix(s). (17)

The time domain expression for the conductivity can be derived
by a similar procedure, as shown in appendix I.

3. Discussion

3.1. Characteristic relaxation time constants

As shown by equation (16), the time domain response of
the dielectric properties of the mixture of cells has two
characteristic time constants τ1 and τ2. The first time constant,
τ1, characterizes the cell membrane. The second time constant,
τ2, characterizes the polarization of the interior of the cell
(cytoplasm) with respect to the extracellular phase (suspending
medium). These two time constants were characterized
in Pauly and Schwan’s paper [9], which was based on a
frequency domain analysis of Maxwell’s mixture theory [1].
In their paper, they adopted a simplified model based on three
approximations.

(a) The conductivity of the cell membrane was considered to
be very small in comparison with the cytoplasm and the
suspending medium (σmem � σm and σi). This enables
some terms containing σmem to be neglected.

(b) It was assumed that the membrane thickness is small when
compared with the particle radius (d � R). This lead to
the approximation

γ 3 =
(

R + d

R

)3

≈ 1 + 3
d

R
. (18)

(c) The displacement current in the suspending medium and
the cytoplasm is negligible compared with the conduction
current. This leads to the assumption that the suspending
medium and cytoplasm are pure conductors, which is only
valid at frequencies much lower than the charge relaxation
frequency of the system, leading to

εm = εi = 0 (19)

Taken together, these three approximations make τ1

independent of the permittivity of the suspending medium
and the cytoplasm and τ2 independent of the permittivity and
conductivity of the membrane.

Using equations (18) and (19) in our model and
expanding equations (16a) and (16b), we obtain (see details
in appendix II)

τ1 = Rεmem [(2 + ϕ)σm + (1 − ϕ)σi]

(2 + ϕ)σm(dσi + Rσmem) + R(1 − ϕ)σiσmem
, (20a)

τ2 = (1 − ϕ)εi + (2 + ϕ)εm

(1 − ϕ)σi + (2 + ϕ)σm
. (20b)

Introducing the general expression for the specific membrane
capacitance Cmem = εmem/d and specific membrane
conductance Gmem = σmem/d , then equation (20a) becomes
the well-known time constant expression given by Pauly and
Schwan [9]:

τ1 = RCmem

1
σi

+
(

1−ϕ

2+ ϕ

)
1

σm

1 + RGmem

[
1
σi

+
(

1−ϕ

2+ ϕ

)
1

σm

] . (21)

For the low volume fraction case, ϕ << 1, equations (21) and
(20b) become

τ1 = RCmem

1
σi

+ 1
2σm

1 + RGmem

(
1
σi

+ 1
2σm

) , (22a)

τ2 = εi + 2εm

σi + 2σm
. (22b)
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Equation (22a) is the simplified form of the expression for the
time constant τ1 for small volume fractions. This expression
was also derived by Kotnik et al [21] by applying the Laplace
transformation to an expression for the transmembrane voltage,
derived for a spherical cell in an infinite homogeneous electric
field. In this paper, our analysis includes the effect of
the volume fraction, using Maxwell’s mixture equation, to
represent measurements of real systems. Equation (22b) is
the Maxwell–Wagner relaxation time constant for a single
homogeneous sphere suspended in a homogeneous medium,
due to the accumulation of free charge at the surface of the
sphere [23].

By contrast to Pauly and Schwan’s model, the three
approximations outlined above are not required for our
analytical model. Compared with the derivation of Kotnik
et al [21], the inclusion of the volume fraction into our model
makes it amenable for the analysis of the dielectric properties
of particles in suspension. The special case of zero volume
fraction (ϕ = 0), no particle in the suspending medium, is
analysed in appendix III.

3.2. Time domain dielectric spectroscopy analysis

According to equation (14), the dielectric response of the
permittivity of a mixture in the time domain can be separated
into three parts.

(i) The instantaneous response.
The instantaneous response (at t = 0) is given by

εmix(t)|t=0 = εma1

b1
. (23)

For small volume fraction ϕ << 1, we neglect terms
containing ϕ, leading to a1/b1 = 1, so that

εmix(t)|t=0 = εm. (24)

Therefore, the instantaneous response is dominated by the
permittivity of the suspending medium.

(ii) The steady-state response.
The steady-state response is given by the term k1U0(t),
which is non-zero for all times except t = 0. When time
tends to infinity, the response of the dielectric properties
of the mixture becomes

εmix(t)|t→∞ = k1 = σma3

b3
. (25)

Following the same argument as above for small volume
fractions ϕ << 1, we neglect terms containing ϕ, to give
a3/b3 = 1, so that

εmix(t)|t→∞ = σm. (26)

This shows that the steady-state response is governed by
the conductivity of the suspending medium.

(iii) Charging exponential response (intermediate times).
The charging (exponential) response is related to the two
time constant terms: k2e−t/τ1U0(t) and k3e−t/τ2U0(t). The
dielectric dispersion of each characteristic relaxation time
constant can be derived in the time domain as

	εt1 = k2, (27)

	εt2 = k3. (28)

It can be seen that these dielectric decrements are
independent of time and are defined by the properties of
the cell and medium.

3.3. Frequency domain dielectric spectroscopy analysis

The time domain response can be converted back into the
frequency domain by Fourier transform of equation (16) to
give

ε̃mix(ω) = εma1

b1
+

k2τ1

1 + jωτ1
+

k3τ2

1 + jωτ2
+

k1

jω
. (29)

From equation (29), we have

ε̃mix(∞) = εma1

b1
, (30)

	εω1 = k2τ1, (31)

	εω2 = k3τ2, (32)

σ0 = k1. (33)

Equation (30) gives the limiting high frequency complex
permittivity; 	εω is the magnitude of the dielectric dispersions,
with characteristic relaxation time constant τ ; and σ0 is the
limiting low frequency conductivity. It can be seen that 	εω

and τ are all frequency independent positive numbers [24,25].
By separating the real and imaginary parts of equation

(29), we have

ε̃mix(ω) = εma1

b1
+

k2τ1

1 + ω2τ 2
1

+
k3τ2

1 + ω2τ 2
2

− j

×
(

k1

ω
+

ωk2τ
2
1

1 + ω2τ 2
1

+
ωk3τ

2
2

1 + ω2τ 2
2

)
. (34)

Comparing the format of equations (4) and (34), it can be
seen that the recovered relative permittivity and conductivity
of the mixture is obtained from the real and imaginary part,
respectively:

εmix(ω) = 1

ε0

(
εma1

b1
+

k2τ1

1 + ω2τ 2
1

+
k3τ2

1 + ω2τ 2
2

)
, (35)

σmix(ω) = ω

(
k1

ω
+

ωk2τ
2
1

1 + ω2τ 2
1

+
ωk3τ

2
2

1 + ω2τ 2
2

)
. (36)

We now compare the recovered dielectric spectrum
(permittivity and conductivity) with the original mixture
equation (equation (1)) for two cases: low (σm = 0.016 S m−1)
and high (σm = 1.6 S m−1) suspending medium conductivity.
Other parameters are εo = 8.854 × 10−12 F m−1, R = 3 ×
10−6 m, d = 5 × 10−9 m, εm = 80 × εo, εmem = 5 × εo,
σmem = 10−8 S m−1, εi = 60×εo, σi = 0.4 S m−1 and volume
fraction ϕ = 0.0098 � 1.

Figure 2 shows a comparison of the relative permittivity
and conductivity spectra derived from the mixture equation
(real and imaginary part of equation (1)) and the recovered
equations (equations (35) and (36)). It is clear that there is
perfect agreement between both approaches, validating that
equations (34) is an equivalent form of Maxwell’s mixture
equation (equation (1)), written in terms of characteristic
relaxation time constants.
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Figure 2. (a) Comparison of the frequency dependent relative
permittivity derived from the original (——) and recovered (�)
mixture equation for low conductivity suspending medium. (b)
Comparison of the frequency dependent conductivity derived from
the original (——) and recovered (�) mixture equation for low
conductivity suspending medium. (c) Comparison of the frequency
dependent relative permittivity derived from the original (——) and
recovered (◦) mixture equation for high conductivity suspending
medium. (d) Comparison of the frequency dependent conductivity
derived from the original (——) and recovered (�	) mixture equation
for high conductivity suspending medium.

3.4. Relationship between time domain and frequency domain

From the above expression we derive equations for the
dielectric permittivity in both time and frequency domains.
Let us examine the relationship between these two domains.

For equations (25) and (30), we have

εmix(t)|t=0 = εma1

b1
= ε̃mix(∞). (37)

Equation (37) relates the instantaneous response of the
complex permittivity of the mixture in the time domain to
the high frequency limit in the frequency domain. At high
frequencies the charge movement (which creates the induced
dipoles) is fast and can only be observed in a very short time
window. When t = 0, the instantaneous response of the
mixture is determined by the initial energy storage capacity
(or charge accumulation) of the system. This is dominated
by the permittivity of the suspending medium. As time goes
on, the charges are set into motion by the external field, and
the response of the system begins to be dominated by the
conductivity of the system. This is a measure of the ease with
which charge moves through a material [26].

Correspondingly, from equations (26) and (33), we have

εmix(t)|t→∞ = σma3

b3
= σ0. (38)

Equation (38) relates the steady-state response of the complex
permittivity of the mixture in the time domain to the low
frequency limit in the frequency domain. At low frequencies,
movement of charge (to create the dipole) is slower and can
be observed over a relatively long time period. While time
tends to infinity, the total response of the system is determined
by the frequency independent part of the conductivity (due to
ionic conduction), which is dominated by the conductivity of
the suspending medium.

The dielectric dispersions in the time and frequency
domains (equation (27) with (31) and equation (28) with
(32)) are directly linked by the Fourier transform, shown in
equation (39):

e−t/τU0(t) ↔ τ

1 + jωτ
. (39)

Figure 3 presents a simulation of the time-dependent
permittivity of the mixture (equation (14)) using the same
parameters as previously for a high conductivity suspending
medium (σm = 1.6 S m−1). It can be seen that the dispersion
in permittivity in the short time period corresponds to the
relaxation process at high frequency, as the membrane is
short-circuited. The dispersion in permittivity at long time
corresponds to the relaxation process for the cell membrane,
which occurs at low frequency. This result indicates that
it is possible to derive system information in the frequency
domain by analysing the behaviour of the system in the time
domain first. For example the time-dependent response of the
system could be probed with a short duration pulse or a noise
excitation and the frequency response of the system recovered
using digital signal processing (DSP) techniques such as fast
Fourier transform (FFT).
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Figure 3. Plot of the time-dependent Maxwell’s mixture equation
(equation (14)) of cells as a function of time (see text for further
details).

4. Conclusion

In this paper, we have presented a time domain expression for
Maxwell’s mixture equation using the Laplace transformation.
As an example, we have analysed the dielectric properties
of a single shelled spherical cell in suspension both in the
time domain and the frequency domain. The full analytical
expressions of the two characteristic relaxation time constants
have been derived. Our method can be extended to the multi-
shelled model and high concentration cases using Hanai’s
equation [15–17]. The model presented here is helpful in
the determination of the behaviour of single particles in
time-varying electric fields and transient response in general.
The link between dielectric spectroscopy in the time and
frequency domains is clearly illustrated. Future work will
apply the time domain mixture equation to the analysis of the
time-dependent dielectric response of our micro-impedance
systems.
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Appendix I

The coefficients A and B are:

A = s[γ 3(εi + 2εmem) + 2(εi − εmem)] + γ 3(σi + 2σmem)

+ 2(σi − σmem), (AI.1)

B = s[γ 3(εi + 2εmem) − (εi − εmem)] + γ 3(σi + 2σmem)

− 2(σi − σmem). (AI.2)

The coefficients C and D are

C = A(εmems + σmem) + 2B(εms + σm), (AI.3)

D = A(εmems + σmem) − B(εms + σm). (AI.4)

Substitute the expressions for A and B into equations (AI.3)
and (AI.4) and the expressions for C and D are

C =
s2[γ 3(εi + 2εmem)(εmem + 2εm) + 2(εi−εmem)(εmem − εm)]

+ sγ 3[(εi + 2εmem)(σmem +2σm)+(σi + 2σmem)(εmem +2εm)]

+ 2s[(σmem − σm)(εi − εmem) + (σi − σmem)(εmem−εm)]

+ γ 3(σi + 2σmem)(σmem + 2σm)+2(σi− σmem)(σmem−σm),

(AI.5)

D =
s2[γ 3(εi + 2εmem)(εmem − εm) + (εi − εmem)(2εmem + εm)]

+ sγ 3[(εi + 2εmem)(σmem−σm) + (σi + 2σmem)(εmem−εm)]

+ s[(2σmem + σm)(εi − εmem) + (σi − σmem)(2εmem + εm)]

+ γ 3(σi + 2σmem)(σmem − σm) + (σi − σmem)(2σmem + σm).

(AI.6)

Substitute equations (AI.5) and (AI.6) into equation (8) and
expand in decreasing order of s to obtain the coefficients an

and bn (n = 1, 2, 3):

a1 = γ 3(εi + 2εmem)[(εmem + 2εm) + 2ϕ(εmem − εm)]

+ 2(εi − εmem)[(εmem − εm) + ϕ(2εmem + εm)],

(AI.7)

a2 = γ 3(εi + 2εmem)[(σmem + 2σm) + 2ϕ(σmem − σm)

+ γ 3(σi + 2σmem)[(εmem + 2εm) + 2ϕ(εmem − εm)]

+ 2(εi − εmem)[(σmem − σm) + ϕ(2σmem + σm)]

+ 2(σi − σmem)[(εmem − εm) + ϕ(2εmem + εm)],

(AI.8)

a3 = γ 3(σi + 2σmem)[σmem(1 + 2ϕ) + 2σm(1 − ϕ)]

+ 2(σi − σmem)[σmem(1 + 2ϕ) − σm(1 − ϕ)], (AI.9)

b1 = γ 3(εi + 2εmem)[(εmem + 2εm) − ϕ(εmem − εm)]

+ (εi − εmem)[2(εmem − εm) − ϕ(2εmem + εm)],

(AI.10)

b2 = γ 3(εi + 2εmem)[(σmem + 2σm) − ϕ(σmem − σm)]

+ γ 3(σi + 2σmem)[(εmem + 2εm) − ϕ(εmem − εm)]

+ (εi − εmem)[2(σmem − σm) − ϕ(2σmem + σm)]

+ (σi − σmem)[2(εmem − εm) − ϕ(2εmem + εm)],

(AI.11)

b3 = γ 3(σi + 2σmem)[σmem(1 − ϕ) + σm(2 + ϕ)]

+ (σi − σmem)[2σmem(1 − ϕ) − σm(2 + ϕ)]. (AI.12)

The time domain expression for the complex conductivity can
be solved in a similar way to the expression for the complex
permittivity (equation (14)). We use the relationship between
the complex permittivity and conductivity (equation (17)) in
the following procedure.
Combine equations (17) and (9),

σ̃mix(s) = d1s + d2 +
d3s + d4

b1s2 + b2s + b3

= d1s + d2 +
d3(s − s7)

b1(s − s3)(s − s4)
, (AI.13)
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where the coefficients dn (n = 1, 2, 3,4) are given by

d1 = εma1

b1
, (AI.14)

d2 = c1

b1
, (AI.15)

d3 = c2 − d2b2, (AI.16)

d4 = c3 − d2b3 (AI.17)

and coefficient s7 is given by

s7 = −d4

d3
. (AI.18)

Therefore, the time domain expression of σmix(t) is given by

σmix(t) = d1δ
′(t) + d2δ(t) + (k4e−t/τ1 + k5e−t/τ2)U0(t),

(AI.19)

where δ′(t) is the time derivative of δ(t)and the coefficients k4

and k5 are given by

k4 = d3(s3 − s7)

b1(s3 − s4)
, (AI.20)

k5 = d3(s4 − s7)

b1(s4 − s3)
. (AI.21)

Appendix II

The two time constants are determined by the three coefficients
b1, b2 and b3. According to the three assumptions in
section 3.1, we can simplify these three coefficients as below.

By expanding the full equation (AI.11), we obtain

b1 = γ 3(εiεmem + 2εiεm − ϕεiεmem + ϕεmεi + 2ε2
mem

+ 4εmemεm − 2ϕε2
mem + 2ϕεmemεm)

+ (2εiεmem − 2εiεm − 2ϕεiεmem − ϕεmεi − 2ε2
mem

+ 2εmemεm + 2ϕε2
mem + ϕεmemεm). (AII.1)

Substitute equation (18) into equation (AII.1) and since d � R

ignore terms d/R:

b1 = 3εmem [(1 − ϕ)εi + (ϕ + 2)εm] . (AII.2)

Substitute equation (23) into equation (AI.11) and then expand
the full equation, ignoring all terms containing σmem (σmem �
σm and σi):

b2 = εmem
{
γ 3

[
(4 + 2ϕ)σm + (1 − ϕ)σi

]
+ (2 + ϕ)σm

+ 2(1 − ϕ)σi
}
. (AII.3)

Substitute equation (18) into equation (AII.3):

b2 = εmem{3[(2 + ϕ)σm + (1 − ϕ)σi] + 3
d

R
[(4 + 2ϕ)σm

+ (1 − ϕ)σi]} (AII.4)

Ignore terms with d/R:

b2 = 3εmem [(2 + ϕ)σm + (1 − ϕ)σi] . (AII.5)

Substitute equation (18) into equation (AI.12) and ignore terms
with d/R:

b3 = σmem(1 − ϕ)

[(
1 + 3

d

R

)
(σi + 2σmem) + 2(σi − σmem)

]

+ σm(2 + ϕ)

[(
1 + 3

d

R

)
(σi + 2σmem) − (σi − σmem)

]

= 3σmem(1 − ϕ)

[
σi +

d

R
(σi + 2σmem)

]
+ 3σm(2 + ϕ)

×
[
σmem +

d

R
(σi + 2σmem)

]

= 3σmemσi(1 − ϕ) + 3σm(2 + ϕ)

(
σmem +

d

R
σi

)

(AII.6a)

= 3σmem [(2 + ϕ)σm + (1 − ϕ)σi] . (AII.6b)

Combining equations (AII.2), (AII.5) and (AII.6b) and
considering σmem � σm and σi, we have

b2
2

4b1b3
= εmem [(2 + ϕ)σm + (1 − ϕ)σi]

4σmem [(2 + ϕ)εm + (1 − ϕ)εi]
� 1. (AII.7)

Equation (AII.7) implies

b2
2 � 4b1b3. (AII.8)

For the first time constant τ1, equation (16a) is rewritten as

τ1 =
b2 +

√
b2

2 − 4b1b3

2b3
. (AII.9)

Considering equation (AII.8), equation (AII.9) becomes

τ1 = b2

b3
. (AII.10)

Combining equations (AII.5), (AII.6a) and (AII.10), the first
time constant becomes

τ1 = εmem [(2 + ϕ)σm + (1 − ϕ)σi]

σmemσi(1 − ϕ) + σm(2 + ϕ)
(
σmem + d

R
σi

)

= Rεmem [(2 + ϕ)σm + (1 − ϕ)σi]

(2 + ϕ)σm(Rσmem + dσi) + R(1 − ϕ)σiσmem

(AII.11)

For the second time constant τ2, from equation (AII.8),
equation (16b) becomes

τ2 = b1

b2
. (AII.12)

Therefore, combining equations (AII.2), (AII.5) and (AII.12),
the second time constant τ2 becomes

τ2 = 3εmem [(1 − ϕ)εi + (2 + ϕ)εm]

3εmem [(2 + ϕ)σm + (1 − ϕ)σi]

= (1 − ϕ)εi + (2 + ϕ)εm

(1 − ϕ)σi + (2 + ϕ)σm
. (AII.13)
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Appendix III

For the special case of volume fraction ϕ=0, there is no particle
in the medium: equations (AI.7)–(AI.12) become

a1 = 2(εi − εmem)(εmem − εm), (AIII.1)

a2 = 2 [(εi − εmem)(σmem − σm) + (σi − σmem)(εmem − εm)] ,

(AIII.2)

a3 = 2(σi − σmem)(σmem − σm), (AIII.3)

b1 = 2(εi − εmem)(εmem − εm), (AIII.4)

b2 = 2 [(εi − εmem)(σmem − σm) + (σi − σmem)(εmem − εm)] ,

(AIII.5)

b3 = 2(σi − σmem)(σmem − σm). (AIII.6)

Therefore an = bn (n = 1, 2, 3), which means that the
coefficients cn (n = 1, 2, 3) (equations (12a)–(12c)) become

c1 = σma1, (AIII.7a)

c2 = σma2, (AIII.7b)

c3 = σma3. (AIII.7c)

It is clear to see the relationship between the coefficients an,
bn and cn:

cn = σman = σmbn. (AIII.8)

Using equation (AIII.8) in equations (10b) and (13), we obtain

s3 = s5, (AIII.9a)

s4 = s6. (AIII.9b)

Equations (AIII.9a) and (AIII.9b) make k2 = k3 = 0, which
results in equation (34) being

ε̃mix(ω) = εma1

b1
− j

k1

ω
= εm − j

σm

ω
. (AIII.10)

This shows that Maxwell’s mixture equation returns to the
expression for the complex permittivity of the medium,
confirming the validity of the transformation between time and
frequency domains.
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