
Understanding decentralised control of resource
allocation in a minimal multi-agent system

Mariusz Jacyno, Seth Bullock, Terry Payne
School of Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ, UK

{mj04r,sgb,trp}@ecs.soton.ac.uk

Michael Luck
Department of Computer Science

King’s College London
Strand, London WC2R 2LS, UK

michael.luck@kcl.ac.uk

1. INTRODUCTION
In response to the advent of new computational infrastructures, a

number of initiatives, such asautonomic computing[5] andutility
computing[8], have been announced by major IT vendors sharing
the same underlying principles of provisioning distributed compu-
tational resources to a large number of users “on demand”. Since,
by their nature, such systems are large, open and dynamic, alloca-
tion of resources to users presents unique challenges that threaten
to overwhelm existing centralised management approaches [2].

An efficient and fair mechanism of resource allocation must be
scalable, reliable and adaptive to changing system conditions. De-
volving responsibility from some central administrative authority
to a population of autonomous agents, each representing a resource
consumer or a resource provider, offers one way to address the chal-
lenge. However, it is far from obvious how to equip such agents
with resource allocation mechanisms that can satisfy global system
objectives despite operating on local and imperfect information.

We argue that the success of such an approach will hinge on
understanding the fundamental properties common to any decen-
tralised resource allocation system. By focusing initially on the dy-
namics of resource allocation associated with minimally complex
agents, this task can be made tractable to empirical exploration and
analysis. In doing so, we are committed to a working hypothesis:
the dynamics of such a system, while simple, will share general
properties with more realistic utility computing systems involving
more complicated “intelligent” agents.

There is a considerable literature exploring the efficacy or opti-
mality of particular candidate agent algorithms for a range of re-
source allocation and associated tasks [10, 11, 7] (e.g., coalition
formation, load balancing, role allocation, etc.). Such work often
relies on a central executive to handle the task, and tends to focus
on assessing algorithm performance, rather than characterising the
fundamental nature of the problem. Work on resource allocation in
decentralised multi-agent systems is much less frequent [4, 9, 1].
Here we focus on identifying general principles that explain how
performance scales under various kinds of systemic pressure. As
such, we do not aim to develop or evaluate a working solution to a
specific resource allocation problem for utility computing. Instead,
we concentrate on characterising relationships between local mech-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

anisms and global performance that are likely to generalise from
the minimal system explored here to all real-world utility comput-
ing systems in general.

2. SIMULATION

2.1 Model design
The decentralised multi-agent system that we will explore in this

paper comprises of a service registry that serves as an inventory
of the resource providers within the system; a population ofSN

agents representing resource providers (services); a population of
UN agents representing resource consumers (consumers).
Servicesare provided by agents that facilitate access to resources
(disk storage, CPU time, etc.).
Consumersconsume resources according to a fixed personal work-
flow defining the type, capacity and order of services required.
The registry is an agent tasked with maintaining an inventory of
system services, and supplying it to consumers when queried. Since,
in reality, the information obtained from such registries can become
stale and unreliable in a dynamic system, in future work we will be
interested in systems where this unreliability is sufficient to ensure
that consumers prefer not to make use of it at all.
Service Allocation is decentralised such that each consumer first
obtains from the registry a list of existing services capable of pro-
viding any of the resources required by its workflow. This action
takes timeTx and incurs an execution cost,Cx. Repeatedly, ser-
vices are chosen from this list and their availability determined
(each time incurring a query cost,Cq, and consuming time,Tq).
Services may be unavailable because they are busy to the extent
that they do not have the spare capacity required by the workflow
component, or because they are no longer part of the system. Once
an available service has been located, the agent attempts to allocate
the next component of its workflow. Once all components of the
workflow are allocated to services in this way, the agent attempts
to execute the workflow using these services. Since services are not
locked during the allocation process, it is possible that a consumer
agent may allocate a workflow component but find that the service
is busy when it attempts to execute it. In such circumstances, the
consumer must re-allocate this workflow component. Successfully
executing a component also takes time,Tx, and incurs an execu-
tion cost,Cx. Should a service fail during execution, the consumer
still pays the execution cost, but must also re-allocate the workflow
component. If, during any allocation process, a consumer makes
n attempts to locate an available service of a particular type, the
allocation is deemed to have failed, as is the workflow it is part
of. Here, for each workflow component to be allocated, we setn

equal to the number of services of the required type returned by
the registry. Whether successful or unsuccessful, upon completing



a workflow, a consumer agent,Ui is inactive for some randomly
determined period drawn from a uniform distribution[0, ωi] after
which the same workflow allocation process begins again.
Scenarios, unless stated otherwise, involve an equal number of
agents repeatedly attempting to execute each of three different work-
flows (W1 = {A}, W2 = {A, B}, W3 = {A, B, C}) for a period
of time, TN . Since we expect simple workflows to be requested
more frequently, the maximum period of time for which a consumer
will sleep after completing (or failing to complete) a workflow,ω,
is workflow-dependent such that more complicated workflows tend
to be associated with longer periods of sleep:ω1 = 1s, ω2 = 2s,
ω3 = 3s.

For all agents, the following values are assigned to the costs
and execution times of service interactions and service executions:
Cx = 20 units, Tx = 500ms, Cq = 10, Tq = 100ms. These
parameters define minimal costs for a consumer attempting to ex-
ecute each workflow:C∗(W1) = 50 units,C∗(W2) = 80 units,
C∗(W3) = 110 units. Since the proportion of consumers attempt-
ing to execute each workflow is the same, the optimal cost for a
system can be calculated asC∗ = 80 units.

2.2 Consumer Strategies
Consumers rely on strategies to guide their individual behaviour.

Here we explore minimally sophisticated strategies:Random se-
lection (R): when attempting to allocate a workflow component
to a service, the consumer makes random choices from the list
of available resources obtained from the service registry.Hybrid
strategy (RP ): when attempting to allocate a workflow compo-
nent to a service, the consumer preferentially returns to the last ser-
vice employed for that component, if it was executed successfully
during the last workflow, otherwise the random selection strategy
is employed.

We do not expect these simple strategies to be employed within
real utility computing systems. However, the simplicity of the ran-
domising and canalising behaviours that they employ make them
good candidates for examination, since any decentralised resource
allocation strategies thatare employed within utility computing
will probably involve some more complicated form of randomi-
sation and/or canalisation.

3. RESULTS

3.1 Consumer Heterogeneity
It is highly unrealistic to assume that agents attempting to al-

locate the same type of resource will also share exactly the same
service preferences. For example, in the domain of utility com-
puting, different amounts of CPU processing power, storage size,
quality of service, etc., may be required. Hence, for each consumer,
only a subset of services of a particular type will be capable of sat-
isfying its particular demands. Since many of these attributes are
dynamic properties that may change rapidly and unpredictably, it
may be that a centrally maintained registry of services cannot be
relied upon to provide the information required by consumers to
identify appropriate services.

In order to manipulate the degree of heterogeneity in consumer
demand,H, within the model we assign different capacity require-
ments to consumers and differing capacity provision to services.
A consumer will be satisfied by any service of the required type
with free capacity that either equals or exceeds its capacity require-
ments. As such, consumers with high capacity demands must nec-
essarily have at least as difficult an allocation task as consumers
with lower capacity demands. In all cases considered here, there
exists an allocation of services to consumers where all available

service capacity is utilised in executing every workflow component
simultaneously (i.e., supply always exactly matches demand), and
no service has capacity to simultaneously execute more than one
workflow component. We defineH as the number of unique levels
of service capacity required by the workflows of a consumer popu-
lation (or, equivalently, the number of unique levels of capacity pro-
vided by a population of services). Thus, forH = 1, all workflows
share the same capacity requirements, whereas forH = 2, each
workflow (and every service type) is present in a low-capacity and
high-capacity variant such that each variant is assigned to an equal
number of consumers. The scenarios reported below are otherwise
identical to those described in Section 2.1, with systems comprising
of 180 consumers and 360 services.

For consumers employing the random selection strategy,R, there
is a significant increase in cost, and in its variation, as the degree
of consumer heterogeneity increases. WhileR preserves a uni-
form distribution of resource requests among a group of services of
the same type, and thus effectively minimises the number of con-
flicts, it isblind to the various levels of capacity offered by services.
By contrast, theRP strategy, which combinesR with preferential
selection of previously utilised services, delivers a significant im-
provement in performance. Here, the system converges to a near
optimal allocation of services to consumers, effectively matching
consumer capacity demands to service capacity provision from a
global as well as local perspective. This convergence is achieved,
even though there exists a potential for conflict between low- and
high-capacity consumers over who gets to utilise high-capacity ser-
vices.

These observations are confirmed by Figure 1 which depicts the
mean workflow completion costs for a high degree of consumer
heterogeneity (H = 4). For each workflow, four levels ofcapac-
ity demand are introduced:{s1, s2, s3, s4}. While high-capacity
workflows tend to attract higher allocation costs, irrespective of
consumer strategy, the departure from optimal allocation costs is
much reduced forRP strategists. Consumers adopting this hybrid
strategy were thus able to form preferences for resources that not
only satisfied their own resource demands but, in the case of low-
capacity consumers, also contributed to satisfying the demands of
their competitors, increasing overall system efficiency.

4. DISCUSSION
Convergence to an optimal allocation is a consequence of a bal-

ance between random selection and preferential selection. Where
an inefficient allocation of services to consumers arises, the former
tends to disturb preferences for resources that are overexploited,
while preferential selection is able to increase pressure on under-
exploited services. In this way, the extent to which low-capacity
consumers form preferences for high-capacity resources will tend
to be matched by the pressure to “move on” exerted by unsatisfied
high-capacity consumers.

At any point in time, a system ofRP consumers can be repre-
sented as two interdependent populations of agents, one currently
able to rely on a developed preference, while the other either has no
such preference, or has a preference for a service that is currently
busy, and must rely on random selection. While it is important to
remember that every consumer in aRP population possesses the
same strategy, we will refer to these temporary behavioural dispo-
sitions asRP strategyelements. Agents relying on theR-element
are more aggressive, selecting resources randomly and thereby dis-
persing their activity across all system resources. Agents relying
on theP-element, on the other hand, canalise their activity in a
specific region of the systems resources. Where supply meets or
exceeds demand, the former encourages system fairness, while the



 0

 50

 100

 150

 200

 250

 300

 350

M
e

a
n

 a
g

e
n

t 
c
o

s
t

s1 s2 s3 s4
W1

s1 s2 s3 s4
W2

s1 s2 s3 s4
W3

C*(W3)

C*(W2)

C*(W1)

 0

 50

 100

 150

 200

 250

 300

 350

s1 s2 s3 s4
W1

s1 s2 s3 s4
W2

s1 s2 s3 s4
W3

C*(W3)

C*(W2)

C*(W1)

Figure 1: Mean workflow completion costs for agents relying onR (left) and RP (right) where H = 4. Within each workflow type,
four subclasses are identified in order of increasing capacity requirement (s1, s2, s3, s4). Dotted lines correspond to the optimal cost for
each workflow group.UN = 180, SN = 360, TN = 400 seconds.

latter lowers system cost. Since there is no central controller decid-
ing which agent should rely on what strategy element for a given
level of system heterogeneity, it is interesting to explore by what
means the balance between strategy elements is brought about.

Crudely, each “sub-population exerts a specific pressure on the
other. By “stealing” the preferred resources of conservativeP-
element agents, aggressiveR-element agents driveP-element ag-
ents to switch strategy. At the same time,R-element agents that
successfully allocate resources also switch strategy element. In
both cases, such switching prevents agents relying upon the same
resource for a long time. This ensures that the costs of resource
competition are distributed fairly among all agents. Furthermore,
as system dynamism increases (with increasing load or heterogene-
ity, for instance), and the chance of developing useful preferences
falls, the proportion ofR-element agents increases. Likewise, if
system dynamism relaxes, the proportion of agents successfully ex-
ploiting preferences increases. This coupling between strategy ele-
ments drives the system behaviour, and its response to externalities
such as load or heterogeneity.

The nature of this coupling resembles certain accounts of self-
organisation within natural decentralised systems, where complex
system-level dynamics are characterised in terms of the generic
feedbacks that arise from local interactions between components
[3, 6]. Within the minimal system presented here, theR strat-
egy (or element) generates destablising positive feedback within
the population of agents, whereas theP-element induces canalis-
ing negative feedback. Since random selection dominates the weak
negative feedback brought about by consumer preferences, where
demand outstrips supply, the entire system reconfigures continu-
ally. While such reconfiguration is costly, it ensures fairness by
preventing a subset of consumers from benefiting from stable pref-
erences at the expense of their competitors.

However, where consumers are either unable or unwilling to
make use of a centralised registry of services, ensuring efficiency
and fairness will be a more complicated challenge. In such a case
it is likely that agents will have to base their allocation decision on
information that they learn themselves, or learn from other agents.
As such, strategies for sharing (or not) information about resources
with other agents will be a key consideration. In future work it will
be important to explore how such consumer strategies might be en-
couraged to bring about allocation that is robust, efficient and fair.
Addressing these questions will necessarily involve understanding
how the feedbacks identified here generalise to more sophisticated
agent behaviour and a richer “ecology” of differentiated resources
and resource demands. However, as with the current study, it will

be crucial to consider minimal agent strategies in the most simple
agent ecologies, since introducing a more realistic degree of com-
plexity is likely to render analysis intractable.

5. REFERENCES
[1] S. Brueckner and H. V. D. Parunak. Self-organizing MANET

management. In G. D. Marzo, A. Karageorgos, O. F. Rana,
and F. Zambonelli, editors,Engineering Self-Organising
Systems, pages 1–16. Springer, 2003.

[2] S. Bullock and D. Cliff. Complexity and emergent behaviour
in ICT systems. Technical Report HP-2004-187,
Hewlett-Packard Labs, 2004.

[3] F. Heylighen and C. Joslyn. Cybernetics and second-order
cybernetics. In R. Meyers, editor,Encyclopedia of Physical
Science and Technology, volume 4, pages 155–170.
Academic Press, New York, 2001.

[4] T. Hogg and B. A. Huberman. Controlling chaos in
distributed systems.IEEE Transactions on Systems, Man and
Cybernetics, 21:1325–1332, 1991.

[5] J. O. Kephart and D. M. Chess. The vision of autonomic
computing.IEE Computer, 36(1):41–50, 2003.

[6] H. V. D. Parunak and S. A. Brueckner. Engineering
swarming systems. In F. Bergenti, M.-P. Gleizes, and
F. Zambonelli, editors,Methodologies and Software
Engineering for Agent Systems, pages 341–376. Kluwer,
2004.

[7] D. V. Pynadath and M. Tambe. The communicative
multiagent team decision problem: Analyzing teamwork
theories and models.Journal of Artificial Intelligence
Research, 16:389–423, 2002.

[8] M. A. Rappa. The utility business model and the future of
computing services.IBM Systems Journal, 43:32–42, 2003.

[9] S. Sen, S. Roychowdhury, and N. Arora. Effects of local
information on group behavior. InProceedings of the Second
International Conference on Multi-Agent Systems, pages
315–321. AAAI Press, Menlo Park, CA, 1996.

[10] O. Shehory and S. Kraus. Methods for task allocation via
agent coalition formation.Artificial Intelligence,
101:165–200, 1998.

[11] P. Stone and M. Veloso. Layered learning and flexible
teamwork in robocup simulation agents. In M. Veloso,
E. Pagello, and H. Kitano, editors,RoboCup, pages 495–508.
Springer, 2000.


