The OMII Software Distribution

Justin Bradley, Christopher Brown, Bryan Carpenter, Victor Chang, Jodi Crisp, Stephen
Crouch, David de Roure, Steven Newhouse, Gary Li, Juri Papay, Claire Walker, Aaron
Wookey

Open Middleware Infrastructure Institute (OMII)
University of Southampton

Abstract

This paper describes the work carried out at the Open Middleware Infrastructure Institute (OMII) and the
key elements of the OMII software distribution that have been developed in collaboration with members
of the Managed Programme Initiative. The main objective of the OMII is to preserve and consolidate the
achievements of the UK e-Science Programme by collecting, maintaining and improving the software
modules that form the key components of a generic Grid middleware. Recently, the activity at
Southampton has been extended beyond 2009 through a new project, OMII-UK, that forms a partnership

that now includes the OGSA-DAI activities at Edinburgh and the ™Grid project at Manchester.

1 Introduction

In this paper we summarise the results achieved
by the Open Middleware Infrastructure Institute
(OMII). Over the last two years the OMII model
has become firmly established itself in the Grid
domain with similar projects aimed at the
consolidation of Grid middleware investment
emerging in Europe (OMII-Europe [OMII-
Europe]) and China (OMII-China [OMII-
China]) and the established NMI (NSF
Middleware Initiative) in the United States. The
objectives of the OMII project can be
summarised by the following points:

e Creating a one-stop portal and
software repository for open-source
Grid middleware, including
comprehensive information about its
function, reliability and usability.

¢ Provide quality-assured software
engineering, testing, packaging and
maintenance of software in the OMII
repository, ensuring it is reliable,
portable and easy to both install and
use.

e Lead the evolution of Grid
middleware at international level,
through a managed programme of

research and wide-reaching
collaboration with industry and
relevant standards bodies.

e Distribute a sustained, well-
engineered, interoperable, documented
and supported set of easily-used
integrated middleware services,
components and tools.

e Engage proactively with user
communities by listening and
responding carefully to their
requirements and comments.

In this paper we describe in Section 2 the
software engineering process adopted at the
OMI|I. Section 3 details the OMII software stack
of Grid components. Section 4 summarises the

paper.

2 The Software Engineering
Process

This section describes the software engineering
process that has been implemented within OMII
(see Figurel). This process is in daily use at the
OMII and forms the backbone of the operation.

Activity Within OMII

Regression
Tests

: Testing
F?g\(jligtv)\// Sources
Evaluation
Q

@ | Priority
List

Open
Source
Distribution

Development Teams

Functional
Specifications

&>
T

Requests
for
Enhancements

4

Helpdesk

Bugs

Risk and
rioritisatio

P Issues

Figure 1 - Software engineering process

The software engineering process comprises
three interlinked loops:

Loop 1 is represented by the Testing loop. The
Testing loop evaluates the incoming software
against test cases generated from their
functional specifications and discovers bugs,
defined as deviations from the functional
specification, in the implementation or the test
suite. This is the core ‘quality improvement’
cycle of the software engineering process
involving detailed checking of the source code,
with a daily-build regression testing process that
uses a constantly evolving set of regression
tests. These tests are composed of existing unit
tests and integration tests of the deployed
system. This activity generates new bugs, whose
existence is recorded in the bug tracking system
for later review.

A Kkey pre-requisite to building regression tests
is to have a clear functional specification
describing the code, the standards to be
complied with and the environment that the
software has to function in (which changes
constantly), and associated documentation
describing the operation of the software. The
functional specification provides a starting point

for code review and the generation of test cases
(see Figure 2).

As the code and functional specification (and
user documentation) are verified in isolation,
the OMII gains twice the benefits. The code is
independently checked to prove it does what it
is supposed to; likewise test cases derived from
the functional specification independently check
that same functionality. These two tasks are
carried out by separate teams who deliberately
do not collaborate until later on in the process.

Standards Code
Environment | 1 [Docs

Functional
Specification
=
! !

Code — Internally Test Cases/
Cleaned Code
\ I

Testing
FAIL PASS

Functional
Specification
Release

Figure 2 — The software enhancement process

For sources submitted to the OMII, some test
cases may already exist. If not, or if test
coverage is deemed inadequate, new test cases
will be required from the external development
team or developed internally. The types and
quality of test cases are also reviewed and new
test cases developed as a result of bug
discovery. The high-level test cases and testing
tasks are added at an early stage to the ‘High-
Level Test Plan’ to provide feedback into the
design process.

Testing forms a very large part of the OMII
quality function and is carried out on all code
with the aim of continuously improving the
quality of the product. Several types of testing
already happen at the OMII and the range and
scope of tests (e.g. usability, standards
compliance, etc.) is always being expanded.

Loop 2 characterises the development process.
Within this process the identified issues are
assessed for risk and prioritised for fixing in the
next release cycle by the many development
teams working within the OMII organisation.
Bugs are discovered as a result of both internal
testing, internal evaluation, from the
development teams and as a result of the
external use of the OMII distribution. In
collaboration with the appropriate development
team, OMII will assess the risk and impact of
fixing a bug. Prioritisation takes place at the
start of the development cycle and on a
continuous basis within the OMII’s bug-
tracking system. As the resources required to fix
all bugs, will inevitably exceed those available,
maximum benefit must be obtained from the
available resources in order to ship code of the
very highest quality within any given
timeframe. When the fix has been made, it will
be reviewed. Normally this is done using a peer-
review approach. Once the fix is agreed, the
code will be checked into the code repository
under the specified bug id prior to re-testing.
Cross-fertilisation of developer skills is ensured
by encouraging developers to fix code in areas
of the code base that they are less familiar with.
This prevents a single developer being the only
expert in a particular section of code. The OMI|I

development team at Southampton performs
weekly ‘bug-scrubs’ which prioritise the bugs
for fixing, taking into account the risks
associated with the fix. The activity of fixing
bugs generates new versions of the source
modules, and is another opportunity to check
the source directly rather than just by testing.

Loop 3 describes the public use of the software.
The contributed sources, having reached a
satisfactory quality, are then integrated into the
public distribution and released to the
community. Issues are identified as bugs that
require fixing, or feature requests requiring
enhancements to the functional specification.
Problems raised by external users initially get
entered in the OMII Helpdesk where, depending
on their nature, they may go on to become a bug
in the OMII bug-tracking system or considered
as proposals for enhancements for the next
release cycle.

3 OMII Software Architecture

The key components of the OMII software
architecture are presented in Figure 3. Some of
these components are already part of the OMI|I
distribution, other we expect to integrate over
the next 6-12 months.

The OMII software distribution is based around
a lightweight client and server distribution. Both
contain standalone tools and a web service
based infrastructure currently based upon the
Apache Axis toolkit. We expect to provide
support for the deployment of web portals,
through the provision of a JSR168 portlet
compliant hosting environment. We will
continue to source application and infrastructure
services from the community through the
managed programme.

Management | Domain
Portlets Specific Application
Portlets Services
Account Workflow
Authorisation Jobs Infrastructure
Services
JSR-168 Portlet WS-Security Static
Environment
AXIS I Webpages
TOMCAT

Figure 3 — The OMII Software Architecture

3.1 The OMII-UK Partnership

The creation of OMII-UK in January 2006
established a partnership between middleware
activities at Southampton, Edinburgh and
Manchester. This provides dedicated
engineering support for:

e OGSA-DAI [OGSA-DAI] (Open Grid
Services Architecture Data Access and
Integration) is a middleware product
which supports the exposure of data
resources, such as relational or XML
databases, onto Grids.

e TAVERNA [TAVERNA] The Taverna
project aims to provide a language and
software tools to facilitate easy use of
workflow and distributed compute
technology within the e-Science
community.

3.2 Managed Programme

The OMII at Southampton has allocated around
half its budget to the Managed Programme,
which it runs on behalf of OMII-UK. The aim
of the Managed Programme is the hardening of
existing essential middleware components.
These components provide additional
functionality to the OMII software stack. The
integration of the following components is
currently in progress at the OMII: GridSAM
(Job Submission & Monitoring service), BPEL
(Workflow service), Grimoires (Registry
service based on UDDI), FIRMS (Reliable
messaging), FINS (Notification), GeodiseLab

(Matlab toolbox), and the integration of
WSRF::Lite into an Application Hosting
Environment (AHE):

e GridSAM [GridSAM] is an open-
source job submission and monitoring
service. GridSAM installs on top of the
WS-Security (authentication) layer
provided by the OMII WS container
and enables users to execute jobs on
the OMII server that may have a
variety of data input and output
requirements. The GridSAM
implements the Job Submission
Description Language (JSDL) and is
tracking the OGSA-BES (Basic
Execution Service) from the Global
Grid Forum.

e GRIMOIRES (Grid Registry with
Metadata Oriented Interface:
Robustness, Efficiency, Security)
[GRIMOIRES] enables storage of
service descriptions, distributed
queries, WSDL documents and
workflows. This registry also provides
facilities for semantic annotation of
information. Grimoires is fully
UDDIv2 [UDDIv2] standard
compliant. In addition to the UDDIv2
interface, Grimoires also provides
some other interfaces, such as a
metadata interface and a WSDL
interface, which allow clients to
publish and inquire over metadata and
WSDL-related data, respectively. All
the data published through various
interfaces are internally represented as

RDF triples, which can be queried and
reasoned about in a uniform way.

e FIRMS (Federation and
Implementation of Reliable Messaging
Specifications for Web Services)
[FIRMS] represents an open source
implementations of the WS-
ReliableMessaging and WS-Reliability
specifications.

e FINS (Federation and implementation
of Notification Specifications for Web
Services) [FINS] currently supplies
open source implementations of the
WS-Eventing specifications and later
aWS-Notification implementation.

e BPEL (Business Process Execution
Language) [BPEL] provides a flexible
environment for the composition and
enactment of e-science workflows
using industry standard web service
specifications.

e GeodiselLab [GeodiseLab] offers three
toolboxes that provide facilities for
accessing computing resources of
various problem solving environments,
data management, file transfer, and
certificate handling.

e RAHWL (Robust Application Hosting
with WSRF::Lite) [WSRFLite] —
Builds upon a Perl implementation of
WSRF family of specifications to
provide simple lightweight clients to
execute and control applications. This
product provides support for several
web service specifications such as:
WS-Addressing, WS-
ResourceProperties,

WS-ResourceL ifetimes, WS-
BaseFaults, WS-ServiceGroups.

3.3 Integrated Services

The Integrated Services provides an Application
Execution, Data Movement and Resource
Allocation services that uses a common
authorisation and business model to support the
execution of pre-installed applications. The
client command line tool provides the
functionality to open accounts, obtain resource
allocations for computation and data use,
manage access to these allocations, upload input
data/download output data and run applications
pre-installed on server. An additional Account

service is used to register with and manage
access to the Integrated Services, and maintain
account usage that records use against a defined
quota. This service is being re-factored to
support its use by services that are not part of
the Integrated Service collection.

Two applications have been included in the
latest software release that demonstrates how to
use the Integrated Services - these are the OMI|I
Test Application and Cauchy Horizons
application. The functionality of OMII Test
Application to check the correct installation and
functionality of all components of the OMI|I
software stack by providing a simple text
sorting capability. Cauchy horizon is an
application from the astro-physics community
that calculates various parameters of space
curvature in the vicinity of a black hole.

3.4 Authentication and Authorisation

OMII will continue to use X.509 certificates
with the WS-Security framework to sign
messages from both the client and the server.
The X.509 certificates trust chain ends in a
certificate from a recognised Certificate
Authority. Mechanisms that move the storage of
a user’s long-lived certificate from their
desktop(s) to a secure server will be explored to
reduce the complexity of using X.509
certificates for the applied end-user.

An Authorisation service, based around the
SAML (Security Assertion Markup Language)
specification, will be integrated with the OMII
WS Container to provide a single point of
control to manage access to services (and
eventually portals) hosted within the container.
This infrastructure will form the basis for
integration with national authorisation services.

4 Summary

There is no doubt that in case of the Grid we are
dealing with a new phenomenon of
unprecedented complexity that requires the
solution, not only of technical problems, but of
organisational and even political issues as well.
Following on from the first wave of projects,
which exploited new networking infrastructures,
experimental test-beds, middleware and
application software, we have a far greater
understanding of the key issues. The next phase
of activity will concentrate on interoperability
and running applications that clearly
demonstrate the benefits of the Grid. There is a
strong commitment to allocate more resources

for this purpose that will certainly get us closer
to the materialisation of the Grid promises.

Over the last two years OMII at Southampton,
and now in partnership with Edinburgh and
Manchester as the OMII-UK project, has
become a source for reliable, interoperable and
open-source Grid middleware components,
services and tools to support advanced Grid-
enabled solutions in academia and industry. The
objectives of the OMII project are not to just
develop the key components of a Grid
infrastructure, but also to consolidate the
expertise and intellectual capital invested in
previous e-Science projects into well
documented, robust and reliable software. Such
a high-quality distributed software development
process has rarely been attempted, or achieved,
in the academic research community. By
promoting the reuse of our software through
documentation and support we believe we can
enable our user community to spend more time
on generating and evaluating ideas rather than
getting lost in details of the technical work. The
software repository being developed within
OMII-UK is being extended within
OMII-Europe to provide a general framework
for assessing middleware for standards
compliance, unit test coverage and other
software metrics.

The coordination of eight projects included in
the Managed Programme framework also
presents several challenges: the complexity of
software, keeping pace with the fast moving
area of Grid technology, interaction with the
remote development and central integration
staff, and the development of a coherent
architecture across numerous development
teams. At the OMII we have introduced policies
(e.g. coding guidelines) to improve the software
quality coming from the partners by defining
templates and reviewing their functional
specifications, design documents,
implementation specification, testing plans,
tutorials and user guides. The long-term aim of
this strategy is to improve the efficiency of
research projects, increasing the level of reuse
between software projects and thereby to
achieve a better utilisation of development
resources.

References

[BPEL]
http://www.ucl.ac.uk/research-
computing/research/e-science/omii-
bpel.html

[FINS]
http://www.omii.ac.uk/mp/mp_fins.jsp

[FIRMS]
http://www.omii.ac.uk/mp/mp_firms.js

p

[GeodiseLab]
Geodise Project, http://www.geodise.org

[GridSAM]
http://gridsam.sourceforge.net/2.0.0-
SNAPSHOT/index.html

[GRIMOIRES]
http://www.ecs.soton.ac.uk/research/projects/gri
moires

[OGSA-DAI] OGSA-DAI Project,
http://www.ogsadai.org.uk

[TAVERNA] Taverna component from the
™Grid project.
http://taverna.sourceforge.net/

[OMII] Open Middleware
Infrastructure Institute, http://www.omii.ac.uk

[OMII-Europe] Open Middleware Infrastructure
Institute Europe, http://www.omii-europe.com

[OMII-China] Open Middleware
Infrastructure Institute China, http://www.omii -
china.org/eng/index.htm

[UDDIV2] http://www.oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm

[WSRFLite]
http://www.sve.man.ac.uk/Research/At
oZ/ILCT

