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Abstract 

The synthesis of a hardware implementation of a Viterbi 
decoder from a behavioural specification is discussed. This is 
applied to a parallelized version of a BCH decoder. A 
parameterizable high-level VHDL model of the parallel 
decoder has been developed. Scalability of the parallel 
decoder in hardware is demonstrated. An extension of this 
technique to an adaptive decoder is discussed. 

1 Introduction 

Hardware implementations of DSP functions offer many 
advantages over software approaches. Hardware is implicitly 
parallel, therefore allowing much greater throughput for a 
given clock frequency and significant opportunities for 
reducing the overall power consumption. Hardware 
implementations are often thought of as being less flexible, 
but with the increasing capacity of FPGAs, it is now possible 
to build “soft hardware” – in other words, hardware that can 
be reconfigured to perform new functions as the need arises. 
While DSP processors are usually programmed in a subset of 
C, dedicated DSP hardware is often designed at a much lower 
level of abstraction. Although it is common to derive 
algorithms using tools such as Matlab, the implementation 
itself is done using a hardware description language (VHDL 
or Verilog) at register transfer level (RTL) or below. RTL is 
broadly analogous to assembly language programming – there 
has been no equivalent to a C-level language for DSP design. 
From the designer’s point of view, this is a significant 
disadvantage. It is extremely difficult to determine the 
optimal structure of a system in terms of area, speed and 
power. Indeed, it may be impossible to satisfy all the 
implementation constraints, thus an engineering compromise 
is required. If a single RTL design takes weeks or even 
months, it is clear that alternative structures cannot be readily 
explored. 
Behavioural hardware synthesis seeks to bridge the gap 
between algorithms and RTL. The effects of compromises 
between conflicting objectives can be explored in a matter of 
minutes. Thus many alternative implementations can be 
examined rapidly. For this work, we have used a behavioural 
synthesis tool, MOODS [5], developed within the University 
over a period of some 15 years. MOODS takes as its input a 
high-level, algorithmic description of a hardware system, 

written in a subset of VHDL. Using a global optimisation 
algorithm (simulated annealing) and a set of weighted 
constraints, MOODS can explore the design space and 
generate a near-optimal implementation at RTL, suitable for 
further refinement. 
MOODS was designed as a general purpose synthesis tool. 
One of the objectives of this study was to examine its 
suitability as a DSP design tool. At the same time, the Viterbi 
decoding algorithm [4] has been recast in a form suitable for 
implementation in a parallel processing environment [3]. In 
other words, the amount of inter-processor communications is 
minimised. A second objective was to determine if this recast 
algorithm could be written in such a way in VHDL as to 
produce an efficient, highly parallel hardware 
implementation. By mapping each processor onto a VHDL 
process, the coarse parallel structure would be maintained. In 
principle, the algorithm is parameterizable for different codes 
and for different numbers of processors/processes. The third 
objective was, therefore, to design a parameterizable version 
of the synthesisable VHDL, thus allowing configurations with 
different decoding schemes and different numbers of 
processes. Our final objective was to consider how different 
decoding schemes might be dynamically swapped onto an 
FPGA fabric and to determine how the multiple objective 
optimisation in terms of area, speed etc., might be extended to 
include the decoding scheme. 
In this paper, we report how the Viterbi algorithm was 
mapped onto an FPGA structure, maintaining the parallel 
processing structure. Limitations in the implementation of the 
VHDL compiler in MOODS became apparent, but these did 
not significantly impede the proof of concept. Similarly, a 
generic VHDL version of the algorithm can be written. We 
will present our achievements to date in implementing a 
dynamically reconfigurable version of the algorithm on an 
FPGA. 

2 Parallel Viterbi decoder 

The parallel version of the Viterbi decoding algorithm has 
been described in detail elsewhere [3]. Here, we will simply 
summarise the approach. We have implemented the decoding 
of Bose-Chaudhuri-Hocquenghem (BCH) codes [1, 2], but 
this approach could equally be applied to convolution codes. 
Equally, we implement hard decision decoding, but again this 
approach can be adapted to soft decision decoding. 
The Viterbi algorithm is simple, but it has high memory 
requirements. In order to efficiently parallelise the algorithm, 
the memory should be evenly distributed between the 



processing elements. Similarly, for an efficient parallel 
implementation, the connectivity between processing 
elements should be restricted. 
BCH codes are a generalisation of Hamming code that allows 
multiple error correction. They are class of cyclic codes that 
append n-k parity bits to a message of k bits so that each code 
word is n bits long. The code parameters (n, k, dmin) are of the 
form n = 2m – 1, n – k < mt and the minimum Hamming 
distance is dmin < 2t + 1. (m and t are integers.) The codes are 
specified by their generator polynomials which have the 
general form g0 + g1D +….. gn-kDn-k . The encoding process is 
usually described in terms of a shift register. 
In our implementation of the Viterbi decoder, the shift 
register encoder is regarded as a state machine in which the 
state, R, is a base 10 number that represents the bit pattern 
{r0r1…rn-k-1} and the number of possible states is 2n-k [3].  
In the following description, G is the generator polynomial 
represented as a binary number, Q = 2n-k-1, and g = G ⊕ Q is 
the generator with the top bits of G and Q set to 0. The 
machine changes to particular state depending on the top bit 
of the register, that is on whether R is greater or less than Q 
and on the value of the next input bit of the message. 
In the encoding process, if the register is in state Ri after the 
ith message bit has been input, then we have Ri+1 = 2Ri if 
either Ri<Q and the message bit is 0, or R>Q and the message 
bit is 1. Conversely, Ri+1 = (2Ri) ⊕ g if either Ri<Q and the 
message bit 1, or R>Q and the message bit is 0. Note, the 
current states are always modelled as 2R and (2Ri) ⊕ g in 
either decoding or encoding. The state transition template is 
shown in Figure 1. 

Figure 1. The building block for the state transition diagram 
for all cyclic codes 

 
In the decoding process, if the current state is Ri = 2Ri and the 
previous state was Ri-1 = Ri, the input ith bit must be 0. If the 
ith bit in the input sequence is 1, there is an error in the input 
sequence. If the current state is Ri = (2Ri) ⊕ g and the 
previous state was Ri-1 = Ri + Q, the ith input bit must be 0. If 
it is 1, there is an error in the input sequence.  
The same rules apply for Ri = 2Ri, Ri-1 = Ri + Q and Ri = (2Ri) 
⊕ g, Ri-1 = Ri. This is what we use in modelling our decoder. 
We compare the current state with the previous state and 
calculate which bit should be in the sequence. The state 
transition diagram for the BCH (7,4,3) which has a generator 
G=013 in octal is shown in Figure 2. 
The parallelisation strategy is to distribute the states evenly 
among the available processing elements. The states are 
partitioned among 2m processors, so that there are P = 2n-k-m 

states on each processor. Q = 2n-k-1 , so the number of states 
less than Q on each processor is 2n-m-k-1. 
 

 
Figure 2 The state transition diagram for BCH (7,4,3) code 
with G = 0138 
 
States R and R+Q are required to update states 2R and (2R) ⊕ 
g, so by placing states R and R+Q on the same processor we 
need to send only one message (containing the Hamming 
weights and paths from states R and R+Q) 

3 Behavioural Synthesis 

The objective of behavioural synthesis is to map algorithms 
onto hardware. As yet, behavioural synthesis tools are not 
widely used. Most automatic hardware synthesis is done at 
the register transfer level (RTL), at which there is a very clear 
relation between the structure of the description and the 
structure of the final hardware. Behavioural synthesis works 
from a higher level of abstraction, implying that there are 
many possible hardware structures. This gives the designer 
the freedom to think about the functionality of the design 
without worrying unduly about the structure. Many possible 
implementations can be quickly analysed. On the other hand, 
refinement from a more abstract level than RTL means that 
the final implementation may not be as good as that produced 
by an expert human designer. This situation is analogous to 
that which existed some years ago with software 
programming languages. Assembly language was perceived 
to be more efficient, but the immense productivity gains that 
result from using high-level languages means that assembly 
language programming is now limited to very specialized 
applications. The implicit parallelism of hardware means that 
behavioural synthesis is intrinsically more difficult than 
program compilation, but it can be expected that use of such 
synthesis tools will grow with time. 
The MOODS synthesis tool [] has been a vehicle for research 
into behavioural synthesis for some 15 years at the University 
of Southampton. High-level specifications are written in a 
subset of VHDL. In this style of coding, the design may be 
divided into a number of concurrent processes, within which 
VHDL is written as a procedural programming language.  
During the synthesis process, the control and data flows are 
extracted from each process. Thus each process is 
implemented as a state machine that controls various elements 
within the datapath. At first the implementation is very 
simplistic, with one data operation per control state and with 
each operation mapped to its own functional unit. As the 
synthesis progresses, the design is optimised by introducing 
concurrency and sharing operations between a smaller 
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number of functional units. There are about 20 simple 
transforms that can modify a part of the control and/or data 
paths. The optimisation is performed using the technique of 
simulated annealing, in which a transform and a part of the 
control/data structure are each randomly chosen. If the 
application of that transform to the given part of the structure 
would not change the functionality of the system, the 
transform is applied if it reduces the overall cost of the 
system. Typically, the cost is defined in terms of the speed 
and area of the implementation, but the cost can be extended 
to include factors such as power and testability. In this 
respect, MOODS is atypical of behavioural synthesis tools. 
The various cost constraints are decoupled, whereas in other 
approaches a complex, multi-dimensional optimisation has to 
be performed in one step. 
Here, we only optimise in terms of speed and area. In this 
situation, we can use a heuristic, based upon simulated 
annealing, in which specific transforms are applied in a given 
order. Again, for simplicity, we also reduce the cost function 
weights to either high or low priority. (Thus only four 
combinations are possible: area is high priority, delay is low; 
area is low, delay is high; or both are high or both are low.) 
No optimisation is attempted between processes. In the case 
study presented here, the system consists of a number of 
functionally identical, communicating processes. Therefore, 
we synthesise only one such process. The output from 
MOODS is RTL VHDL, which is passed on to a low-level 
synthesis tool. Thus we can intercept the output and create 
multiple instances of the single process by instantiating the 
RTL implementation, together with the interconnection 
framework within an RTL wrapper. (This same wrapper can 
also be used to instantiate multiple copies of the behavioural 
code, to allow the high-level description to be simulated.) 

3.1 VHDL Coding Style 

As noted, a behavioural subset of VHDL is used as the input 
language to MOODS. For this application, each processor is 
modelled as a single process within an entity/architecture. 
The code for each processor runs to about 200 lines and is 
therefore too long to reproduce here. The use of a VHDL 
process allows the use of procedural coding constructs such 
as for loops and if statements. The structure of the code is not, 
therefore, significantly different to what it would be if written 
in another high-level programming language. Indeed, the only 
HDL-specific construct used is a wait statement – needed 
only for behavioural simulation. We do use VHDL-specific 
data types, such as std_logic_vector, but only for 
convenience. 
Although the processor code is parameterizable, restrictions 
in both the standard VHDL syntax and in our compiler mean 
that we use packages to define the BCH code and the number 
of processors. This is a minor inconvenience. 
Finally, the RTL wrapper is also parameterised using values 
in the packages. 
 
 
 

4 Results and Discussion 

The function of the behavioural VHDL code was tested by 
simulation. Similarly, the functionality of the VHDL output 
generated by MOODS and of that generated following 
placement and routing was verified by simulation. It is 
therefore taken as read that all the simulation results cited 
below represent fully functional decoding operations. 
Because of the practical difficulties in interfacing an FPGA to 
other suitable hardware for input generation and output 
checking, we have restricted this study to simulations, but 
there is no reason to suppose that these results are anything 
but accurate. The results shown here are based on synthesis to 
Xilinx Virtex II FPGAs. In all cases, optimisation the area 
and delay optimisation priorities were both high and, where 
possible, and where possible, tri-state buffers were used to 
implement multiplexers. 
Although the VHDL code for a single processor is the same 
in all cases, we would expect that more complex BCH codes 
would result in larger structures. (Note that a processor for a 
given BCH code remains the same, irrespective of the number 
of processors used.) Table 1 shows the MOODS estimates of 
the critical path delay in terms of cycles (not the decoding 
time!) and area for different BCH codes, confirming that the 
processor size and speed do grow as expected. 
 

Code Cycles CLBs 

(7,4,3) 55 653 

(15,11,3) 158 903 

(31,26,3) 430 1608 

(63,57,3) 1146 3687 

Table 1 Estimated speed/area of processor for different 
codewords  

 
While simulation at the behavioural level can verify 
functional correctness, it can tell us nothing about execution 
speed. Post-synthesis, RTL, simulation will show how many 
clock cycles are needed to perform an operation. Table 2 
shows the decoding time in clock cycles for different BCH 
codes with different numbers of processors. 
 

Number of processors 

Code 1 2 4 8 16 32 

(7,4,3) 825 419 213    

(15,11,3) 3337 1739 921 513   

(31,26,3) 14349 7232 3683 1909 1023  

(63,57,3) 65355 32809 16537 8401 4333 23010 

Table 2 RTL simulation of decoding time for different 
codeword (clock cycles) 



These values are plotted on logarithmic axes in Figure 3. It 
can be seen that the execution time scales almost perfectly 
with the number of processors. 
Finally, the estimates in Table 1, can be compared with the 
actual design size, following place and route. Table 3 shows 
the size for the (7,4,3) code. The number of CLBs is less than 
that predicted by MOODS – this is to be expected as MOODS 
does not perform low-level logic optimization. The hardware 
is capable of running with clock speeds of up to about 
15MHz. 
 

Processors CLBs TBUFs 
1 459, 1% 1904, 5% 

2 935, 2% 3812, 11% 

4 1857, 5% 7632, 23% 

Table 3 Place and Route statistics, (7,4,3) with tri-state 
buffers on Virtex3200  

 
We have therefore fulfilled the first three of our objectives. 
We have used MOODS as a design tool for DSP hardware, 
although there are clearly deficiencies in the way that 
parameters are handled. We have implemented a parallel 
version of the Viterbi decoder that demonstrates scalability 
and we have written the VHDL in such a way that it can be 
used for different codes and different numbers of processors 
without modification. The fourth objective was to implement 
an adaptive decoder. 
From Table 1, we can clearly see that with more complex 
codes, the processor size grows. Given that these are 
estimates, the hardware roughly doubles in size with each 
code. Thus we cannot simply move from one code to another 
by changing some parameters. Instead, we would have to 
dynamically reconfigure an FPGA. This is the basis of 
continuing work. 

5 Conclusion 

Overall, this work demonstrates that behavioural hardware 
synthesis is a suitable tool for DSP hardware design. It is 
apparent that the subset of VHDL chosen and the particular 
compiler implementation is not entirely appropriate for this 
particular domain. Nevertheless, this work demonstrates that 
the principle of multiple objective optimisation can 
significantly reduce the design cycle time and that this 
approach opens up a number of new research directions for 
further DSP-specific hardware optimisation. 
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Figure 3 Number of processors versus execution time for 4 
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