
BEHAVIOURAL SYNTHESIS OF AN ADAPTIVE VITERBI
DECODER

M. Zwolinski, J. S. Reeve

School of Electronics and Computer Science, University of Southampton, UK
{mz, jsr}@ecs.soton.ac.uk

Keywords: High-level synthesis; Viterbi decoder; BCH
decoder; VHDL; FPGA.

Abstract

The synthesis of a hardware implementation of a Viterbi
decoder from a behavioural specification is discussed. This is
applied to a parallelized version of a BCH decoder. A
parameterizable high-level VHDL model of the parallel
decoder has been developed. Scalability of the parallel
decoder in hardware is demonstrated. An extension of this
technique to an adaptive decoder is discussed.

1 Introduction

Hardware implementations of DSP functions offer many
advantages over software approaches. Hardware is implicitly
parallel, therefore allowing much greater throughput for a
given clock frequency and significant opportunities for
reducing the overall power consumption. Hardware
implementations are often thought of as being less flexible,
but with the increasing capacity of FPGAs, it is now possible
to build “soft hardware” – in other words, hardware that can
be reconfigured to perform new functions as the need arises.
While DSP processors are usually programmed in a subset of
C, dedicated DSP hardware is often designed at a much lower
level of abstraction. Although it is common to derive
algorithms using tools such as Matlab, the implementation
itself is done using a hardware description language (VHDL
or Verilog) at register transfer level (RTL) or below. RTL is
broadly analogous to assembly language programming – there
has been no equivalent to a C-level language for DSP design.
From the designer’s point of view, this is a significant
disadvantage. It is extremely difficult to determine the
optimal structure of a system in terms of area, speed and
power. Indeed, it may be impossible to satisfy all the
implementation constraints, thus an engineering compromise
is required. If a single RTL design takes weeks or even
months, it is clear that alternative structures cannot be readily
explored.
Behavioural hardware synthesis seeks to bridge the gap
between algorithms and RTL. The effects of compromises
between conflicting objectives can be explored in a matter of
minutes. Thus many alternative implementations can be
examined rapidly. For this work, we have used a behavioural
synthesis tool, MOODS [5], developed within the University
over a period of some 15 years. MOODS takes as its input a
high-level, algorithmic description of a hardware system,

written in a subset of VHDL. Using a global optimisation
algorithm (simulated annealing) and a set of weighted
constraints, MOODS can explore the design space and
generate a near-optimal implementation at RTL, suitable for
further refinement.
MOODS was designed as a general purpose synthesis tool.
One of the objectives of this study was to examine its
suitability as a DSP design tool. At the same time, the Viterbi
decoding algorithm [4] has been recast in a form suitable for
implementation in a parallel processing environment [3]. In
other words, the amount of inter-processor communications is
minimised. A second objective was to determine if this recast
algorithm could be written in such a way in VHDL as to
produce an efficient, highly parallel hardware
implementation. By mapping each processor onto a VHDL
process, the coarse parallel structure would be maintained. In
principle, the algorithm is parameterizable for different codes
and for different numbers of processors/processes. The third
objective was, therefore, to design a parameterizable version
of the synthesisable VHDL, thus allowing configurations with
different decoding schemes and different numbers of
processes. Our final objective was to consider how different
decoding schemes might be dynamically swapped onto an
FPGA fabric and to determine how the multiple objective
optimisation in terms of area, speed etc., might be extended to
include the decoding scheme.
In this paper, we report how the Viterbi algorithm was
mapped onto an FPGA structure, maintaining the parallel
processing structure. Limitations in the implementation of the
VHDL compiler in MOODS became apparent, but these did
not significantly impede the proof of concept. Similarly, a
generic VHDL version of the algorithm can be written. We
will present our achievements to date in implementing a
dynamically reconfigurable version of the algorithm on an
FPGA.

2 Parallel Viterbi decoder

The parallel version of the Viterbi decoding algorithm has
been described in detail elsewhere [3]. Here, we will simply
summarise the approach. We have implemented the decoding
of Bose-Chaudhuri-Hocquenghem (BCH) codes [1, 2], but
this approach could equally be applied to convolution codes.
Equally, we implement hard decision decoding, but again this
approach can be adapted to soft decision decoding.
The Viterbi algorithm is simple, but it has high memory
requirements. In order to efficiently parallelise the algorithm,
the memory should be evenly distributed between the

processing elements. Similarly, for an efficient parallel
implementation, the connectivity between processing
elements should be restricted.
BCH codes are a generalisation of Hamming code that allows
multiple error correction. They are class of cyclic codes that
append n-k parity bits to a message of k bits so that each code
word is n bits long. The code parameters (n, k, dmin) are of the
form n = 2m – 1, n – k < mt and the minimum Hamming
distance is dmin < 2t + 1. (m and t are integers.) The codes are
specified by their generator polynomials which have the
general form g0 + g1D +….. gn-kDn-k . The encoding process is
usually described in terms of a shift register.
In our implementation of the Viterbi decoder, the shift
register encoder is regarded as a state machine in which the
state, R, is a base 10 number that represents the bit pattern
{r0r1…rn-k-1} and the number of possible states is 2n-k [3].
In the following description, G is the generator polynomial
represented as a binary number, Q = 2n-k-1, and g = G ⊕ Q is
the generator with the top bits of G and Q set to 0. The
machine changes to particular state depending on the top bit
of the register, that is on whether R is greater or less than Q
and on the value of the next input bit of the message.
In the encoding process, if the register is in state Ri after the
ith message bit has been input, then we have Ri+1 = 2Ri if
either Ri<Q and the message bit is 0, or R>Q and the message
bit is 1. Conversely, Ri+1 = (2Ri) ⊕ g if either Ri<Q and the
message bit 1, or R>Q and the message bit is 0. Note, the
current states are always modelled as 2R and (2Ri) ⊕ g in
either decoding or encoding. The state transition template is
shown in Figure 1.

Figure 1. The building block for the state transition diagram
for all cyclic codes

In the decoding process, if the current state is Ri = 2Ri and the
previous state was Ri-1 = Ri, the input ith bit must be 0. If the
ith bit in the input sequence is 1, there is an error in the input
sequence. If the current state is Ri = (2Ri) ⊕ g and the
previous state was Ri-1 = Ri + Q, the ith input bit must be 0. If
it is 1, there is an error in the input sequence.
The same rules apply for Ri = 2Ri, Ri-1 = Ri + Q and Ri = (2Ri)
⊕ g, Ri-1 = Ri. This is what we use in modelling our decoder.
We compare the current state with the previous state and
calculate which bit should be in the sequence. The state
transition diagram for the BCH (7,4,3) which has a generator
G=013 in octal is shown in Figure 2.
The parallelisation strategy is to distribute the states evenly
among the available processing elements. The states are
partitioned among 2m processors, so that there are P = 2n-k-m

states on each processor. Q = 2n-k-1 , so the number of states
less than Q on each processor is 2n-m-k-1.

Figure 2 The state transition diagram for BCH (7,4,3) code
with G = 0138

States R and R+Q are required to update states 2R and (2R) ⊕
g, so by placing states R and R+Q on the same processor we
need to send only one message (containing the Hamming
weights and paths from states R and R+Q)

3 Behavioural Synthesis

The objective of behavioural synthesis is to map algorithms
onto hardware. As yet, behavioural synthesis tools are not
widely used. Most automatic hardware synthesis is done at
the register transfer level (RTL), at which there is a very clear
relation between the structure of the description and the
structure of the final hardware. Behavioural synthesis works
from a higher level of abstraction, implying that there are
many possible hardware structures. This gives the designer
the freedom to think about the functionality of the design
without worrying unduly about the structure. Many possible
implementations can be quickly analysed. On the other hand,
refinement from a more abstract level than RTL means that
the final implementation may not be as good as that produced
by an expert human designer. This situation is analogous to
that which existed some years ago with software
programming languages. Assembly language was perceived
to be more efficient, but the immense productivity gains that
result from using high-level languages means that assembly
language programming is now limited to very specialized
applications. The implicit parallelism of hardware means that
behavioural synthesis is intrinsically more difficult than
program compilation, but it can be expected that use of such
synthesis tools will grow with time.
The MOODS synthesis tool [] has been a vehicle for research
into behavioural synthesis for some 15 years at the University
of Southampton. High-level specifications are written in a
subset of VHDL. In this style of coding, the design may be
divided into a number of concurrent processes, within which
VHDL is written as a procedural programming language.
During the synthesis process, the control and data flows are
extracted from each process. Thus each process is
implemented as a state machine that controls various elements
within the datapath. At first the implementation is very
simplistic, with one data operation per control state and with
each operation mapped to its own functional unit. As the
synthesis progresses, the design is optimised by introducing
concurrency and sharing operations between a smaller

0 0

5

6 7

4

0

3

1

2

0
0

0

0

0

0

1
1 1

1 1 1

1

1

number of functional units. There are about 20 simple
transforms that can modify a part of the control and/or data
paths. The optimisation is performed using the technique of
simulated annealing, in which a transform and a part of the
control/data structure are each randomly chosen. If the
application of that transform to the given part of the structure
would not change the functionality of the system, the
transform is applied if it reduces the overall cost of the
system. Typically, the cost is defined in terms of the speed
and area of the implementation, but the cost can be extended
to include factors such as power and testability. In this
respect, MOODS is atypical of behavioural synthesis tools.
The various cost constraints are decoupled, whereas in other
approaches a complex, multi-dimensional optimisation has to
be performed in one step.
Here, we only optimise in terms of speed and area. In this
situation, we can use a heuristic, based upon simulated
annealing, in which specific transforms are applied in a given
order. Again, for simplicity, we also reduce the cost function
weights to either high or low priority. (Thus only four
combinations are possible: area is high priority, delay is low;
area is low, delay is high; or both are high or both are low.)
No optimisation is attempted between processes. In the case
study presented here, the system consists of a number of
functionally identical, communicating processes. Therefore,
we synthesise only one such process. The output from
MOODS is RTL VHDL, which is passed on to a low-level
synthesis tool. Thus we can intercept the output and create
multiple instances of the single process by instantiating the
RTL implementation, together with the interconnection
framework within an RTL wrapper. (This same wrapper can
also be used to instantiate multiple copies of the behavioural
code, to allow the high-level description to be simulated.)

3.1 VHDL Coding Style

As noted, a behavioural subset of VHDL is used as the input
language to MOODS. For this application, each processor is
modelled as a single process within an entity/architecture.
The code for each processor runs to about 200 lines and is
therefore too long to reproduce here. The use of a VHDL
process allows the use of procedural coding constructs such
as for loops and if statements. The structure of the code is not,
therefore, significantly different to what it would be if written
in another high-level programming language. Indeed, the only
HDL-specific construct used is a wait statement – needed
only for behavioural simulation. We do use VHDL-specific
data types, such as std_logic_vector, but only for
convenience.
Although the processor code is parameterizable, restrictions
in both the standard VHDL syntax and in our compiler mean
that we use packages to define the BCH code and the number
of processors. This is a minor inconvenience.
Finally, the RTL wrapper is also parameterised using values
in the packages.

4 Results and Discussion

The function of the behavioural VHDL code was tested by
simulation. Similarly, the functionality of the VHDL output
generated by MOODS and of that generated following
placement and routing was verified by simulation. It is
therefore taken as read that all the simulation results cited
below represent fully functional decoding operations.
Because of the practical difficulties in interfacing an FPGA to
other suitable hardware for input generation and output
checking, we have restricted this study to simulations, but
there is no reason to suppose that these results are anything
but accurate. The results shown here are based on synthesis to
Xilinx Virtex II FPGAs. In all cases, optimisation the area
and delay optimisation priorities were both high and, where
possible, and where possible, tri-state buffers were used to
implement multiplexers.
Although the VHDL code for a single processor is the same
in all cases, we would expect that more complex BCH codes
would result in larger structures. (Note that a processor for a
given BCH code remains the same, irrespective of the number
of processors used.) Table 1 shows the MOODS estimates of
the critical path delay in terms of cycles (not the decoding
time!) and area for different BCH codes, confirming that the
processor size and speed do grow as expected.

Code Cycles CLBs

(7,4,3) 55 653

(15,11,3) 158 903

(31,26,3) 430 1608

(63,57,3) 1146 3687

Table 1 Estimated speed/area of processor for different
codewords

While simulation at the behavioural level can verify
functional correctness, it can tell us nothing about execution
speed. Post-synthesis, RTL, simulation will show how many
clock cycles are needed to perform an operation. Table 2
shows the decoding time in clock cycles for different BCH
codes with different numbers of processors.

Number of processors

Code 1 2 4 8 16 32

(7,4,3) 825 419 213

(15,11,3) 3337 1739 921 513

(31,26,3) 14349 7232 3683 1909 1023

(63,57,3) 65355 32809 16537 8401 4333 23010

Table 2 RTL simulation of decoding time for different
codeword (clock cycles)

These values are plotted on logarithmic axes in Figure 3. It
can be seen that the execution time scales almost perfectly
with the number of processors.
Finally, the estimates in Table 1, can be compared with the
actual design size, following place and route. Table 3 shows
the size for the (7,4,3) code. The number of CLBs is less than
that predicted by MOODS – this is to be expected as MOODS
does not perform low-level logic optimization. The hardware
is capable of running with clock speeds of up to about
15MHz.

Processors CLBs TBUFs
1 459, 1% 1904, 5%

2 935, 2% 3812, 11%

4 1857, 5% 7632, 23%

Table 3 Place and Route statistics, (7,4,3) with tri-state
buffers on Virtex3200

We have therefore fulfilled the first three of our objectives.
We have used MOODS as a design tool for DSP hardware,
although there are clearly deficiencies in the way that
parameters are handled. We have implemented a parallel
version of the Viterbi decoder that demonstrates scalability
and we have written the VHDL in such a way that it can be
used for different codes and different numbers of processors
without modification. The fourth objective was to implement
an adaptive decoder.
From Table 1, we can clearly see that with more complex
codes, the processor size grows. Given that these are
estimates, the hardware roughly doubles in size with each
code. Thus we cannot simply move from one code to another
by changing some parameters. Instead, we would have to
dynamically reconfigure an FPGA. This is the basis of
continuing work.

5 Conclusion

Overall, this work demonstrates that behavioural hardware
synthesis is a suitable tool for DSP hardware design. It is
apparent that the subset of VHDL chosen and the particular
compiler implementation is not entirely appropriate for this
particular domain. Nevertheless, this work demonstrates that
the principle of multiple objective optimisation can
significantly reduce the design cycle time and that this
approach opens up a number of new research directions for
further DSP-specific hardware optimisation.

Acknowledgements

The authors would like to thank the following students for
their contributions to this work: Anne Godicheau, Andrew
Basey, Myo Tun Aung, Kosala Amarasinghe, Simon Green.

References

[1] R.C. Bose and D.K. Ray-Chaudhuri, “On a class of error-
correcting binary group codes”, Information and Control, 3,
68-79, (1960).
[2] A. Hocquenghem, “Codes correcteurs d’erreurs”, Chiffres
(Paris), 2, 147-156, (1959).
[3] J.S. Reeve, K. Amarasinghe, “A FPGA implementation of
a parallel Viterbi decoder for block cyclic and convolution
codes”, IEEE International Conference on Communications
5, 2596 – 2599, (2004).
[4] A.J. Viterbi, “Error bounds for convolution codes and an
asymptotically optimum decoding algorithm”, IEEE
Transactions on Information Theory, 13, 260-269, (1967).
[5] A.C. Williams, A.D. Brown and M. Zwolinski
“Simultaneous optimisation of dynamic power, area and delay
in behavioural synthesis”, IEE Proc. C&DT, 147, 383-90,
(2000).

Figure 3 Number of processors versus execution time for 4
different codes.

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5
Log(2)Number of Processors

Lo
g(

2)
 T

im
e

(7,4,1) (15,11,1)
(31,26,1) (63,57,1)

