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Abstract

The Maximum Likelihood PCA (MLPCA) method has been devised in chemometrics as a generalization of the well-known PCA method in
order to derive consistent estimators in the presence of errors with known error distribution. For similar reasons, the Total Least Squares (TLS)
method has been generalized in the field of computational mathematics and engineering to maintain consistency of the parameter estimates in
linear models with measurement errors of known distribution. In a previous paper [M. Schuermans, I. Markovsky, P.D. Wentzell, S. Van Huffel,
On the equivalance between total least squares and maximum likelihood PCA, Anal. Chim. Acta, 544 (2005), 254–267], the tight equivalences
between MLPCA and Element-wise Weighted TLS (EW-TLS) have been explored. The purpose of this paper is to adapt the EW-TLS method in
order to make it useful for problems in chemometrics. We will present a computationally efficient algorithm and compare this algorithm with the
standard EW-TLS algorithm and the MLPCA algorithm in computation time and convergence behaviour on chemical data.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is an extension of paper [1]. In Ref. [1], it was
shown that the Maximum Likelihood PCA (MLPCA) [2,3]
method and the Element-wise Weighted Total Least Squares
(EW-TLS) [4,5] method can be reduced to the same
mathematical problem, i.e. finding the closest (in a certain
sense) weighted low rank matrix approximation where the
weight is derived from the distribution of the measurement
errors in the given data. We will not repeat all the details here,
but, in order to understand the rest of the paper, we will describe
shortly this weighted low rank approximation problem to be
solved. Mathematically, we will consider the following
weighted low rank matrix approximation problem:

min
D̂

jjD−D̂jjW s:t: rankðD̂ÞVr; ð1Þ

with Daℝm�n, the noisy data matrix, rank(D)=k, r<k, DD̂ ¼
D−D̂ the estimated measurement noise,W the covariance matrix
of vecðDD̂Þwhere vecðDD̂Þ stands for the vectorized form ofDD̂,
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i.e., a vector constructed by stacking the consecutive columns of
DD̂ in one vector and ||·||W=vec⊺ (·)W−1vec(·). When the
measurement noise is independently and identically distributed
(i.i.d.), W= I, where I is the identity matrix, and the optimal
closeness norm is the Frobenius norm, ||·||F. This is used in the
well-known TLS and PCA methods. Nevertheless, when the
measurement errors are not i.i.d. the Frobenius norm is no longer
optimal and a weighted norm is needed instead.

In the MLPCA approach, the rank constraint rank(D̂)≤ r is
represented as

D̂ ¼ TPh;

with Taℝm�r and Paℝn�r. So, problem (1) can be rewritten
as follows:

min
T

ðmin
P;D̂

vechðD−D̂ÞW−1vecðD−D̂Þ s:t: D̂ ¼ TPhÞ:

In the standard EW-TLS approach, the rank constraint is
forced by rewriting rank(D̂)≤ r as

D̂ B ̂
−In−r

" #
¼ 0; ð3Þ
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where B ̂aℝr�ðn−rÞ. Moreover, the weighting matrix W is
assumed to be block diagonal

W ¼
W1

O
Wm

2
4

3
5;

where each blockWi is the covariance matrix of the errors in the
i-th row of the data matrix D. So, for the EW-TLS approach,
problem (1) can be rewritten as

min
B ̂

�
min
D̂

Xm
i¼1

ðdi−dîÞW −1
i ðdi−dîÞh s:t: D̂ B ̂

−In−r

" #
¼0

�
; ð4Þ

with di; dîaℝn the i-th row of D and D̂, respectively, and Wi the
i-th weighting matrix defined as the covariance matrix of the
errors in di. Algorithms 3 and 5, described in Ref. [1], were
designed to solve the standard EW-TLS problem (4) for the case
when m≥n and when the measurement errors are only row-
wise correlated. In chemometrics, however, the data matrix
usually has size m×n with m≤n, e.g., in problems of mixture
analysis, curve resolution and data fusion. When the measure-
ment errors are uncorrelated or column-wise correlated, the
algorithms presented in Ref. [1], can still be applied to the
transposed data matrix. For other cases of measurement error
correlation, the algorithms need to be optimized by considering
the left kernel of D̂, i.e., the following modification of Eq. (3)
should be used:

½B ̂
h

2 −Im−r�D̂ ¼ 0; ð5Þ

where B ̂2aℝr�ðm−rÞ. In Section 4 of the previous paper [1], we
have shown through simulations that the EW-TLS method
certainly has potential for problems when the data matrix has
size m×n with m≥n and only row-wise correlated measure-
ment errors. In that section, we have also shown that the
standard EW-TLS approach is not the right method of choice for
the case when m≤n and only row-wise correlated measure-
ments and we have pointed out that the EW-TLS approach
needed to be adapted for handling this case of row-wise
correlated measurement errors in data sets where m≤n. In this
paper, an algorithm will be derived to solve the following
adapted version of the EW-TLS problem:

min
B ̂2

�
min
D̂

Xm
i¼1

ðdi−dîÞW −1
i ðdi−dîÞh s:t: ½B2̂

T
−Im−r�D̂¼ 0

�
; ð6Þ

with di; dîaℝn the i-th row of D and D̂, respectively, and Wi the
i-th weighting matrix defined as the covariance matrix of the
errors in the i-th row of the data matrix Daℝm�n, with m≤n
and only row-wise correlated measurement errors. The
measurement errors among the columns are uncorrelated.

The paper is organized as follows. In Section 2, we will re-
derive the standard EW-TLS problem in a different way than is
usually done in the literature. In a symmetric way, a solution for
the adapted EW-TLS problem, with modified constraint (5),
will be derived. An algorithm to solve the adapted EW-TLS
problem (6) will be presented in Section 3. In Section 4, we will
compare the computation times of both EW-TLS algorithms,
the standard and the adapted one, and the MLPCA algorithm on
simulated chemical data and discuss their convergence
behaviour. Conclusions are made in Section 5.

2. Derivation of the adapted EW-TLS problem

2.1. The standard EW-TLS problem

For a given noisy data matrix Daℝm�n, with m≥n, with
only row-wise correlated measurement errors and given row
error covariance matricesWiaℝn�n, for i=1,…, m, the standard
EW-TLS problem can be formulated as follows:

min
D̂aℝm�n

vechðDh−D̂hÞW −1vecðDh−D̂hÞ s:t: D̂ B ̂
−In−r

" #
¼ 0;

ð7Þ
where the weighting matrix W is block diagonal, because the
measurements are uncorrelated among the columns:

W ¼
W1

O
Wm

2
4

3
5: ð8Þ

By defining R :¼ ½B ̂h−In−r�aℝðn−rÞ�n, the rank constraint
D̂ B ̂

−In−r

" #
¼ 0 in problem (7) can be written as D̂R⊺=0 or RD̂⊺=0.

So, problem (7) can be written as the following optimization
problem:

min
B ̂

 
min

D̂aℝm�n

RD̂h ¼ 0

vechðDh−D̂hÞW−1vecðDh−D̂hÞ
!
: ð9Þ

Solving the inner minimization of problem (9) via Lagrange
multipliers gives:

wðL; D̂Þ ¼ vechðDh−D̂hÞW −1vecðDh−D̂hÞ−trðLhRD̂hÞ
¼ vechðDh−D̂hÞW −1vecðDh−D̂hÞ−vechðLÞvecðRD̂hÞ
¼ vechðDh−D̂hÞW −1vecðDh−D̂hÞ
−vechðLÞðIm � RÞvecðD̂hÞ;

where L is the Lagrange multiplier and we have used the
following properties

trðAhCÞ ¼ vechðAÞvecðCÞ
vecðACÞ ¼ ðCh � IqÞvecðAÞ with e rowðAÞ ¼ q

¼ ðIp � AÞvecðCÞ with e colðCÞ ¼ p;

where � denotes the Kronecker product. For more information
about manipulations involving Kronecker products and the vec
operator, we refer the interesting reader to Ref. [6]. Setting the
partial derivatives of ψ(L, D̂) equal to zero, gives:

Dw
DL

¼ 0fðIm � RÞvecðD̂hÞ ¼ 0:

Dw
DD̂

¼ 0f2W −1vecðD̂hÞ−ðIm � RhÞvecðLÞ ¼ 2W −1vecðDhÞ
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In matrix form, this gives the following:

2W−1 −ðIm � RhÞ
ðIm � RÞ 0

� �
vecðD̂hÞ
vecðLÞ

" #
¼ 2W −1vecðDhÞ

0

� �

ð10Þ
Because of the specific form of the matrix in the left-hand

side of Eq. (10), we can give a closed-form expression for the
vectorized form of the minimizing D̂:

vecðD̂hÞ ¼ vecðDhÞ−W ðIm � RhÞ½ðIm � RÞW ðIm � RhÞ�−1
� ðIm � RÞvecðDhÞ ð11Þ

By filling in this minimizing D̂ in the cost function of
problem (9), an expression for the cost function f (B̂) to be
minimized can be written as follows:

f ðB ̂Þ ¼ vechðDhÞðIm � RhÞ½ðIm � RÞW ðIm � RhÞ�−1
� ðIm � RÞvecðDhÞ; ð12Þ

with R ¼ ½B ̂h−In−r�aℝðn−rÞ�n.
Problem (9) can now be written as the following non-convex

unconstrained optimization problem:

min
B ̂

f ðB ̂Þ: ð13Þ

2.2. The adapted EW-TLS problem

For a given noisy data matrix Daℝm�n, with m≤n, with
only row-wise correlated measurement errors and given row
error covariance matrices Wiaℝn�n, for i=1, …, m, the adapted
EW-TLS problem can be formulated as follows:

min
D̂aℝm�n

vechðDh−D̂hÞW−1vecðDh−D̂hÞ

s:t: ½B2̂
h−Im−r�D̂ ¼ 0; ð14Þ

where the weighting matrix W is block diagonal, because the
measurements are uncorrelated among the columns:

W ¼
W1

O
Wm

2
4

3
5: ð15Þ

The adapted EW-TLS problem formulation can be useful in
chemometrics. In chemometrics, the data matrix usually has size
m×n with m≤n. Moreover, it makes sense to study the case
where correlations between the measurement errors exist only
along the rows, because in calibration problems [2] for example,
the rows of the data matrix D are formed by individual spectra.

Note that the rank constraint rank(D̂)≤ r is written
differently in this subsection. By using the same equation as
in the previous subsection,

D̂ B ̂
−In−r

� �
¼ 0; ð16Þ

we would overparameterize the constraint because of m≤n.
By defining R :¼ ½B2̂

h−Im−r�aℝðm−rÞ�m, the rank constraint
½B2̂
h−Im−r�D̂ ¼ 0 can now be written as RD̂=0 or D̂⊺R⊺=0. So,

problem (14) can be written as the following optimization
problem:

min
B ̂

 
min

D̂aℝm�n

RD̂h ¼ 0

vechðDh−D̂hÞW −1vecðDh−D̂hÞ
!
: ð17Þ

Note that the blocks Wi itself, for i=1, …, m, have larger
dimensions than the non-zero blocks of the matrix W in the
previous subsection. Solving the inner minimization of problem
(17) via Lagrange multipliers gives:

wðL; D̂Þ ¼ vechðDh−D̂hÞW −1vecðDh−D̂hÞ−trðLhD̂hRhÞ;
where L is the Lagrange multiplier. Analogously as in the
previous subsection, a closed-form expression for the vector-
ized form of the minimizing D̂ is given by

vecðD̂hÞ ¼ vecðDhÞ−W ðRh � InÞ½ðR� InÞW ðRh � InÞ�−1
� ðR� InÞvecðDhÞ: ð18Þ

Now, an expression for the cost function g(B̂2) of the inner
minimization of (17) can be found and denoted as follows:

gðB2̂Þ ¼ vechðDhÞðRh � InÞ½ðR� InÞW ðRh � InÞ�−1
� ðR� InÞvecðDhÞ; ð19Þ

with R ¼ ½B2̂
h−Im−r�aℝðm− rÞ�m.

Problem (17) can now be written as the following non-
convex unconstrained optimization problem:

min
B2
̂
gðB2̂Þ: ð20Þ

Algorithm 1. Adapted EW-TLS algorithm.

1. Input: the data matrix Daℝm�n, the covariance matrices
Wi, i=1, …, m, a rank specification r, and a convergence
tolerance ε.

2. Initial approximation B2
(0) : compute the TLS solution

B2
(0) =−U12U22

−1; where D=UΣV⊺ is the Singular Value
Decomposition (SVD) of D and the matrix U is partitioned
as follows:

U ¼
r m−r
U11 U12

U21 U22

� �
r
m−r

:

3. Apply a standard optimization algorithm, e.g., the BFGS
(Broyden, Fletcher, Goldfarb, and Shanno) quasi-Newton
method, for the minimization of g over B̂2 with initial
approximation B2

(0) and with cost function evaluation
performed via implementation of expression (23). Let B̂2⁎
be the approximation found by the optimization algorithm
upon convergence.
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Fig. 1. Number of iterations needed to compute the standard EW-TLS solution
and the adapted EW-TLS solution of the problem described in Example 1.
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4. Compute the vectorized form of the low rank r approxi-
mation matrix D̂ by filling in B̂2⁎ in expression (18).

5. Reconstruct D̂ from vec(D̂).
6. Output: D̂.

3. An algorithm to solve the adapted EW-TLS problem

The cost functions in the optimization problems (13) and
(20) are non-convex. Due to the non-convexity of these
problems, we consider a standard method for local optimiza-
tion: the Levenberg–Marquardt algorithm (Matlab's lsqnonlin),
which is a nonlinear least squares optimization algorithm. By
applying such an optimization method, the efficiency of the cost
function evaluation is of great importance. In order to derive an
efficient algorithm to solve problems (9) and (17), the cost
functions f(B̂) and g(B̂2) in problems (13) and (20), respectively,
need to be studied in further detail. The expression (12) for the
cost function f(B̂) that needs to be minimized in the standard
EW-TLS case, can be rewritten in a simpler way. It is not
difficult to see that, instead of using Kronecker products, the
cost function f(B̂) can be written in terms of a summation over
the rows of the data matrix D:

f ðB ̂Þ ¼
Xm
i¼1

diR
hðRWiR

hÞ−1Rdhi ; ð21Þ

where R ¼ ½B ̂h−In−r�aℝðn−rÞ�n and di denotes the i-th row of
matrixD. By implementing these sums instead of the Kronecker
products and minimizing over the simplified expression (21) of
the cost function f(B̂), an efficient algorithm to solve the
standard EW-TLS problem was described in Ref. [1, Algorithm
5]. For the adapted EW-TLS problem, however, it is not so
straightforward to rewrite the expression (19) for the cost
function g(B̂2) in a simpler way. Still, computational savings
can be achieved as follows. By denoting Ri as the i-th column of
matrix R ¼ ½B2̂

h−Im−r�aℝðm−rÞ�m, expression (R ⊗ In)W(RT �
In) in Eq. (19) can be rewritten as

½R1 � In N Rm � In�
W1

O
Wm

2
4

3
5 Rh

1 � In
v

Rh
m � In

2
4

3
5

¼
Xm
i¼1

RiR
h
i �Wi: ð22Þ

Hence, by exploiting the structure of the weighting matrixW,
a simplified expression for the cost function g(B̂2) is given as
follows:

gðB2̂Þ ¼
Xm
i¼1

Rh
i � di

 ! Xm
i¼1

RiR
h
i �Wi

 !−1

�
Xm
i¼1

Ri � dhi

 !
: ð23Þ

So, the evaluation of the efficient cost function g in (23) is
a matter of numerical implementation of the involved
operations. The proposed algorithm, based on a classical
optimization method, to solve problem (20) is outlined in
Algorithm 1.
In the next section, we will compare the standard EW-TLS
method (minimizing the simplified expression (21) of cost
function f ) with the derived adapted EW-TLS method
(minimizing the simplified expression (23) of cost function g)
on simulated chemical data with only row-wise correlated
measurement errors. We expect that in the case of m≤n the
number of iterations needed to compute the adapted EW-TLS
solution will be less than the number of iterations needed to
compute the standard EW-TLS solution, and the other way
around.

4. Performance comparison between EW-TLS and
MLPCA

For the discussion of the performance of the EW-TLS
algorithms and the MLPCA algorithm three simulated data sets
are used: two Monte-Carlo simulations are used and a simulated
data set from chemical measurements is used which was
previously described in Ref. [1, Example 3]. The presented
results are obtained by implementing the different algorithms in
Matlab (version 6.1) on a PC i686 with 800 MHz and 256 MB
memory.

Example 1. The simulated data set contained matrices
Daℝ10�n, for n=6, 7,…, 15. The noise-free data matrix D0 of
rank 2 was calculated by multiplying an arbitrary 10×2 matrix
by an arbitrary 2×n matrix. For every n, 100 different noise
realizations have been added to D0 in order to construct a full
rank noisy matrix D=D0+ΔD. ΔD is a noise matrix with
correlations only within the rows.

Both, the standard EW-TLS method (defined with the right
kernel (16)) and the adapted EW-TLS method (14) are applied
to D, described in Example 1, in order to find the best low rank
r=2 approximation matrix D̂ of D. For every n, the mean value
of the number of iterations over the 100 runs is of interest and is
visualized in Fig. 1. We expected that in the case of m≥n the
number of iterations needed to compute the standard EW-TLS
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solution would be less than the number of iterations needed to
compute the adapted EW-TLS solution, and the other way
around. The reason for this is that representations (3) and (5)
lead to a different number of parameters. Fewer optimization
variables result in less computations per iteration as well as in
fewer iteration steps. Thus, by solving problem (1) it is
important to use a representation of the rank constraint
rank(D̂)≤ r that leads to as few as possible optimization
variables. From Fig. 1, it is clear that a smaller number of
iterations is needed to compute the adapted EW-TLS solution
for m<n. Indeed, the average number of iterations depends on
the number of parameters in the optimization problem to solve.

Example 2. The simulated data set contained spectra from 10
samples of three-component mixtures. The concentration of
each component in each of the 10 mixtures had a value between
0 and 1 from a uniform random number distribution. The
spectral profiles of the three components were Gaussian with a
standard deviation of 20 nm and maximum molar absorptivities
at 480 nm, 500 nm and 520 nm, respectively. Pure spectral
vectors were generated between 400 nm and 600 nm at 20 nm
intervals. The noise-free data matrix D0 was calculated by
multiplying the 10×3 matrix of concentrations by the 3×11
matrix of pure component spectra. To add a noise matrix ΔD of
correlated measurement errors to the noise-free matrixD0, first a
10×11 matrix D′ of uncorrelated measurement errors was
generated. The matrix of the measurement standard deviations
corresponding to this 10×11 matrix is determined by generating
a 10×11 matrix of uniformly distributed random numbers
between 0 and 0.01. This ensures that there is no pattern in the
standard deviation matrix. Now, the 10×11 matrix of
uncorrelated measurement errors D′ is generated by taking a
10×11 random matrix with normally distributed elements (with
Matlab's randn) and multiplying this matrix, element-wise, by
the standard deviation matrix. To introduce correlations among
the errors within the rows, the rows of matrix D′ were filtered
using a 1×5 moving average digital filter (see Ref. [2, Eqs. (34)
(35) (36)] for the definition) to construct the correlated error
matrix ΔD. This error matrix ΔD was added to the noise-free
part D0 in order to complete the noisy data matrix D=D0+ΔD
of size 10×11.

To the simulated data set described in Example 2 we have
applied the MLPCA algorithm and the EW-TLS algorithms.
All the algorithms start from the same initial approximation,
the truncated SVD solution. After the algorithms reached their
local minimum, we compared the final cost which is defined
by vec⊺(D− D̂)W−1vec(D− D̂) for each algorithm and the
number of iterations needed to converge to their local
minimum. The results are presented in Table 1. From the
Table 1
MLPCA and EW-TLS applied to the chemical data set described in Example 2

Approach Cost Iterations

MLPCA 43.40462099863502 37
Standard EW-TLS 43.75752145651096 84
Adapted EW-TLS 43.40462102116915 25
table it is clear that the adapted EW-TLS algorithm needs the
fewest number of iterations for the case when the data matrix
has size m×n, m≤n, and only row-wise correlated measure-
ment errors.

In order to draw general conclusions about the right choice of
algorithms to solve specific problems in chemometrics and
other application fields, we created a simulation example,
Example 3, which contains data matrices of size m×n with
m<n, m>n or m=n. All the data matrices have measurement
errors which are only correlated among the rows.

Example 3. The simulated data set contained m×n matrices D,
for m=6, 7,…, 13 and n=20−m. The noise-free data matrix D0

of rank r was calculated by multiplying an arbitrary m× rmatrix
by an arbitrary r×n matrix. The desired rank r was varied from
1 to 4. For each combination of m and r, 50 independently
generated data matrices D were generated as follows. First, an
m×n matrix D′ of uncorrelated measurement errors was
generated. The matrix of the measurement standard deviations
corresponding to this m×n matrix is determined by generating
an m×n matrix of uniformly distributed random numbers
between 0 and 0.01. This ensures that there is no pattern in the
standard deviation matrix. Now, them×nmatrix of uncorrelated
measurement errors D′ is generated by taking an m×n random
matrix with normally distributed elements (with Matlab's
randn) and multiplying this matrix, element-wise, by the
standard deviation matrix. To introduce correlations among
the errors within the rows, the rows of matrix D′ were filtered
using a 1×5 moving average digital filter (see Ref. [2, Eqs. (34)
(35) (36)] for the definition) to construct the correlated error
matrix ΔD. This error matrix ΔD was added to the noise-free
part D0 in order to complete the noisy data matrix D=D0+ΔD
of size m×n.

We have applied the MLPCA algorithm and the two EW-
TLS algorithms to each of the data matrices D of the data set
described in Example 3. The three algorithms were run from
equivalent initial approximations obtained via the SVDs and the
stopping criteria were set to the same tolerance. In all the runs,
the same solution was found. As expected, the average number
of iterations depends on the number of optimization parameters:
the fewer the optimization variables, the fewer the average
number of iterations for convergence. Numerical results are
shown in Table 2. The table shows the number of iterations for
each algorithm and for the different m, n and r.

From the table it is clear that the adapted EW-TLS algorithm
needs the fewest number of iterations for the case when the data
matrix has size m×n with m<n and the measurement errors are
only row-wise correlated. When m>n, the standard EW-TLS
algorithm converges to the right solution within the fewest
number of iterations. For square matrices with m=n, the
MLPCA algorithm seems to converge in the fewest number of
iterations.

Nevertheless, in order to draw general conclusions about the
right method of choice for a specific problem in chemometrics,
besides the number of iterations, we also need to take into
account the number of floating point operations (flops) per
iteration for each of the algorithms discussed. The MLPCA



Table 2
The number of iterations of the MLPCA and the EW-TLS algorithms by
applying them to the chemical data set described in Example 3

m×n 6×14 7×13 8×12 9×11 10×10 11×9 12×8 13×7

r=1 MLPCA 16 16 16 17 11 17 17 18
Standard
EW-TLS

15 16 16 13 14 10 9 8

Adapted
EW-TLS

7 8 11 11 23 13 14 17

r=2 MLPCA 27 28 30 32 13 35 31 36
Standard
EW-TLS

56 58 46 38 48 30 30 25

Adapted
EW-TLS

13 19 19 21 28 34 34 33

r=3 MLPCA 37 41 46 50 18 51 49 53
Standard
EW-TLS

88 84 72 67 66 53 48 35

Adapted
EW-TLS

15 19 30 36 41 50 63 66

r=4 MLPCA 46 50 53 62 24 64 63 61
Standard
EW-TLS

88 89 83 78 77 63 49 31

Adapted
EW-TLS

16 28 42 46 57 65 69 72
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algorithm is dominated by an SVD, whose computational cost is
of the order of 4m2n+8mn2 +9n3 for an m×n matrix. We
obtained the following theoretical number of flops for
minimizing the cost function (step 3) in the adapted EW-TLS
algorithm, Algorithm 1: 2mn(m− r)+ (m− r)2 +mn2(m− r)2 +2/
3n3(m− r)3 +n2(m− r)2 +n(m− r). The theoretical number of
flops for minimizing the cost function f, expressed in (21), in the
standard EW-TLS algorithm is of the order m(2n(n− r)+n2(n−
r)+n(n− r)2 +2/3(n− r)3 + (n− r)2 + (n− r)). Given the iterative
nature of the algorithms, the total number of flops is a multiple
of the flops necessary to execute one iteration. Based on the
number of iterations given in Table 2 and the theoretical number
of flops per iteration, we computed the total number of flops for
each algorithm and for the different sizes of m, n and r. The
results are shown in Table 3. By underlining the number of
iterations in the table, we emphasize which algorithm has the
fewest computational load for the specific choices of m, n and r.
We clearly see the computational advantage of the adapted EW-
TLS algorithm for the cases of m≪n and r>2 and the
computational advantage of the standard EW-TLS algorithm for
Table 3
The total number of flops of the MLPCA and the EW-TLS algorithms by applying

m×n 6×14 7×13 8×12

r=1 MLPCA 577,920 508,560 445,440
Standard EW-TLS 623,220 618,240 552,870
Adapted EW-TLS 1,847,300 2,930,000 5,061,287

r=2 MLPCA 975,240 889,980 835,200
Standard EW-TLS 2,020,032 1,923,400 1,345,700
Adapted EW-TLS 1,817,100 4,139,800 5,638,212

r=3 MLPCA 1,336,440 1,303,185 1,280,640
Standard EW-TLS 2,733,632 2,367,680 1,762,560
Adapted EW-TLS 934,425 2,207,200 5,323,350

r=4 MLPCA 1,661,520 1,589,250 1,475,520
Standard EW-TLS 2,332,000 2,108,232 1,676,800
Adapted EW-TLS 327,850 1464,600 4,002,432
the case when m》n. The standard EW-TLS algorithm seems to
behave better. The reason for this is that we could not avoid the
Kronecker product in the adapted EW-TLS algorithm. The EW-
TLS algorithms are only developed for cases of row-wise
correlated measurement errors. So, for more general cases of
measurement correlations the MLPCA algorithm should still be
the method of choice.

Based on this experiment, we can conclude that the EW-
TLS-like algorithms can indeed be nice alternatives to the
MLPCA algorithm for the specific cases of row-wise correlated
measurement errors and data matrices which are far from
squared. Moreover, in paper [1] we showed that for uncorrelated
measurement errors with equal row variances the GTLS
algorithm performs best and that the standard EW-TLS
algorithm is also useful for cases where the measurement errors
have unequal row variances. We refer to paper [1] for further
explanation.

5. Conclusion

In order to make the EW-TLS method useful for
problems in chemometrics, we have derived an adapted
version of this EW-TLS method. For the case when the data
matrix D has much more columns than rows and only
correlated measurement errors within the rows, we have
presented an algorithm to compute the best low rank matrix
approximation of D. Moreover, we have compared this new
algorithm with the standard EW-TLS algorithm and the
MLPCA algorithm in convergence behaviour on chemical
data. It can be concluded that the EW-TLS-like algorithms
are nice alternatives to the MLPCA algorithm for the
specific cases of row-wise correlated measurement errors
and data matrices which are far from squared. For more
general cases of correlations between the measurements the
MLPCA algorithm should still be the method of choice.
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