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Abstract
A key problem when forming effective coalitions of au-
tonomous agents is determining the best groupings, or the
optimal coalition structure, to select to achieve some goal. To
this end, we present a novel, anytime algorithm for this task
that is significantly faster than current solutions. Specifically,
we empirically show that we are able to find solutions that
are optimal in 0.082% of the time taken by the state of the art
dynamic programming algorithm (for 27 agents), using much
less memory (O(2n) instead of O(3n) for n agents). More-
over, our algorithm is the first to be able to find solutions for
more than 17 agents in reasonable time (less than 90 minutes
for 27 agents, as opposed to around 2 months for the best
previous solution).

Introduction
Coalition formation (CF) is a fundamental form of interac-
tion that allows the creation of coherent groupings of dis-
tinct, autonomous agents in order to efficiently achieve their
individual or collective goals. Now, in many cases the en-
vironment within which the agents operate is dynamic and
time dependent in that the gains from achieving the goals
decrease the further into the future they are met. Moreover,
such agents are usually resource limited and so it is critical
that the CF process should be as fast as possible and have
minimal memory and computational requirements. Further-
more, in cases where the search for the best solution may
be lengthy, it is important that solutions are available at any
time and that they get incrementally better as time passes.

One of the main bottlenecks in the CF process is that of
coalition structure generation (CSG). This involves selecting
the best coalitions from the set of all possible coalitions such
that each agent joins exactly one coalition. The search space
generated for n agents grows exponentially in O(nn) and
ω(n

n
2 ) (Sandholm et al. 1999). Moreover, the CSG problem

has been shown to be NP-complete and existing algorithms
cannot generate solutions within a reasonable time for even
moderate numbers of agents (typically more than 17).

Previous work has adopted three principal approaches
to solving this problem. First, some anytime algorithms
have been devised, but the worst case bounds they pro-
vide are usually very low (up to 50% of the optimal in the
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best case) and they always have to search the whole space
to guarantee an optimal solution (Sandholm et al. 1999;
Dang & Jennings 2004). Anytime algorithms based on Inte-
ger programming do manage to prune the space searched by
employing linear programming relaxations of the problem,
but these quickly run out of memory with small numbers of
agents (typically around 17). Second, faster dynamic pro-
gramming (DP) solutions have been developed that avoid
searching the whole space to guarantee an optimal solution,
but they cannot generate solutions anytime (Yun Yeh 1986,
Rothkopf et al. 1998). Moreover, the DP approach quickly
becomes impractical for moderate numbers of agents (e.g.,
about 2 months for 27 agents on a typical modern PC).
Third, yet other approaches have tried to limit the size of
coalitions that can be formed in an attempt to reduce the
complexity of the problem (Shehory & Kraus 1998). How-
ever, such constraints can greatly reduce the efficiency of the
possible solutions since the solution chosen in this case can
be arbitrarily far from the optimal (e.g., if the coalitions of
the chosen size have a value of zero). Recently, however,
Rahwan et al. (2007) proposed an anytime CSG algorithm
that could generate near-optimal solutions (i.e. ≥ 95% effi-
cient) faster than DP. However, their algorithm is still slower
than DP in finding the optimal solution, provides no theoret-
ical bounds, and was only tested on uniform distributions of
coalition values.

Against this background, we develop and evaluate a novel
CSG algorithm that is anytime and that finds optimal so-
lutions much faster than any previous algorithm designed
for this purpose. The strength of our approach is founded
upon three main components. First, we build upon (Rah-
wan et al. 2007) to develop a more precise representation
of the search space and prove the bounds that can be com-
puted for disjoint parts of the search space. Second, we pro-
pose new search strategies to select the most promising sub-
spaces and allow agents to trade-off solution quality against
their computational capability. Also, our search strategies
allow us to provide worst case bounds on the quality of the
solutions generated. Third, we develop a branch-and-bound
algorithm to find the optimal coalition structure without hav-
ing to gather the values of all coalitions within each possible
coalition structure.

This paper advances the state of the art in the follow-
ing ways. First, we develop a novel anytime optimal coali-



tion structure generation algorithm that is significantly faster
than any previous algorithm designed for this purpose (e.g.,
it takes less than 90 minutes (on average) to solve the 27
agents CSG problem, as opposed to more than 2 months
for the state of the art DP approach). Second, we improve
upon Rahwan et al.’s representation of the search space and
describe its algebraic properties. Using this representation,
which partitions the search space into smaller sub-spaces,
we propose new search strategies that allow agents to select
to search certain sub-spaces according to their constraints
and goals. For instance, we can choose, on the fly, whether
coalition structures with larger or smaller coalitions should
be selected (since each sub-space contains coalition struc-
tures composed of coalitions of pre-determined sizes). Also,
we can analyse the trade-off between the size (i.e. the num-
ber of coalition structures within) of a sub-space and the im-
provement it may bring to the actual solution by virtue of
its lower bound. Hence, rather than constraining the solu-
tion to fixed sizes, as per the third strand of previous work
discussed above, agents using our representation can make
an informed decision about the sizes of coalitions to choose.
Third, we prove how bounds on sub-spaces can be obtained
and show how these allow us to reach the optimal solution
faster than other anytime approaches. Finally, our algorithm
can provide very high worst case guarantees on the quality
of any computed solution very quickly (e.g, more than 95%
of the optimal within 0.5 seconds in the worst case for 21
agents) since it can rapidly (after scanning the input) tighten
the upper and lower bounds of the optimal solution.

The rest of this paper is structured as follows. First, we
present the basic definitions of the CSG problem and de-
scribe our novel representation for the search space. Then,
we detail our CSG algorithm and show how we use this rep-
resentation to prune the search space and find the optimal
coalition structure using a branch-and-bound technique. Fi-
nally, we provide an empirical evaluation of the algorithm,
before concluding.

Basic Definitions
The CSG problem is equivalent to a complete set parti-
tioning problem (Yun Yeh 1986) where all disjoint subsets
(i.e. coalitions) of the set of agents need to be evaluated
in order to find the optimal partition (i.e. a coalition struc-
ture). The weight associated to a subset is given by the
value of the coalition. More formally, we denote the set
of agents as A = {a1, a2, . . . , ai, . . . , an}, where n is the
number of agents, and a subset (or coalition) as C ⊆ A.
Each coalition has a value given by a characteristic func-
tion v(C) ∈ R+ ∪ {0}. A partition, or coalition structure,
is noted as CS ⊆ 2A and the set of all partitions of A is
noted as P(A) = {CS ∈ 2A| ∪C∈CS C = A ∧ ∀C,C ′ ∈
CS C ∩ C ′ = ∅} (i.e. the set of unique disjoint coali-
tion structures). For example, if A = {a1, a2, a3, a4},
possible coalition structures are {{a1, a2}, {a3}, {a4}} or
{{a1, a3}, {a2, a4}}. The value of a coalition structure
is then given by the function V (CS) =

∑
C∈CS v(C).

Our goal is to find the optimal coalition structure, noted as
CS∗ = arg maxCS∈P(A)(V (CS)), given v(C),∀C ⊆ A.

Search Space Representation
The search space representation employed by most existing
state of the art anytime algorithms is an undirected graph in
which the vertices represent coalition structures (Sandholm
et al. 1999; Dang & Jennings 2004). However, this repre-
sentation forces all valid solutions to be explored to guaran-
tee that the optimal has been found.1 In contrast, the DP ap-
proach employs a more efficient representation, where pre-
computed components of the final solution are reused, which
allows it to prune the space (Yun Yeh 1986). However, the
DP approach does not select incrementally better solutions,
which makes it unsuitable when there is insufficient time
to wait for an optimal solution. Given the above, we be-
lieve an ideal representation for the search space should al-
low the computation of solutions anytime, while establish-
ing bounds on their quality and permit the pruning of the
space to speed up the search. With this objective in mind,
in this section we describe just such a representation. In
particular, it supports an efficient search for the following
reasons. First, it partitions the space into smaller indepen-
dent sub-spaces, for which we can identify upper and lower
bounds, which allow us to compute a bound on solutions
found during the search. Second, we can prune most of these
sub-spaces since we can identify the ones that cannot con-
tain a solution better than the one found so far (hence we
can produce solutions anytime). Third, since the represen-
tation pre-determines the size of coalitions present in each
sub-space, agents can balance their preference for certain
coalition sizes against the cost of computing the solution
for these sub-spaces. Note that our approach builds upon
and improves that of (Rahwan et al. 2007) by redefining
the representation of the search space formally and describ-
ing its algebraic properties. Also, we additionally prove how
valid upper and lower bounds can be computed for such sub-
spaces. Later on, we also describe worst case bounds on the
quality of the solution that our representation allows us to
generate.

Partitioning the Search Space
We partition the search space P(A) by defining sub-spaces
that contain coalition structures that are similar accord-
ing to some criterion. The particular criterion we spec-
ify here is based on the integer partitions of the num-
ber of agents |A|.2 These integer partitions, of an in-
teger n, are the sets of nonzero integers that add up to
exactly n (Skiena 1998). For example, the five distinct
partitions of the number 4 are {4}, {3, 1}, {2, 2}, {2, 1, 1},
and {1, 1, 1, 1}. It can easily be shown that the different
ways in which a set of 4 elements can be partitioned can
be directly mapped to the integer partitions of the num-

1Within such a representation it is comparatively easy to find
integral worst case bounds from the optimal. Such bounds can be
useful in giving an indication as to the quality of the solution found
by searching parts of the space (rather than obtaining a solution that
could be infinitely far from the optimal).

2Other criteria could be developed to further partition the space
into smaller sub-spaces, but the one we develop here allows us to
choose coalition structures with certain properties as we show later.



ber 4. For instance, partitions (or coalition structures) of
the set of four agents, {{a1, a2}, {a3}, {a4}} ∈ P(A), and
{{a4, a1}, {a2}, {a3}} ∈ P(A) are associated with the in-
teger partition {2, 1, 1}, where the parts (or elements) of
the integer partition correspond to the cardinality of the el-
ements (i.e. the size of the coalitions) of the set partition
(i.e. the coalition structure). For example, for the coalition
structure {{a4, a1}, {a2}, {a3}} ∈ P(A), the elements of
its configuration can be obtained as follows: |{a4, a1}| =
2, |{a2}| = 1, and |{a3}| = 1.

Here we precisely define this mapping by the function F :
P(A) → G, where G is the set of integer partitions of |A|.
Thus, F defines an equivalence relation∼ onP(A) such that
CS ∼ CS′ iff F (CS) = F (CS′) (i.e. the cardinality of the
elements of CS are the same as those of CS′). Given this,
in the rest of the paper we will refer to an integer partition as
a coalition structure configuration. Then, the pre-image3 of
a configuration G, noted as F−1[{G}], contains all coalition
structures with the same configuration G.

Selecting Bounds for the Sub-Spaces
For each sub-space F−1[{G}], it is possible to compute an
upper and a lower bound. To this end, we define the set
of coalitions of the same size (or coalition lists) as CLs =
{C ⊆ A| |C| = s}, where s ∈ {1, . . . , |A|}. We note as
maxs,mins, and avgs, the maximum, minimum, and aver-
age value of coalitions of a given size s. Now, given a config-
uration G, we define a set SG =

∏
s∈G CL

G(s)
s which is the

cartesian product of the coalition lists CLs, where G(s) re-
turns the multiplicity of s in G. We will note as gn ∈ G (in-
stead of s) the elements of G where the index of the element
matters. Notice that the set SG contains many combinations
of coalitions that are invalid coalition structures since they
may overlap with each other (i.e., two coalition structures
may contain coalitions which contain the same agents). For
example, a coalition structure of {{a1, a2}, {a1}, {a3}} is
invalid since agent a1 appears in two coalitions.

Now, consider the value UBG obtained by summing the
maximum value of each coalition list involved in a set SG;
that is, UBG =

∑
s∈G G(s) · maxs. As UBG defines

the maximum value of the elements in SG, it is easy to
demonstrate that UBG is an upper bound for the coalition
structures contained in F−1[{G}] which contains only valid
coalition structures. In a similar way, it is possible to com-
pute a lower bound. Intuitively, one would expect to select∑

s∈G G(s)·mins (i.e., the minimum value of an element in
SG) as a lower bound for all coalition structures (including
invalid overlapping ones). However, a better lower bound
for the optimal value is actually the average of the coali-
tion structures in F−1[{G}] since there is bound to be a
coalition structure that has a higher value than the average
value and this average value is very likely to be much greater
than the minimum one (depending on the distribution of val-
ues). The key point to note is that this average can be ob-
tained without having to go through any coalition structure

3Recall that the pre-image or inverse image of a set G ⊆ G
under F : P(A) → G is the subset of P(A) defined by F−1[G] =
{CS ∈ P(A)|F (CS) = G}.

(as noted, but not proved, by (Rahwan et al. 2007)). This
is because the average value of a sub-space can be proven
(see appendix) to be the sum of the averages of the coalition
lists (i.e., AV GG =

∑
gi∈G avgi) and these can be com-

puted with very little cost by only scanning the input which
is much smaller than the space of coalition structures.

Theorem 1 Let G be a configuration, G = {g1, . . . , gi, ...,
g|G|}. Let AV GG be the average of all coalition structures
in F−1[{G}] and avggi

be the average of all coalitions in
CLgi

, for every 1 ≤ i ≤ |G|. Then the following holds:

AV GG =
∑
gi∈G

avggi

The Anytime Optimal Algorithm
Having described our representation, we now focus on how
to search it. Here, we describe the two main steps of the
algorithm. First, we obtain the bounds UBG and AV GG

for every F−1[{G}]. Within the same process, we are able
to compute an optimal solution for some sub-spaces (at a
very small cost). Moreover, we can establish a worst case
bound on the quality of the solution found so far and prune
parts of the space after this step. Second, we describe how
the algorithm searches the elements of F−1[{G}] using a
branch-and-bound technique to reduce the number of coali-
tion structures that we need to go through, while further
pruning the space.

Step 1: Computing Bounds
The input to the coalition structure generation problem is the
value associated to each coalition (i.e. v(C) for all C ∈ 2A)
provided in ordered lists as in (Rahwan et al. 2007).

Now, let G2 = {G ∈ G| |G| = 2} denote the set of
configurations where the number of elements in a given G
is equal to 2. Given this, we can compute the value of all
coalition structures with configurations G ∈ G2 by simply
summing the values of the coalitions while scanning the lists
CLs and CL|A|−s, starting at different extremities for each
list. The details of how to do this are in (Rahwan et al.
2007). In so doing, we can also record maxs and avgs (and
max|A|−s and avg|A|−s). Note that this process is O(m)
where m = 2|A| − 1 is the size of the input.

Having computed maxs and avgs for each sub-space we
can now compute their upper (UBG) and lower bounds
(AV GG). Then, we assign the lower bound of the opti-
mal to LB = max(AV G∗

G, V (CS′)), where AV G∗
G =

arg maxG∈G(AV GG) is the highest lower bound of the sub-
spaces and V (CS′) is the value of the best coalition struc-
ture CS′ obtained by scanning the input as above. Hence,
all sub-spaces with UBG < LB can be pruned straight-
away. Note that after scanning the input (i.e. searching
sub-spaces corresponding to configurations in G2), we can
establish a worst case bound equal to |A|/2 on the value
found so far according to (Sandholm et al. 1999). How-
ever, unlike (Rahwan et al. 2007) who do not bound their
solution, we can also specify a worst case bound equal
to UBmax

AV G∗
G2

, where AV G∗
G2 = arg maxG∈G2(AV GG) and



UBmax = maxG∈G(UBG). This is because the value of
LB is at worst equal to V (CS′) which, in turn, can be no
worse than the average of coalition structures with configu-
rations G ∈ G2, that is AV G∗

G2 as obtained above. Thus,
while Sandholm et al.’s bound is integral and is, at best 2
(i.e. the solution is guaranteed to be 50% of the optimal), af-
ter scanning the input ours may not be an integer and could
be as low as 1 (i.e. the solution is guaranteed to be 100%
of the optimal). Hence, the best of the two measures can
be taken as the worst case bound of the solution. Next, we
describe how we search through the remaining sub-spaces.

Step 2: Selecting and Searching F−1[{G}]
Given a set of promising sub-spaces obtained after scanning
the input, we need to select the one sub-space F−1[{G}] to
search and then search for the best coalition structure within
it (i.e., CS∗

G). These operations are performed repeatedly,
one after the other, until either of the following termination
conditions are reached, at which point the optimal solution
is obtained (i.e., CS∗ = CS∗

G):

1. If V (CS∗
G) = UBmax, this coalition structure is the best

that can ever be found.

2. If all nodes have been searched or the remaining sub-
spaces have been pruned.

As can be seen, unlike previous CSG algorithms, the speed
with which our algorithm reaches the optimal value depends
on the closeness of the upper bound to the optimal value.
This closeness is determined by the spread of the distribu-
tion of the coalition values (e.g., a larger variance means that
the upper bound is more representative of the maximum and
conversely for a tighter variance). Hence, later in the paper
we will evaluate the robustness of our algorithm against a
number of distributions. In the next subsection we describe
how we select the next sub-space to search.

Selecting F−1[{G}]. From the previous subsection, we
know the optimal solution can only be guaranteed if, ei-
ther there are no sub-spaces left to search or the maxi-
mum upper bound has been reached. Either condition can
only be reached if the sub-space with the highest UBG (i.e.
UBmax) is searched. A key point to note is that these con-
ditions mean that the cost of searching a sub-space to find
the CS∗ is equal to the cost of search that sub-space and all
sub-spaces with a higher upper bound. Hence, in order to
minimise the cost of searching for the optimal we go choose
F−1[{G}] using the following rule:

Select F−1[{G}], where G = arg max
G∈G

(UBG)

Note that this rule, which implies best-first search, applies
only if we are seeking the optimal solution. In case we are
after a near-optimal solution where a bound β ∈ [0, 1] is
specified (e.g., β = 0.95 means that the solution sought
only needs to be 95% efficient in the worst case), then the
selection function will be different since we do not need to
search the sub-space with UBG = UBmax in order to return
a possible solution at any time. Rather, we need to search
sub-spaces that are smaller but could give a value close to

β × UBmax. The point to note is that, given our represen-
tation, we are able to specify β in cases where computing
the optimal solution would be too costly and, given this, we
modify the selection function accordingly to speed up the
search.

Another advantage of being able to control the configura-
tion selected for the search is that agents can choose what
type of coalition structures to build according to their com-
putational resources or private preferences (Sandholm et al.
1999; Shehory & Kraus 1998). For example, it has been ar-
gued that the computation time could be reduced if we could
limit the size of the coalitions that could be chosen. How-
ever, this is a very costly self-imposed constraint since it
possibly means neglecting a number of highly efficient so-
lutions. Instead, using our approach, it is possible to deter-
mine, ex-ante (before performing the search), which coali-
tion structure configurations are most promising according
to their upper and lower bounds. Therefore the computation
time can be focused on these configurations and the gains
can be traded-off against the computation time since the size
of a given sub-space can be exactly computed using the fol-
lowing equation:

|F−1[{G}]| =

(
|A|
g1

)
×

(
|A| − g1

g2

)
× . . .×

(
|A| −

∑k−2
i=1 gi

gk−1

)
∏|A|

i=1,i∈E(G) G(i)!
(1)

where E(G) is the underlying set4 of elements of G =
{g1, . . . , gk}.

In cases where agents do prefer coalition structures of par-
ticular types (e.g., containing bigger or smaller coalitions),
they can now, a priori, balance such preferences with the
quality of the solutions (bounded by AV GG) that can be
obtained from such coalition structures. Indeed, this is be-
cause, in our case, it is possible to determine the worst-case
bound from the optimal that the search of a given subspace
will generate (i.e. UBmax

AV GG
). We next describe how we search

the elements of the chosen sub-space F−1[{G}].

Searching within F−1[{G}]. This stage is one of the
main potential bottlenecks since it could ultimately involve
searching a space that could possibly equal the whole space
of coalition structures (if all F−1[{G}] need to be searched).
The challenge then lies in avoiding computing redundant,
as well as invalid, solutions. Moreover, it is critical that
we identify those solutions that are bound to be lower than
the current best and avoid computing them. Rahwan et
al. (2007) first presented a technique for cycling through
only valid and unique coalition structures within F−1[{G}].
However, their procedure does not avoid the problem of hav-
ing to gather all coalitions of each possible coalition struc-
ture. Given this, we describe a novel branch-and-bound ap-
proach that avoids retrieving all coalitions of every possible
coalition structure by identifying possible solutions that are
worse than the current best.
Applying Branch-and-Bound. Each valid coalition struc-
ture CS = {C1 . . . , Ck, Ck+1, . . . , C|G|} of configuration

4For example {1, 2} is the underlying set of {1, 1, 2}.



G = {g1, . . . , gk, gk+1, . . . , g|G|} is generated by sum-
ming values of all coalitions within it one at a time. When
the sum of values of coalitions C1, . . . , Ck is computed
during the search, it is also possible to compute an up-
per bound for the other coalitions (i.e. the feasible re-
gion) Ck+1, . . . , C|G| that could be added. This upper
bound can be computed using maxs for every possible
coalition size s ∈ 1, 2, . . . , |A| (as above). Let this upper
bound be computed as UB{gk+1,...,g|G|} =

∑i=|G|
i=k+1 maxgi

.
Also, let LB be the current best solution found so far
and V (C1, ..., Ck) =

∑i=k
i=1 v(Ci). Then, if LB >

V (C1, ..., Ck)+UB{gk+1,...,g|G|} we do not need to compute
those coalition structures that start with C1, ..., Ck and end
with coalitions of size gk+1, ..., g|G| since they are bound to
be lower than the current best solution. Graphically, this is
expressed by avoiding the move to rightmost columns (i.e.
size 3 or size 4 depending on the difference between the sum
of v(Cx) with max3 or max4 respectively and the maxi-
mum value LB found so far) as in figure 1.

Figure 1: Applying branch-and-bound on a sub-space with
G = {1, 3, 4}. Coalitions starting with Cx or {Cy, Cp} have
a lower upper bound than LB and therefore are not searched
(denoted by red arcs) , while coalitions with {Cy, Cq} could
be better than LB and are searched.

Experimental Evaluation
In this section we empirically evaluate and benchmark our
algorithm. The general hypothesis is that it will perform bet-
ter than current approaches. However, a potential criticism
that can be levelled against our algorithm is that, contrary
to the other approaches, it is dependent on computing up-
per and lower bounds that are relatively close to the actual
optimal value in order to prune large parts of the space and
so guarantee that the optimal value has been found. Since
this closeness to the optimal is determined by the spread of
the distribution of the values of the coalitions, it is crucial
that we test our algorithm against different distributions of
input values and show that it is robust to all of them. How-
ever, we also aim to determine which types of inputs allow
us to clearly delineate the most promising sub-spaces very
quickly.

Experimental Setup
We test our algorithm with the four value distributions used
and defined by (Larson & Sandholm 2000): Normal, Uni-
form, Sub-additive, and Super-additive.

Using the same input, we tested the other state-of-the
art algorithms, namely DP and Integer Programming (using
ILOG’s CPLEX). We do not experiment with the other any-
time algorithms since they need to search the whole space to
find the optimal value and this is not feasible within reason-
able time for more than 8 agents.

Results
Given the above setup, we ran DP, CPLEX and our algo-
rithm 20 times for |A| ∈ {15, 16, . . . , 26, 27} and recorded
the clock time5 taken to find the optimal value. The DP al-
gorithm has a deterministic running time since it always per-
forms the same operations which grow in O(3|A|). Hence,
we computed the results for DP up to 20 agents and extrap-
olated the rest of the points (since the DP algorithm takes
an unreasonable amount of time and runs out of memory for
higher values). For each point, we computed the 95% confi-
dence interval which are plotted as error bars on the graphs.

Figure 2: Running times for CSG algorithms for 15 to 27
agents (log scale).

As can be seen from figure 2 (in log scale), our algorithm
always finds the optimal value for all distributions faster than
the other algorithms. In the worst case, our algorithm finds
the solution for 27 agents in 4.69 × 103 seconds (i.e. 1.3
hours), while the DP algorithm takes 5.67×106 seconds (i.e
around 2 months), which means our algorithm takes 0.082%
of the time taken by DP (an improvement that gets expo-
nentially better with increasing numbers of agents). More-
over, CPLEX is found to be slower than DP and runs out
of memory when there are more than 17 agents. Our al-
gorithm performs worst, comparatively speaking, when the

5The experiments were carried out on a Xeon dual-core PC with
2GB of RAM. The algorithms were implemented in Java 1.5.



input is a normal distribution of values. This corroborates
our initial expectations about the relationship between the
spread of the distribution and the time it takes to find the op-
timal. Indeed, compared to the uniform distribution (against
which our algorithm has a slowly increasing running time),
the normal distribution concentrates most values around the
mean. This means that there are very few values at the up-
per tail of the distribution that will fit into a valid coali-
tion structure. It can also be noted that the sub-additive
and super-additive distributions are solved nearly instanta-
neously (right after scanning the input; that is, after 1.241
seconds for 27 agents). This means that, in the best case,
our algorithm takes 2.2×10−5% of the time of the DP algo-
rithm. In the sub and super-additive case, it is easy to verify
that our algorithm, by virtue of its computation of upper and
lower bounds, identifies the optimal solution straight after
scanning the input since the upper bound of the sub-spaces
in these cases (without knowing whether the input is super
or sub-additive) are always lower than the grand coalition
(in the super additive case) or the coalitions of single agents
(in the sub additive case). For the uniform distribution, it
is noted that the optimal value is found much quicker than
the normal distribution and, as the number of agents grows
beyond 24, the optimal value is found as fast as in the sub
or super-additive case. This can only happen if the optimal
is found just after scanning the input and is explained by
the fact that as the number of agents increases, there is an
increased likelihood that the optimal solution will be found
in the combination of coalitions of big sizes (and these are
usually found in sub-spaces with configurations in G ∈ G2).
Moreover, in the uniform case, we can expect most of the
optimal coalition structures within a sub-space to have val-
ues close to the upper bound. This results in either the most
promising sub-space being indentified with a relatively high
degree of accuracy or in the sub-space being pruned right
after scanning the input.

Figure 3: Space pruned for each distribution type (for 21
agents).

To further support our claim regarding the relationship be-
tween the distribution type and the pruning of the search

space, we studied the space remaining to be searched, as
well as the quality of the solution found during the search
(see figure 3 for the 21 agents case, other values gave sim-
ilar patterns). To this end, we recorded the percentage of
the space remaining at each pruning attempt, as well as the
value of the ratio of the best solution found to the optimal
value during the search. As can be seen from figure 3, the
major drops in the space left to be searched indicate that
large sub-spaces are being pruned, while when the graph is
flat, branch-and-bound is being applied within sub-spaces to
reduce the solving time. In more detail, our algorithm tends
to be less able to prune the space in the case of the nor-
mal distribution. In fact, in such cases most of the time is
spent searching extremely small portions of the space (since
the graph is flat most of the time) for a long time until the
optimal value can be confirmed. During this search, the so-
lution does not improve as much, as can be seen from figure
4. In the case of the sub and super additive distributions,
the solution is found nearly instantaneously right after scan-
ning the input. For the uniform case, we are able to prune
most of the space right from the beginning and then the al-
gorithm takes some time to find the optimal. From figure
4 it can also be seen that intermediate solutions found dur-
ing the search becomes near-optimal very rapidly (> 95% of
the optimal). This shows that our algorithm rapidly zooms in
on the most promising sub-spaces and finds good solutions
quickly within these.

Figure 4: Quality of the solution obtained during the search
(for 21 agents).

Conclusions
We have devised an anytime algorithm that can compute op-
timal coalition structures. Moreover, we have shown that it
is significantly faster than the current state of the art. This
efficiency is based on (i) a novel representation of the search
space and efficient search strategies that can exploit the
representation and (ii) a branch-and-bound technique that
can rapidly identify the best coalition structures during the
search and therefore prune bigger portions of the space than



has hitherto been possible.
Future work will seek to investigate the process of dis-

tributing the search procedure among multiple agents so as
to speed up the search still further. We believe this is possi-
ble since our representation easily allows us to assign each
agent an independent portion of the space to search.
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Appendix: Proof of Theorem 1
Let Ḡ = (g1, g2, ..., gk). That is, Ḡ contains elements of G
with a lexicographic ordering on them. Then let F̄−1[{Ḡ}]
return all ordered coalition structures (C1, C2, . . . , Ck),
Ci ∈ CLgi . That is, the lexicographic ordering of
the elements Ci of each coalition structure is taken into
consideration. For example, with a = 4 and G =
{1, 1, 2}, Ḡ = {1, 1, 2}; then considering ordered coali-
tion structures in F̄−1[{Ḡ}], we have two possibilities:
({a1}, {a2}, {a3, a4}) and ({a2}, {a1}, {a3, a4}) that cor-
respond to one coalition structure {{a1}, {a2}, {a3, a4}} in
F−1[{G}]. Moreover, as the number of repetitions of differ-
ent coalition structures of F−1[{G}] in F̄−1[{Ḡ}] is always

the same (e.g., in the above example with Ḡ = {1, 1, 2},
all coalition structures in F−1[{G}] will appear twice in
F̄−1[{Ḡ}]), we have:

AV GG = AV GḠ (2)

where AV GḠ is the average of coalition structures in
F̄−1[{Ḡ}].

Then, let Nn(g1, g2, ..., gk) (with n =
∑

gi∈G gi) be the
number of ordered coalition structures in F̄−1[{Ḡ}] and
Kn(gi) be the number of coalitions of size gi in a system
consisting of n agents. Clearly, Kn(gi) = n!

gi!(n−gi)!
.

Now for each coalition Ci ∈ CLgi , there are
Nn−gi(g1, g2,
..., gi−1, gi+1, ..., gk) ordered coalition structures that con-
tains it, so we have:

Nn(g1, g2, ..., gk) = Kn(gi)Nn−gi
(g1, ..., gi−1, gi+1, ..., gk)

(3)
Also, we have:

AV GḠ =
1

Nn(g1, g2, ..., gk)

∑
CS∈F̄−1[{Ḡ}]

V (CS)

=
1

Nn(g1, g2, ..., gk)

∑
CS∈F̄−1[{Ḡ}]

k∑
i=1,Ci∈CS

v(Ci)

Given this, we next compute AV GḠ as follows. Let CL′
gi

be the set of all coalitions with size gi and being the i − th
coalition in an ordered coalition structure CS ∈ F̄−1[{Ḡ}].
Now for any Ci ∈ CL′

gi
, the number of times that v(Ci)

occurs in the sum of all coalition values in F−1[{Ḡ}] is
Nn−gi(g1, ..., gi−1, gi+1, ..., gk). Thus:

AV GḠ =
1

Nn(g1, g2, ..., gk)
k∑

i=1

∑
Ci∈CL′

gi

Nn−gi
(g1, ..., gi−1, gi+1, ..., sk)v(Ci)

=
k∑

i=1

∑
Ci∈CL′

gi

Nn−gi
(g1, ..., gi−1, gi+1, ..., gk)
Nn(g1, g2, ..., gk)

v(Ci)

=
k∑

i=1

∑
Ci∈CL′

gi

1
Kn(gi)

v(Ci) (following equation (3))

=
k∑

i=1

 1
Kn(gi)

∑
Ci∈CL′

gi

v(Ci)


=

k∑
i=1

avggi

As AV GG = AV GḠ (equation (2)), we have:

AV GG =

kX
i=1

avggi
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