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ABSTRACT
We address the problem of lowering the buyer’s expected
payments in shortest path auctions, where the buyer’s goal
is to purchase a path in a graph in which edges are owned by
selfish agents. We show that by deleting some of the edges
of the graph, one can reduce the total payment of the VCG
mechanism by a factor of Θ(n). However, we prove that it
is NP-hard to find the best subset of edges to delete, even
if the edge costs are small integers, or the graph has very
simple structure; in the former case, this problem is hard
to approximate, too. On the positive side, we describe a
pseudopolynomial time algorithm for series-parallel graphs
and fixed edge costs. Also, we discuss the applicability of
this algorithm for the case of general (probabilistic) costs
and derive a general lower bound on the performance of
algorithms that are based on expected edge costs.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems; G.2.2 [Dis-

crete Mathematics]: Graph Theory

General Terms
Algorithms, Economics, Theory

Keywords
Shortest Paths, Auction, Mechanism Design

1. INTRODUCTION
The problem of purchasing a service from a team of inde-

pendent contractors, and, in particular, its special case —
buying an inexpensive path in a graph in which edges are
owned by selfish agents — has recently received considerable
attention [15, 7, 1, 6, 4, 12]. Its crucial difference from the
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ordinary shortest path problem is that the edge costs are as-
sumed to be private, i.e., known to the owners of these edges
only, and thus eliciting information about the actual costs is
a nontrivial task. Any system of incentives that encourages
the agents to reveal their costs to the auctioneer involves
large payments to the participants: for this reason, in the
worst case, any reasonable task allocation mechanism has to
pay much more than the actual cost of the least expensive
solution (see [1, 6]).

In light of these negative results, it has been proposed to
shift the focus from worst case to average case considera-
tions; indeed, in [6], it has been shown that if each agent’s
cost distribution is known, it it possible to design an op-
timal mechanism for this problem, i.e., one that minimizes
the expected total payment. This mechanism proceeds by
constructing a virtual cost function for each agent based on
information about this agent’s cost distribution and select-
ing the team with the smallest sum of virtual costs; the
payments to agents depend on their reported costs as well
as their virtual cost functions.

However, this approach has been justly criticized for as-
suming that the buyer has full knowledge of all agents’ cost
distributions; clearly, in many real-life situations this is not
the case. Furthermore, when the mechanism is to be run
frequently (as the case might be if this approach is used
for allocating network resources, see [7]), the required vir-
tual cost computations may be too expensive and time-
consuming; a simple mechanism with reasonable payment
properties would be more desirable.

One such candidate, first considered in this context by
Nisan and Ronen [15], is the celebrated VCG mechanism
([17, 3, 8]), which works as follows: first, all edges submit
their bids, then the buyer selects the cheapest path and
pays each winning agent his threshold bid, i.e., the highest
amount this agent can bid and still be on a winning path
(for a more formal description, see Section 2).

The VCG mechanism is attractive from many perspec-
tives. First, it is truthful and individually rational, i.e.,
each agent’s best strategy is to announce his true cost, and
if he does that, he is guaranteed that the payment he re-
ceives will cover his expenses. Second, the allocation and
payments are easy to compute: the paper [9] proposes an al-
gorithm for computing VCG payments whose running time
is comparable to that of finding the shortest path in the
underlying graph, and [7] shows how to efficiently compute
VCG payments in a distributed fashion. Finally, this mech-
anism is detail-free, i.e., it does not make any assumptions



about the underlying cost distributions. The combination
of these features makes VCG a strong candidate for many
applications.

Though, as mentioned above, the payments made by VCG
(as well as any other mechanism) can be unacceptably high,
this worst-case behavior is exhibited on a rather special class
of graphs, namely, ones that have two fairly long vertex-
disjoint paths. This suggests that the overall payment prop-
erties may be improved by modifying the underlying graph.
Adding new edges to the graph may be beyond the capabil-
ities of the mechanism designer, since this would require the
designer to provide resources he does not have. However,
deleting edges – prohibiting some agents from participating
in the auction – is something that can easily be done.

This approach might appear counterintuitive at first, since
edge deletion decreases the competition in the market. How-
ever, it is known to be useful in other domains, such as net-
work design for selfish users, where a lot of work has been
done on issues related to Braess’s paradox (see [16] for a
survey from a CS perspective, as well as many new results).

In this paper, we analyze the effects of edge deletion on the
VCG payments. We consider the setting in which the mech-
anism designer knows the underlying graph as well as the
edge cost distributions, though not the actual values of edge
costs, and has to decide which edges to delete; after that,
the mechanism elicits bids and runs VCG on the remaining
graph. While this approach, too, requires the knowledge of
the cost distributions, it is considerably more robust: small
errors are unlikely to affect the set of edges that will be
deleted. Moreover, the information about distributions is
only used at the design step: after the optimal subgraph
is selected, the mechanism can be run without referring to
these distributions. This is useful if we view mechanism de-
sign as an offline process, while the actual execution of the
mechanism takes place online: even though finding the best
mechanism in this class may be difficult (and in this paper,
we give an indication that this is likely be the case), using
it requires very little computational effort.

Clearly, the very question of minimizing the expected pay-
ment is meaningless unless there is an underlying cost distri-
bution: it can be shown that any mechanism that does not
know anything about this distribution has an arbitrarily bad
performance ratio with respect to a mechanism that uses this
information. Therefore, we believe that our method strikes a
reasonable balance between simplicity and performance; its
computational efficiency has to be studied further, and in
this paper, we make the first steps in analyzing it, both for
general graphs and distributions and for interesting special
cases.

We show that, indeed, edge deletion can be a useful tool:
deleting a subset of edges may lower the expected payment
by a factor of Ω(n), where n is the number of vertices of
the graph; we also prove that this bound is tight. However,
finding the best set of edges to delete can be difficult, and
we prove a number of negative results that address this issue
from different perspectives. First, we show that for general
graphs, the problem is NP-hard even if all edge costs are
small constants (i.e., the edge cost distributions are degen-
erate: the support of each distribution consists of a single
point) as well as hard to approximate (specifically, we show
that for undirected graphs, unless P = NP, the approxi-
mation ratio of any deterministic algorithm is at least nε;
a similar result holds for directed graphs). An interesting

class of graphs not covered by this hardness result is series-
parallel graphs; however, if the edge costs are given in bi-
nary, we show that the problem is NP-hard even for this
restricted class of graphs. We consider this result to be less
devastating than the first one, as in practice, one can expect
that the costs are not very large, in which case the problem
can be solved efficiently: namely, we design an algorithm
for series-parallel graphs (still under the constant edge cost
assumption) whose running time is polynomial in n and C,
where C = max{ci}, and ci is the cost of edge ei.

The constant cost assumption that is needed for this al-
gorithm does not usually hold in practice; nevertheless, it
can be the case that the cost of each edge is concentrated in
a relatively small interval, in which case the algorithm (ap-
plied to expected edge costs) may still be useful. However,
generalizing this approach to arbitrary distributions fails: it
can be shown that any algorithm that operates on expected
edge costs (rather than uses full information about cost dis-

tributions) has performance ratio of Ω(n1/4). The natural
next step, then, is to analyze the performance of algorithms
that know the first k moments of the distribution; the case
of k = 2 is particularly interesting. We propose this as an
intriguing open question.

1.1 Related Work
The private cost version of the shortest path problem was

first introduced by [15], where the authors proposed to use
the VCG mechanism and discussed the associated computa-
tional difficulties (later addressed by [9]). However, [15] did
not attempt to minimize the payments to the agents. The
first paper to raise this issue was [1], which showed that for a
large class of mechanisms the worst-case payments must be
large. Paper [6] generalizes the results of [1] to all dominant
strategy mechanisms and designs the optimal Bayes-Nash
mechanism for this problem.

Several papers [7, 6, 14, 12] compute the expected VCG
payments for various graph models, both analytically and
experimentally. In particular, in [14], it is shown that in
many random graph models, the expected VCG payments
are much lower than in the worst case scenarios of [1] and [6].

In a recent paper [4], Czumaj and Ronen discuss an inter-
esting class of generalized VCG mechanisms, which includes
the mechanisms considered in this paper, i.e., ones that ig-
nore some of the edges. However, they do not address the
related computational issues; in fact, it is not even clear that
for a given graph, the optimal mechanism in this class will
have a compact representation. Note that since the model
of [4] is considerably richer than the one considered in this
paper, our lower bounds do not imply any hardness results
for their case.

A number of similar hardness results have already been
known in the context of network design problems related
to Braess’s paradox [16], but none of these results apply
directly to our scenario, and, moreover, our techniques are
rather different from those used in [16].

The rest of this paper is organized as follows. Section 2
provides the background definitions and introduces some no-
tation. Section 3 presents upper and lower bounds on the
benefits of edge deletion. Section 4 contains the hardness
results: Subsection 4.1 is devoted to hardness and inapprox-
imability results for general graphs, while in Subsection 4.2,
we show that the problem remains NP-hard when restricted
to series-parallel graphs provided that edge costs are given



in binary. Section 5 provides a counterpoint to these hard-
ness results: it describes a pseudopolynomial algorithm for
series-parallel graphs with constant edge costs. Section 6
discusses the difficulties that arise when we attempt to gen-
eralize the algorithm of Section 5 to probabilistic edge costs.
We conclude in Section 7.

2. PRELIMINARIES
We model the network by a graph G = (V, E), |V | = n,

|E| = m, with two distinguished vertices s and t. Each edge
ei ∈ E has an associated cost ci, which is drawn at random
from R

+ according to a distribution Fi. We assume that
these random choices are independent, and that the cost
of each edge is private, that is, known to the owner of ei

only; the distributions Fi, however, may be known to the
mechanism designer.

Some of the constructions in this paper use edge cost dis-
tributions whose support consists of a single point, i.e., we
assume that the edge costs remain constant and the mecha-
nism designer knows them; we refer to this setting as “fixed
(constant) cost assumption”. While this scenario appears
ill-suited for VCG-like mechanisms (after all, under this as-
sumption, the problem of minimizing the total payment has
a trivial solution), using it to prove hardness results is com-
pletely legit: if a problem is hard in this simple setting, a
forteriori, it is hard for general cost distributions.

The cost of a path P in G, which we denote by |P |, is the
sum of the costs of the edges on the path. By the shortest
path we mean the path that has the smallest cost; we use
the terms ‘shortest’ and ‘cheapest’ interchangeably.

The costs that the edges announce for themselves are
called bids. Since under the rules we are going to consider,
truthful bidding is a dominant strategy, we can assume that
all agents bid truthfully, i.e., the bid of the ith agent equals
to his cost ci. The auction mechanism is supposed to select
a path between s and t; we refer to this path as the winning
path, and say that edges on the selected path win, while
edges not on the path lose.

Definition 1. A mechanism on a graph G = (V, E) is
a triple (B, Q(b), M(b)), where B = (R+)m is the set of
possible bids, Q : B 7→ [0, 1]m is an allocation rule, and
M : B 7→ R

m is a payment rule: Qi(b) is the probability
that ei is on the chosen path given that the bid vector is b,
and Mi(b) is the corresponding payment to agent i.

We will also need the following notation: for any vec-
tor v ∈ R

n, define v−i = (v1, . . . , vi−1, vi+1, . . . , vn), and
(v−i, v

′) = (v1, . . . , vi−1, v
′, vi+1, . . . , vn).

Definition 2. An allocation rule is monotone if for any
bid vector b, any i = 1, . . . , m, and any b′ > bi, we have
Qi(b−i, b

′) ≤ Qi(b), i.e., no edge can increase its probability
of winning by raising its bid. Given a mechanism with a
monotone allocation rule, the threshold bid of an edge ei with
respect to b−i is a number bt such that whenever all edges
bid according to (b−i, b

′), b′ < bt, ei wins with probability 1,
and whenever all edges bid according to (b−i, b

′′), b′′ > bt,
ei loses with probability 1.

Definition 3. The Vickrey-Clarke-Groves (VCG) mecha-
nism is the mechanism that selects a path with the lowest
cost and pays each winning agent his threshold bid; the los-
ing agents are paid 0. Given a graph G, Tvcg(G) denotes

the expected total VCG payment on this graph; the cost dis-
tributions with respect to which it is computed will usually
be clear from the context.

Observe that the VCG allocation rule is clearly mono-
tone, and hence the notion of threshold bid is well-defined.
Furthermore, the threshold bid of a winning edge can be
interpreted as the sum of its actual bid and a bonus equal
to the difference between the cost of the cheapest path that
does not include this edge and the cost of the actual cheapest
path.

We note that in economic literature, it is customary to
stipulate that each bid (and, in particular, the threshold
bid) should be feasible, i.e., belong to the support of the
distribution of this bidder’s costs. This restriction comes
into play when the bidders’ costs are known to be bounded,
as it caps the payment to each edge by its maximum possible
cost. However, this approach assumes that the support of
each agent’s cost distribution is known at runtime, which
conflicts with the goal of having a detail-free mechanism.
Hence, in this paper we dispense with this requirement.

3. EFFECTS OF EDGE DELETION: UPPER
AND LOWER BOUNDS

We start by showing that edge deletion can have a dra-
matic effect on expected payments, even if we restrict at-
tention to graphs with unit edge costs. An easy argument
sketched below shows that edge deletion cannot reduce the
expected payment by more than a factor of n; we prove
a matching lower bound of n − o(n) for general costs and
Θ(n) for unit costs. This provides motivation for looking
into algorithmic properties of edge deletion, which is done
in subsequent sections.

While conceptually easy, the examples used in these proofs
give us a glimpse of the interplay between the three factors
that affect VCG payments in networks: the actual cost of
the winning path, the difference between this cost and the
cost of the second cheapest path, and the number of edges
on the winning path.

Claim 1. Let G be a graph with fixed edge costs and let
l be the number of edges on the shortest s-t path P in G.
Then for any G′ ⊆ G we have Tvcg(G)/Tvcg(G′) ≤ l.

Proof. For each e ∈ P , let te be the cost of the cheapest
path in G\{e}. Set e0 = argmaxe∈P te. Clearly, Tvcg(G) =
|P | +

P

e∈P (te − |P |) ≤ lte0 . Now, consider an arbitrary
G′ ⊆ G, and let P ′ be the shortest path in G′. If e0 6∈ P ′,
we have |P ′| ≥ te0 . Otherwise, e0 is a winning edge; the
length of the shortest path in G′ \ {e0} is at least te0 , so
the bonus paid to e0 is at least te0 − |P ′|, and hence the
total payment is at least |P ′| + (te0 − |P ′|). In both cases,
Tvcg(G′) is at least te0 ≥ Tvcg(G)/l.

Remark 1. This argument can be generalized to proba-
bilistic edge costs by considering an edge e′

0 that maximizes
the expected length of the shortest path in G \ {e′

0}; by lin-
earity of expectation, Tvcg(G) can then be bounded by nte′

0

and hence Tvcg(G)/Tvcg(G′) ≤ n; we omit the details.

Remark 2. One can interpret Claim 1 as saying that
the trivial algorithm that deletes no edges provides an l-
approximation to our problem. In Section 4, we show that
one cannot expect to design a polynomial-time algorithm
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with a significantly better approximation ratio, at least for
general graphs.

Claim 2. Deleting a subset of edges can decrease the ex-
pected VCG payments in a network by a factor of (1 −
o(1))m, where m is the number of edges in the original net-
work. Moreover, even among graphs with unit edge costs,
there exists a graph G such that for some G′ ⊆ G we have
Tvcg(G)/Tvcg(G′) = Ω(m).

Proof. To prove the first statement of the theorem, con-
sider a graph that consists of an (m− 2)-edge path between
s and t all edges of which have cost 0, and two parallel edges
between s and t of cost 1 each. If no edges are deleted, the
(m−2)-edge path wins, and each of its edges has to be paid
its threshold bid 1; on the other hand, if the (m − 2)-edge
path is destroyed, one of the remaining two edges will be
declared the winner, and its threshold bid (and hence the
total payment) will be 1 as well. Hence, deleting any edge
on the (m − 2)-edge path lowers the payments from m − 2
to 1, i.e., by a factor of (1 − o(1))m.

The second statement is proved in a similar manner: this
time, the network in question consists of three disjoint s-t
paths; one of these paths has m/5 edges, and the other two
have 2m/5 edges each. The cost of each edge is 1. Clearly,
in the original graph the shorter path wins, and each edge
on this path is paid its cost plus a bonus of m/5, so the total
payment is m/5(m/5+1). Deleting any edge on the shorter
path causes one of the longer paths to win, in which case
the VCG payment drops to 2m/5.

4. HARDNESS RESULTS

4.1 General Graphs
While in the example above, there were obvious candi-

dates for deletion, the following theorem shows that the sit-
uation is not always so simple, even for graphs with fixed
edge costs.

Formally, we define the following problem:
Min VCG Payment
Given a network Γ = (G = (V, E), s, t), |V | = n, |E| = m, a
vector (c1, . . . cm), where ci ∈ Z

+ is the cost of the ith edge,
and an integer T , decide whether there is a subset E0 of E
such that the expected payment of the VCG mechanism on
G0 = (V, E0) is at most T .

Theorem 1. Min VCG Payment is NP-complete even
if ci = 1 for i = 1, . . . , m.

Proof. It is easy to see that this problem is in NP: for a
given subset of edges E0, we can compute the VCG payment
on (V, E0) and compare it with T .

The NP-hardness is proved by reduction from Longest
Path. An instance of Longest Path consists of an un-
weighted graph G = (V, E) and a target l; the goal is to
decide if G contains a simple path of length at least l. For
our purposes, we will need a modified version of this prob-
lem, in which we are also given two distinguished vertices
s, t ∈ V and would like to know if there is a path from s to t
in G of length exactly k. We refer to this problem as Exact
Longest Path. It is easy to see that an oracle for Exact
Longest Path allows us to solve the original problem in
polynomial time (and hence Exact Longest Path is NP-
hard, too): one can call this oracle for all possible choices of
s, t, and k, l ≤ k ≤ n.

Given an instance (G = (V, E), s, t, k) of Exact Longest
Path, the instance of Min VCG Payment is constructed
by adding a new sink t′, an n-edge path P1 that connects
t and t′, and an (n + k)-edge path P2 that connects s and
t′. The cost of each edge is set to 1, and T = n + k. The
resulting instance (V ′, E′ = E ∪P1 ∪P2, s

′ = s, t′, T ) of Min
VCG Payment is shown in Figure 3.

Suppose that we are given a ‘yes’-instance of the Exact
Longest Path problem, i.e., G contains an s-t path P ,
|P | = k. If we delete all edges in E\P from G′, the resulting
graph would consist of two vertex-disjoint paths of cost n+k
each, so the total VCG payment will be n+k, and therefore
we have a ‘yes’-instance of Min VCG Payment.

Conversely, suppose that we are given a ‘no’-instance of
Exact Longest Path. Fix a subset E′

0 ⊆ E′. The shortest
s-t path in (V, E ∩ E′

0) has length k′; since there is no s-t
path of length k in G, either k′ < k or k′ > k. In the former
case, the shortest path has length k′ + n and is contained
in the upper part of the graph; in particular, all edges of
P1 are on the winning path. Each of these edges is paid
1 + (k + n) − (k′ + n) ≥ 2, so the total payment is at least
2n > n + k (since we are looking for a simple path, we
can assume k < n). In the latter case, the shortest path is
P2; similarly, each edge on P2 is paid its cost plus a bonus
of size (k′ + n) − (k + n), so the total payment is at least
2(k + n) > k + n. Therefore, for any such E′

0, the total
payment is greater than n + k, so we get a ‘no’-instance of
Min VCG Payment.

One of the natural approaches to coping with NP-hardness
is to focus on approximation algorithms for the problem at
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hand. However, for Min VCG Payment, this technique is
not very productive: the next theorem demonstrates that
a polynomial-time algorithm with a reasonable approxima-
tion ratio for Min VCG Payment is unlikely to exist. This
is hardly surprising, since Longest Path is known to be
hard to approximate. In particular, paper [11] shows that
for undirected graphs, no polynomial time algorithm can ap-

proximate the length of the longest path within 2log1−ε n for

any ε > 0 unless NP ⊂ DTIME(2logO(1/ε) n). For directed
graphs, a recent paper of Bjorklund et al. [2] proves a strong
hardness result under more standard assumptions: unless
P 6= NP , Longest Path cannot be polynomial time ap-
proximated within n1−ε. We show that this translates into
similar inapproximability results for Min VCG Payment
as well. Our reduction applies to both directed and undi-
rected case; therefore, instead of treating these two cases
separately, we prove a general theorem that describes the
relationship between inapproximability ratios for these prob-
lems.

Theorem 2. Consider the optimization version of Min
VCG Payment, where the goal is to find a subset of edges
that minimizes total VCG payment. For any α > 2, given
a polynomial-time algorithm for this problem whose approx-
imation ratio is α, one can construct a polynomial-time al-
gorithm for Longest Path that has approximation ratio at
most α.

Proof. We show how to construct an α-approximation
algorithm for Longest Path using an oracle for Min VCG
Payment that is guaranteed to produce an α-approximation
to the optimal solution. The input to our algorithm is G =
(V, E), and the goal is to find a path of length at least l/α,
where l is the length of the longest simple path in G.

We use the construction described in the proof of Theo-
rem 1; namely, for all s, t ∈ V and any k, k = 1, . . . , n, we
consider an instance of Exact Longest Path with source
s, sink t, and target length k, transform it into an instance of
Min VCG Payment as described above, and call our oracle
on this instance. The oracle returns a graph that necessarily
contains an s-t path (otherwise, the VCG payments would
be infinite); pick the shortest of them. This procedure re-
sults in a list of n3 s-t paths in the original graph. Now,
check if G has a path of length at least 4; if yes, add this
path to the list, and return the longest path in this list. It
remains to show that this algorithm is an α-approximation
for the Longest Path problem.

Suppose that the longest path in G has length l̄; let s̄
and t̄ be the first and the last vertex on this path, respec-
tively. Consider the instance of Min VCG Payment that
corresponds to ((V, E), s̄, t̄, l̄). Obviously, one can achieve
the total payment of l̄ + n by deleting all edges of G that
are not on this path; therefore, the oracle returns a graph
G′ on which total VCG payment is at most α(l̄ + n) ≤ 2αn.
The length of the shortest s-t′ path P in G ∪ P1 (for defi-
nition of P1, see the proof of Theorem 1) is at most l̄ + n.
If it is exactly equal to l̄ + n, we are done, since we have
identified a path of length l̄ in G. Otherwise, all edges on
P1 are on the winning path. Each of these n edges has the
same threshold bid; therefore, each of them is paid at most
2α: otherwise, the total payment is at least 2αn. On the
other hand, the threshold bid of any e ∈ P1 is equal to
1 + |P2| − (|P | + |P1|) = 1 + (l̄ + n) − (|P | + n). We have
1 + l̄ − |P | ≤ 2α, or |P | ≥ l̄ − 2α.

Now, if l̄ ≤ 4, our algorithm produces an exact solution.
If 4 < l̄ < 4α, then a path of length at least 4 that was found
in the last step of the algorithm is an α-approximation. If
l̄ > 4α, we have l̄ − 2α > l̄/2, so P is a 2-approximation. In
all cases, we have produced an α-approximation to Longest
Path.

Remark 3. The proof of Theorem 2 implies a stronger
inapproximability result than stated in the theorem; however,
our aim is not to prove the strongest possible bound, but
rather to decide whether there is a polynomial-time algorithm
with a reasonable approximation guarantee. Showing that
our problem is at least as hard to approximate as Longest
Path fulfills this purpose.

4.2 Series-Parallel Graphs
Another classical approach to tackle NP-hardness is to

consider special cases of the problem. In our case, it is nat-
ural to concentrate on classes of graphs that admit efficient
algorithms for finding a longest path. However, it turns
out that Min VCG Payment is hard even for very simple
graphs, for which finding a longest path is trivial, such as
series-parallel graphs (for the definition, see Section 5) This
time, the source of hardness is in the edge costs rather than
in the structure of the graph: if the costs are given in bi-
nary, it may be hard to find a path that has a prescribed
cost, even in a simple graph.

Theorem 3. Min VCG Payment is NP-hard even if
G = (V, E) is a series-parallel graph.
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Proof. The theorem is proved by constructing a reduc-
tion from Subset Sum. An instance of Subset Sum consists
of a list of positive integers (w1, . . . , wK) and a target M ; the
goal is to decide whether there exist a subset I of {1, . . . , K}
such that

P

i∈I wi = M .
Given an instance of Subset Sum, we construct an in-

stance of Min VCG Payment as follows. The graph G =
(V, E) has K + 3 vertices and 2K + 3 edges. For each pair
of vertices (vi, vi+1), i = 0, . . . , K − 1, there are two parallel
edges e2i and e2i+1 between these two vertices; we set c2i =
0, c2i+1 = wi. Also, there are edges e2K = (v2K , v2K+1) and
e2K+1 = (v2K+1, v2K+2), which have cost 0, and an edge
e2K+2 = (v0, v2K+2), which has cost M . We set s = v0,
t = v2K+2. The resulting graph G is depicted in Fig. 4;
clearly, it belongs to the family of series-parallel graphs. The
target payment T is set to be equal to M .

Observe that if no edges are deleted, VCG will always
choose the path of cost 0 that consists of all edges of cost 0,
i.e., e2i, i = 0, . . . , K − 1, e2K , and e2K+1. As the threshold
bids of both e2K and e2K+1 are equal to M , the total pay-
ment is at least 2M . Intuitively, to reduce the payment, we
would like to lower the threshold bids of these edges; this
can be achieved by closing the gap between the cost of the
shortest path in the upper part of the graph and the cost of
the edge e2K+2, i.e., M .

First, we claim that if we start with a ‘yes’-instance of
Subset Sum, then by deleting some edges from G, we can
obtain a graph G′ = (V, E′) such that the length of the
shortest path in the upper part of G′, i.e. in (V, E′\{e2K+2}),
is exactly M . Indeed, suppose that there exists a set I ⊆
{1, . . . , K} such that

P

i∈I wi = M . Then we can set E′ =
E \ {e2i | i ∈ I}.

For this G′, the payment of the VCG mechanism is M :
there are two vertex-disjoint paths of total cost M (the path
in (V, E′\{e2K+2}) and the edge e2K+2), and no path that is
cheaper than M . Hence, no matter which of these two paths
is declared the winner, none of the edges on the winning path
can raise its bid without losing the auction, so each of them
is paid exactly its bid. Therefore, a ‘yes’-instance of Subset
Sum corresponds to a ‘yes’-instance of Min VCG Payment.

Conversely, suppose that we start with a ‘no’-instance of
Subset Sum. It cannot be the case that for some E′ ⊆ E,
the cost of the cheapest path from s to t in (V, E′ \{e2K+2})
is M , because otherwise the set I that provides a solution for
Subset Sum can be read off G′: consider the set of deleted
edges of cost 0, i.e., S = (E \ E′) ∩ {e2i | i = 0, . . . , K − 1}
(clearly, if the cheapest path in (V, E′ \ {e2K+2}) has finite
cost, e2K and e2K+1 have not been deleted) and set I = {i |
e2i ∈ S}.

Now, consider a graph G′′ = (V, E′′), E′′ ⊆ E, and
suppose that the cost of the cheapest path from s to t in
(V, E′′ \ {e2K+2}) is A, A 6= M . If A > M , then e2K+2

wins the auction and is paid A; if A < M , the threshold
bids of both e2K and e2K+1 are equal to M −A, so the total
payment is at least 2M − A > M .

Hence, in this case the total payment of VCG on any
subgraph of G is at least M + 1, and thus we have obtained
a ‘no’-instance of Min VCG Payment.

Remark 4. Our hardness results use graphs with fixed
edge costs, but it is easy to see that they hold for atomless
cost distributions as well. In this case, the problem instance
must include a compact description of the edge cost distri-
butions (e.g., if the cost of edge ei is drawn uniformly from
[ai, bi], i = 1, . . . , m, the problem description should consist
of the graph G, m pairs (ai, bi), and a target T ). The corre-
sponding hard instance can then be created by replacing the
fixed costs w1, . . . , wn in the proof of Theorem 3 with uni-
form distributions U [w1 −ε, w1 +ε], . . . , U [wn −ε, wn +ε] for
sufficiently small ε; a similar modification works for Theo-
rem 1.

However, we cannot claim that this more general version
of Min VCG Payment is NP-complete: it is unclear how
to efficiently compute the expected VCG payment for a given
graph when edge costs are not constant. However, if the cor-
responding distributions are efficiently samplable and satisfy
some reasonable regularity conditions, one can use Monte
Carlo method to estimate the expected payments.

Remark 5. A related, but seemingly easier question, is
whether an input graph can benefit at all from edge deletion,
i.e., whether there is a subset of edges E ′ such that the VCG
payments on (V, E \ E′) are smaller than on the original
graph. It turns out that the construction in the proof of the
previous theorem can be modified to show that this problem
is NP-hard, too; we omit the details.

5. ALGORITHM FOR SERIES-PARALLEL
NETWORKS

In this section, we describe an algorithm that solves Min
VCG Payment on series-parallel networks with fixed edge
costs. The running time of this algorithm is polynomial in
C, n, and m, where C = max{c1, . . . , cm}.

The class of series-parallel networks can be inductively
defined as follows:

Definition 4. A series-parallel network (SPN) is a net-
work (V, E, s, t), such that one of the following conditions
holds:



• Base case: A single edge (s, t), i.e., a network of the
form ({s, t}, {(s, t)}, s, t) is an SPN.

• Series: Suppose that Γ1 = (V1, E1, s1, t1) and Γ2 =
(V2, E2, s2, t2) are SPN such that V1 ∩ V2 = ∅. Set
V = V1 ∪ V2, E = E1 ∪ E2, and merge t1 with s2.
Then (V, E, s = s1, t = t2) is an SPN.

• Parallel: Suppose that Γ1 = (V1, E1, s1, t1) and Γ2 =
(V2, E2, s2, t2) are SPN such that V1 ∩ V2 = ∅. Set
V = V1 ∪ V2, E = E1 ∪ E2, and merge s1 with s2 and
t1 with t2. Then (V, E, s = s1 = s2, t = t1 = t2) is an
SPN.

Our algorithm for Min VCG Payment uses dynamic pro-
gramming approach. It is based on a subroutine that, given
a network Γ = (V, E, s, t), which has been obtained from
lower-level networks Γ1 and Γ2 by serial or parallel com-
position, computes a family of candidate solutions F(Γ) =
{Gi,k}0≤i≤k≤nC by recursively computing the correspond-
ing families for component networks Γ1 and Γ2 and then
combining them; if Γ is a single-edge network, F(Γ) is com-
puted from scratch. The important property of F(Γ) is that
it is guaranteed to contain the optimal solution; therefore,
when the subroutine returns F(Γ) for the input network Γ,
the algorithm simply finds the element of F(Γ) that has the
smallest total VCG payment.

The graph Gi,k = (V, Ei,k) for a network Γ = (V, E, s, t) is
defined as follows. Consider the network Γ′ that is obtained
from Γ by adding a new s-t edge e(k) of cost k. Consider
all edge subsets E′ ⊆ E ∪ {e(k)} such that the length of the
shortest s-t path in (V, E′) is i. If no such E′ exists, i.e.,
there is no s-t path of cost i in Γ, set Ei,k = ∅. Otherwise,
among all such E′, pick the one that minimizes the total
VCG payment on (V, E′); denote it by Ē, and set Ei,k =

Ē \ e(k). In other words, Gi,k is the subgraph of (V, E) that
minimizes the VCG payments assuming that the shortest
path is required to have length i and the bonus to each edge
is bounded by k − i. We denote the total VCG payment on
(V, Ei,k ∪ {e(k)}) by T i,k.

Obviously, if the network in question is 2-connected, then
an optimal solution to the optimization version of Min VCG
Payment is given by one of the Ei,nC , i = 0, . . . , nC: the
auxiliary edge e(nC) is too expensive to be of any use. It
remains to show how to recursively compute Gi,k. When Γ
is a one-edge network, the computation is trivial. In what
follows, we show how to construct Gi,k for a network Γ ob-
tained from Γ1 and Γ2 by serial or parallel connection, as-
suming that the corresponding families Gi,k

1 and Gi,k
2 for Γ1

and Γ2 have already been constructed.

5.1 Serial Connection
Suppose that Γ has been obtained by connecting Γ1 and

Γ2 in series, and our goal is to find Gi,k. To do that, we prove
two claims that relate the value of the optimal solution for
Γ to the corresponding values for Γ1 and Γ2.

Let e(k) be an s-t edge of cost k, let e
(k−i+j)
1 be an s1-t1

edge of cost k − (i − j), and let e
(k−j)
2 be an s2-t2 edge of

cost k − j.

Claim 3. For any j, 0 ≤ j ≤ i, and any choice of optimal

subgraphs G
j,k−(i−j)
1 , Gi−j,k−j

2 ,

Tvcg(V, E
j,k−(i−j)
1 ∪Ei−j,k−j

2 ∪{e(k)}) ≤ T
j,k−(i−j)
1 +T i−j,k−j

2 .

Claim 4. There exists a j, 0 ≤ j ≤ i, such that

T
j,k−(i−j)
1 + T i−j,k−j

2 ≤ T i,k.

These claims imply we can find Gi,k by going over all

possible pairs (G
j,k−(i−j)
1 , Gi−j,k−j

2 ), picking the one with
the smallest sum of VCG payments, and setting Ei,k =

E
j,k−(i−j)
1 ∪ Ei−j,k−j

2 . By Claim 3, if we do that, we are

guaranteed to spend as little as T
j,k−(i−j)
1 + T i−j,k−j

2 , and
by Claim 4, we cannot expect to pay less than that.

Proof (of Claim 3). Fix j and subgraphs G
j,k−(i−j)
1 ,

Gi−j,k−j
2 , and set

Ê = E
j,k−(i−j)
1 ∪ Ei−j,k−j

2 .

Suppose that P1 is a shortest path in G
j,k−(i−j)
1 and P2 is a

shortest path in Gi−j,k−j
2 . Then P = P1 ∪ P2 is a shortest

path in (V, Ê) and |P | = |P1| + |P2| = i. We show that the

VCG payments to edges on P in (V, Ê∪{e(k)}) do not exceed

the payments to these edges in (V1, E
j,k−(i−j)
1 ∪ {e

(k−i+j)
1 })

and (V2, E
i−j,k−j
2 ∪ {e

(k−j)
2 }), respectively.

Consider an arbitrary edge e ∈ P1. If the shortest path

in (V1, E
j,k−(i−j)
1 ∪ {e

(k−i+j)
1 } \ {e}) is e

(k−i+j)
1 , then in this

graph, e is paid its cost plus a bonus of k−(i−j)−j = k−i.

In (V, Ê∪{e(k)}), e is on a path of cost i, and there is a path

of cost k (namely, e(k)) that does not include e, so e will be
paid at most its cost plus a bonus of k− i, i.e., no more than

in (V1, E
j,k−(i−j)
1 ∪{e

(k−i+j)
1 }). On the other hand, suppose

that the shortest path in (V1, E
j,k−(i−j)
1 ∪ {e

(k−i+j)
1 } \ {e})

does not use e
(k−i+j)
1 . Denote this path by Pe; the payment

to e in this case is |Pe| − j. By construction, Ê contains the

path Pe ∪P2. Therefore, in (V, Ê), e is paid at most its cost
plus a bonus of |Pe| + |P2| − i = |Pe| + (i − j) − i = |Pe| − j.

A similar argument applies to any e ∈ P2, which proves
the claim.

Proof (of Claim 4). Suppose that P is a shortest path
in Gi,k, and set P1 = P ∩ E1, P2 = P ∩ E2. Suppose also
that |P1| = j, and hence |P2| = i − j. We will prove the

inequality T
j,k−(i−j)
1 + T i−j,k−j

2 ≤ T i,k for this particular
value of j.

Set Ê1 = Ei,k∩E1, Ê2 = Ei,k∩E2. Observe that P1 is the
shortest s1-t1 path in (V1, Ê1), so the total VCG payment

in (V1, Ê1 ∪ {e
(k−i+j)
1 }) is the sum of payments to all edges

on P1 in this graph.
Consider an arbitrary edge e ∈ P1. We show that the

payment to e in (V1, Ê1 ∪ {e
(k−i+j)
1 }) does not exceed the

payment to e in (V, Ei,k∪{e(k)}). Indeed, we have one of the

following cases. If the shortest path in (V, Ei,k ∪{e(k)}\{e})
is e(k), then in (V, Ei,k ∪ {e(k)}), e is paid its cost plus a

bonus of k − i. In (V1, Ê1 ∪ {e
(k−i+j)
1 }), e is on a path

of cost j, and there is a path of cost k − (i − j) (namely,

e
(k−i+j)
1 ) that does not include e, so e will be paid at most

its cost plus a bonus of k − (i − j) − j = k − i, i.e., no more

than in (V, Ei,k ∪{e(k)}). On the other hand, if the shortest

path in (V, Ei,k ∪ {e(k)} \ {e}) does not use e(k), then this
path is the union of Pe, which is the shortest s1-t1 path
in (V, Ê1 \ {e}) and P2, which is the shortest s2-t2 path in

Gi−j,k−j
2 . Therefore, in (V, Ei,k ∪ {e(k)}), e is paid its cost

plus a bonus of |Pe|+ |P2|− |P | = |Pe|− j. By construction,
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Figure 5: Series connection.

the graph (V1, Ê1) contains the path Pe, so in this case, the

payment to e in (V1, Ê1 ∪{e
(k−i+j)
1 }) is at most its cost plus

a bonus of |Pe| − j.
Similarly, the VCG payment to an arbitrary edge on P2

in (V2, Ê2 ∪ {e
(k−j)
2 }) does not exceed the payment to this

edge in (V, Ei,k ∪ {e(k)}). By optimality of G
j,k−(i−j)
1 and

Gi−j,k−j
2 , the payments that are produced by using E

j,k−(i−j)
1

and Ei−j,k−i
2 in place of Ê1 and Ê2 can only be smaller, so

from that, the result follows.

5.2 Parallel Connection
Now suppose that Γ has been obtained by connecting Γ1

and Γ2 in parallel, and let P be the shortest path in Gi,k.
Obviously, P has length i and lies entirely in Γ1 or Γ2. With-
out loss of generality, assume P ⊆ E1. Then the shortest
path P ′ in Gi,k ∩ Γ2 has length at least i, and all edges of
Gi,k ∩Γ2 that do not lie on P ′ can be deleted without affect-
ing the total payment. Moreover, P ′ itself is only used to
compute the VCG payments to edges on P , so any two paths
in Gi,k ∩ Γ2 that have the same cost will result in identical
total VCG payments, and it does not matter which one we
pick. Finally, if it is known that |P ′| = j, i ≤ j < k, we are
in exactly the same setting as when selecting Gi,j

1 .
This suggests that we can find Gi,k as follows: for j =

i, . . . , k, let Qj
1 be the shortest s-t path in Gj,k

1 (obviously,

|Q1
j | = j) if the latter is nonempty and ∅ otherwise; Qj

2

is defined similarly. Let e′ be an s-t edge of cost k. Set
Gi,j,k

1 = (V, Ei,j
1 ∪ Qj

2 ∪ {e′}), Gi,j,k
2 = (V, Ei,j

2 ∪ Qj
1 ∪ {e′}).

Among these graphs, pick the one that minimizes total VCG
payments, denote it by Gi,j,k = (V, Ei,j,k), and set Ei,k =
Ei,j,k \ {e′}.

6. GENERAL DISTRIBUTIONS OF EDGE
COSTS

The algorithm described in the previous section is de-
signed for the case when for each edge, the support of its
cost distribution consists of a single point. In practice, there
is usually some uncertainty about the edge costs. However,
if the cost of each edge is known to lie within a small inter-
val, so that this uncertainty has little effect on relative costs
of different paths, our algorithm (applied to expected edge
costs) may still provide a solution of acceptable quality.

However, the situation changes dramatically when we con-
sider distributions that have significant variance. Not only is
it the case that the algorithm of Section 5 does not perform
very well, but any algorithm that operates on expected edge
costs rather than uses a full description of edge cost distri-
butions is essentially useless.

More formally, we can prove the following theorem.

Theorem 4. Let G = (V, E) be a graph, and let D =
(D1, . . . , Dm) be a vector of edge cost distributions. For
i = 1, . . . , m, let ci = E[Di] be the expected cost of the ith
edge. Let A be an arbitrary algorithm that given a graph G
and a vector of expected edge costs c = (c1, . . . , cm) selects
a subset E′ ⊂ E. Let E′′ be the subset of edges such that
Pvcg(V, E′′) = min{Pvcg(V, E0) | E0 ⊆ E}. Then for any
n0 there is a graph G with n > n0 vertices and a vector D
such that Pvcg(V, A(G, c))/Pvcg(V, E′′) = Ω(n1/4). More-
over, D can be chosen so that each Di is either the Bernoulli
distribution with mean 1/2 (i.e., P (0) = P (1) = 1/2), or the
trivial distribution with the same mean (i.e., P (1/2) = 1).

Proof. Consider a graph G that consists of 4 vertex dis-
joint paths from s to t: P1 has m5/8 edges, P2 has 3m5/8

edges, P3 and P4 have m/2 − 2m5/8 edges each. Consider
the following two cases:

1. The cost of each edge is 1/2. In this case, if we delete

P1 and P2, the total payment is exactly m/2 − 2m5/8.
On the other hand, if either P1 or P2 remains in the
graph, the gap B between the lengths of the shortest
path and the second-shortest path is at least m5/8;
since there are at least m5/8 edges on the winning path,
and each of them is paid at least B, the total payment
is at least m5/4.

2. The cost of each edge is distributed as B(1/2): P (0) =
P (1) = 1/2. In this case, we have E[c(P2) − c(P1)] =

Θ(m5/8), E[c(P3)−c(P2)] = Θ(m), E[|c(P4)−c(P3)|] =
Θ(

√
m). Consequently, if no edges are removed, the

expected payment is Θ(m5/4). If exactly one of P1

and P2 is removed, the expected gap B between the
lengths of the shortest path and the second-shortest
path (and hence the bonus paid to each winning agent)

is Θ(m), and there are Θ(m5/8) agents who receive this

bonus, so the expected payment is Θ(m13/8). If both
P1 and P2 are removed, we have B = Θ(

√
m), and the

expected payment is mB = Θ(m3/2).

In both cases, the expected payment under the optimal so-
lution differs from the expected payment under any other
candidate solution by a factor of Ω(m1/4). However, the op-
timal solutions in these two cases are different, even though
an algorithm that operates on expected edge costs cannot
distinguish between these two settings.



7. CONCLUSIONS AND FUTURE WORK
We introduced a new class of VCG-based mechanisms for

the shortest path problem: a mechanism in this class is ob-
tained by deleting some of the edges of the underlying graph
and running VCG on the remaining set of edges. Once de-
signed, any such mechanism can be run efficiently and in
a detail-free manner; furthermore, the best mechanism in
this class can substantially lower the expenses of the buyer
compared to the traditional VCG mechanism.

However, it is NP-hard to determine what is the opti-
mal set of edges to delete, or even if there is a set of edges
whose deletion is beneficial to the buyer; moreover, for gen-
eral graphs the problem is hard to approximate as well.
The problem remains hard when restricted to series-parallel
graphs, but can be solved efficiently if we additionally re-
quire that all edge costs are small constants. It would be
interesting to identify other classes of graphs for which find-
ing the optimal set of edges to delete is easy.

Another set of questions is related to graphs with non-
constant edge costs. In particular, we would like to know
whether it is possible to design an efficient deterministic al-
gorithm that computes the expected VCG payments when
all edge costs are uniformly distributed on [0, 1] (note that
this can be done probabilistically by a simple Monte Carlo
algorithm); Such an algorithm would demonstrate that the
corresponding version of Min VCG Payment is in NP. An-
other natural question is whether an algorithm that only
knows the first k moments of each edge cost distribution
can perform reasonably well.

Finally, it would be interesting to generalize our hardness
results to the model of [4]: it seems likely that the optimal
mechanism in this class is NP-hard to construct, too.

The author would like to thank Amit Sahai and Ken Stei-
glitz for many useful discussions, and Evdokia Nikolova for
helping simplify the proof of Theorem 3.
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