
Designing And Learning Optimal Finite Support Auctions ?

Edith Elkind

Department of Computer Science, University of Liverpool

Abstract. A classical paper of Myerson [18] shows how to construct an optimal (revenue-maximizing)
auction in a model where bidders’ values are drawn from known continuous distributions. In this paper
we show how to adapt this approach to finite support distributions that may be partially unknown. We
demonstrate that a Myerson-style auction can be constructed in time polynomial in the number of bidders
and the size of the support sets. Next, we consider the scenario where the mechanism designer knows the
support sets, but not the probability of each value. In this situation, we show that the optimal auction may
be learned in polynomial time using a weak oracle that, given two candidate auctions, returns one with a
higher expected revenue. To study this problem, we introduce a new class of truthful mechanisms which
we call order-based auctions. We show that the optimal mechanism is an order-based auction and use the
internal structure of this class to prove the correctness of our learning algorithm as well as to bound its
running time.

1 Introduction

The problem of designing an optimal single-item auction, i.e., finding a way to allocate an object
to one of the n potential buyers so as to maximize the seller’s revenue is fundamental to auction
theory. Arguably, for many practical applications, revenue maximization is more important than
efficiency, i.e., assigning the object to the bidder who values it most, and, perhaps surprisingly,
efficient auctions are not always optimal and vice versa. As most of the standard auction formats are
efficient, to extract the maximum profit for the seller one needs to construct a more sophisticated
mechanism that is specifically tailored to this task.

The first optimal auction for the simplest possible case of independent values and continuous
distributions was described by Myerson in 1981 [18]. In Myerson’s paper, it is assumed that the
mechanism designer knows the bidders’ (continuous) value distributions (the particular realization
of each bidder’s value, however, is known to this bidder only, as is common in auction theory); the
optimal allocation and payment rule depend on this information. More specifically, for each bidder
i, Myerson’s auction computes the virtual bid ci = ci(wi,Di) based on his actual bid wi and value
distribution Di. It then allocates the object to the bidder with the highest virtual bid; the price that
the winner pays is the smallest amount he could bid and still win the auction, i.e., his threshold bid.
This payment rule ensures that the auction is truthful; in particular, it guarantees that the highest
bidder i cannot profit from bid shading, i.e., submitting a lower bid w ′ that is feasible, i.e., belongs

? Supported by the EPSRC research grants “Algorithmics of Network-sharing Games” and “Discontinuous Behaviour
in the Complexity of randomized Algorithms”. Part of this research was done while the author was at Princeton
University.

to the support of the ith bidder’s distribution, and still satisfies ci(w
′,Di) > cj , where cj is the

second-highest virtual bid.
In this paper, we consider the task of constructing an optimal mechanism under a set of assump-

tions that differ from those made by Myerson in two important aspects: first, we focus on the case
when the bidders’ value distributions are discrete and second, we assume that these distributions are
only partially known to the mechanism designer.

We start by showing how to adapt Myerson’s approach to the situation when bidders’ valuations
are drawn from finite support distributions, i.e., bidder i’s value for the object is an element of a
finite set Wi = {w1

i , . . . , w
K
i }. While this model may be better suited for many real-life situations

than the continuous one (we provide several examples where this is likely to be the case), the proofs
in [18] make use of the continuity assumption and cannot be applied directly in our case. Also, our
auctions can be designed and implemented in polynomial time, while the running time of Myerson’s
auctions depends on the choice of representation for the continuous distributions; in particular it is
not clear if the “flattening” procedure discussed in subsequent sections (also known as “ironing”)
can be carried out in polynomial time.

We then address what many consider a significant shortcoming of Myerson’s approach, namely,
the assumption that the mechanism designer has full information about all bidders’ value distri-
butions. We consider a learning scenario, in which we are given the set of each bidder’s possible
values, but not the probability of each value, and are allowed to run a sequence of auctions and to
observe their outcomes. (A more general scenario, in which the information about the distribution
supports is absent, too, is the subject of future work.) We assume that the bidders are not strategic,
i.e., in each round they behave as if this were a single-shot game. While this assumption may appear
unrealistic, it is justified in the case when rather than having n bidders who repeatedly participate
in our auctions, we have n bidder types, each corresponding to a finite support distribution, and in
each round we observe a new participant of each type.

Our main result is that it is possible to learn the optimal auction even if we only get to observe
the expected profit of each auction. Indeed, the problem would have been much easier if we had full
access to bid statistics, as this would allow us to estimate the probability of each value. However,
in practice the bidders are often reluctant to reveal their true values and insist on some form of data
protection. For example, they may require that the auction is run by a trusted third party or uses
cryptography to preserve data integrity; in fact, cryptographic auction mechanisms have recently
received a lot of attention [19, 17]. If this is indeed the case, the only course of action available to
the mechanism designer is to try out several candidate solutions, observe their expected profits, and
pick the best one. We show that in this setting, there is a way to choose the candidate mechanisms
adaptively so as to arrive at the optimal solution after a polynomial number of trials.

We model the scenario when the auction is run by a third party by considering an oracle that
given a description of an auction mechanism, outputs the expected profit of this mechanism. We em-
phasise that the term ‘oracle’ is only used to highlight the fact that the we get no extra infortmation
about the outcome of the auction; our oracle does not have superpolynomial computational power
and can be implemented by running the auction sufficiently many times. First, we consider the sim-

plified model where the oracle returns the exact value of the expected profit. We then generalize our
results to a more realistic setting, where the oracle returns an ε-approximation to the expected profit.

To use this model (and, more generally, to be able to subcontract running the auction), we must
be able to encode an auction succinctly. This is not a trivial task: the total number of possible bid
vectors is Kn, and therefore the number of admissible allocation rules is exponential in K n. To
resolve this problem, we propose a new class of truthful mechanisms for finite support value dis-
tributions, which we call order-based auctions, and show that the optimal mechanism belongs to
this class. Order-based auctions have many other attractive properties: besides having a compact
representation (namely, an order-based auction can be viewed as a permutation of size nK + 1),
they allow efficient winner determination and payment computation, and are easy to implement
in a cryptographically secure manner. Therefore, we believe that this concept may be of indepen-
dent interest, especially in relation to designing revenue-maximizing mechanisms for the case when
bidders’ values are not necessarily independent. By choosing our candidate solutions among order-
based auctions, we reduce the size of the search space to just (nK +1)!; also, it allows us to provide
the oracle with a compact description of an auction. We then show that to find an optimal auction,
it suffices to make O(n2K2) calls to an even weaker oracle that can compare the expected profits
of any two auctions (clearly, this oracle can be simulated by the expected profit oracle). This means
that the optimal auction can be learned under truly minimal informational assumptions.

Related work To the best of our knowledge, the problem of constructing an optimal auction for
finite support distributions was first addressed by Bergemann and Pesendorfer [5], who describe a
solution for distributions which satisfy an additional regularity constraint [18]; our arguments for
the regular case closely follow those of [5], and are provided here for completeness only. A solution
for the general case was obtained simultaneously and independently by Cheng [8]; however, he
does not consider the incomplete information scenario studied in Section 5. A number of papers
have investigated learning and profit maximization in online auctions (see, e.g., [12, 13, 4, 6, 15,
14]). However, in most of these papers it is assumed that the bidders are symmetric, while we are
interested in the case when all n bidders have different value distributions. A more general approach
is taken by Aggarwal and Hartline [1], Blum and Hartline [3] and Balcan et al. [2], who consider
attribute auctions, in which bidders may have publicly known attributes; our model can be viewed
within this framework, where attributes can be identified with bidders’ value distributions (or, in the
case of learning scenario, the support sets). Ronen [20] and Ronen and Saberi [21] study optimal
auctions in the case where bidders’ value distributions are not necessarily independent; however,
their lower bounds do not apply in our scenario. The results presented in this paper have appeared
in [10].

2 Preliminaries and notation

We consider the setting in which n bidders 1, . . . , n compete for a single object. All bidders’ values
are independent random variables; the value vi of the bidder i is drawn from a finite set Wi =

{

wk
i | k = 1, . . . ,K

}

, according to a distribution Di; we assume w1
i < · · · < wK

i . The distribution
Di is completely described by its set of mass points Wi and their probabilities g1

i , . . . , g
K
i , that

is, Pr[vi = wk
i] = gk

i . We assume gk
i > 0 for all i = 1, . . . , n, k = 1, . . . ,K , and set Gk

i =
g1
i + · · ·+gk

i . Our results can be easily generalized to the case when sets W1, . . . ,Wn have different
sizes. Whenever we discuss computational efficiency, we assume that all gk

i , wk
i are rational numbers

whose representation size is polynomial in n and K . In what follows, ‘polynomial’ always means
‘polynomial in the size of the problem description’, i.e., ‘polynomial in n and K’.

Set W = W1×· · ·×Wn,D = (D1, . . . ,Dn); an element of W is denoted by w = (w1, . . . , wn).
Set w−i = (w1, . . . , wi−1, wi+1, . . . , wn) and (w−i, w) = (w1, . . . , wi−1, w, wi+1, . . . , wn).

We assume that the number of bidders and their value distributions are common knowledge (we
relax this assumption in Section 5); however, the actual valuation of each bidder is known to this
bidder only. Our goal is to design an optimal, i.e., revenue-maximizing mechanism for the pair G =
(W,D) that is individually rational, i.e., no bidder can lose money by participating in the auction.
By the revelation principle [18], we can restrict ourselves to incentive-compatible mechanisms, in
which the equilibrium strategy for each bidder is to reveal his true value. An incentive-compatible
mechanism is completely defined by its allocation rule Q : W 7→ [0, 1]n and payment rule M :
W 7→ R

n: given a bid vector w, Qi(w) is the probability that bidder i wins, and Mi(w) is the
payment to bidder i. For any w ∈ W we have

∑n
i=1 Qi(w) ≤ 1, Qi(w) ≥ 0. Note that we do not

require that one of the bidders wins, i.e., we allow
∑n

i=1 Qi(w) < 1: the seller can keep the object
if it is profitable for him to do so.

3 Auction design for known distributions

In this section, we show how to design an optimal finite support auction given a full description of
each bidder’s value distribution.

First, we show that in the optimal auction, the payment rule (and hence the auctioneer’s rev-
enue) can be expressed as a function of the allocation rule and derive the expression for the seller’s
expected revenue as a function of the allocation rule. Later, we will use this expression to pick the
optimal allocation rule.

Define the virtual utility ck
i of the bidder i whose value is wk

i to be

ck
i = wk

i − (wk+1
i − wk

i)
1 − Gk

i

gk
i

.

Theorem 1. The seller’s revenue from an optimal truthful auction with allocation rule Q can be
expressed as

RQ =
K
∑

k1=1

. . .
K
∑

kn=1

[

n
∑

i=1

Qi(w
k1
1 , . . . , wkn

n)cki

i

]

gk1
1 . . . gkn

n . (1)

Proof. Define

qi(wi) =

K
∑

k1=1

· · ·

K
∑

ki−1=1

K
∑

ki+1=1

· · ·

K
∑

kn=1

Qi(w
k1
1 , . . . , wi, . . . , w

kn
n)gk1

1 . . . g
ki−1

i−1 g
ki+1

i+1 gkn
n

and

mi(wi) =

K
∑

k1=1

· · ·

K
∑

ki−1=1

K
∑

ki+1=1

· · ·

K
∑

kn=1

Mi(w
k1
1 , . . . , wi, . . . , w

kn
n)gk1

1 . . . g
ki−1

i−1 g
ki+1

i+1 gkn
n .

That is, qi(wi) is the expected probability that bidder i wins if he reports his value as wi and everyone
else draws their values at random and reports them truthfully, and mi(wi) is his expected payment
under this scenario. To simplify the notation, we set qk

i = qi(w
k
i) and mk

i = mi(w
k
i).

Given a bid vector w, the utility of a truthful bidder i is Ui(w) = wiQi(w) − Mi(w). Note
that this definition of utility assumes that the payment made by an agent is not conditional on his
winning the auction; rather, the probability of this event is incorporated into the payment rule. The
individual rationality constraint says that Ui(w) ≥ 0 for all i = 1, . . . , n, w ∈ W . The expected
utility of a truthful bidder i can be expressed as a function of his expected probability of winning
and his expected payment: ui(wi) = wiqi(wi) − mi(wi). Set uk

i = ui(w
k
i).

Since the mechanism is truthful, when bidder i’s value is wk
i , he cannot increase his utility by

reporting wk−1
i , and vice versa, that is

Ui(w−i, w
k
i) ≥ Ui(w−i, w

k−1
i) + (wk

i − wk−1
i)Qi(w−i, w

k−1
i)

and
Ui(w−i, w

k−1
i) ≥ Ui(w−i, w

k
i) − (wk

i − wk−1
i)Qi(w−i, w

k
i).

Rewriting these inequalities, we get

(wk
i −wk−1

i)Qi(w−i, w
k−1
i) ≤ Ui(w−i, w

k
i)−Ui(w−i, w

k−1
i) ≤ (wk

i −wk−1
i)Qi(w−i, w

k
i) (2)

or, averaging over other bidders’ values,

(wk
i − wk−1

i)qk−1
i ≤ uk

i − uk−1
i ≤ (wk

i − wk−1
i)qk

i .

Hence, for any incentive compatible mechanism there exist q̃j
i ∈ [qj−1

i , qj
i] such that

uk
i = u1

i +
k
∑

j=2

(wj
i − wj−1

i)q̃j
i .

As uk
i = wk

i qk
i − mk

i , the expected payment of the ith bidder when his value is wk
i equals

mk
i = wk

i qk
i − u1

i −
k
∑

j=2

(wj
i − wj−1

i)q̃j
i . (3)

Therefore, if his value is drawn from Wi according to Di, his expected payment is computed as

Pi =
K
∑

k=1

mk
i g

k
i = −u1

i +
K
∑

k=1

wk
i qk

i gk
i −

K
∑

k=1

gk
i

k
∑

j=2

(wj
i − wj−1

i)q̃j
i ,

or, changing the order of summation,

Pi = −u1
i +

K
∑

k=1

[

wk
i − (wk+1

i − wk
i)

1 − Gk
i

gk
i

q̃k+1
i

qk
i

]

qk
i gk

i ,

where we define wK+1
i = wK

i . Any mechanism that chooses q̃k+1
i between qk

i and qk+1
i is truthful,

and all such mechanisms allocate the object in the same way, so any choice of q̃k+1
i within these

bounds only affects the total payoff, but not the bidders’ behavior. As the optimal mechanism maxi-
mizes the seller’s revenue, it has q̃k+1

i = qk
i , and, by the same argument, u1

i = 0 for all i = 1, . . . , n,
k = 1, . . . ,K .

Using the definition of virtual utility, we can express the expected payment of the ith bidder in
an optimal auction with allocation rule Q as

∑K
k=1 ck

i q
k
i gk

i . Using the expression for qk
i , we derive

that the overall seller’s revenue from an optimal auction with allocation rule Q is given by (1). ut

Theorem 1 implies that we should select Q so as to maximize RQ. However, our choice is
restricted by incentive compatibility and individual rationality constraints. Next, we give a simple
description of all allocation rules that can be completed to an incentive compatible and individually
rational mechanism.

Definition 1. An allocation rule Q(w) = (Q1(w), . . . , Qn(w)) is valid if it satisfies the following
conditions:

(i)
∑n

i=1 Qi(w) ≤ 1 for any w ∈ W

(ii) Qi(w) ≥ 0 for any w ∈ W , i = 1, . . . , n

(iii) Qi(w−i, w
k
i) ≤ Qi(w−i, w

k+1
i).

Proposition 1. Any incentive-compatible mechanism has a valid allocation rule. Conversely, given
a valid allocation rule Q, the mechanism (Q,M) whose payment rule M is given by

Mi(w−i, w
k
i) = wk

i Qi(w−i, w
k
i) −

k
∑

j=2

(wj
i − wj−1

i)Qi(w−i, w
j−1
i) (4)

satisfies incentive compatibility and individual rationality, and its expected revenue is given by (1).

Proof. If (Q,M) is an incentive-compatible mechanism, (i) and (ii) are satisfied by definition, and
(iii) follows from (2), which has been shown to hold for all incentive-compatible mechanisms.

For the opposite direction, note that for the payment rule M defined by (4), we have

Ui(w−i, w
k
i) = wk

i Qi(w−i, w
k
i) − Mi(w−i, w

k
i) =

k
∑

j=2

(wj
i − wj−1

i)Qi(w−i, w
j−1
i) ≥ 0,

which means that (Q,M) satisfies individual rationality. For incentive compatibility, it suffices to
show that for any l < k

Ui(w−i, w
k
i) ≥ Ui(w−i, w

l
i) + (wk

i − wl
i)Qi(w−i, w

l
i)

and
Ui(w−i, w

l
i) ≥ Ui(w−i, w

k
i) − (wk

i − wl
i)Qi(w−i, w

k
i).

To prove the first inequality, set Qj
i = Qi(w−i, w

j
i) and observe that

Ui(w−i, w
k
i) − Ui(w−i, w

l
i) =

k
∑

j=l+1

(wj
i − wj−1

i)Qj−1
i ≥

k
∑

j=l+1

(wj
i − wj−1

i)Ql
i = (wk

i − wl
i)Q

l
i.

(5)
The second inequality can be verified in a similar manner.

To analyze the expected revenue, observe that the expected payment of the ith bidder is given
by expression (3), in which u1

i is set to 0 and q̃j
i = qj−1

i . Repeating the argument in the proof of
Theorem 1, we see that the expected revenue of (Q,M) is given by (1). ut

Remark 1. If Q only takes values 0 and 1, the expression for M in Proposition 1 can be simplified
to

Mi(w1, . . . , w
k
i , . . . , wn) = wl

i,

where l = min
{

j | Qi(w1, . . . , w
j
i , . . . , wn) = 1

}

. This means that the winner pays the minimal

amount that he can bid and still win the auction, i.e., his threshold bid.

Regular distributions If for all i = 1, . . . , n, k = 1, . . . ,K − 1 we have ck
i ≤ ck+1

i , i.e., all ck
i are

monotone in k (the value distributions that have this property are called regular), the revenue can
be maximized pointwise. That is, for any k = (k1, . . . , kn), we set I0 = argmax{ck1

1 , . . . , ckn
n }

and i0 = min{i | i ∈ I0} and define Qi(w
k1
1 , . . . , wkn

n) = 1 if i = i0 and cki

i ≥ 0 and
Qi(w

k1
1 , . . . , wkn

n) = 0 otherwise. It is not hard to see that this Q is valid. Moreover, for any other
valid Q′ and any w, k we have

n
∑

i=1

Q′

i(w
k1
1 , . . . , wkn

n)cki

i ≤

n
∑

i=1

Qi(w
k1
1 , . . . , wkn

n)cki

i

and hence RQ′ ≤ RQ.

Remark 2. This allocation rule resolves draws by giving the object to the lexicographically first
bidder among the ones with the highest virtual utility. Any other draw resolution rule, either de-
terministic or probabilistic, would also produce a valid Q which optimizes the seller’s revenue.
However, under a probabilistic rule, it may happen that a bidder who does not get the object still
pays a non-zero amount. That is, even though the mechanism will be individually rational in expec-
tation (over the coin tosses of Q), particular runs of the mechanism may leave some bidders with
negative surplus. To avoid this, we opt for an (admittedly unfair) deterministic rule.

Remark 3. Observe that when all virtual utilities are negative, we do not allocate the object at all.
While this may seem counterintuitive, it allows us to charge higher prices when the bidders have
high values.

General distributions If the virtual utilities ck
i are not monotone in k, defining Q in this manner

may not produce a valid allocation rule as it may happen that Qi(w−i, w
k−1
i) > Qi(w−i, w

k
i). On

the other hand, for any c̄k
i that are monotone in k, the allocation rule that gives the object to the

bidder whose bid maximizes c̄k
i among all bids is truthful. In what follows, we show that for each

i, one can construct a monotone sequence c̄k
i by “flattening out” c k

i so that the resulting auction
is optimal. This technique was first introduced in [18], where it was applied to continuous virtual
utility functions (which may be nonmonotone as well).

Intuitively, to compute c̄k
i , we construct a piecewise linear function that consist of K segments

whose slopes are c1
i , . . . , c

K
i . If the sequence ck

i is not monotone, this function is not convex; we
then compute its lower envelope (which is convex by definition) and set c̄k

i to be the slope of the
segment of the lower envelope that corresponds to ck

i . More formally, recall that Gk
i = g1

i + · · ·+gk
i

and let Hk
i = c1

i g
1
i + · · ·+ ck

i g
k
i . for k = 1, . . . ,K . Set G0

i = 0,H0
i = 0, and let Li(z) : [0, 1] 7→ R

be the lower envelope of the set
{

(G0
i ,H

0
i), . . . , (GK

i ,HK
i)
}

⊆ R
2, that is,

Li(z) = min
0≤k,l≤K,α∈[0,1]

αGk
i +(1−α)Gl

i=z

{

αHk
i + (1 − α)H l

i

}

.

Set Lk
i = Li(G

k
i); observe that L0

i = H0
i = 0 and LK

i = HK
i . Define c̄k

i = (Lk
i − Lk−1

i)/gk
i .

Lemma 1. We have c̄k
i ≤ c̄k+1

i for all i = 1, . . . , n, k = 1, . . . ,K − 1.

Proof. The value c̄k
i is the slope of Li(z) between Lk−1

i and Lk
i . Since Li(z) is a convex function,

the sequence c̄k
i is nondecreasing in k. ut

Theorem 2. Let Q̄ be an allocation rule that gives the object to the lexicographically first bidder
among the ones with the highest value of c̄k

i . Then Q̄ is an optimal valid allocation rule for G =
(W,D).

2 2

3(G , H)

1

0 0

(G , H)1

4
5 5

6 6

4

(G , L)
(1, 0)

(G , L)1

44

1 3

(G , H)

(G , H)

(G , H) (G , H)

(G , H)

Fig. 1. Nonregular case. Since c1 = (H1 − H0)/(G1 − G0) > (H2 − H1)/(G2 − G1) = c2, we replace both c1 and
c2 with c̄1 = c̄2 = (H2 − H0)/(G2 − G0) = (c1g1 + c2g2)/(g1 + g2).

Proof. Since c̄k
i are monotone in k, Q̄ is a valid allocation rule. To prove optimality, let Q be an

arbitrary valid allocation rule on W . Consider the expected payment Pi of the ith bidder under this
rule. We have RQ =

∑n
i=1 Pi, where

Pi =

K
∑

k=1

ck
i g

k
i qk

i =

K
∑

k=1

(Hk
i − Hk−1

i)qk
i = −

K−1
∑

k=1

Hk
i (qk+1

i − qk
i) − H0

i q1
i + HK

i qK
i .

Set R̄Q =
∑n

i=1 P̄i, where

P̄i =

K
∑

k=1

c̄k
i g

k
i qk

i = −

K−1
∑

k=1

Lk
i (q

k+1
i − qk

i) − L0
i q

1
i + LK

i qK
i .

Observe that

Pi − P̄i =
K−1
∑

k=1

(

(Lk
i − Hk

i)(qk+1
i − qk

i) − (H0
i − L0

i)q
1
i + (HK

i − LK
i)qK

i

)

.

Since Li(z) is a lower envelope, H0
i = L0

i and HK
i = LK

i . Hence,

RQ − R̄Q =

n
∑

i=1

(Pi − P̄i) =

n
∑

i=1

K−1
∑

k=1

(Lk
i − Hk

i)(qk+1
i − qk

i).

Furthermore, for all i = 1, . . . , n, k = 1, . . . ,K , we have Lk
i − Hk

i ≤ 0. Since the sequence qk
i

is monotone in k, this implies that RQ ≤ R̄Q.

Consider the case Q = Q̄. By construction, whenever Lk
i < Hk

i , i.e., Hk
i does not lie on the

lower envelope, the slope of Li(z) does not change at Gk
i , which means that c̄k

i = c̄k+1
i , and hence

qk
i = qk+1

i . Consequently, RQ̄ = R̄Q̄. Now, let (Q′,M ′) be an arbitrary truthful auction for (W,D).
Since Q′ must be a valid allocation rule, RQ′ ≤ R̄Q′ . On the other hand, Q̄ maximizes R̄Q, i.e.,
R̄Q′ ≤ R̄Q̄. Finally, we have shown that RQ̄ = R̄Q̄, so RQ′ ≤ RQ̄. Hence, Q̄ achieves the maximal
revenue for G = (W,D). ut

4 Order-based auctions

In the optimal auction described above, the object is given to the bidder i with the highest flattened
virtual utility, who then pays his threshold bid, i.e., min{wk

i | c̄k
i ≥ c̄l

j}, where c̄l
j is the second

highest flattened virtual utility (if j precedes i in the lexicographic ordering, ‘≥’ should be replaced
with ‘>’). Alternatively, the optimal auction can be described as follows: all bidders’ possible values
wk

i , i = 1, . . . , n, k = 1, . . . ,K , are ordered on a line from left to right according to their flattened
virtual utilities c̄k

i ; also, a cutoff point is selected to separate the points with c̄k
i < 0 from those

with c̄k
i ≥ 0. The auction then proceeds as follows. All bidders draw their values and report them to

the mechanism, which marks the respective points in the ordering; the cutoff point is marked, too.
The bidder whose bid corresponds to the rightmost marked point wins; if all bids are to the left of
the cutoff point, the item remains unallocated. To determine the winner’s payment, the mechanism
scans the ordering from left to right starting at the second rightmost marked point till it comes across
a (possibly unmarked) point that corresponds to an element of the winner’s distribution support; this
is the amount that the winner is required to pay.

Clearly, one can combine the same procedure with a different ordering of the nK+1 points. For
example, it is easy to see that ordering the points according to their actual values would give rise to
the second price auction. Moreover, while not all (nK +1)! orderings correspond to valid auctions,
it is easy to see which ones do: a necessary and sufficient condition is that each bidder’s values are
placed in increasing order, i.e., for any bidder i and any two elements w1 < w2, w1, w2 ∈ Wi, it
should be the case that w1 is placed before w2. We formalize this idea as follows.

Definition 2. For any n bidders b1, . . . , bn whose valuations are drawn from the sets W1, . . . ,Wn

and a bijective function π : {(i, k) | i = 1, . . . , n, k = 1, . . . ,K} ∪ {⊥} 7→ {0, . . . , nK} that
satisfies π(i, k) < π(i, k + 1) for all i = 1, . . . , n, k = 1, . . . ,K − 1 (we call any such π
a valid ordering), an order-based auction Aπ is conducted as follows. Each bidder i submits his
bid βi = (i, ki) to the center; if ki 6∈ {1, . . . ,K}, the center rejects it and cancels the auc-
tion. If no bids are rejected, set i∗ = argmax{π(βi) | i = 1, . . . , n}. If π(βi∗) > π(⊥), the
bidder bi∗ wins the auction, otherwise, the item remains unallocated. In the former case, define
p0 = max {π(⊥),max{π(βi) | i = 1, . . . , n, i 6= i∗}}; the payment p of the winning bidder bi∗ is
mink{w

k
i∗ | π(i∗, k) > p0}.

We abuse notation by writing π(wk
i) instead of π(i, k); note, however, that even if wk

i = wl
j , we

treat π(wk
i) and π(wl

j) as distinct objects.

Proposition 2. Any order-based auction is truthful: if vi = wk
i , then bidder i’s dominant strategy

is to bid (i, k).

Proof. Observe that the allocation rule of any order-based auction is monotone in the bidder’s value
and the winner pays his threshold bid. It has been shown in [13] that any such auction is truthful;
the argument is similar to that used by Vickrey in [22] to prove the truthfulness of the second-price
auction. ut

Once the optimal ordering is chosen, it can be stored as a table of size nK + 1; afterwards,
the winner and his payment are determined based on integer comparisons only. This suggests that
the order-based representation is likely to be useful if the auction is to be run repeatedly and the
value distributions remain unchanged, or if we have plenty of time for pre-processing (and hence
can construct π) but then have to run the auction in real time. Also, it can be used to implement the
optimal auction in a cryptographically secure manner by generalizing the methods of [19] and [17].
Another important application of this concept is in the incomplete information scenario discussed
in the next section.

5 Learning the optimal auction

The results of Section 3 provide a polynomial time algorithm for designing the optimal auction
when the distributions D1, . . . ,Dn are public knowledge. In this section, we focus on the situation
when we know the sets W1, . . . ,Wn, but not the distributions D1, . . . ,Dn; however, we have access
to an oracle that given descriptions of two order-based auctions, can tell us which of them has higher
expected revenue.

Let R(A) denote the total expected revenue of an auction A. We assume that we have a prob-
abilistic procedure Compareε,δ(π, π′) that given any two valid orderings π and π ′ with probabil-
ity at least 1 − δ satisfies the following: if R(Aπ) < R(Aπ′) − ε, Compareε,δ(π, π′) = 1; if
R(Aπ) > R(Aπ′) + ε, Compareε,δ(π, π′) = 0; if |R(Aπ)−R(Aπ′)| ≤ ε, the procedure may return
either 0 or 1.

One way to implement such a procedure is by selling sufficiently many copies of the object using
each of the candidate auctions and observing the winners’ payments; the number of trials needed
to estimate the expected revenue of each auction up to a small additive error can be computed
using Chernoff–Hoeffding bounds. This approach assumes that each of the n bidders is willing
to buy a large number of units, draws the value of each unit independently from his distribution,
and is myopic, i.e., treats each auction as a single-shot game rather than considers the impact of
his behavior in this auction on subsequent auctions. Clearly, this situation is unlikely to occur in
practice; however, it becomes more plausible if instead of n bidders we consider n bidder types,
where all bidders of the same type have the same value distribution, and in each auction we observe
one representative of each type. For instance, when selling airplane tickets, types may correspond
to different social groups (students, soldiers, retired people, businessmen), and the bidders may

be considered myopic because they are unlikely to be interested in another ticket from the same
provider in the nearest future.

Note, however, that our model is independent of how the comparison oracle is implemented; by
subcontracting the task of revenue estimation we eliminate the issue of incentive compatibility and
can focus on combinatorial aspects of the problem.

5.1 Monotone virtual utilities

In this subsection, we focus on the case when each bidder’s virtual utilities satisfy ck
i ≤ cl

i for any
k < l. To handle the case maxi{π(βi)} < π(⊥) together with other cases, we introduce a bidder 0
who always bids ⊥, i.e., we set W0 = {w0

0}; c0
0 = 0. Let π[s,t] be an ordering obtained by swapping

sth and tth point: π−1(s) = π−1
[s,t](t), π−1(t) = π−1

[s,t](s), where s, t ∈ {0, . . . , nK}.

Lemma 2. Suppose that for some i 6= j and s ≤ nK − 1 we have π(wk
i) = s, π(wl

j) = s + 1.

Then R(Aπ) < R(Aπ[s,s+1]
) if and only if ck

i > cl
j , π(⊥) ≤ s + 1, and for all j ′ 6= j we have

π(w1
j′) ≤ s + 1.

Proof. Let Q and Q′ be the allocation rules associated with π and π[s,s+1], respectively. Recall that
the expected revenue of an auction with allocation rule Q is

RQ =

K
∑

k1=1

. . .

K
∑

kn=1

[

n
∑

i=1

Qi(w
k1
1 , . . . , wkn

n)cki

i

]

gk1
1 . . . gkn

n .

By replacing π with π[s,s+1], we only change the allocation rule at points of the form

w = (wk1
1 , . . . , wk

i , . . . , wl
j , . . . , w

kn
n)

that satisfy Qj(w) = 1 (in particular, if π(wl
j) < π(⊥), there are no such points and the revenue

does not change). The contribution of any such point to R(Aπ) is cl
jg

k1
1 . . . gkn

n . For the modified
auction, we have Q′

i(w) = 1 for any such w and hence this point’s contribution to R(Aπ[s,s+1]
) is

ck
i g

k1
1 . . . gkn

n . Hence, this interchange increases the total revenue if and only if ck
i > cl

j and there is
a non-zero probability that the jth bidder can win when bidding w l

j . It is easy to see that the latter
condition is equivalent to stipulating that π(⊥) ≤ π(wl

j) and π(w1
j′) ≤ π(wl

j′) for any j ′ 6= j. ut

Given access to Compareε,δ(·, ·), we can find the optimal ordering by a simple BubbleSort-
like algorithm presented in Figure 2. Essentially, the algorithm attempts to permute two adjacent
points and checks if this leads to a higher revenue; this is repeated until there are no more local im-
provements. The order in which the pairs of points are considered is the same as in BubbleSort.

The input to our algorithm is the space W of all possible values. We use the following notation:
α(t) = i iff there exists a k ∈ [1,K] such that π(wk

i) = t, i.e., α(t) is the identity of the bidder who
“owns” the tth point.

LocalOptε,δ(W):

1. Set π(w1
i) = i, i = 0, . . . , n − 1, π(⊥) = n, and extend π to a valid ordering in an arbitrary way.

2. For i = 1, . . . , n − 1:
3. if Compareε,δ(π, π[n−1,n]) = 1,

set π′ = π[n−1,n], π = π′
[n−1,n−i−1].

4. For i = 1, . . . , nK:
5. For j = 0, . . . , nK − 1:
6. if α(j) 6= α(j + 1)
7. if Compareε,δ(π, π[j,j+1]) = 1, set π = π[j,j+1].
8. Output π.

Fig. 2. The procedure LocalOptε,δ(W)

It is easy to analyze the performance of this procedure for the case ε = 0, i.e., assuming that
with probability 1 − δ, the comparison oracle returns a correct answer no matter how small the
difference between R(Aπ) and R(Aπ′) is.

Proposition 3. Let Aopt be the optimal auction for W , and let π be the output of LocalOpt0,δ(W)

Then with probability at least 1 − ((nK)2 + n)δ, we have R(Aπ) = R(Aopt).

Proof. The procedure Compare0,δ(·, ·) is called at most (nK)2 + n times; with probability at least
1 − ((nK)2 + n)δ, each time it returns the correct result. Suppose that this is indeed the case.
During the first phase of the algorithm (lines 1–3), we find max{0,max{c1

i | i = 1, . . . , n}} and
put the corresponding element in the nth position; suppose that this element is x. At this moment,
all elements to the left of x have virtual utilities that are smaller than that of x; it is easy to see that
this remains true throughout the algorithm. During the second phase (lines 4–7), we transpose jth
point and (j + 1)st point if and only if j ≥ π(x) and the virtual utility of π−1(j) is greater than the
virtual utility of π−1(j + 1) (this includes the case α(j) = α(j + 1): we do not permute the points,
and by monotonicity, the virtual utility of π−1(j) is less than the virtual utility of π−1(j + 1)).
Using a standard proof of correctness for BubbleSort, we can see that in the end the points to the
right of x (including x itself) are sorted according to their virtual utility. The relative ordering of the
points to the left of x does not matter, since irrespective of it, they contribute 0 to the total revenue.
Therefore, one can permute these points to transform the ordering produced by the algorithm into
the optimal ordering (where all points are sorted according to their virtual utility) without changing
the total revenue, which means that the ordering produced by the algorithm is optimal. ut

This analysis can be extended to the case ε > 0.

Theorem 3. Let Aopt be the optimal auction for W , and let π be the output of LocalOptε,δ(W).
Then with probability at least 1 − ((nK)2 + n)δ, we have R(Aπ) ≥ R(Aopt) − 2(nK + 1)ε.

Proof. First, we show that BubbleSort performs well even given a “faulty” comparison oracle,
i.e., it returns an ordering that is not very different from the true one. Next, we estimate the profit of
an order-based auction that is “close” to optimal.

Proposition 4. Let A = {a1, . . . , an} and set a(1) = min{ai | ai ∈ A}, a(2) = min{ai | ai ∈
A, ai 6= a(1)}, . . . , a(n) = max{ai | ai ∈ A}. Suppose that we attempt to sort A in increasing
order using BubbleSort, but instead of comparing elements of A directly, we use a deterministic
procedure Compε(x, y), which returns 1 if y < x − ε and 0 if y > x + ε. If |x − y| ≤ ε, the
procedure can return either 0 or 1; however, we require that Compε(x, y) is antisymmetric, i.e.,
Compε(x, y) = 1 − Compε(y, x). Let (b(1), . . . , b(n)) be the output of BubbleSort(A, Compε). Then
for any i ∈ [1, n] we have |a(i) − b(i)| ≤ nε.

Proof. Let i be the variable used in the outer loop of BubbleSort, and let j be the variable used
in the inner loop. In what follows, the actions of the algorithm when i = i0 are referred to as the
i0th stage of the algorithm, and the comparison (and, possibly, permutation) of jth and (j + 1)st
element during the ith stage is referred to as the jth step of the ith stage.

We will show that if after i stages of the algorithm the elements are ordered as (b1, . . . , bn) then
for i′ = n − i + 1, . . . , n we have Compε(bi′−1, bi′) = 0; the proof proceeds by induction on i.

First, consider the base case i = 1. At the (n − 1)st step, we compare the (n − 1)st element x
with the nth element y. If x < y − ε, then Compε(x, y) = 0, both elements stay in place, and hence
Compε(bn−1, bn) = 0. If x > y + ε, then Compε(x, y) = 1; when we set bn = x, bn−1 = y, we
obtain Compε(bn−1, bn) = 0. If |x − y| ≤ ε, we interchange x and y if and only if Compε(x, y) = 1,
therefore Compε(bn−1, bn) = 0.

Now, suppose that the statement is true for all i′ < i. Suppose that at the beginning of the ith
stage the set A is ordered as (a1, . . . , an). By the induction hypothesis, we have Compε(ai′−1, ai′) =
0 for all i′ ∈ [n−i+2, n]. Clearly, the elements an−i+1, . . . , an remain in place till the (n−i)th step.
Let x be the element in the (n− i)th position before the (n− i)th step. Set k = min{j | n− i ≤ j ≤
n− 1, Compε(u, v) = 0}, where u and v are the elements in the jth and (j +1)st position before the
jth step; if Compε(u, v) = 0 for all j ∈ [n− i, n− 1], set k = n. Until the kth step, we have u = x,
v = aj+1: since Compε(x, aj+1) = 1, we transpose x and aj+1, and therefore at the next step, we
are comparing x and aj+2. During the kth step, x and ak+1 are not transposed. Therefore, during
the subsequent steps we compare aj and aj+1; by the induction hypothesis, Compε(aj , aj+1) = 0,
so we do not transpose them.

Hence, after the end of the ith stage, we have bn−i = an−i+1, . . . , bk−1 = ak, bk = x, bk+1 =
ak+1, . . . , bn = an. By the induction hypothesis, we have Compε(bj−1, bj) = 0 for all j ∈ [n − i +
1, k − 1] ∪ [k + 2, n]. Moreover, by construction, Compε(bj , bj+1) = 0 for j = k, k + 1.

Therefore, for the output of the sorting algorithm we have Compε(b
(i), b(i+1)) = 0 for all i =

1, . . . , n − 1, and hence b(i) ≤ b(i+1) + ε.

To conclude the proof, we need the following lemma.

Lemma 3. Suppose α1 ≤ · · · ≤ αn, and let (β1, . . . , βn) be a permutation of the set A =
{α1, . . . , αn} that satisfies β1 ≤ β2 + ε ≤ · · · ≤ βn + (n − 1)ε. Then we have |αi − βi| ≤ nε for
any i = 1, . . . , n.

Proof. Consider an element βi. There are at least i elements of A (namely, β1, . . . , βi) that satisfy
α ≤ βi+(i−1)ε. Therefore, the i smallest elements of A, and, in particular, αi satisfy this inequality
and hence αi ≤ βi + (i − 1)ε.

Similarly, there are at least n−i+1 elements of A (namely, βi, . . . , βn) that satisfy α+(n−i)ε ≥
βi. Therefore, the n − i + 1 largest elements of A, and, in particular, αi satisfy this inequality and
hence αi ≥ βi − (n − i)ε. ut

Applying the lemma to (a(1), . . . , a(n)) and (b(1)), . . . , b(n)), we obtain the desired result. ut

Lemma 4. Consider an order-based auction A′ for bidders b1, . . . , bn that uses an ordering π
determined by monotone nondecreasing functions di : Wi → R, i = 1, . . . , n, i.e., for any i 6= j we
have π(⊥) < π(wk

i) < π(wl
j) if and only if 0 < di(w

k
i) < dj(w

l
j), and π(wk

i) < π(wk′

i) for any
k < k′. Suppose also that bidder i’s virtual utility ci(·) is monotone and for all k = 1, . . . ,K we
have |ci(w

k
i)− di(w

k
i)| ≤ ε. Then R(A′) ≥ R(A)− 2ε, where A is an optimal order-based auction

for (W,D).

Proof. Let Q be the allocation rule associated with A. We have seen that

R(A) =
K
∑

k1,...,kn=1

(

n
∑

i=1

Qi(w
k1
1 , . . . , wkn

n)cki

i

)

gk1
1 . . . gkn

n .

Fix a bid vector w = (wk1
1 , . . . , wkn

n). Set dk
i = di(w

k
i). In the case of the optimal auction, Qi(w) =

1 if and only if cki

i = max{ck1
1 , . . . , ckn

n , 0}; consequently, if A allocates the object to bidder i, this
event’s contribution to the total revenue is cki

i gk1
1 . . . gkn

n .

The auction A′ may allocate the object to a bidder j, j 6= i, if d
kj

j = max{dk1
1 , . . . , dkn

n , 0}, in

which case the contribution to the total revenue is c
kj

j gk1
1 . . . gkn

n . Then we have c
kj

j + ε ≥ d
kj

j ≥

dki

i ≥ cki

i − ε, and therefore, c
kj

j ≥ cki

i − 2ε. Similarly, if A′ does not allocate the object at all, we

have dki

i < 0, cki

i ≤ dki

i + ε, and hence cki

i < ε, and if A′ allocates the object to a bidder j who bids

w
kj

j , but under A the object remains unallocated, we have c
kj

j ≥ d
kj

j − ε, d
kj

j ≥ 0; in both of these

cases the total loss of revenue is at most εgk1
1 . . . gkn

n .
Summing over all possible values of w, we see that using the ordering based on d1(·), . . . , dn(·)

rather than c1(·), . . . , cn(·) decreases the total revenue by at most 2ε. ut

Remark 4. A similar statement can be proved if the error in valuations is multiplicative rather than
additive: if the estimated virtual utilities di(w

k
i) satisfy (1 − ε)ci(w

k
i) ≤ di(w

k
i) ≤ (1 + ε)ci(w

k
i),

we have R(A′) ≥ 1−ε
1+ε

R(A).

The rest of the proof is similar to that for the case ε = 0. The only difficulty is that in Propo-
sition 4 it is assumed that the comparison procedure is deterministic and antisymmetric, while
Compareε,δ(π, π′) has neither of these properties (and, indeed, if it is based on a Monte Carlo

algorithm, these properties cannot be guaranteed). This can be resolved by caching the results
of the previous calls: given some π and π ′ = π[j,j+1], where π−1(j) = x, π−1(j + 1) = y,
we check whether Compareε,δ() has been called before on some π1 and π′

1 = π[k,k+1] such that

π−1
1 (k) = x, π−1

1 (k + 1) = y, or π−1
1 (k) = y, π−1

1 (k + 1) = x. In the former case, we return
Compareε,δ(π1, π

′

1); in the latter case, we return 1 − Compareε,δ(π1, π
′

1). If no such π1, π
′

1 were
found, we call Compareε,δ(π, π′).

Also, as in Proposition 3, the relative order of the elements that end up to the left of x does not
matter, and the virtual utility of any such element cannot exceed the virtual utility of x by more than
ε. In particular, we can permute these points without affecting the total revenue so that the condition
of Lemma 3 is satisfied. ut

Even though BubbleSort is not among the fastest sorting algorithms, we chose to focus on
a BubbleSort-based procedure, because it provides a better model for learning in a real-life
scenario: an unsophisticated seller is likely to prefer a greedy algorithm, which allows him to search
for a good auction by local improvement. Showing that the optimal auction can be found in this
manner is an argument for practical applicability of our model.

If, on the other hand, we care about computational efficiency, we can achieve a better running
time by using MergeSort: by monotonicity, we can assume that each bidder’s points are already
sorted, and all that we have to do is to merge these n arrays of size K each. To merge arbitrary
sorted arrays of bids, we need to be able to compare ck

i and cl
j for all i < j, i, j = 1, . . . , N

and k, l = 1, . . . ,K . This can be done by constructing a valid ordering π in which ck
i and cl

j are
adjacent and qk

i , ql
j 6= 0. Using this approach, we can find the optimal ordering using O(nK log n)

comparisons.

5.2 Nonmonotone virtual utilities

If some bidders’ utilities are not monotone in k, we may be unable to compare some of the elements:
if α(j) = α(j + 1), then π[j,j+1] is not a valid ordering, so we cannot call Compareε,δ(π, π[j,j+1]),
and we are not guaranteed that the virtual utility of π−1(j) is at most the virtual utility of π−1(j+1).
Fortunately, it turns out that given access to Compareε,δ(π, π′) we can design a procedure that is
capable of comparing flattened virtual utilities c̄k

i , c̄l
j as long as i 6= j; if i = j, then by definition

c̄k
i ≤ c̄k′

i as long as k < k′. Therefore, we can apply any sorting algorithm that is based on pairwise
comparisons, e.g., MergeSort.

In the rest of this section, we explain how to compare c̄k
i and c̄l

j for arbitrary i 6= j using
Compare(π, π′) := Compare0,0(π, π′) as an oracle; the construction can be generalized to the case
ε, δ > 0 using the techniques developed in the previous subsection.

First, we need to generalize Lemma 2 to the situation when we move around more than two
points. To this end, for any bidder i and any 1 ≤ k1 ≤ k2 ≤ K , we define

c
[k1,k2]
i =

ck1
i gk1

i + · · · + ck2
i gk2

i

gk1
i + · · · + gk2

i

=
Hk2

i − Hk1−1
i

Gk2
i − Gk1−1

i

.

This quantity is naturally related to bidder i’s flattened virtual valuation.

Lemma 5. Suppose that
c̄k1−1
i < c̄k1

i = · · · = c̄k2
i < c̄k2+1

i . (6)

Then c
[k1,k2]
i = c̄k1

i = · · · = c̄k2
i . Also, if c

[k1,k2]
i > c

[k2+1,k3]
i for some k1, k2, k3 ∈ [1,K], and

c̄k1
i = · · · = c̄k2

i , c̄k2+1
i = · · · = c̄k3

i then c̄k
i = c̄l

i for all k, l ∈ [k1, k3].

Proof. Condition (6) means that the slope of Li(z) changes at Gk1−1
i and Gk2

i , but remains constant
between these two points. Hence, for k ∈ [k1, k2], the value of c̄k

i is the slope of the line that

passes through (Gk1−1
i ,Hk1−1

i), and (Gk2
i ,Hk2

i) i.e., c
[k1,k2]
i . To prove the second statement, note

that if c
[k1,k2]
i > c

[k2+1,k3]
i , then (Gk2

i ,Hk2
i) lies above the line that connects (Gk1−1

i ,Hk1−1
i) and

(Gk3
i ,Hk3

i). Therefore it cannot be a vertex of the lower envelope, i.e., the slope of Li(z) does not
change at (Gk2

i ,Hk2
i). ut

Lemma 6. Suppose that for some i 6= j and s, r, t ≤ nK we have π(wk
i) = s, . . . , π(wk+r−1

i) =
s + r − 1, π(wl

j) = s + r, . . . , π(wl+t
j) = s + r + t. Let π′ be an ordering obtained from π by

swapping the groups (wk
i , . . . , wk+r−1

i) and (wl
j , . . . , w

l+t
j). Let Q be the allocation rule associated

with π. Then R(Aπ) < R(Aπ′) iff c
[k,k+r−1]
i > c

[l,l+t]
j and ql

j > 0.

Proof. Let Q′ be the allocation rule associated with π ′. Recall that the expected revenue of an
auction with allocation rule Q is

RQ =

K
∑

k1=1

· · ·

K
∑

kn=1

[

n
∑

i=1

Qi(w
k1
1 , . . . , wkn

n)cki

i

]

gk1
1 . . . gkn

n .

By changing the ordering from π to π′, we only changed the allocation rule at points w such that
Qj(w) = 1 and w = (wk1

1 , . . . , wi, . . . , wj , . . . , w
kn

n), where wi ∈ {wk
i , . . . , wk+r−1

i } and wj ∈
{wl

j , . . . , w
l+t
j }. Let W 0 be the set of all such points. Let p0 be the probability that all bidders bi′ ,

i′ 6= i, j, have values vi′ that satisfy π(vi′) < π(wk
i); clearly, p0 > 0 if and only if ql

j > 0.
Fix x ∈ [k, k+r−1], y ∈ [l, l+t] and consider the set of all points W xy that satisfy Qj(w) = 1,

w1 = wx
i , w2 = wy

j ; clearly, W 0 = ∪x∈[k,k+r−1],y∈[l,l+t]W
xy. Let pxy = Pr[w ∈ W xy]; it is easy

to see that pxy = p0g
x
i gy

j . Under Q, the contribution of all w ∈ W xy to the revenue is cy
jpxy; under

Q′, for all such w we have Qi(w) = 1 and hence the contribution of these points is cx
i pxy. The total

change in revenue is therefore equal to

k+r−1
∑

x=k

l+t
∑

y=l

(cx
i − cy

j)pxy =
k+r−1
∑

x=k

l+t
∑

y=l

cx
i pxy −

k+r−1
∑

x=k

l+t
∑

y=l

cy
jpxy =

= p0

k+r−1
∑

x=k



cx
i gx

i

l+t
∑

y=l

gy
j



− p0

l+t
∑

y=l

(

cy
j g

y
j

k+r−1
∑

x=k

gx
i

)

=
p0(c

[k,k+r−1]
i − c

[l,l+t]
j)

(gl
j + · · · + gl+t

j)(gk
i + · · · + gk+r−1

i)
.

Clearly, this expression is positive if and only if c
[k,k+r−1]
i > c

[l,l+t]
j and p0 > 0. ut

Lemma 5 implies that if ck
i > ck+1

i , then c̄k
i = c̄k+1

i , and therefore we can assume that in the
optimal ordering these two elements appear together. Hence, we can combine them into a single
element w

[k,k+1]
i that has probability gk

i + gk+1
i and virtual utility c

[k,k+1]
i . By Lemma 6, this el-

ement behaves identically to the pair (wk
i , wk+1

i) with respect to all comparisons. This reasoning
also applies to combinations of three or more consecutive elements with identical flattened virtual
utilities. Extending our notation, we set Compare(w [k,k+r−1]

i , w
[l,l+t]
j) = Compare(π, π′), where π

and π′ are defined as in Lemma 6 with the additional restriction that q l
j 6= 0 (i.e., π(⊥) < π(wk

i)

and π(w1
i′) < wk

i for all i′ 6= i).

We start by describing a procedure Insert(x,L) that given a bidder i’s combined value w
[k1,k2]
i ,

the list L of bidder j’s values (w1
j , . . . , w

K
j), and access to Compare(w

[k1,k2]
i , w

[l1,l2]
j) can find a

position t in L such that c
[k1,k2]
i > c̄l

j for all l ≤ t and c
[k1,k2]
i ≤ c̄l

j for all l > t. To simplify

notation, we set x = w
[k1,k2]
i and omit the index j.

We assume that the list L = (w1, . . . , wK , $) has the structure of a double linked list, where $
denotes the last element of this list, and Next(u) and Prev(u) are the standard linked list operations.
Also, Merge(w[l1,l2], w[l2+1,l3]) is a procedure that given two adjacent elements of the list, replaces
them with an element w[l1,l3] and repairs the linked list structure.

Insert(x,L)

u = w1; Z=1;
While (u 6= $):

X = Compare(x, u);
if Z = 1 and X = 1, set u = Next(u);
if Z = 1 and X = 0, set u = Next(u), Z = 0;
if Z = 0 and X = 0, set u = Next(u);
if Z = 0 and X = 1, set u = Merge(Prev(u), u),

Z = Compare(x, Prev(Prev(u)));
Suppose that in the end, L = (w[a1,b1], . . . , w[at,bt], $).
Let w[as,bs] be the last element of L
such that Compare(x, w[as,bs]) = 1;
Output bs.

Fig. 3. The procedure Insert(x,L)

Lemma 7. If Insert(c[k1,k2]
i ,L) outputs bs, we have c̄l

j < c
[k1,k2]
i if and only if l ≤ bs.

Proof. To simplify notation, assume k1 = k2 = k; the proof remains valid in the general case.
Clearly, the algorithm only merges w[a,b] and w[a′,b′] if a′ = b + 1, so we can assume that when

the algorithm terminates, we have L = (w[0,l1], w[l1+1,l2], . . . , w[lt−1+1,K], $) and as = ls−1 + 1,

bs = ls. Next, we prove by induction that we only merge points with identical flattened virtual
utilities. To see this, note that the variable Z indicates whether the last element of the list seen so
far was less than x (with respect to Compare). Therefore, the situation Z = 0, X = 1 arises when
Prev(u) = w[lr+1,lr+1], u = w[lr+1+1,lr+2], and ck

i ≤ c
[lr+1,lr+1]
j , ck

i > c
[lr+1+1,lr+2]
j . By inductive

assumption, it follows from Lemma 5 that all c̄l
j , l = lr + 1, . . . , lr+2, are equal. In other words, if

L contains w[lr−1+1,lr], the slope of the lower envelope does not change between G
lr−1

j and Glr
j .

Also, it is easy to check by induction that when Insert(ck
i ,L) terminates, any u that appears

before w[as,bs] in the list L satisfies Compare(x, u) = 1, and by construction, any u that appears
after w[as,bs] satisfies Compare(x, u) = 0.

Now, let L1 = L1(z) be the lower envelope of the set {(G0
j ,H

0
j), (Gl1

j ,H l1
j) . . . , (Gls

j ,H ls
j },

let L2 = L2(z) be the lower envelope of the set {(Gls
j ,H ls

j), (G
ls+1

j ,H
ls+1

j), . . . , (GK
j ,HK

j)}, and

let L = L(z) be the lower envelope of {(Gl
j ,H

l
j) | l = 0, . . . ,K}. Clearly, L(z) ≤ L1(z) for any

z ≤ Gls
j and L(z) ≤ L2(z) for any z ≥ Gls

j ; we would like to show that, in fact, L = L1 ∪ L2.

To see that, note that the slope of any segment of L1 is less than ck
i , since it is obtained by taking

a weighted average of some c
[lr−1+1,lr]
j for r ≤ s. and c

[lr−1+1,lr]
j < ck

i for all such r. Similarly,

the slope of any segment of L2 is at least ck
i . Therefore, L1 ∪ L2 is a convex curve. Moreover, any

(Gl
j ,H

l
j), l = 0, . . . ,K , lies on or above L1 ∪ L2, because otherwise the slope of L would change

at some Gl, l 6= l1, . . . , lt. Hence, L = L1 ∪ L2. Consequently, for any z ≤ Gls
j the slope of L at z

is less than ck
i , and for any z > Gls

j the slope of L at z is at least ck
i . ut

If we knew k1 and k2 such that c̄k
i = c

[k1,k2]
i , we could use Insert(c

[k1,k2]
i ,L) to compare c̄k

i

and c̄l
j . Unfortunately, these k1 and k2 might be impossible to determine. Nevertheless, it turns out

that we can use Insert(x,L) as a subroutine to determine the relative order of the elements of
L′ = (w1

i , . . . , w
K
i , $) and L = (w1

j , . . . , w
K
j , $).

The new algorithm attempts to insert each of the elements of L′ into L using Insert. If Insert
suggests inserting wk

i and wk+1
i after wl1

j and wl2
j respectively, and l2 < l1, this means that wk

i >

wl1
j ≥ wk+1

i , and therefore wk
i and wk+1

i should be merged; the algorithm merges them and uses

Insert to find the appropriate position for w
[k,k+1]
i . The algorithm uses a stack S to keep track of

the elements of L′ that have been inserted prior to the current element; for each element, we record
its position with respect to L, so that in the end we know the relative order of the elements of L and
L′.

Proposition 5. Suppose that when Combine(L,L′) terminates, the contents of the stack is

(w
[k1,k′

1]
i , t1), (w

[k2 ,k′
2]

i , t2), . . . , (w
[ks,k′

s]
i , ts).

Then k1 = 1, k′

s = K , and kr ≤ k′

r , kr+1 = k′

r + 1 for all 1 ≤ r < s. Finally, if k ∈ [kr, k
′

r], then
c̄tr
j < c̄k

i ≤ c̄tr+1
j .

Combine(L,L′)

v = w1
i ; t = Insert(v,L); Push(S, (v, t));

While (v 6= $):
(u, t) = Pop(S); t′ = Insert(v,L);
if t′ ≥ t
Push(S, (u, t)); Push(S, (v, t′)); v = Next(v);

if t′ < t
v = Merge(u, v);

Fig. 4. The procedure Combine(L,L′)

Proof. It is easy to verify by induction that k1 = 1, k′

s = K , and kr ≤ k′

r, kr+1 = k′

r + 1,

and t1 ≤ · · · ≤ ts. Similarly to the proof of Claim 7, we can show that we only merge w
[l1,l2]
i

and w
[l3,l4]
i if l3 = l2 + 1, and we only merge points that have identical flattened virtual utilities.

Now, consider all elements on the stack that are of the form (w
[kr ,k′

r]
i , t) for a fixed value of t;

suppose that these elements are w
[x,x′]
i , . . . , w

[y,y′]
i . By construction, for any such w

[kr,k′
r]

i we have

t = Insert(w
[kr ,k′

r]
i ,L) and therefore c̄t

j < c
[kr ,k′

r]
i ≤ c̄t+1

j . Let L′ be the lower envelope of

{(Gk
i ,Hk

i) | k = 0, . . . ,K}. Repeating the argument in the proof of Proposition 7, we can conclude

that the slopes of all segments of L′ between Gx−1
i and Gy′

i were obtained by taking a weighted

average of c
[x,x′]
i , . . . , c

[y,y′]
i and therefore c̄t

j < dL
dz

(ξ) ≤ c̄t+1
j for any ξ ∈ (Gx−1

i , Gy′

i). In particular,

this is true for ξ ∈ (Gk−1
i , Gk

i), which means that c̄t
j < c̄k

i ≤ c̄t+1
j . ut

Running times It is easy to see that both Insert(x,L) and (indirectly) Combine(L,L ′) make
a polynomial number of calls to Compare(u, v); in this section we derive somewhat more precise
bounds.

Proposition 6. The procedure Insert(x,L) makes at most 2K calls to Compare(x, u). The pro-
cedure Combine(L,L′) makes at most 2K calls to Insert(v,L).

Proof. Whenever Compare(x, u) is called, the algorithm also calls either Next(x) to obtain an
element of L it has not seen before or Merge(Prev(u), u) to merge two groups of elements of L.
Clearly, each of these actions can be executed at most K times. Similarly, whenever Insert(v,L)
is called, the algorithm also calls either Next(v) to obtain an element of L ′ it has not seen before
or Merge(u, v) to merge two groups of elements of L′, and each of these actions can be executed at
most K times. ut

Corollary 1. For any i 6= j, the relative ordering of all c̄k
i and c̄l

j , k, l = 1, . . . ,K can be de-
termined by 4K2 comparisons. Hence, using at most 2(nK)2 comparisons, we can construct an
oracle that compares any two flattened virtual utilities in unit time. After this oracle is constructed,
we can find an optimal ordering using any sorting algorithm, e.g., MergeSort; the running time
of MergeSort will be the same as in the regular case, i.e., O(n log nK).

Remark 5. The running time of our algorithm for finding an optimal ordering is dominated by the
time it takes to construct the comparison oracle. One can reduce the running time somewhat by com-
bining the two components of our algorithm: even though in this paper we opted for a more modular
presentation for the ease of exposition, a practical algorithm would intertwine merging the bidders’
arrays and determining the relative ordering of c̄k

i and c̄l
j . However, the quadratic dependence on K

appears to be inherent to our approach, and one will need completely new ideas to eliminate it.

6 Conclusions

We have shown how to construct an optimal auction for finite support distributions. While such
distributions provide a better model for many real life scenarios than continuous ones, a rigorous
analysis of this case was absent from the literature; this paper fills this gap. Also, we believe that
the concept of order-based auctions introduced in this paper may have applications beyond those
considered here. The second main contribution of this paper is in demonstrating that the optimal
auction can be learned under fairly harsh conditions. Moreover, if the distributions in question are
regular, this can be done by a simple greedy algorithm, which can be viewed as an argument for
practical applicability of our construction.

In practice, the mechanism designer cannot expect that the output of the comparison oracle will
be always correct, and we show that our learning algorithm is robust to errors in the oracle’s reports.
Further relaxing this model (e.g., to the case when the information about distribution supports is
erroneous or imprecise) is an interesting challenge. Another important question is learning the op-
timal auction in the continuous case; we hope that techniques and intuition developed in this paper
will prove useful here. Also, designing and learning the optimal finite support auction when the
bidders’ valuations are not independent is an open problem. While Cremer and McLean [9] show
that one can extract full surplus if the dependencies are strong enough, they provide no answer for
the general case and their mechanism is not ex post individually rational. On the other hand, it is
not clear if the lower bounds proved in [20, 21] are optimal or whether one can get positive results
in this framework for special classes of joint distributions. We propose investigating the problem of
finding the best order-based auction for this scenario: while this problem is clearly in NP (assuming
the expected revenue oracle), it would be interesting to see a hardness result or a polynomial-time
algorithm (note that the existence of the latter is not precluded by the results in [21], since we are
considering a restricted model).

It is not clear if any of our results may be applicable to the more interesting problem of finding
an optimal multi-unit auction. However, our work suggests that when the bidders’ valuations are
discrete, one might try to characterize a class of combinatorial structures (e.g., a generalization of
order-based auctions) containing the optimal solution and use the properties of this class to limit the
search space. This topic is a subject of ongoing research.

Acknowledgments The author would like to thank Amit Sahai, Ken Steiglitz, Sergei Izmalkov,
Sergei Anisov, Paul Goldberg, and anonymous referees for useful discussions and comments on an
earlier version of this paper.

References

1. G. Aggarwal and J. Hartline, Knapsack auctions. In Proceedings of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1083–1092, 2006

2. M.-F Balcan, A. Blum, J. Hartline, and Y. Mansour, Mechanism design via machine learning. In Proceedings of the
46th Annual IEEE Symposium on Foundations of Computer Science, pages 605–614, 2005

3. A. Blum and J. Hartline, Near-optimal online auctions. In Proceedings of the 16th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1156–1163, 2005

4. Z. Bar-Yossef, K. Hildrum, and F. Wu, Incentive-compatible online auctions for digital goods. In Proceedings of the
13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 964–970, 2002

5. D. Bergemann and M. Pesendorfer, Information structures in optimal auctions. Cowles Foundation Discussion
Papers 1323, Cowles Foundation, Yale University, 2001

6. A. Blum, V. Kumar, A. Rudra, and F. Wu, Online learning in online auctions. In Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 202–204, 2003

7. J. Bulow and J. Roberts, The simple economics of optimal auctions. The Journal of Political Economy, 97:1060–90,
1989

8. H. Cheng, Optimal auction design with discrete bidding. Working paper, May 2004
9. J. Cremer and R. McLean, Full extraction of the surplus in bayesian and dominant strategy auctions. Econometrica,

56:1247–1257, 1988
10. E. Elkind, Computational Issues in Optimal Auction Design. PhD thesis, Princeton University, 2005
11. E. Elkind, Optimal auctions with finite support. In DIMACS Workshop on Computational Issues in Auction Design,

2004
12. A. Fiat, A. Goldberg, J. Hartline, and A. Karlin, Competitive generalized auctions. In Proceedings of the 34th Annual

ACM Symposium on Theory of Computation, pages 72–81, 2002
13. A. Goldberg, J. Hartline, and A. Wright, Competitive auctions and digital goods. In Proceedings of the 12th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 735–744, 2001
14. M. Hajiaghayi, R. Kleinberg, and D. Parkes, Adaptive limited-supply online auctions. In Proceedings of the 5th

ACM Conference on Electronic Commerce, pages 71–80, 2004
15. R. Kleinberg, F. Leighton, The value of knowing a demand curve: bounds on regret for online posted-price auctions.

In 44th Annual IEEE Symposium on Foundations of Computer Science, pages 594–605, 2003
16. V. Krishna, Auction Theory. Academic Press, 2002
17. H. Lipmaa, N. Asokan, and V. Niemi, Secure Vickrey auctions without threshold trust. In Proceedings of the 6th

Annual Conference on Financial Cryptography, pages 87–101, 2002
18. R. Myerson, Optimal auction design. Mathematics of Operations Research, 6:58–73, 1981
19. M. Naor, B. Pinkas, and R. Sumner, Privacy preserving auctions and mechanism design. In ACM Conference on

Electronic Commerce pages 129–139, 1999
20. A. Ronen, On approximating optimal auctions. In ACM Conference on Electronic Commerce, pages 11–17, 2001
21. A. Ronen and A. Saberi, On the hardness of optimal auctions. In Proceedings of the 43rd Symposium on Foundations

of Computer Science, pages 396–405, 2002
22. W. Vickrey, Counterspeculation, auctions, and competitive sealed tenders. Journal of Finance, 16:8–37, 1961

A Bidders with finite support value distributions

We describe several settings, in which it is natural to assume that the bidders draw their values from
finite support distributions.

Example 1. Suppose that we are selling a plane ticket from New York to Boston, and we have two
potential buyers Alice and Bob. Besides buying a ticket from us, both Alice and Bob can take a bus,
which costs $10, drive a car, which costs $40, take a train, which costs $50, or buy a plane ticket
from someone else for $100. Also, we know that Alice is a student, so she will pick the cheapest
available option (i.e., the bus), unless she has to be in Boston early in the morning, in which case
she needs to buy a plane ticket (either from us or from another company), and with probability 0.9,
Alice has to be in Boston early. On the other hand, Bob is a software engineer, who finds buses
uncomfortable, but does not want to pay more than $50, and with probability 0.5, Bob does not own
a car. In this situation, we can conclude that Alice’s valuation for the ticket is $100 with probability
0.9 and $10 with probability 0.1, while Bob’s valuation for the ticket is $40 with probability 0.5 and
$50 with probability 0.5.

This example generalizes naturally to the case when instead of buying the object being auc-
tioned, the buyers can purchase one of the similar products available in the market for a fixed price;
however, depending on their circumstances (which are not known to the auctioneer), each buyer’s
selection may be restricted to a subset of these products.

Example 2. Consider an auction that sells bulk goods to retailers that put them into individual pack-
ages of a predetermined size and resell them. Each bidder’s value for the lot is determined by how
many individual packages he expects to sell, and this information is private to the bidder, while the
market price of an individual package and its size are common knowledge.

Example 3. Suppose that we are selling an object (e.g., a car) with a number of add-ons; the buyer
either values each feature at the (known) market rate, or is indifferent about it, and this information
is private to the buyer.

