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Abstract 

 

One aspect of opinion change that has been of academic interest is the impact of people with 

extreme opinions (extremists) on opinion dynamics.  Amblard and Deffuant (2004) used an 

agent-based model to study the role of small-world social network topologies on general 

opinion change in the presence of extremists.  They found that opinion convergence to a 

single extreme occurs only when the average number of network connections for each 

individual is extremely high.  Here, we extend the model to examine the effect of positively 

skewed degree-distributions, in addition to small-world structures, on the types of opinion 

convergence that occur in the presence of extremists.  We also examine what happens when 

extremist opinions are located on the well-connected nodes (hubs) created by the positively 

skewed distribution.  We find that a positively skewed network topology encourages opinion 

convergence on a single extreme under a wider range of conditions than topologies whose 

degree distributions were not skewed.  The importance of social position for social influence 

is highlighted by the result that, when positive extremists are placed on hubs, all population 

convergence is to the positive extreme even when there are twice as many negative 

extremists.  Thus, our results have shown the importance of considering a positively skewed 

degree distribution, and in particular network hubs and social position, when examining 

extremist transmission. 

 

Keywords: Social Networks, Scale-Free, Small World, Extremism, Opinion Change 
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1. Introduction 

 

People hold opinions about an almost countless number of topics. From religion, politics, 

literature and moral values, to entertainment, hair products, and the lives of celebrities, most 

people will have an opinion on the matter.  These opinions can be shaped by individual 

reflection, but are in many cases greatly influenced by social context: if your friends all prefer 

Dan Brown to Dostoevsky, then you are likely to do so as well.  Dual inheritance theory 

(Boyd & Richerson, 1985) tells us that human behaviour cannot be understood without 

considering both our genetic and cultural inheritances.  But our cultural inheritance is not 

absorbed at random or from all possible sources: opinion formation is embedded in social 

interaction (Wood, 2000).  In other words, what you think depends on who you talk to, and 

whose opinions you respect.  It follows that understanding the process of social influence and 

the social structures that govern human interaction will be central to an understanding of the 

dynamics of opinion change.  Opinion change across a whole population, of course, 

constitutes a change in cultural norms, and thus the dual inheritance program will remain 

incomplete without an improved understanding of human social structures and their effects.  

Given that opinions influence behaviour, a full account of human behaviour, both adaptive 

and maladaptive, likewise depends on a theory of how opinion change is rooted in social 

interaction. 

 

One aspect of opinion change that has been of academic interest is the impact of extremists on 

opinion dynamics.  Extremists are people with marginal opinions that are far away from 

ambivalence.  The multidisciplinary innovation diffusion literature has produced numerous 

case studies where an initially small minority of extremists spread their opinion to a majority 
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of the population.  Examples include drug use, new cropping techniques, and the introduction 

of family planning practices (Rogers 1995).  The spread of extreme opinion in Germany in the 

1930s, and in Rwanda in the 1990s, stand out as salient and horrific examples.  On the other 

hand, there are extremists whose opinions (thankfully) never became generally accepted, such 

as those of the KuKlux Klan.  All minority rights activists, such as those campaigning for 

womens' right to vote or those involved in the American civil rights movement, were 

considered at some point to be extremists, although their views became mainstream.   

 

Societal structure is important to opinion change, and can be conveniently represented as a 

social network.  In a social network, nodes represent individuals and connections represent 

interactions between those individuals.  Many studies have indeed shown that different types 

of social interactions, such as scientific collaborations and sexual contacts, can be understood 

in terms of networks (Newman, 2003).  Evidence has shown that social networks have 

distinctive properties (Newman & Park, 2003).  Most prominently they are usually 

characterized as small-world and scale-free networks. In a small-world network, each node 

can be reached by relatively few steps, due to the existence of long-distance connections 

bridging different areas of the network.  Scale-free networks have a degree distribution that is 

positively skewed to the right in a manner similar to a power-law distribution.  This results in 

some nodes possessing a far greater number of connections than others. However, scale-free 

is a theoretical term that needs to be used with care (especially when dealing with networks of 

just hundreds of thousands of nodes).  Here we refer to our analogous degree distribution in 

our relatively small networks as being positively skewed.  It may be useful to carefully draw 

some appropriate analogies with the properties of scale-free networks. Our own data (taken 

from an unrelated study and shown as an example) collected on farmer social networks in six 

countries, clearly shows a positively skewed degree distribution (Figure 1).  Thus, when 
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studying the effects of social network topologies it may be important to capture their small-

world and positively skewed degree distribution structures. 

 

There have been numerous attempts at building models of opinion change.  Many models 

consider binary opinions (e.g., Latané and Nowak, 1997; Kacpersky and Holyst, 2000).  

Because the opinions in these models are only binary representations they do not distinguish 

between hard-core extremists and varying levels of tacit supporters and non-supporters.  

Axelrod (1986) and Schelling (1978) evaluated opinion change using simple lattices.  They 

both showed that opinions tend to polarize (i.e., multiple opinions coexist).  However, the 

opinions were modelled as discrete, and thus extremists were not present.  As such, these can 

only be used to examine the spread of an opinion to become the minority or majority opinion.   

The bounded confidence model (Krause, 2000; Dittmer, 2001) relaxes the assumption of 

binary opinions.  Instead, opinions are represented as points on an opinion continuum (e.g., 

anywhere between -1 and 1).  Interactions become non-linear in that agents influence each 

other only if the distance between their opinions is below a threshold.  The relative agreement 

model is an extension of the bounded confidence model.  In the relative agreement model the 

level of influence between agents is governed by the distance between opinions and the 

certainty of the influencing agent, rather than some predefined level of influence.  The model 

captures the following ideas: (a) agents with radically different opinions are unlikely to 

influence each other; (b) uncertain agents are more susceptible to social influence than agents 

that are certain; and; (c) agents that are certain are more influential than uncertain agents.  The 

assumptions of the relative agreement model have been shown to be supported well by 

laboratory experiments (Deffuant et al., 2002), such as those dealing with opinion 

radicalization (for one of the first examples see, Moscovici and Lécuyer, 1972).  Whereas 

these models allow for influence based on persuasion (attractive forces), they do not allow for 
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conflicts of opinion to drive opinions further apart (repulsive forces).  The meta-contrast 

model (Salzarulo, 2006) allows for both attractive and repulsive influence.  Thus, the model 

allows for the possibility that the final opinions can become more extreme than the most 

extreme initial opinion. 

 

Amblard and Deffuant (2004) studied the role of the social network topology on extremist 

transmission (see also, Deffuant, 2006).  They developed an agent-based model of social 

influence using the relative agreement model, and examined the type of opinion convergence 

that occurred under various conditions with various small-world topologies (as opposed to a 

fully connected network).  Extremists were represented as agents with opinions at the extreme 

ends of the opinion spectrum (see below for a more technical description).  They found that, 

for the small-world topology, a critical level of average network degree was needed for the 

population to converge on a single extreme opinion.  However, the average network degree 

needed to be extremely high for this to occur; typically requiring an average degree of around 

64 or even higher for lower levels of random connections. 

 

In this paper we further extend the model (Amblard and Deffuant, 2004) to examine the effect 

of a positively-skewed-degree-distribution structure on the types of opinion convergence that 

occur in the presence of extremists
1
.  We also examine what happens when extremist opinions 

are located on well-connected nodes. 

 

 

 

 

                                                 
1
 Weisbuch et al. (2005) briefly look at scale-free structures for the relative agreement model, but do not 

examine their effect in any depth, and also do not explore social position or hubs. 
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2. The Model 

 

Our agent-based model consisted of one thousand agents embedded in a social network.  Each 

agent i was characterized by two attributes: an opinion xi and level of uncertainty ui.  Social 

influence was assumed to take place between all connected individuals in a random order 

each time-step.  In all cases simulations were run for 2000 time-steps, after which all 

simulations found a stable-state. 

 

2.1. Initialization 

 

The population included N individuals of which there were pe.N extremists and (1-pe).N non-

extremists.  p+ and p- were the proportions of positive and negative extremists (pe = p+ + p-).  

Thus, the population was initialized with p+.N positive extremists and p-.N negative 

extremists.  When we talk of extremists as being positive and negative we are simply referring 

to their position on an abstract opinion continuum (-1 or +1) without any connotations as to 

the social value of their opinions (i.e., a negative extremist need not hold a "negative" opinion 

in the colloquial sense).  Non-extremist opinions were initially drawn from a uniform 

distribution between -1 and 1, and the initial uncertainty of non-extremists was set to U.  

Extremists were assumed to be those agents with opinions located at the extremes of the 

opinion distribution xi (i.e., -1 or 1).  They were also assumed to be more confident (i.e., have 

a lower value of ui) than non-extremist individuals with an initial uncertainty of ue (where ue < 

U).  For all simulation runs pe = 0.1 (Deffuant, 2006) and we assumed that equal proportion of 

positive and negative extremists in the population (p+ = p- = pe/2). 

 

2.2. The Relative Agreement Model 
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The relative agreement model captures social influence between two agents (Deffuant et al., 

2002).  In this model, agents’ opinions can be visualized as segments with boundaries defined 

as xi - ui and xi + ui.  In other words, the centre of the segment is defined by xi and the level of 

uncertainty defines the distance of the opinion edges either side of xi.  Agent i can influence 

agent j, bringing agent j’s opinion closer to agent i’s opinion, if their opinion segments 

overlap (i.e., they have at least some common ground).  The intensity of the influence depends 

on the amount of overlap between the opinion segments; the higher the overlap the higher the 

influence.  The model also captures the notion that agents that are more certain about their 

opinion are more influential.  As an agent is influenced, its level of uncertainty is slightly 

reduced.  A formal statement of a relative agreement between two agents, i and j, follows. 

 

The width of the overlap between opinion segments is given by: 

 

),max(),min( jjiijjiiij uxuxuxuxh  (1) 

 

Thus, the non-overlapping width is: 

 

iji hu2  (2) 

 

The agreement is defined by the overlap minus the non-overlap: 

 

)(2)2( iijijiij uhhuh  (3) 

 

The relative agreement is the agreement divided by the length of agent i’s segment: 
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If hij ≤ ui, then there is no influence.  This corresponds to the idea that agent j’s opinion 

segment must intersect agent i’s actual opinion (at the centre of its segment) for agent i to 

consider agent j’s opinion.  Otherwise, the modifications of agent j’s opinion xj and 

uncertainty uj as a result of the interaction with agent i multiplied by the relative agreement: 
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where μ governs the influence intensity for all interactions.  A high value of μ results in quick 

opinion convergence between neighbouring agents. 

 

2.3. Constructing the Social Network 

 

Networks were constructed in a manner that allowed us to vary the extent to which they 

possessed small-world and positively-skewed-degree-distribution characteristics (Noble et al., 

2004).  The average number of connections for each agent is denoted k.  Each agent’s social 

position was represented as a network node, arranged along a one-dimensional ring lattice.  

The distance between nodes on this lattice defines the agent’s local neighbourhood; for a 

neighbourhood of size n (n = 2k) this would consist of the nodes contained within a distance 
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of k either side of the focal node.  There were two axes on which the layouts of our networks 

could vary.  The first axis of variation allowed us to control the frequency of random long-

range connections.  Thus, we used a parameter R that varied the probability with which a 

connection would be either local (i.e., from the neighbourhood) or random.  A local 

connection meant a connection to a randomly chosen node within the local neighbourhood.  A 

random connection meant a connection to a randomly chosen node from anywhere else on the 

network.  When R = 1, all links were random, when R = 0 all links were local.  Small 

intermediate values of R create a network with small-world properties (Watts & Strogatz, 

1998). 

 

The second axis of variation allowed us to control the level to which the network degree 

distribution was positively skewed (Figure 1).  This was done using the parameter P, which 

allowed us to vary the level of preferential attachment to well-connected nodes.  When P = 0 

each node was equally likely to be selected for a connection.  As the value of P increased 

connections were made in an increasingly preferential way, and well-connected nodes were 

more likely to receive a connection than poorly-connected nodes.  The value Pd )(  was 

calculated for each eligible node, where d is the node’s degree and σ is a small positive value 

(0.1 in this model) that ensures all nodes have a chance of selection.  The node selected to 

receive a connection was chosen by roulette-wheel selection over these values.  Thus, the 

parameter P is a preferential exponent, governing the strength of the bias towards connecting 

to well-connected nodes (see also, Barabási & Albert, 1999). 

 

[FIGURE 1 HERE] 
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To construct the network, nodes were sorted in a random order and given one initial 

connection, selected according to the current values of R and P.  This procedure helped to 

ensure that all nodes were part of the network.  Then connections were allocated until K 

average connections were reached.  The values of R and P were used in the selection of both 

source and destination nodes for each connection. 

 

2.4. Convergence Indicator 

 

The model typically results in three types of opinion convergence: ‘central convergence’, 

‘both-extremes convergence’, and ‘single convergence’.  Central convergence occurs when 

extremists have little influence on the general opinion.  Both-extremes convergence occurs 

when extremists with opposing opinions both influence general opinion enough to cause 

opinions to cluster around both extremes.  Single extreme convergence occurs when general 

opinion converges upon a single extreme opinion.  Deffuant et al. (2002) found that the 

convergence type exhibited by a simulation run can be conveniently found using an indicator 

y.  After a population has converged, y is calculated as follows: 

 

22 ppy  (7) 

 

where p  and p  are the proportions of initial non-extremists that became extremists to the 

positive and negative extreme respectively. 

 

y indicates the type of convergence as follows: 

 

 No extreme convergence: y = 0 
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 Double extreme convergence: y = 0.5 

 Single extreme convergence: y = 1.0 

 

Intermediate values of y correspond to intermediates of the above situations. 

 

3. Results 

  

Amblard and Deffuant (2004) explored opinion convergence on their small-world network for 

variations of k (the average degree) and R (the proportion of non-local connections).  We 

follow this approach for our study.  When varying k and R the following parameters are kept 

constant: U = 1.8, pe = 0.1, μ = 0.1.  Thus, we are studying opinion formation where non-

extremists begin with arbitrary and uncertain opinions.  Lower values of U could stop the 

population all converging on extreme opinions, and using an unequal ratio of positive and 

negative extremists would aid single extreme convergence.  However, these parameters have 

been exhaustively studied elsewhere (e.g., Deffuant et al., 2002; Amblard and Deffuant, 2004) 

and do not contribute to the argument made in this paper.  First, we replicate the work by 

Amblard and Deffuant by studying a small-world network.  Second, we extend the model to 

allow for positively skewed degree distributions to be constructed.  Finally, we examine the 

effect of placing extremists on well-connected network nodes.  In the forthcoming graphs 

(Figure 2 to Figure 7) the waves and occasional spikes of the lines are simply noise, and the 

graphs would be smoother if we averaged the values over thousands of trials.  We were 

limited to 50 replications due to the computational time required for the runs. 

 

[FIGURE 2 HERE] 
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3.1. Small-World 

 

Small-world networks were constructed by varying R between 0 and 1 (P = 0).   Figure 2 

shows the type of convergence found for variations of k and R.  Notice that for single extreme 

convergence to occur regularly (e.g., y > 0.8), the network must have a relatively high number 

of random connections, and the average degree must be extremely high (typically k > 60).   

Single extreme convergence is always stable as the network tends to saturate in this state.   

This result confirms those of Amblard and Deffuant (2004). 

 

 [FIGURES 3 & 4 HERE] 

 

 

3.2. Positively Skewed Degree Distribution and Small-World 

 

Small-world networks were constructed by varying R between 0.2 and 1.  When P = 1, we 

found that it gives positively skewed degree distributions that qualitatively match our farmer 

social networks data.  Note that our intention here is to conduct a theoretical study, it is not to 

accurately model the farmer data.  We simply show both distributions to illustrate that both 

network degree distributions are positively skewed, with many individuals connected to few 

individuals, and few individuals connected to many individuals. Figure 3 shows the type of 

convergence found for variations of k and R.  For single extreme convergence to generally 

occur, the network does not need an average degree as high as in the case where the network 

degree is not skewed, and the proportion of random connections does not need to be as high.  

Influence by extremists is higher for almost all data-points in the case with the skewed 
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distribution.  Figure 4 shows the type of convergence found for variations of k and P. 

Convergence to a single extreme occurs readily for high values of k and P. 

 

 [FIGURES 5, 6 & 7 HERE] 

 

3.3. Extremists at Network Hubs 

 

Networks with positively skewed degree distributions, like scale-free networks, produce a 

relatively limited number of well-connected nodes, or hubs (and random network also 

produce hubs, but a limited number of poorly connected nodes).  We introduced a new 

parameter λ to control the proportion of positive extremists placed at these hubs.  Thus, once 

the network had been constructed, p+.N.λ positive extremists exchanged their network 

position with the agents on the best-connected nodes.  Figure 5 shows the type of convergence 

found for variations of k and R.  The results are similar to the case with the skewed degree 

distribution without positive extremists on well-connected nodes, although for values of R < 

0.2 a lower average degree is needed for single-extreme convergence. 

 

To examine the effect of placing positive extremists on key nodes on the trajectory of opinion 

change, we plotted the proportion of non-extremists that became positive extremists for 

networks with positively skewed degree distributions, with and without positive extremists at 

hubs (Figure 6).  We found that placing positive extremists at network hubs greatly increased 

the proportion of non-extremists that become positive extremists.  Under some conditions 

(roughly k > 22) most of the population (more than 80%) became positive extremists. 
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Figure 7 shows that even when negative extremists are twice as prevalent in the population, 

opinion convergence to the positive extreme can regularly occur if positive extremists are 

placed on network hubs.  We reproduced the conditions for Figure 7 without placing positive 

extremists at key hubs.  The results showed that, under all conditions, the population never 

converged on the positive extreme (no graph shown). 

 

4. Discussion 

 

A positively skewed degree distribution increases opinion convergence towards extremes, and 

encourages opinion convergence on a single extreme under a wider range of conditions than 

topologies that were not skewed in their degree distribution.  For single extreme convergence 

to occur for the small-world model, Amblard and Deffuant (2004) required an extremely large 

number of average connections.  Such a large average number of connections is unlikely to 

exist in a real-world social network.  Constructing a positively skewed degree distribution 

reduces the number of connections needed for single-extreme convergence to a more realistic 

number of average social network connections.  Another effect of the skewed distribution is 

that there is little difference between a small-world network with few random connections 

(e.g., R = 0.25) and a random network (R = 1). 

 

Why does a positively skewed degree distribution increase extremism transmission in a social 

network?  We suspect that the creation of some well-connected nodes (hubs), along with the 

creation of many poorly connected individuals, is responsible.  Extremists located at these key 

nodes are connected to more agents, and more parts on the network.  Thus, their influence is 

more frequent and wider-reaching, making it less likely that certain parts of the network 

remain socially isolated from the extremist’s opinion.  In the default case, most of the time 
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extremists will not be located at hubs.  However, extremists take advantage of non-extremists 

at hubs, as a means of transmitting their opinion.  Non-extremists are initially less confident 

about their opinion than extremists.  Thus, extremists have more influence over non-

extremists than non-extremists have over extremists (and more influence than non-extremists 

have over each other).  Once an extremist has spent time influencing a non-extremist at a hub, 

the former non-extremist will transmit the opinion throughout the network.  Because agents at 

hubs are well-connected, it is likely that they are connected to an extremist.  In the real world, 

extremists might purposely attempt to influence people in high status positions. 

 

Valente (1995) investigated some effects of propagating innovations first to more ‘strategic’ 

nodes of the network, showing an individual’s network position can affect innovation 

diffusion in a social network.  Here, we examined the effect of extreme opinions at high social 

positions.  By placing positive extremists at the well-connected nodes (i.e., nodes to the tail-

end of the degree distribution) we found that when the network converges on a single 

extreme, it is always to the positive extreme.  This is because when positive extremists are 

placed on key nodes they are able to directly influence more agents (as they would have more 

direct connections) and have a higher chance of having a random connection that allows them 

to influence a different social network neighbourhood.  The importance of social position for 

social influence was highlighted by the result that, when positive extremists are placed on 

hubs, all population convergence is to the positive extreme even when there are twice as many 

negative extremists.  Thus, the position of an opinion in the social network is more important 

than the initial proportion of individuals with the opinion.  The network does not have to have 

a power-law distribution for this result to stand.  However, the network must have multiple 

hubs and social networks are known to produce such hubs.  In the real world, certain 

extremists are likely to fight for high-status network positions in order to preach their 
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opinions.  For example, people with extreme political opinions might actively attempt to seek 

higher social status or widen their social network with the intention of spreading their 

opinion. 

 

These findings are of relevance for applications in social science, biology, and computer 

science.  In social science, one can think of multiple applications where the structure of 

networks is of relevance.  We have primarily shown how certain social structures can 

contribute to changing a population’s values, attitudes and behaviour.  Religious extremism is 

one of many examples where an extreme opinion exists, and thus has the possibility of 

percolating throughout a sub-community such as the one modelled here.  We have shown that 

such opinions are less likely to pervade the social network if well connected, typically high 

status, people are resistant to the opinion.  The findings are also useful for studies of 

innovation diffusion, and market activities where geographic actor interactions are explicitly 

taken into account.  In biology, the social network structure can have a large affect on social 

learning in animals.  For example, in a social learning model that did not explicitly consider 

network structure, Noble and Franks (2002) found that who learns from whom affected the 

efficiency of different social learning mechanisms.  Given our findings, that agents’ social 

positions greatly affect their influence, these results might be emphasized.  In computer 

science, knowing more about social networks should allow us to construct better software for 

monitoring, shaping, and exploiting existing human networks.  There could also be feedback 

into the design of large-scale artificial multi-agent systems, in which the agents necessarily 

communicate over a social network. 

 

Our results have shown the importance of considering a positively skewed degree distribution 

when examining extremist transmission.  Future work will look at the effect of modelling 
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loosely coupled sub-communities, network formation, network growth, and coevolving 

network structure with opinions.  Such studies will help us to further understand opinion 

change and extremism transmission.  An interesting future question that this model could be 

used to explore is: if most social networks are small-world and have positively skewed degree 

distributions, then why do we see the persistence of extreme opinion polarization in 

populations?  It is clear that social behaviours (and thus human behaviour in general) cannot 

be fully understood without considering their underlying network structures. Agent-based 

models can help us look for underlying principles that allow us to understand social 

behaviours in terms of social networks. 
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Figure Captions 

 

 Figure 1: The qualitative similarity between degree distributions for (left) a real-world farmer social network in 

Estonia (N = 170, K = 7.07); and (right) a simulated social network in our model, with highly preferential 

attachment (N = 1000, k = 7.07, R = 0.2, P = 1.0).  Note the similarities in the general shape of each graph.  They 

both show a skewed network degree distribution where many nodes have few connections and few nodes have 

many connections. 

 

Figure 2: (left) Contour plot of the mean opinion convergence indicator values, y, for variants of k and R, 

averaged over 50 runs.  (right) The standard deviation of y.  The graph shows the result of varying the network 

topology between only local connections, and only random connections; with small-world topologies existing 

between the extremes of R.  The standard deviation for some mid-range values of y indicates that some trials 

may have resulted in single extreme convergence, and some may have reached central convergence. 

 

Figure 3: The mean opinion convergence indicator values, y, averaged over 50 runs for variants of k and R, 

when the degree distribution is positively skewed (P = 1).  The graph shows the result of varying the network 

topology between only local connections, and only random connections; with small-world topologies existing 

between the extremes of R.  Notice that for single extreme convergence to generally occur, the network does not 

need an average degree as high as in the case where the network degree is not skewed.  Influence by extremists 

is higher for almost all data-points in the  case with the positively skewed degree distribution. 

 

Figure 4: The mean opinion convergence indicator values, y, averaged over 50 runs for variants of k and P, 

when R = 0.5.  The graph (left) shows the result of varying the level of preferential attachment to well-connected 

nodes; with positively skewed degree distributions existing for higher values of P.  Note that convergence to a 

single extreme occurs readily for high values of k and P.  The standard deviation is shown on the right. 

 

Figure 5: The mean opinion convergence indicator values, y, averaged over 50 runs, for variants of k and R, 

when the degree distribution is positively skewed (P = 1) and positive extremists are placed on the most well-

connected nodes (λ = 1).  The graph shows the result of varying the network topology between only local 



 20 

connections, and only random connections; with small-world topologies existing between the extremes of R.  

Notice that the graph is a smoothed-out version of the graph in figure 3.  Influence by extremists is higher for 

almost all data-points in the case with the positively skewed degree distribution.  The standard deviation is close 

to zero for all data-points. 

 

 

Figure 6: The mean proportion of initial non-extremists that become an extremist to the positive extent, 

averaged over 50 runs.  (left) When the degree distribution is positively skewed (P = 1, λ = 0), (right) when the 

degree distribution is positively skewed, and positive extremists are placed on the most well-connected nodes (P 

= 1, λ = 1).  The graph shows the result of varying the network topology between only local connections, and 

only random connections; with small-world topologies existing between the extremes of R. 

 

Figure 7: The mean proportion of initial non-extremists that become an extremist to the positive extent, 

averaged over 50 runs, when the degree distribution is positively skewed (P = 1) and positive extremists are 

placed on the most well-connected nodes (λ = 1).  In this case, there were twice as many negative extremists as 

positive extremists.  The graph shows the result of varying the network topology between only local connections, 

and only random connections; with small-world topologies existing between the extremes of R.  Note that 

despite there being twice as many negative extremists; the population converges to the positive extreme under a 

range of conditions. 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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