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Abstract. In this contribution we extend our previous results on the
structured total least squares problem to the case of weighted cost func-
tions. It is shown that the computational complexity of the proposed
algorithm is preserved linear in the sample size when the weight matrix
is banded with bandwidth that is independent of the sample size.

1 Introduction

The total least squares (TLS) method (Golub and Van Loan, [1], Van Huffel and
Vandewalle, [2])

min
∆A,∆B,X

∥
∥
[

∆A ∆B
]∥
∥

2
F subject to (A − ∆A)X = B − ∆B , (1)

is a solution technique for an overdetermined system of equations AX ≈ B,
A ∈ IRm×n, B ∈ IRm×d. It is a natural generalization of the least squares
approximation method when the data in both A and B is perturbed. The method
has been generalized in two directions:

– weighted total least squares

min
∆A,∆B,X

∥
∥
[
∆A ∆B

]∥
∥

2
W

subject to (A − ∆A)X = B − ∆B , (2)

where ‖∆C‖2
W := vec�(∆C�)Wvec(∆C�), W > 0, and

– structured total least squares (STLS)

min
∆A,∆B,X

∥
∥
[
∆A ∆B

]∥
∥

2
F subject to (A − ∆A)X = B − ∆B and

[
∆A ∆B

]

has the same structure as
[
A B

]

.
(3)

While the basic TLS problem allows for an analytic solution in terms of the
singular value decomposition of the data matrix C :=

[
A B

]

, the weighted and
structured TLS problems are solved numerically via local optimization methods.

In [4] we show that under a general assumption (see Assumption 1) about
the structure, the cost function and first derivative of the STLS problem can
be evaluated in O(m) floating point operations (flops). This allows for efficient
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computational algorithms based on standard methods for local optimization. Via
a similar approach, see (Markovsky et al., [5]), the weighted TLS problem can
be solved efficiently when the weight matrix W is block-diagonal with blocks of
size n + d.

In this paper, we extend our earlier results on the STLS problem by account-
ing for weighted cost function. Thus the weighted TLS problem becomes a special
case of the considered weighted STLS problem when the data matrix is unstruc-
tured. In Sect. 2 we review the results of Markovsky, Van Huffel, Pintelon [4].
Section 3 presents the necessary modifications for the weighted STLS problem
and Sect. 4 discusses the implementation of the algorithm.

2 Review of Results for the STLS Problem

Let S : IRnp → IRm×(n+d) be an injective function. A matrix C ∈ IRm×(n+d)

is said to be S-structured if C ∈ image(S). The vector p for which C = S(p)
is called the parameter vector of the structured matrix C. Respectively, IRnp is
called the parameter space of the structure S. The aim of the STLS problem
is to perturb as little as possible a given parameter vector p by a vector ∆p,
so that the perturbed structured matrix S(p + ∆p) becomes rank deficient with
rank at most n.

Problem 1 (STLS). Given a data vector p ∈ IRnp , a structure specification S :
IRnp → IRm×(n+d), and a rank specification n, solve the optimization problem

X̂ = arg min
X,∆p

‖∆p‖2
2 subject to S(p − ∆p)

[
X

−Id

]

= 0 . (4)

Let
[
A B

]

:= S(p). Problem 1 makes precise the STLS problem formulation (3)
from the introduction. In what follows, we often use the notation

Xext :=
[

X
−I

]

.

The STLS problem is said to be affine structured if the function S is affine, i.e.,

S(p) = S0 +
np∑

i=1

Sipi, for all p ∈ IRnp and for some Si, i = 1, . . . , np . (5)

In an affine STLS problem, the constraint S(p − ∆p)Xext = 0 is bilinear in the
decision variables X and ∆p.

Lemma 1. Let S : IRnp → IRm×(n+d) be an affine function. Then

S(p − ∆p)Xext = 0 ⇐⇒ G(X)∆p = r(X) ,

where

G(X) :=
[

vec
(

(S1Xext)�
)

· · · vec
(

(SnpXext)�
)]

∈ IRmd×np , (6)

and
r(X) := vec

((

S(p)Xext
)�)

∈ IRmd .
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Using Lemma 1, we rewrite the affine STLS problem as follows

min
X

(

min
∆p

‖∆p‖2
2 subject to G(X)∆p = r(X)

)

. (7)

The inner minimization problem has an analytic solution, which allows to derive
an equivalent optimization problem.

Theorem 1 (Equivalent optimization problem for affine STLS). Assum-
ing that np ≥ md, the affine STLS problem (7) is equivalent to

min
X

f(X) where f(X) := r�(X)Γ †(X)r(X) and Γ (X) := G(X)G�(X) .

The significance of Theorem 1 is that the constraint and the decision variable ∆p
in problem (7) are eliminated. Typically the number of elements nd in X is much
smaller than the number of elements np in the correction ∆p. Thus the reduction
in the complexity is significant.

The equivalent optimization problem (1) is a nonlinear least squares prob-
lem, so that classical optimization methods can be used for its solution. The
optimization methods require a cost function and first derivative evaluation.
In order to evaluate the cost function f for a given value of the argument X ,
we need to form the weight matrix Γ (X) and to solve the system of equations
Γ (X)y(X) = r(X). This straightforward implementation requires O(m3) flops.
For large m (the applications that we aim at) this computational complexity
becomes prohibitive.

It turns out, however, that for a special case of affine structures S, the weight
matrix Γ (X) has a block-Toeplitz and block-banded structure, which can be
exploited for efficient cost function and first derivative evaluations.

Assumption 1 (Flexible structure specification). The structure specifi-
cation S : IRnp → IRm×(n+d) is such that for all p ∈ IRnp , the data matrix
S(p) =: C =:

[

A B
]

is of the type

S(p) =
[
C1 · · · Cq

]

, where Cl, for l = 1, . . . , q, is block-Toeplitz,
block-Hankel, unstructured, or exact and all block-Toeplitz/Hankel

structured blocks Cl have equal row dimension K of the blocks.

Assumption 1 says that S(p) is composed of blocks, each one of which is block-
Toeplitz, block-Hankel, unstructured, or exact. A block Cl that is exact is not
modified in the solution Ĉ := S(p − ∆p), i.e., Ĉl = Cl. Assumption 1 is the
essential structural assumption that we impose on the STLS problem. It is fairly
general and covers many applications.

We use the notation nl for the number of block columns of the block Cl. For
unstructured and exact blocks nl := 1.

Theorem 2 (Structure of the weight matrix Γ ). Consider the equivalent
optimization problem (1) from Theorem 1. If in addition to the assumptions of
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Theorem 1, the structure S is such that Assumption 1 holds, then the weight
matrix Γ (X) has the block-Toeplitz and block-banded structure,

Γ (X) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ0 Γ�
1 · · · Γ�

s 0

Γ1
. . . . . . . . . . . .

...
. . . . . . . . . . . . Γ�

s

Γs
. . . . . . . . . . . .

...
. . . . . . . . . . . . Γ�

1
0 Γs · · · Γ1 Γ0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ IRmd×md , (8)

where Γk ∈ IRdK×dK, for k = 0, 1, . . . , s, and s = maxl=1,...,q(nl − 1).

3 Modifications for the Weighted STLS Problem

Next we consider the generalization of the STLS problem where the cost function
is weighted.

Problem 2 (Weighted STLS). Given a data vector p ∈ IRnp , a positive definite
weight matrix W ∈ IRnp×np , a structure specification S : IRnp → IRm×(n+d),
and a rank specification n, solve the optimization problem

X̂w = arg min
X,∆p

∆p�W∆p subject to S(p − ∆p)
[

X
−Id

]

= 0 . (9)

The counterpart of Theorem 1 for the case at hand is the following one.

Theorem 3 (Equivalent optimization problem for weighted STLS).
Assuming that np ≥ md, the affine weighted STLS problem (9) is equivalent to

min
X

fw(X) where fw(X) := r�(X)Γ †
w(X)r(X)

and Γw(X) := G(X)W−1G�(X) . (10)

Proof. The equivalent optimization problem in Theorem 1 is obtained by solving
a least squares problem. In the weighted STLS case, we solve the weighted least
squares problem

min
∆p

∆p�W∆p subject to G(X)∆p = r(X) .

The optimal parameter correction as a function of X is

∆pw(X) = W−1G�(X)
(

G(X)W−1G�(X)
)†

r(X) ,

so that

fw(X) = ∆p�w(X)W∆pw(X) = r�(X)
(

G(X)W−1G�(X)
︸ ︷︷ ︸

Γw

)†
r(X) . �	
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In general neither the block-Toeplitz nor the block-banded properties of Γ =
GG� are present in Γw = GW−1G�. In the rest of this section, we show that in
certain special cases these properties are preserved.

Assumption 2 (Block-diagonal weight matrix). Consider the flexible
structure specification of Assumption 1, let the blocks Cl, l = 1, . . . , q be param-
eterized by parameter vectors pl ∈ IRnp,l , and assume without loss of generality
that p = col(p1, . . . , pq). The weight matrix W is assumed to be block-diagonal

W = blk diag(W 1, . . . , W q), where W l ∈ IRnp,l×np,l .

Assumption 2 forbids cross-weighting among the parameters of the blocks
C1, . . . , Cq. Under Assumption 2 the effect of Cl on Γw is independent from
those of the other blocks. Thus the problem of determining the structure of Γw,
resulting from the flexible structure specification of C decouples into three in-
dependent problems: what is the structure of Γw, resulting from respectively an
unstructured matrix C, a block-Hankel matrix C, and a block-Toeplitz matrix C.

In what follows “i-block-Toeplitz matrix” stands for block-Toeplitz matrix
with i × i block size and “s-block-banded matrix” stands for a block-symmetric
and block-banded matrix with upper/lower block-bandwidth i. Let V := W−1

and Vi := W−1
i .

Proposition 1. Let G be defined as in (6) and let Assumptions 1 and 2 hold.
If all blocks V l corresponding to unstructured blocks Cl are (n + d)K-block-
Toeplitz and all blocks V l corresponding to block-Toeplitz/Hankel blocks Cl are
dK-block-Toeplitz, Γw = GV G� is dK-block-Toeplitz.

Proof. See the Appendix. �	
For a particular type of weight matrices, the block-Toeplitz structure of Γ is
preserved. More important, however, is the implication of the following propo-
sition.

Proposition 2. Let G be defined as in (6) and let Assumptions 1 and 2 hold.
If W is p-block-banded, then Γw = GV G� is (s + p)-block-banded, where s is
given in Theorem 2.

Proof. See the Appendix. �	
For block-banded weight matrix W , the block-banded structure of Γ is preserved,
however, the block-bandwidth is increased by the block-bandwidth of W . In the
following section, the block-banded structure of Γ (and Γw) is utilized for O(m)
cost function and first derivative evaluation.

Summary: We have established the following special cases:

V block-Toeplitz =⇒Γw block-Toeplitz (generally not block-banded),
V l p-block-banded=⇒Γw (s + p)-block-banded (generally not block-Toeplitz),
W block-diagonal =⇒Γw s-block-banded (generally not block-Toeplitz).

The case W block-diagonal, i.e., W l = blk diag(W l
1, . . . , W

l
m), for l = 1, . . . , q,

covers most applications of interest and will be considered in the next section.
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4 Algorithm for Solving Weighted STLS Problem

In [3] we have proposed an algorithm for solving the STLS problem (4) with the
flexible structure specification of Assumption 1. The structure of S(·) is specified
by the integer K, the number of rows in a block of a block-Toeplitz/Hankel
structured block Cl, and the array S ∈ ({T, H, U, E} × IN × IN)q that describes
the structure of the blocks {Cl}q

l=1. The lth element Sl of the array S specifies
the block Cl by giving its type Sl(1), the number of columns nl = Sl(2), and (if
Cl is block-Hankel or block-Toeplitz) the column dimension tl = Sl(3) of a block
in Cl. Therefore, the input data for the STLS problem is the data matrix S(p)
(alternatively the parameter vector p) and the structure specification K and S.

It is shown that the blocks Γk of Γ are quadratic functions of X

Γk(X) = (IK ⊗ X�
ext)Sk(IK ⊗ X�

ext)
� , k = 0, 1, . . . , s , (11)

where the matrices Sk ∈ IRK(n+d)×K(n+d) depend on the structure S. The first
step of the algorithm is to translate the structure specification S to the set of
matrices Sk, k = 0, 1, . . . , s. Then for a given X , the Γk matrices can be formed,
which specifies the Γ matrix.

For cost function evaluation, the structured system of equations Γ (X)y(X) =
r(X) is solved and the product f(X) = r�(X)y(X) is computed. Efficiency is
achieved by exploiting the structure of Γ in solving the system of equations.
Moreover, as shown in [3], the first derivative f ′(X) can also be evaluated
from y(X) with O(m) extra computations. The resulting solution method is
outlined in Algorithm 1.

Algorithm 1. Algorithm for solving the STLS problem
Input: structure specification K, S and matrices A and B, such that

�
A B

�
= S(p).

1: Form the matrices {Sk}.
2: Compute the TLS solution Xini of AX ≈ B.
3: Execute a standard optimization algorithm, e.g., the BFGS quasi-Newton

method, for the minimization of f0 over X with initial approximation Xini and
with efficient cost function and first derivative evaluation.

Output: X̂ the approximation found by the optimization algorithm upon
convergence.

The changes for the case of weighted STLS problem are only in (11). Now
the matrix Γ is replaced by Γw, which is no longer block-Toeplitz but is s-block-
banded with block-elements

Γij(X) = (IK ⊗ X�
ext)Sij(IK ⊗ X�

ext)
� , (12)

where

Sij :=

⎧

⎪⎨

⎪⎩

blk diag(V 1
i , . . . , V q

i )Si−j if 0 ≤ i − j ≤ s

S�
ji if − s ≤ i − j < 0

0 otherwise
.
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For an exact block Cl, with some abuse of notation, we define W l
i = 0 for all i.

(Our previous definition of W l is an empty matrix since pl = 0 in this case.)

5 Conclusions

We have extended the theory of Markovsky, Van Huffel, Pintelon ([4]) for the
case of weighted STLS problems. The main question of interest is what proper-
ties of the Γ matrix in the equivalent optimization problem are preserved when
the cost function is weighted. Block-Toeplitz inverse weight matrix V , results
in corresponding Γw matrix that is also block-Toeplitz. More important for fast
computational methods, however, is the fact that block-banded weight matrix W
with block-bandwidth p leads to increase of the block-bandwidth of Γ with p.
In particular W block-diagonal, results in Γw block-banded with the same band-
width as Γ . This observation was used for efficient solution of weighted STLS
problems.
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A Proof of Propositions 1 and 2

The G matrix, see (6), has the following structure G =
[

G1 · · · Gq
]

, where Gl ∈
IRmd×pl depends only on the structure of Cl (see Lemma 3.2 of [4]). For an
unstructured block Cl,

Gl = Im ⊗ X�
ext,l , (13)

where Xext =: col(Xext,1, . . . , Xext,q), Xext,l ∈ IRnl×d and ⊗ is the Kronecker
product. For a block-Toeplitz block Cl,

Gl =

⎡

⎢
⎢
⎢
⎢
⎣

X1 X2 · · · Xnl
0 · · · 0

0 X1 X2 · · · Xnl

. . .
...

...
. . . . . . . . . . . . 0

0 · · · 0 X1 X2 · · · Xnl

⎤

⎥
⎥
⎥
⎥
⎦

, (14)

where Xk := IK ⊗ Xext,k, and for a block-Hankel block Cl,

Gl =

⎡

⎢
⎢
⎢
⎢
⎣

Xnl
Xnl−1 · · · X1 0 · · · 0

0 Xnl
Xnl−1 · · · X1

. . .
...

...
. . . . . . . . . . . . 0

0 · · · 0 Xnl
Xnl−1 · · · X1

⎤

⎥
⎥
⎥
⎥
⎦

. (15)

Due to Assumption 2, we have

Γw = GV G� =
q

∑

l=1

GlV l(Gl)�
︸ ︷︷ ︸

Γ l
w

, (16)

so that we need to consider the three independent problems: structure of Γ l
w for

respectively unstructured, block-Toeplitz, and block-Hankel block Cl. The state-
ments of Propositions 1 and 2 are now easy to see by substituting respectively
(13), (14), and (15) in (16) and doing the matrix products.
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