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Abstract—In this paper, we proposed a novel Coordinate
Rotation DIgital Computer (CORDIC) rotator algorithm that
converges to the final target angle by adaptively executing ap-
propriate iteration steps while keeping the scale factor virtually
constant and completely predictable. The new feature of our scheme
is that, depending on the input angle, the scale factor can assume
only two values, viz., 1 and 1 2, and it is independent of the
number of executed iterations, nature of iterations, and word
length. In this algorithm, compared to the conventional CORDIC,
a reduction of 50% iteration is achieved on an average without
compromising the accuracy. The adaptive selection of the appro-
priate iteration step is predicted from the binary representation
of the target angle, and no further arithmetic computation in
the angle approximation datapath is required. The convergence
range of the proposed CORDIC rotator is spanned over the entire
coordinate space. The new CORDIC rotator requires 22% less
adders and 53% less registers compared to that of the conventional
CORDIC. The synthesized cell area of the proposed CORDIC
rotator core is 0.7 mm2 and its power dissipation is 7 mW in IHP
in-house 0.25- m BiCMOS technology.

Index Terms—Coordinate rotation digital computer (CORDIC),
digital signal processing (DSP), scaling-free CORDIC, vector rota-
tion, very large-scale integration (VLSI).

I. INTRODUCTION

THE Coordinate Rotation DIgital Computer (CORDIC) al-
gorithm [1], [2] has been used for many years for effi-

cient implementation of vector rotation operations in hardware.
It is executed merely by table look-up, shift, and addition oper-
ations. Thus, the corresponding hardware can be implemented
in very economic fashion. Subsequently, it has been applied
for many performance demanding applications in digital signal
processing (DSP), image processing, and video technology like
fast Fourier transform (FFT) [3], [4], discrete Hartley transform
(DHT) [4], [5], discrete cosine transform (DCT) [4], [6], dis-
crete sine transform (DST) [4], Hough transform (HT) [7]–[9],
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[12], graphics application [10], [11], and motion vector estima-
tion [12].

In essence, a CORDIC can be operated in two different
modes: the rotation and the vectoring mode. In the former
mode of operation, given a vector with initial coordinate

and a target rotation angle , the objective is to
compute the final coordinate through a series of back-
ward and forward rotation of the vector in an iterative manner.
In the vectoring mode, the objective is to compute the magni-
tude and the phase angle of a vector given its initial and final
coordinates. Table I shows the different modes of CORDIC
operations in different coordinate systems where and
are two constants known as scale factors for the hyperbolic and
circular coordinate systems, respectively. However, despite its
attractiveness, the conventional CORDIC algorithm has some
drawbacks, such as slow speed, requirement of compensation
of a bulk scale factor, and limited convergence range.

These drawbacks catalyze the research on the realization
of high-performance special purpose CORDIC processors,
and performance enhancement in algorithm as well as in the
circuit level have been suggested. On the algorithmic level, the
speed-up is achieved first by cleverly recoding the target angle
(assumed known), and, second, by repeating some elementary
rotation steps while bypassing some not actually needed ele-
mentary rotation steps [13], [25]. Although these techniques
lead to a significant reduction of the number of iterations, the
requirement of an extensive search procedure to find the right
sequence of elementary rotation makes them computationally
intensive in nature. A significant speed-up on the circuit level
can be achieved using pipelined architectures and redundant
arithmetic [16]–[21]. However, the determination of the direc-
tion of vector rotation is not trivial in such a number system
and a false sign detection (hence a false rotation) is highly
probable. To minimize the probability and the effect of false
sign detection, several methods have been suggested [16],
[18], [22]. Unfortunately, either they require extra iterations or
hardware overhead.

In CORDIC processing, a bulk scale factor is generated that
needs to be compensated. As long as all of the iterations al-
lowed by a certain word length are carried out, the scale factor
remains a constant and can be compensated with minimal hard-
ware. However, in principle, the vector rotation for the majority
of the angles lying in the coordinate space can be carried out
using a smaller number of iterations by optimally choosing ap-
propriate elementary rotation steps. This essentially requires by-
passing or repeating some of the CORDIC iterations as was pro-
posed in [13] and [25]. However, in such a case, the scale factor
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TABLE I
FUNCTIONALITY OF THE GENERALIZED CORDIC

no longer remains constant or predictable. The situation is much
worse when the CORDIC works in an embedded system where
other circuitry of that system (a typical example is an OFDM
synchronizer for IEEE 802.11(a) standard [15]) generates data
and supplies it to the CORDIC. In such a case, the CORDIC has
no a priori information about the actual angle of rotation and,
hence, the scale factor is completely unpredictable. For its com-
pensation, hardware circuitry is needed that is as complex as the
original CORDIC itself. To the best of our knowledge, there is
no existing scheme reported to date that can keep the scale factor
constant and predictable while at the same time adaptively exe-
cuting the minimum number of elementary rotation steps.

Another inherent problem of the CORDIC is that its range of
convergence is small. Methods to increase the range of conver-
gence use preprocessing of the input quantity or repetition of
certain iteration steps [23]. However, the former approach re-
sults in an overhead in hardware while the latter increases the
total number of CORDIC iterations. Furthermore, the repetition
of iteration steps results in a nonconstant scale factor.

In this paper, we propose an algorithmic-level improved
scheme that is suitable for the rotation mode of the CORDIC
(i.e., ) in a circular coordinate system. For the con-
venience of nomenclature, from this point onwards, we will
refer to the rotation mode of CORDIC in a circular coordinate
system as CORDIC rotator operation.

To tackle the scale factor compensation problem, the authors
have earlier proposed a scaling-free CORDIC algorithm having
a small range of convergence [4], [24], and its error performance
was shown to be identical to the conventional CORDIC [4].
However, in a more general scenario like [15], this algorithm
cannot be applied efficiently. This scaling-free CORDIC algo-
rithm is used as the baseline of the present work. The new con-
tribution of the current work is: we develop a novel CORDIC ro-
tator algorithm that adaptively executes only the actually needed
elementary rotation steps to converge to the final target angle
while keeping the scale factor virtually constant (it can take the
values 1 or only) and completely predictable. The final
scale factor only depends on the actual value of the target angle
and not on the number of executed iterations. On average, this
adaptive selection results in about 50% reduction of compu-
tations without compromising the accuracy. The convergence
range of the proposed CORDIC is spanned over the entire coor-

dinate space. A novel feature of our scheme is that it is possible
to eliminate the entire arithmetic and associated hardware for
the angle approximation datapath. This results in a significant
reduction of hardware and power consumption. The proposed
algorithm and its very large-scale integration (VLSI) architec-
ture are guaranteed to work even when the CORDIC operates
in an embedded system. We call the proposed algorithm vir-
tually scaling-free adaptive CORDIC rotator algorithm mainly
because of the nature of the scale factor. The rest of the paper
is structured as follows. In Section II, a brief review of the rota-
tion mode of the conventional CORDIC algorithm in a circular
coordinate system and the scaling-free CORDIC algorithm de-
veloped in [4], [24] are provided. Section III outlines the method
of extending the angular convergence range of the scaling-free
CORDIC rotator which leads to the new virtually scaling-free
CORDIC rotator algorithm. In Section IV, we describe the archi-
tecture of the pipelined CORDIC rotator based on the proposed
algorithm and the different performance parameters of it are dis-
cussed in Section V. In Section VI, the design of the processor in
IHP in-house 0.25- m BiCMOS technology is described. Con-
clusions are drawn in Section VII.

II. BRIEF REVIEW OF THE CONVENTIONAL AND THE

SCALING-FREE CORDIC

A. Conventional CORDIC

The rotation of a vector in the Cartesian coordinate
system can be described as (considering clockwise rotation)

(1)

where is the final vector and is the target angle of
rotation. In the CORDIC algorithm, is expressed as the sum-
mation of a decreasing sequence of elementary angles so that

(2)

(3)

where is the wordlength of the machine in which the operation
is to be implemented and is known as the direction
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of vector rotation for the th iteration. Substituting (2) into (1)
and using (3), one may write

(4)

and

(5)

(6)

Equations (4)–(6) are the basic working equations of the
CORDIC rotator operation where and are the inter-
mediate result vector and the residual angle, respectively, at the
beginning of the th iteration step. From the hardware imple-
mentation point of view, this vector rotation is nothing but a
sequence of shift-and-add operations. However, the final result
requires a scaling by a factor ( in Table I). The
scale factor remains a machine constant as long as the index
runs through all of the values from 0 to , i.e., when all of
the allowed iteration steps are executed. However, if changes
in a different manner, i.e., if some of the allowed iterations are
bypassed or repeated in order to achieve a faster convergence
rate or a larger convergence range, the scale factor will not
remain constant and, for its compensation, one requires extra
hardware and comparable postprocessing cycles.

B. Scaling-Free CORDIC Algorithm

The detailed description of the scaling-free CORDIC algo-
rithm and its error performance is provided in [4], [24]. Thus,
for the sake of conciseness, here we will outline only the essen-
tial features of that algorithm.

Unlike the conventional CORDIC algorithm, in the scaling-
free CORDIC algorithm, the final target angle is achieved by
rotating the vector in one direction only. This means that the
final target angle is approximated as a pure summation of the
elementary angles. These elementary rotational angles are
chosen in such a manner that the length of the vector be always
preserved during each of the elementary rotation and is given by

(7)

(using first-order approximation of sine series) and subse-
quently

(8)

The use of first-order approximation of sine series for defining
in (7) imposes the following restriction on the allowed values

of iteration index :

(9)

since can only take integer values. However, for practical pur-
poses, the lower bound of can be relaxed slightly and can be
given by the following equation:

(10)

Fig. 1. Elementary rotational section for i < b=2.

Using (7) and (8), (since the sign of residual angle is
always the same for all iteration), and clockwise rotation of the
vector, (1) may be rewritten as

(11)

Equation (11) is the working equation of the scaling-free
CORDIC rotator algorithm. It can be noted that, like (4), (11)
can be realized in practice using only shift-and-add operations.
On the other hand, contrary to (4), no scaling term appears in
(11). The datapath component for implementing the operation
stated in (11) is shown in Fig. 1. This can be viewed as an
elementary rotational section rendering a rotation of to its
input vector . It requires four shifters, two subtractors,
and two adder/subtractor in the datapath. Thus, compared to
the datapath of an elementary rotational section of an unscaled
CORDIC, it requires two shifters and two subtractors more.
However, for the elementary rotational sections corresponding
to , these extra shifters and the subtractors can be
omitted as the right shift of the input quantity by
becomes machine zero. Thus, the hardware cost for each of the
elementary rotational sections corresponding to these values
of is exactly the same as that of the elementary rotational
sections of the unscaled CORDIC. This simplified elementary
rotational section is shown in Fig. 2.

Though the scaling-free CORDIC algorithm provides an ele-
gant way to rule out the final scale factor, its biggest drawback
is its extremely small convergence range and, thus, it cannot be
considered as a general-purpose solution. Thus, methods have
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Fig. 2. Elementary rotational section for i � b=2.

to be developed to expand its angle computation range while
preserving its scaling-free property.

III. NEW VIRTUALLY SCALING-FREE CORDIC
ROTATOR ALGORITHM

The main idea behind the development of a virtually scaling-
free CORDIC rotator algorithm is to develop a CORDIC rotator
algorithm having convergence over the entire coordinate space
while staying within the general framework of the scaling-free
CORDIC. The main requirement in such a case is to extend
the convergence range of the scaling-free CORDIC itself. To
do this, first an argument reduction technique is used to reduce
the total angular range to be computed. Second, the elementary
rotational operations are carried out in an adaptive manner to
enhance the rate of convergence and to force the final angle
approximation error below a certain prespecified limit. In the
forthcoming discussion, this scheme is explained in detail.

The main objective of the argument reduction technique
is to uniquely map the results of a CORDIC rotation with
a large target angle to the results of a CORDIC rotation
with a relatively small target angle . To do this, we divide
the four quadrants of the coordinate system into 16 equal
domains each having a uniform angular span of (i.e., four
domains per quadrant). Any target angle ( ve or ve) must
lie in one of these 16 domains. We first examine the CORDIC
rotation of an input vector with target angle lying in the
first quadrant. This essentially means that lies in one of the
four domains A , B , C
and D . In each domain, can be redefined in
terms of another angle bounded in the interval by the
following equations:

in domain A (12)

Fig. 3. Different domains and the definition of the modified target angle (�)
in each of them.

in domain B (13)

in domain C (14)

in domain D (15)

This is shown in Fig. 3. Using (12)–(15) in (1), the CORDIC
rotator operation on an input vector in different domains
can be expressed in terms of as follows:

in domain A (16)

in domain B (17)

in domain C (18)

in domain D (19)

where denotes the final vector resulting from a CORDIC
rotator operation with target angles lying in a certain domain
indicated by .

Now denoting and as the result of
CORDIC rotation for angle and respectively, (16)–(19)
can be written as

(20)

(21)

(22)

(23)
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TABLE II
RESULTS OF THE CORDIC ROTATOR OPERATION FOR DIFFERENT QUADRANTS

USING THE DOMAIN FOLDING TECHNIQUE

Thus, using the above equations, the CORDIC rotator opera-
tion with target angles lying in any domain in the first quad-
rant can be computed from the results of the CORDIC rotation
with target angle (bounded in the interval ). This es-
sentially means that the domains B, C, and D are effectively
folded back to domain A. Hence, we call this technique do-
main folding. A consequence of the domain folding operation
is the generation of a constant scale factor for target an-
gles lying in the domains B and C which can be realized with
minimal hardware using only shift and add operations. The im-
portant point to be noted here is that this scale factor does not
depend on the number of executed elementary rotations, nature
of elementary rotation or the machine wordlength. On the other
hand, for the target angle lying in domains A and D absolutely
no scaling is required. Thus, the entire operation becomes vir-
tually scaling free. It is apparent from (20) to (23) that for a par-
ticular target angle, rotation in only one direction (either ve
or ve) is needed. Thus, the assumption that the target angle
is approximated through only unidirectional sequence of vector
rotation made for the scaling-free CORDIC is also valid here.
This fact can be efficiently utilized to reduce the hardware com-
plexity of the proposed CORDIC rotator during its architectural
level implementation. We discuss this issue in Section IV.

By exploiting the symmetry of the coordinate axes, the do-
main folding technique can be extended to carry out CORDIC
rotator operations with target angles lying in other quadrants
as well. Table II provides a comprehensive report of the same,
which shows that, depending on the quadrant in which the target
angle lies, only the sign of the final vector components have
changed. Thus, for computation of vector rotations with arbi-
trary target angles, the first step is to detect the quadrant and
domain in which it lies. Once these parameters are detected, the
computation can be carried out applying the appropriate equa-
tion from (20)–(23).

At this point, it is clear that, by using the domain folding
technique, it is sufficient to consider the CORDIC operation
for angles lying in the interval only. This results in a
16 argument reduction. However, this range is still beyond the
range of convergence of the original scaling-free CORDIC ro-
tator unit. Thus, to take the full advantage of the domain folding

Fig. 4. Process of adaptive selection of the iteration steps (searching
algorithm).

technique, we need to expand the range of scaling-free CORDIC
to . This is done by choosing the iteration index for each
iteration adaptively in accordance with the residual angle still
to be computed. Owing to the scaling-free property of the basic
scaling-free CORDIC, this repetition of some elementary rota-
tion steps does not generate any new scale factor. The flexibility
offered in this approach is that the final error due to the angle
approximation can be tailored by setting a prespecified limit of
accuracy or number of iterations. The process of adaptive selec-
tion of is described in the flowchart shown in Fig. 4 where,
is the prespecified error limit (being adjusted by the user). In
principle, the processor stops iterations when the residual angle
becomes less than . If a large value for is chosen, the
number of required iterations will be small but the accuracy will
suffer. On the other hand, a very small value of results in a
high accuracy but requires more iterations. Thus, the choice of

should be done judiciously and according to the computa-
tional need of the target application.

Lemma: Only the iteration step corresponding to the
smallest allowable value of gets repeated more than once
while the other values of are nonrepetitive.

Proof: At the start of the th iteration, let the residual
angle be and , where ,
where is the smallest allowable value of . Then, according to
the flowchart shown in Fig. 4, the iteration steps (or the elemen-
tary rotation operations) corresponding to to will
be bypassed and the elementary rotation corresponding to
will be executed. After this elementary rotation operation, let the
new residual angle still be greater than . This implies that
another elementary rotation operation corresponding to is
required (repetition). According to the proposed scheme, appli-
cation of the rotation corresponding to twice (considering
at least one repetition is required to bring down the value of
residual angle less than ) essentially means that must be
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greater than or equal to . This is in contradiction to our
initial assumption. Thus, it can be concluded that no elementary
rotation steps corresponding to can get repeated.

However, if , then the elementary
rotation steps corresponding to will be executed times.

The search algorithm employed for the adaptive selection of
appropriate elementary rotational steps (shown in Fig. 4) is a
simple comparison with that can be implemented with min-
imal hardware. However, in the actual pipelined implementation
this comparison is practically not needed owing to the one-sided
rotation property of the proposed algorithm. In Section IV, we
will describe this in more detail.

IV. ARCHITECTURE OF THE CORDIC ROTATOR

The architecture of the new CORDIC rotator can be derived
by a suitable hardware mapping of the algorithm described
above. For sake of clarity, the implementation of a 16-b
CORDIC rotator is described here as an example. All of the
discussions presented in this section can be generalized for an

-bit CORDIC rotator as well.
For the design of the architecture, we have assumed that the

decimal 1 is represented as 0 100 000 000 000 000. However,
it is possible to choose a different definition also. Now, be-
cause of the domain folding, all of the angles lying in the co-
ordinate space are effectively mapped into the range .
Thus, the effective maximum target angle that has to be com-
puted is rad. Using the definition of decimal
1 stated above, this angle can be represented in binary format
as 0 001 100 100 100 010 with an error of . Thus, from
the implementation point of view, for representing the absolute
value of any angle lying in the modified convergence range one
can omit the first three most significant bits (MSBs) and can use
the 13 least significant bits (LSBs). In our architecture, we use
this fact to reduce the total computation in the angle approxima-
tion datapath.

In principle, our design consists of three basic sections: the
sign/domain detection circuitry, the basic CORDIC processor
having convergence range of , and the output circuitry.
This is shown in Fig. 5.

Sign/Domain Detection Circuitry: The sign/domain de-
tection circuitry (designated as sgn_detect in Fig. 5) has two
16-b-wide data word for and and an 18-b-data word
for . We assume that the largest angle that can be as-
signed to the primary input lies within the range .
According to our number representation, the value of is
011001001000011111, which is an 18-b number. Keeping this
fact in mind, we keep the 18-b word length for input. Any
negative angle will also fall within this range and thus can be
translated to an appropriate positive angle. The principal job
of the sign/domain detection circuitry is to detect the sign and
domain of the target angle and subsequently, it applies domain
folding technique to derive the 13-b unsigned representation of
the modified target angle . It also generates two 2-b signals,
namely domain and quad. While the quad signal indicates on
which quadrant the original target angle lies, the domain signal
indicates the corresponding domain in the first quadrant on

Fig. 5. Architecture of the complete CORDIC rotator.

which it has been folded back. The entire operation in this unit
is performed in one clock cycle.

Basic Pipelined CORDIC Rotator Unit: The second sec-
tion of our design is the basic CORDIC rotator unit having
an internal wordlength of 16-b and a convergence range of

(designated as pipe_cord in Fig. 5). The scaling-free
CORDIC units shown in Figs. 1 and 2 acts as the elementary
rotational sections in the present system. We implement the
basic CORDIC rotator in pipelined fashion, thereby unfolding
the iteration steps. With this approach, the shifters for each
elementary rotational section become simple wire connections
and effectively each elementary rotor section consumes a
hardware area equivalent to four adder/subtractor units. On the
other hand, as has been mentioned earlier, theoretically, for the
elementary rotational sections corresponding to (i.e.,

), the hardware cost is equivalent to two adder/subtractor
units. The allowed values of the CORDIC iteration in this
case are [from (10)]. However, in our number
representation scheme, shifting of any operand by 15 b to
the right results in the retention of the sign bit only. Thus,
for practical purposes one can omit the elementary rotational
section corresponding to from the design. On the other
hand, following the same argument the two -bit shifters
and the corresponding adders can also be removed from the
elementary rotational section . Thus, we have used four
adder/subtractors for each of the elementary rotational sections
corresponding to and two adder/subtractors for
each of the elementary rotational sections corresponding to

. In the forthcoming section, we will show that
these assumptions do not introduce higher numerical errors
compared to that of the conventional CORDIC.

In the pipelined implementation of the basic CORDIC rotator
unit, the elementary rotational sections corresponding to
is used six times whereas, each of the sections corresponding
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TABLE III
RELATIONSHIP BETWEEN THE POSITION OF LOGIC “1” IN THE REPRESENTATION OF � AND THE APPROPRIATE ELEMENTARY ROTATIONAL SECTIONS

Fig. 6. Architecture of the basic CORDIC rotator pipeline.

to is used once. The maximum angle that can
be computed using such an arrangement is approximately 25
and thus covers our modified convergence range. Two’s comple-
ment arithmetic is used for each of these elementary rotational
sections. To make the pipeline completely balanced in terms of
operating speed, we concatenate the elementary rotational sec-
tions corresponding to (7, 8), (9, 10), (11, 12), and (13, 14),
where, the elementary rotational sections within the parenthesis
form a single pipeline stage each. With this special arrangement
the basic CORDIC rotator pipeline becomes 12 stages long and
the hardware complexity of each of these stages is equivalent to
four 16-b adders.

The data and the information about the quadrant (signal quad)
and domain (signal domain) of the initial vector detected in the
sgn_detect module are transferred synchronously between two
successive sections of the pipeline in a local register transfer
manner. This means that each of the data in different sections
of the pipeline has a token attributed to it that carries the infor-
mation about the initial quadrant and domain of that particular
data.

It has been mentioned earlier that in our algorithm, we ap-
proach the target angle by rotating the vector always in the same
direction. Thus, in essence we approximate the target angle as
a pure summation of . As a result, the appropriate elemen-
tary rotational sections to be selected for a particular target angle

have a one-to-one correspondence with the position of a logic
“1” in the 13-b unsigned representation of . Table III summa-
rizes the relationship between the position of a logic “1” in the
representation of and the corresponding active elementary ro-
tational sections. As an example, let us consider that
(0.349 rad). The binary unsigned representation of this angle
is 1 011 001 010 111. To achieve this target angle, the rotational
sections those have to be activated are 4, 4, 4, 4, 4, 5, 8,
10, 12, 13, and 14. The deactivated elementary rotational sec-
tions (corresponding to the bit position having logic “0”) are by-
passed. This implies a significant reduction of arithmetic com-
putations that result in possible reduction of power consump-
tion. It is to be noted that as the range of is , under no
condition a logic “1” can arise at 12th, 11th, and 10th bit po-
sition of the unsigned representation of at the same time. To
keep the pipeline operation intact, we feed the individual bits
of the 13-b unsigned representation of to the appropriate ele-
mentary rotational sections as an enable signal for that particular
section through an array of single bit shift registers. The number
of the shift registers corresponding to each section is chosen in
such a manner that the appropriate section get enabled at the
appropriate clock cycle. To enable the appropriate ones for the
six sections, we need a simple logic combination of the
12th, 11th, and 10th bits. For the other elementary rotational
sections, the respective bits can be fed directly to the 0th shift
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register of the respective shift register array. The structure of the
basic pipelined CORDIC processor using this arrangement is
shown in Fig. 6 where is the index of the elementary rotational
sections of the pipeline. In Fig. 6, the solid lines indicate the
boundary of each of the elementary rotational sections whereas
the dotted lines indicate the concatenated elementary rotational
stages.

This arrangement essentially mimics the search algorithm
and eliminates the comparison of with and and
the associated computation of new residual angle shown in
Fig. 4. Thus, attendant hardware in the angle approximation
datapath can be omitted completely. It is to be noted that, for
the conventional CORDIC algorithm the target angle is approx-
imated by a to-and-fro motion of the vector, and therefore the
simple arrangement described here for the elimination of the
arithmetic computation in the angle approximation datapath
cannot be adopted there directly.

Output Unit: The last unit of the complete CORDIC rotator
is the output unit designated as cord_op in Fig. 5. The circuit
consists of two fixed scaling units of and two adder/sub-
tractor units. Each of the scaling units is realized using five 16-b
adders. Thus, the overall hardware complexity of this unit is
equivalent to twelve 16-b adders. Depending on the domain and
quad signals this unit assigns the sign, applies either a scaling
of or simply passes the output vector emerging from the
basic pipelined CORDIC it to the primary output [according to
(20)–(23) and Table II]. All of the operations in the output unit
are completed in one clock cycle.

V. PERFORMANCE EVALUATION AND COMPARISON

For evaluating the performance of the proposed CORDIC
rotator algorithm and architecture, we mainly concentrate on
two issues, error in the calculation of the and datapath and
the area requirement for the complete CORDIC rotator. Here,
we have not concentrated on the optimization of the number
of adder/subtractors in the elementary rotational sections. Our
main view is to consider the amount of hardware the proposed
algorithm needs in its natural way. However, it is possible to re-
duce the number of adder/subtractors using different optimiza-
tion schemes. Apart from these two issues, we also explore
the possible advantage of the proposed architecture in terms of
speed and power.

Error Analysis: In the implementation of a digital circuit,
two main error sources exist: quantization of the input word
and the truncation or cut-off rounding error due to the finite
wordlength of arithmetic operations. However, for a CORDIC
implementation, a third source of errors comes from how
closely one can drive the variable to zero, i.e., how closely
the target angle is approximated. Since the proposed CORDIC
rotator obeys the essential characteristics of the scaling-free
CORDIC unit, its angle approximation error is also the same
as the latter. Thus, in our case the angle approximation error is

[4].
However, the more dominant error in the hardware implemen-

tation of a CORDIC is the truncation error generated after each
elementary rotation operation. This error gets accumulated at
every section of the pipeline and dominates the final error in the

(a)

(b)

Fig. 7. (a) Numerical errors in the x datapath. (b) Numerical errors in the y
datapath.

calculation for the and values ( and , respectively, in
our case).

To find out the combined effect of these three error mecha-
nisms on the proposed architecture, we first generate a pseudo-
random sequence of angles lying within our modified conver-
gence range . Using these angles as the inputs, the results
for the and datapath of a Matlab model of ideal CORDIC
function (1) is compared with the results for the and data-
path of the VHDL coded proposed CORDIC rotator. The corre-
sponding errors in terms of the decimal bit position are shown
in Fig. 7. It is apparent from Fig. 7 that the upper bound of the
errors for the and datapath is at the 12th decimal bit position.
However, in order to achieve -bit accuracy for the conventional
CORDIC operation considering every form of quantization and
truncation errors, one needs to use -bit data word
length [14]. Thus, using 16-b word length, in case of the con-
ventional CORDIC, the achievable upper bound of the error is
approximately 10 b. This fact shows that the upper bound of the
error resulting from the proposed CORDIC rotator method is
less than that of the conventional CORDIC. However, the mean
decimal bit position error in the proposed CORDIC rotator for
the and datapath are at the 13th and 12th decimal bit po-
sition, respectively. This is due to the fact that, in case of the
conventional CORDIC, the rotation operation is carried out at
every elementary rotational sections, resulting in an accumula-
tion of the error due to all the possible elementary rotational
sections. On the other hand, in the proposed method, several of
the elementary rotational sections are bypassed adaptively, and
thus the final accumulated error is expected to be less than the
former one on an average.
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Area Requirement: In the proposed CORDIC rotator archi-
tecture, the basic CORDIC pipeline is 12 sections long and each
of these sections requires four 16-b adders. The sign/domain de-
tection unit needs two 16-b adders and two comparators. How-
ever, for both of the comparators, one of the input variables is
constant. The hardware complexity of each of these comparators
is estimated conservatively as equivalent to one 4-b adder. The
output unit consists of two 16-b adders and two scaling units that
are responsible for post-scaling by . Each of these scaling
units consists of five 16-b adders. Thus, in our implementation
the total area of the complete CORDIC rotator is approximately
equivalent to 62 16-b adders and two
4-b adders. Considering one -bit adder is equivalent to full
adders, the area of the proposed CORDIC rotator is equivalent
to 1000 full adders.

In the conventional 16-b CORDIC implementation, the
number of 16-b adders is 48 (including the angle approx-
imation datapath). Here, we have assumed that the angle
approximation datapath is 16 b wide like the and data-
path. For compensation of the scale factor using shift-and-add
technique one requires another 32 16-b adders. Thus, the com-
plete conventional CORDIC structure needs 80 16-b adders
altogether, which is equivalent to 1280 full adders. Thus, the
proposed design requires approximately 22% less full adders
compared to the conventional one. On the other hand, if the
scale factor compensation network consists of two 16 16-b
multiplier and each of them has 232 full adders ( multiplier
requires full adders and half adders) then the
complete area of the conventional CORDIC processor is equiv-
alent to 1232 full adders. This is still 19% higher compared to
the proposed design.

In our implementation, the total number of registers required
is 597. The number of registers that are required for the con-
ventional CORDIC algorithm including scale factor compensa-
tion circuitry is 1280. Thus, our design needs 53% less registers
compared to the conventional CORDIC.

Speed: The basic CORDIC rotator pipeline in our imple-
mentation is 12 stages long. Including the sign/domain detection
section and the output section, the complete CORDIC pipeline
length is 14 stages long. Thus, the latency of the processor is
14 clock cycles. The throughput of the proposed CORDIC ro-
tator is one complete set of results/clock cycle. However, in this
implementation, we do not need to carry out any arithmetic op-
eration in the angle approximation datapath when the data is in
the CORDIC pipeline. Thus, in this approach, one needs not to
spend any time for the detection of sign of the direction of ro-
tation (equivalently, sign of the residual angle) and subsequent
approximation of the angle approximation datapath for a partic-
ular elementary rotational section. This implies that there is a
possibility of significant speed enhancement of the processor.

Number of Iterations: In the proposed architecture, the ap-
propriate elementary rotational sections are selected adaptively
and the data processing is carried out only at those particular el-
ementary rotational sections whereas, the other sections are by-
passed. This operation in principle implies that, on an average,
total number of iterations required for the proposed CORDIC
rotator is smaller than that of the conventional CORDIC. To

Fig. 8. Number of iterations required for the proposed CORDIC rotator for
different target angles.

verify this, we once again used the pseudorandom angle se-
quence that lies within the modified convergence range gen-
erated earlier. The number of iterations corresponding to each
of these angles is shown in Fig. 8. It is apparent from Fig. 8
that the maximum number of iterations (15) is needed for the
angle 21.482 (0.3749 rad), where its unsigned binary repre-
sentation is 1 011 111 111 111. For all other angles, the required
number of iterations is smaller compared to that of the conven-
tional CORDIC which is supposed to take 16 iterations (without
scaling iterations) for each angle for the same order of accuracy.
However, from Fig. 8, we calculated that the average number
of iteration executed by the proposed CORDIC rotator is ap-
proximately 8, which is 50% less than that of the conventional
CORDIC.

Power: The power consumption of a digital circuit is a func-
tion of silicon area and the number of arithmetic computations
given a fixed frequency and operating voltage. It is already
shown that the proposed CORDIC rotator requires less area
compared to the conventional CORDIC and requires a smaller
number of iterations to converge to the final target angle. The
elimination of the angle approximation datapath results in
a further reduction of arithmetic operations in the proposed
CORDIC rotator. Thus, it can be expected that the architec-
ture will consume less power compared to the conventional
CORDIC processor.

Applicability of Redundant Arithmetic: For further speed up
of the proposed CORDIC rotator, the redundant arithmetic can
be used. Here, the and datapath can be represented in re-
dundant format whereas, the target angle can be represented in
conventional 2’s complement format. Since the logic “1” in the
unsigned binary representation of the modified target angle acts
only as an enable signal for the appropriate rotational stages of
the pipeline, the arithmetic computation (addition or subtrac-
tion) inside those stages can conveniently be carried out in con-
stant time using redundant arithmetic. In this way, the principle
problem of sign detection of the residual angle can be avoided
while enjoying the high-speed advantage of it.

Comparison: The proposed CORDIC rotator algorithm is
compared with two other similar type of algorithm described in
[13] and [25]. The main results are shown in Table IV. The pro-
posed one results in a variable number of iterations like the algo-
rithm proposed in [13]. On the contrary, the algorithm described
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TABLE IV
COMPARISON OF THE PROPOSED ALGORITHM WITH TWO OTHER SIMILAR ALGORITHMS

TABLE V
COMPARISON OF THE PROPOSED 16-b CORDIC ROTATOR ARCHITECTURE WITH SOME OTHER PUBLISHED REDUNDANT ARITHMETIC BASED ARCHITECTURES

in [25] uses a predefined fixed number of iterations. In all three
cases, the number of executed iteration is less than that required
for the conventional CORDIC algorithm. The principle advan-
tage of the proposed algorithm is that, within the family of se-
lective iteration, this is the only one that is virtually scaling free.
The other algorithms require scale factor compensation owing
to their selective nature. Thus, the final hardware requirement
and the number of iterations including scaling iteration is min-
imum in the proposed algorithm. The second advantage of the
proposed one is that it does not require complicated search al-
gorithm like the others. In principle, the appropriate elemen-
tary rotational sections are automatically selected using the bi-
nary representation of the target angle. This results in significant
hardware and power reduction compared to the others. Third,
the proposed algorithm is guaranteed to work even when the
target angle is not known in advance. Even for this case also,
practically no search algorithm is needed. Regarding the error
performance, the proposed algorithm gives same order of angle
approximation error as that of the conventional CORDIC. Com-
bining all of these facts, it is expected that the proposed algo-
rithm will outperform the referenced ones in terms of speed,
area, and power.

As a matter of interest, we also compare the hardware require-
ment of the proposed CORDIC rotator with some other redun-
dant CORDIC implementation in Table V. For comparison on
a uniform base, we have only considered the hardware require-
ment of the basic CORDIC pipeline without hardware for the
scale factor compensation. It is apparent that the proposed one
requires less number of equivalent full adders and registers com-
pared to the others.

Drawbacks and General Discussions: Though the proposed
algorithm eliminates the problem of adaptive selection of el-
ementary rotation steps in conjunction with keeping the scale
factor virtually constant, it is not also free of problem. The main
problem is that the selection of largest elementary angle in this
scheme depends on the wordlength [(10)]. This angle becomes

increasingly smaller as the word length increases. Consequently,
one needs to incorporate more sections of this elementary angle
in the pipeline. As a result, the conventional CORDIC is ex-
pected to outperform the proposed one in terms of hardware re-
quirement when the wordlength reaches 20 b. However, in that
case, a hybrid scheme can be adopted to bring down the hard-
ware cost. One may use some conventional CORDIC iteration
(only unidirectional) to bring down the residual angle within the
range of the scaling-free CORDIC iterations and then employ
the proposed algorithm. In such a case, the scale-factor com-
pensation circuitry required for those conventional CORDIC
sections has to be integrated into the corresponding elemen-
tary rotational sections to avoid the generation of final scale
factor and to maintain the virtually scaling-free property of the
proposed algorithm. However, in general, hardware implemen-
tation with 16-b word length encompasses a vast application
space, and for that the proposed CORDIC rotator shows sig-
nificantly improved performance compared to the conventional
CORDIC.

VI. IMPLEMENTATION OF THE CORDIC ROTATOR

For the design of the processor, the IHP in-house design kit is
used. The CORDIC rotator is first modeled in VHDL and sim-
ulated using Mentor Graphics’ Modelsim simulator. After the
functional verification, Synopsys’ Design Analyzer is used to
synthesize the circuit for our in-house 0.25- m BiCMOS tech-
nology with a target clock frequency of 20 MHz. The cell area
of the complete processor after synthesis is 0.7 mm , which is
equivalent to 24.7 k inverter gates in this technology. The power
consumption reported by Synopsys’ Design Analyzer is 7 mW
at 2.5-V supply voltage.

After synthesis, the layout of the processor core is carried
out using Cadence’s Silicon Ensemble tool. The standard cell
approach with a row utilization of 85% is deployed. The area of
the processor core after layout is 0.9 . The Verilog netlist
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Fig. 9. Layout of the CORDIC rotor core.

extracted from the layout is resimulated including the Standard
Delay File (SDF) using Modelsim, which confirms the correct
behavior of the processor. The layout of the CORDIC rotator
core is shown in Fig. 9.

VII. CONCLUSION

In this paper, we presented a novel algorithm and architecture
of a special rotational CORDIC processor that operates in the
circular coordinate system and has an unlimited angular conver-
gence range. The algorithm adaptively selects the appropriate
iteration steps and thus converges to the target angle executing
a minimum number of iterations. On average, the number of it-
erations for the proposed method is about 50% less compared
to the conventional CORDIC. The accuracy of the results is not
compromised. The novel property of the proposed algorithm is
that, unlike the conventional and previously reported CORDIC,
the adaptive selection of the iteration steps has no influence on
the final value of the scale factor, and thus it is possible to by-
pass the actually not needed iteration steps while keeping the
scale factor virtually constant. Compared to the conventional
CORDIC, in our scheme, the number of adders is reduced by
22%, and 53% fewer registers are needed. Moreover, the hard-
ware requirement for the sign/domain detection circuitry is very
small compared to that used for other argument reduction tech-
niques.

Based on this algorithm, a 16-b pipelined CORDIC processor
core was designed using IHP in-house 0.25- m BiCMOS tech-
nology. The cell area of the CORDIC processor core is equiva-
lent to 24.7 k inverter gates. The latency of the processor is 14
clock cycles. The power consumption of the CORDIC core re-
ported by the synthesis tool is 7 mW. These figures show that
the processor consumes little silicon area and is suitable for
high-speed low-power applications. Currently, this CORDIC is
used in an OFDM baseband processor for a wireless modem
compliant with IEEE 802.11a [15].
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