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Abstract :

An unified array architecture is described for computation of DFT, DHT, DCT and DST

using a modified CORDIC (CoOrdinate Rotation DIgital Computer) arithmetic unit as

the basic Processing Element (PE). All these four transforms can be computed by simple

rearrangement of input samples. Compared to five other existing architectures, this one

has the advantage in speed in terms of latency and throughput. Moreover, the simple local



neighborhood interprocessor connections make it convenient for VLSI implementation.

The architecture can be extended to compute transformation of longer length by judicially

cascading the modules of shorter transformation length which will be suitable for Wafer

Scale Integration (WSI). CORDIC is designed using Transmission Gate Logic (TGL) on

sea of gates semicustom environment. Simulation results show that this architecture may

be a suitable candidate for low power/low voltage applications.
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1. Introduction :

In Digital Signal Processing (DSP) orthogonal transforms e. g., Discrete Fourier

Transform (DFT), Discrete Hartley Transform (DHT), Discrete Cosine Transform (DCT)

and Discrete Sine Transform (DST) are useful for spectrum analysis, data compression,

speech processing and in many other applications [1, 2]. Since all these transforms are

computationally intensive and involve complicated data manipulations, the help of

parallel processing array architectures is much sought for their implementation. Design of

array architecture for computing a number of such transforms in a unified manner,

through simple rearrangement of input samples may be particularly useful for a specific

application. Different array architectures for these transforms have been proposed over

the past decade [3-8]. Most of the architectures are of systolic type and a major part of

them use Multiplier-Accumulator (MAC) based PE. However, this method essentially

requires a large storage of the trigonometric co-efficients for each of the transform to be

computed. One way to overcome this difficulty is to use CORDIC arithmetic processor as

the basic PE that facilitates trigonometric multiplication with elegance by using only

shift-and-add method and rules out the requirement of co-efficient storage. Accordingly,



several CORDIC based array architectures have been proposed for computation of the

above mentioned transforms.

Despite its elegance in computing trigonometric multiplication, the conventional

CORDIC element suffers from the drawbacks like requirement of the scale factor

compensation and lower operation speed. Intense attentions have been paid to develop

special purpose CORDIC processors in order to overcome these drawbacks of the

conventional CORDIC method.

In this paper, the authors first develop a new CORDIC processor, which is scaling

free in nature and the error arising from the approximation of the trigonometric function

is analyzed. Subsequently, this processor is used as the basic PE to develop a unified,

asynchronous, wavefront array type architecture for fast computation of DXT - a

collective term representing either of the DFT, DHT, DCT or DST. Being multiplierless,

the modified CORDIC arithmetic unit is expected to reduce the hardware cost

considerably compared to that of the MAC based designs. Keeping an eye on the low

power/low voltage applications, the datapath of the basic PE has been designed and

simulated using TGL in sea of gates semicustom environment. The paper is structured as

follows: the theoretical background of the modified CORDIC and the DXT have been

developed in Section 2. A brief introduction to the modified CORDIC [9] is also

provided in this section along with its design, layout of the datapath and simulated

performance. The proposed array architecture is described in Section 3. In Section 4, the

authors describe the design and furnish the result of simulated power consumption of the

modified CORDIC unit. The salient features of the DXT architecture along with a



comparison with five other existing architectures are also described in this section.

Conclusions are drawn in Section 5.

2. Theoretical Information:

2.1. The CORDIC unit:

The transforms of DXT family involve trigonometric operations on the input sample

sequences that can be expressed in terms of plane rotations. The CORDIC unit [10] can

iteratively rotate an input vector A = [Ax  Ay] through a target angle ψ (say in clockwise

direction) through small steps of elementary angles ψi (so that ∑i ψi = ψ) to generate an

output vector B = [Bx   By]. This operation can be represented mathematically as

[Bx    By]   = [Ax   Ay]    
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i. e.,  B = A Rot (ψ)                                                                                                    (2)

For fast convergence of the algorithm to the final small angle value, a simple

modification [9] of the conventional CORDIC algorithm is applied here which represents

the small incremental angle by sin ψi ≈ ψi = 2−i and expresses the basic Rot (ψ) operation

as Rot (ψi)  =  
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 ; for a 16 bit machine, i ∈ { 4, 5, …., 15}.
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Thus, the rotation through the target angle ψ may be expressed as,
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Where b is the wordlength of the machine in which the operation is supposed to be

implemented. Fig. 1 shows the structure of the datapath of the elementary CORDIC unit.



It is evident from the above formulation that the modified CORDIC unit is free

from the scale factor compensation step which saves a significant amount of hardware

compared to the conventional CORDIC unit and subsequently makes the CORDIC

operation faster.

Error analysis:

The potential sources of error for the hardware realization of an algorithm are two

folds namely, the error due to the quantization of the input word and due to the finite

wordlength. In case of CORDIC another potential error source in the error due to

approximation of the target angles. In our scheme, the errors due to first two sources are

same as the conventional implementation of the circular CORDIC. Thus, the detailed

analysis of the third error source is presented here with the consideration that the

implementation has been done with 16-bit wordlength.

Let θc be the computed angle whereas θ is the ideal target angle. Then from

equation (1),

Bx = Ax cosθc + Ay sinθc                                                                                              (3a)

By = − Ax sinθc + Ay cosθc                                                                                           (3b)

Where θc = θ − ε and ε is the error due to angle approximation. From equation (4) it may

be readily seen that the value of ε is O(2−16). On simplification, equation (3a) and (3b)

yields,

Bxerror = (Ax cosθc + Ay sinθc)(1− cos ε) + (− Ax sinθc + Ay cosθc) sin ε                    (4a)

Byerror =  (− Ax sinθc + Ay cosθc)( 1− cos ε) − (Ax cosθc + Ay sinθc) sin ε                  (4b)

Since ε = O(2−16), (1− cos ε) and sin ε will be O(2−33) and O(2−16) respectively. Thus the

maximum error that can occur due to the angle approximation according to the proposed



scheme is O(2−16) which seems to be quite within limit. The simulation result for the

errors due to approximation of different target angles is shown in Figure 2.

 To design the low power CORDIC unit, TGL style [11] is used in 1.6 µm double layer

sea of gates semicustom environment. The area of the designed CORDIC chip is (4.4642

x 3.9538) mm2. The performance of the circuit according to the Switch Level timing

Simulator (SLS) at 5 V supply is, datapath delay = 54 nsec., power dissipation = 37 mW,

Power-Delay Product (PDP) = 1.998 nJ and Energy-Delay Product (EDP) = 1.078 x 10−16

J-sec. To get the effect of worst case power consumption, the activity factor has been

taken as 1. At 5 V supply, the calculated values for delay, dynamic power consumption,

PDP and EDP of the simulated circuit modules used to construct the processor chip are

given in Table 1. Layout of one 4-bit conditional sum adder/subtractor is shown in Fig. 2.

These results indicate that this CORDIC processor may be a suitable choice for low

power/low voltage operation domain. It is expected that with proper transistor sizing and

threshold voltage scaling, the processor will show a better performance and consume less

power [12].

2.2. Theoretical background of the transforms :

Considering a real sample sequence f(n), n ∈{0, 1, ..., N−1} the DXT can be defined

as

DFT  : F (k) = f
n

N

(n) [cos(2 / N) kn  j sin (2 / N) kn]π π−
=

−

∑
0

1

  = Fx(k) + j Fy(k)     (5)

DHT :   H (k) = f(n) [cos(2 / N) kn +  sin(2 / N) kn]π π
n
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DCT :   C(k) =  f(n) cos [ k(2n + 1) / 2N]π
n

N
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0

1

                                                           (7)



DST :   Z(k) = f(n + 1) sin [ k(2n + 1) / 2N]π
n

N

=

−

∑
0

1

                                                     (8)

In terms of  the operator Rot (*), the equations can be represented as

DFT : [ Fx     Fy ] =  [f(n)     0]  Rot (m ) θ
n

N

=

−

∑
0

1

                                                               (9)

DHT : [H(k)     H(N−k)]  =  [f(n)     f(n)] Rot (m ) θ
n

N

=

−

∑
0

1

                                               (10)

DCT : [C(k)   − C(N−k)]  = [ [r(n)     0] Rot (m )] Rot (k ) 
n = 0

N

θ φ
−

∑
1

                                   (11)

where k = 0, 1, ....., N − 1; m = kn modulo N (=<kn>N), θ = 2π/N and φ = θ/4 and

r(n) = f(2n) ,     for      n = 0, 1, ......, (N−1)/2

        = f(2N − 2n −1),   for n = (N + 1)/2, ..., (N−1)                                                      (12)

The comparison between equations (7) and (8) shows that DCT and DST are obtainable

from either of the two by proper data ordering.

Thus, all of the above four transforms can be clubbed into a single equation as

Y(k) = [ h(n) Rot (m )] Rot (k )θ φ
n

N

=

−

∑
0

1

                                                                              (13)

where m = <kn>N , θ = 2π/N, φ = 0 for DFT/DHT and φ = θ/4 for DCT and DST.

3. Array architecture :

Fig. 3 shows the proposed unified architecture for N = 5. To achieve the operation

Rot(mθ) on the given sample set, the input samples for θ array has been scheduled

according to the permutation sequence of <nk>N (ref. to Table 2). Computation of the

final result has been carried out by rotating the partial results emerging from the θ array

by an angle kφ. The data from the FIFO can be loaded to the registers at the input of the

adders with the help of one controlling counter and a mode control switch. The ‘ON’ and



‘OFF’ states of the mode control switch decide whether the data from the FIFO will go to

both the adders or just to one adder. In steady state, the whole operation is summarized in

the following pseudocode,

For i = 1 to N, do in parallel             /* i = column (for DFT and DHT i varies from 1 to

                                                             ( N−1)) */

    For j =  1 to (N−1), do          /* j = row   */

       Load data (j, i );             /* Load j th data from the i th FIFO to the register of (j, i) th

                                                    adder */

     For all j, do in parallel

       Wait_data (j, i−1);         /* Wait until data from the output of (j, i−1) th

                                                processor is available */

     Add_data (j, i −1) and (j, i);   /* For all j ∈ {1, 2, …, (N−1) } simultaneous addition of

                                                     (j, i −1) th and (j, i) th data */

 Signal_ start (Processors (j, i))      /* Issue start signal to all j th processor at i th column

                                                            when all data from the (j, i) adders are available at

                                                             the input of i th processor column after addition */

 It reveals from Fig. 3 that in order to exploit the inherent pipelinability of the structure,

the clock period Tc of the controlling counter must maintain the relationship, Ad  ≤  Tc  ≤

Pd / 4, where Ad is the FIFO access time and Pd is the delay of a single processor. The

processed data move through the array like a plane wavefront. However, a suitable

handshaking protocol is to be adopted for data transaction between consequent processor

columns.



For clarity, using the unified architecture, the computation of 5 point DCT is

explained. The data scheduling according to the permutation sequence of <nk>N (ref. to

Table 2) is depicted in Table 3 where U/(k) = U(k) − f(0), the terms U(k)s are the

intermediate results after the rotation in the θ plane. The U(0) term, which is a mere

accumulation (dc term) of the input samples, is omitted in Table 3. The U/(k) terms after

addition with the f(0) terms  undergo rotation kφ to generate the complete set of Y(k).

Here the x-component of Y(k) gives rise to the desired DCT of the given sample

sequence. The mode control switch is kept in the ‘OFF’ state here to route the data from

the FIFO to the adder at the x inputs of the processors.

Following the same line, the DST can also be obtained by replacing f(n) th sample of

DCT with f(n+1) th sample and considering the y-component of the output vector.

Letting φ = 0, the same architecture is capable to compute DHT and DFT. Data

distribution for the 5 point DHT is shown in Table 4. For computation of DHT, the mode

control switch is kept in the ‘ON’ state. DFT of the sample set can be obtained by

inserting f(n) at the x-input of the input vector and putting 0 at the y input. The real and

imaginary parts are obtained from the x and y components of the output vector

respectively.

The proposed architecture can be extended for computation of long transform

sequence by simply cascading the modules with lower N. As an example, to compute

DCT for N = 11, the architecture for N = 5 is considered as the basic cascading block and

coined as generalized module. Table 5 (a) shows the data distribution for 11 point DCT

which are partitioned into different blocks (D s) as shown by the solid lines in Table 5

(b). Each partitioned data block can be computed separately using one generalized



module. The resulting structure is shown in Fig. 4 where D s are the inputs corresponding

to different  blocks of data shown in Table 5.

To compute DFT of complex input data sequence, equation (3) may be rewritten as

[Fx (k)     Fy (k)]     = [f (n)         f (n)] Rot (m )x y θ
n

N

=

−

∑
0

1

                                      (14)

In this case, the operation procedure of the architecture is same as explained earlier, with

the difference that fx(n) and fy(n) components (the real and imaginary parts of f(n)) are

stored in a pair of FIFO dedicated for each processor column and they are simultaneously

retrieved during operation. The x and y components of the output vector contain the real

and imaginary parts of the result respectively.

4. Salient features and comparison with other architectures :

The proposed architecture is compared with five existing architectures and is summarized

in Table 6. The proposed one exhibits local neighborhood connections and is selftimed in

nature. Being asynchronous, it is more advantageous than the other systolic designs from

fault tolerance perspective. Moreover, the data skewing and subsequent glitch problems

are suppressed considerably. The efficient floor utilization is possible due to its nature of

simple interprocessor connections. This architecture exhibits same order of latency as that

of Pan et al. [3] and Mandal et al. [8]. This architecture is inherently a pipelined one and

in the steady state its throughput rate is O(N). Thus, the steady state throughput rate has

been considerably enhanced than that of other architectures. The area - time complexity

(AT2) of the proposed architecture is O (N4).

Another feature of the proposed architecture is its expandability. The modules calculating

DXT for shorter transform lengths can be cascaded straightway to compute longer

transform sequences. However, in this type of cascading applications, 100% processor



utilization may not be possible for all N. Being cascadable in nature, the proposed

architecture is compatible with the WSI (Wafer Scale Integration) technology.

This architecture may be a suitable candidate for low power/low voltage applications.

The architecture is based on modified CORDIC method which implies reduction of

power consumption at the algorithmic level since the number of operations have been

reduced. The presence of block level pipelining and parallelism reduce power

consumption at the architectural level. The asynchronous operation mode suppresses the

glitches and thus a considerable amount of power can be saved. The CORDIC is designed

using TGL and thus reduction of circuit level power consumption is achieved. Therefore,

the proposed architecture can save power in the algorithm, architecture and circuit level.

6. Conclusions :

The proposed architecture is an asynchronous, wavefront array type capable of

computing DXT. Being data driven and self timed in nature, it eliminates the data

skewing and subsequent glitch problems. However, a suitable handshaking protocol is to

be adopted to maintain the data driven property. The advantage of  modified CORDIC PE

stems from an expected lower area consumption than the MAC based PE. Use of

CORDIC eliminates the requirement of precomputation of cosθ and sinθ. The simple

local interprocessor connection leads to the efficient utilization of the floor space and

subsequent reduction in routing area. The presence of inherent pipelining and

concurrency in this architecture are advantageous so far the low power/low voltage

operation is concerned. Construction of the CORDIC module using TGL methodology

enhances the power saving at circuit level. Thus, the proposed structure exhibits power

saving at algorithm, architecture and at the circuit level.



A comparative study of the proposed architecture with five other existing architectures

reveals its superiority in speed (in terms of latency and throughput) and in processor

interconnection over the others. It does not require any global timing synchronization or

complicated data manipulations and can straightway be cascaded to realize longer

transformation sequences and thus is WSI compatible. The same architectural

methodology can be adopted for multidimensional DXT computation and for non prime

transform length also.
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Cell name Delay
(nsec)

Power (mW)
@ 18.5 MHz

PDP (pJ) EDP (J-sec)

Multiplexer bank 0.07 1.2536 0.0877 6.1426 X 10 -24

16 bit register 0.7 3.0889 2.1622 1.5135 X 10 -21

Shifter 19 0.8289 15.7493 2.9923 X 10 -19

Adder/Subtractor 7.1 4.0538 28.7823 2.0435 X 10 -19

1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Table 2

nk

Table 1



1θ 2θ 3θ 4θ
U’(1) f(2) f(4) f(3) f(1)
U’(2) f(3) f(2) f(1) f(4)
U’(3) f(4) f(1) f(2) f(3)
U’(4) f(1) f(3) f(4) f(2)

1θ 2θ 3θ 4θ
Y’(1) f(1) f(2) f(3) f(4)
Y’(2) f(3) f(1) f(4) f(2)
Y’(3) f(2) f(4) f(1) f(3)
Y’(4) f(4) f(3) f(2) f(1)

1θ 2θ 3θ 4θ 5θ 6θ 7θ 8θ 9θ 10θ
Y’(1) f(2) f(4) f(6) f(8) f(10) f(9) f(7) f(5) f(3) f(1)
Y’(2) f(9) f(2) f(7) f(4) f(5) f(6) f(3) f(8) f(1) f(10)
Y’(3) f(8) f(5) f(2) f(10) f(3) f(4) f(9) f(1) f(6) f(7)
Y’(4) f(6) f(9) f(3) f(2) f(8) f(7) f(1) f(4) f(10) f(5)
Y’(5) f(3) f(7) f(10) f(6) f(2) f(1) f(5) f(9) f(8) f(4)
Y’(6) f(4) f(8) f(9) f(5) f(1) f(2) f(6) f(10) f(7) f(3)
Y’(7) f(5) f(10) f(4) f(1) f(7) f(8) f(2) f(3) f(9) f(6)
Y’(8) f(7) f(6) f(1) f(9) f(4) f(3) f(10) f(2) f(5) f(8)
Y’(9) f(10) f(1) f(8) f(3) f(6) f(5) f(4) f(7) f(2) f(9)
Y’(10) f(1) f(3) f(5) f(7) f(9) f(10) f(8) f(6) f(4) f(2)

Y’(1)
Y’(2) D11 D12 D13
Y’(3)
Y’(4)
Y’(5)
Y’(6) D21 D22 D23
Y’(7)
Y’(8)
Y’(9) D31 D32 D33
Y’(10)

Cho & Lee
[4]

Chang & Wu
[5]

Lee [6] Pan [3] Mandal [8] Proposed

Nature of
architecture

Systolic Systolic Systolic Systolic Systolic Wavefront

Table 3

Table 4

Table 5 (b)

Table 5 (a)



Nature of
operation

Sequential sequential sequential sequential concurrent concurrent

Number of
operational
blocks

4
multipliers

2 multipliers 8 multipliers 2 multipliers multiplierless
CORDIC (4
adders and 4
shifters)

multiplierless
CORDIC (4
adders and 4
shifters)

Number of
PE

N + 1 N + 1 N –1 N/2 N x  (N - 1) N x  (N - 1)

Total
number of
multipliers

4 (N +1) 2 (N – 1) 8 N N no requirement
of real
multiplication
operation

no requirement
of real
multiplication
operation

Latency O(2N) O (2N - 2) O[2(√N+1) +
√N+2]

O (N) O (N) O (N)

Throughput O(1) O(1) O(1) O(1) O(1) O(N)

Table 6
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Fig. caption

Fig. 1. The block diagram of the modified CORDIC unit.

Fig. 2. Layout of 4 bit adder/subtractor (conditional sum type).

Fig. 3. The architecture for N = 5 and the symbol (GMC).

Fig. 4. The cascaded architecture for 11 point DCT using 5 point DCT modules as the

            basic block.

Table caption

Table 1. Power performance of different blocks used to construct the CORDIC unit.

Table 2. The permutation table of nk modulo N for N = 5.

Table 3. The data scheduling for 5 point DCT derived from Table 1.

Table 4. The data scheduling for 5 point DHT derived from Table 1.

Table 5. The data scheduling for 11 point DCT and its representation in the form of

block data (D*).

Table 6. Comparison with other five architectures.


