
A VLSI Array Architecture for Hough Transform

K. Maharatna*

Systems Design Dept.

Institute for Semiconductor Physics (IHP)

Technology Park 25, D-15236, Frankfurt (Oder), Germany

email: maharatna@ihp-ffo.de

          Swapna Banerjee

Dept. of E & ECE

Indian Institute of Technology

Kharagpur – 721302 (INDIA)

email: swapna@ece.iitkgp.ernet.in

(* Author for correspondence)

Abstract:

In this article, an asynchronous array architecture for straight line Hough

Transform (HT) is proposed using a scaling free modified CORDIC (Co-Ordinate

Rotation Digital Computer) unit as a basic Processing Element (PE). It exhibits four-fold

angle parallelism by dividing the Hough space into four subspaces to reduce the

computation burden to 25% of the conventional requirements. A distributed accumulator

arrangement scheme is adopted to ensure conflict free voting operation. The architecture

is then extended to compute circular and elliptic HT given their centers and orientations.

Compared to some other existing architectures, this one exhibits higher computation

speed.

Keywords: Hough transform, CORDIC, Low power, Image processing, Multiplierless

array architecture.



1. Introduction:

Hough Transform (HT) is a well-known technique for efficient shape

recognition(1, 2). High computational complexity and excessive memory requirement are

the major obstacles for monolithic integration of HT(3). Memory requirement problem

may be simplified by current level of memory integration technique(4).In this paper we

restrict ourselves to speed up the computational time of transformation part of the HT i.

e., the computation of vote address in the parameter space.

Different architectures and algorithms have been proposed to speed up the

computational time for HT(4, 5,  6,  7,  8,  9). Most of the Hough – based methods encounter

the evaluation problem of implicit trigonometric and transcendental functions. This

makes the monolithic implementation of the entire algorithm rather difficult. To

overcome this problem, CORDIC based architectures(3, 10). Are used to generate the vote

address in parameter space.

The motivation of this work is to construct the HT architectures suitable for VLSI

implementation, which can exhibit high throughput rate at reduced computational

complexity. For this purpose CORDIC based asynchronous array architectures have been

proposed. The total PE and angle scan range requirements are reduced by adopting an

angle parallelization scheme. To overcome the scaling problem inherent to the

conventional CORDIC unit, a scaling free modified CORDIC unit(11)
 which can be

implemented using crosscoupled bus connections and adders. A high throughput

asynchronous array architecture for straight line HT is proposed. Then the proposed

architecture has been extended and modified to compute circular and elliptic HT. While

computing circular and elliptic HT, we focus  only on the estimation of the radius (for



circle), semi major and semi minor radii (for ellipse) as these parameter estimation

requires exhaustive arithmetic operations like multiplication, square root evaluation,

division, addition / subtraction and squaring(12). To reduce the computation and hardware

requirements for the estimation of these parameters, the problems are reformulated in

terms of the CORDIC rotation.

The paper has been structured as follows, in Section 2, a brief description of the

scaling free modified CORDIC unit is provided. The design of the CORDIC unit is

carried out using Transmission Gate Logic (TGL), which shows 62 mW power

consumption for 1.6 µm sea of gates technology, that has been described in this Section.

In Section 3, theoretical formulation of the straight line HT  using an angle parallelization

scheme and the corresponding architecture are described. Comparison of this architecture

with some other existing architectures is done in Section 4. In Section 5, theoretical

formulation for circular and elliptic HT and the corresponding architectures are

described. Conclusions are drawn in Section 6.

2. The CORDIC unit:

2.1 Brief description of modified CORDIC unit:

The CORDIC algorithm, first proposed by Volder(13) and unified by Walther(14), is

an iterative procedure to compute magnitude and phase or the rotation of a vector in

circular, linear and hyperbolic co-ordinate systems, described by the parameter m shown

in Table 1.

An initial vector [x    y]T undergoing a rotation through an angle ψ, will generate

the final vector [x/    y/]T according to the following relation,
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The total rotation ψ can be expressed in the steps of smaller angles αi s, such that
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where M is an integer.

Equation (1) can be computed by cascading a number of elementary rotational stages as

follows:
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If the elementary angles αi are small enough such that sinαi ≅ αi = 2−i and cosαi =

1−2−(2i+1), equation 3 may be written as(11)
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The largest term that we are neglecting in the process of such approximation is

αi
3/3! = 2−3i/6 = 2−(3i+2.585)

If the machine in which the operations are supposed to be implemented has got an

accuracy of b-bits, then multiplying any quantity with αi
3/3! will have no effect if

(3i+2.585) equals or exceeds b, that is,

3i+2.585 ≥ b or i ≥ 1/3 (b−2.585)

Since i can adopt only integer values, the above condition essentially becomes

i ≥ 1/3 (b−2.585)

(χ is the smallest integer greater than χ and is called the ceiling function of χ). The

upper limit of i is (b−1) since the next higher value of i implies a right shift by b-bit

position which yields a zero result. Thus, the range of i is 1/3 (b−2.585) ≤ i ≤ (b−1). For



a 16-bit machine, i ∈ {4, 5, …, 15}. The block diagram of the elementary CORDIC rotor

stage i. e., one section corresponding to αi, using this principle is shown in Figure 1. The

detailed description of this modified CORDIC is given in the reference(11).

2.2 Design of the low power CORDIC processor:

A 16-bit CORDIC  processor for ψ = 3.583° is designed using the TGL

methodology on the sea of gates semicustom design environment. The sea of gates image

used here is provided by the OCEAN software (developed in the Delft Technical

University, Netherlands). It consists of symmetrically placed fishbone structure

constructed by following C3DM (Philips) 1.6 µm double layer CMOS technology. The

dimensions of minimum size transistor are 1.6 µm × 23.2 µm (NMOS), 1.6 µm × 29.6

µm (PMOS) having transistor pitch = 8 µm, metal layer width = 2.4 µm (for both metal 1

and metal 2) and the threshold voltage of the devices are 0.7 V (NMOS) and −1.1 V

(PMOS)(15).

A performance comparison of the TGL design style with the conventional CMOS,

NMOS pass transistor and Domino CMOS logic style is carried out using an XOR

structure. The simulated results are shown in Table 2, which reveals that the TGL style

exhibits somewhat better power and delay performance than the CMOS style. The

NMOS pass transistor style shows less power consumption than the TGL but they are not

suitable for sea of gates design style as they leads to an wastage of prefabricated PMOS

transistors. The critical sizing of the swing restoration buffer required for NMOS pass

transistor logic is also difficult to carry out in the sea of gates environment. However,

from the layout point of view, implementation of TGL on sea of gates minimizes the

wastage of prefabricated PMOS transistors. Unlike NMOS logic the swing restoration



buffer is not required in TGL and the body effect can be made symmetrical for long TGL

chain(16). Since the direct powerline access is not required in TGL style, the static power

dissipation due to leakage current is expected to be low. Implementation of the logic

circuits using TGL requires less number of transistors than the conventional CMOS

design style and thus the area consumption in the former case is lower. Considering these

features, the TGL style is selected for our purpose.

The performance of the circuit is analyzed by the Switch Level timing Simulator

(SLS) provided with the OCEAN package. The extracted netlist from the layout contains

nodal, parasitic and routing capacitance. The design is characterized by its delay,

dynamic power consumption, Power-Delay Product (PDP) and Energy-Delay Product

(EDP). The dynamic power calculation of the circuit is carried out by conventional

dynamic power dissipation formula(16)
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where P is the power consumption, n is the number of internal nodes, βi is the

switching probability of the i th node, CLi is the i th load capacitance, f is the operation

frequency and VDD is the supply voltage. The switching probability is considered as 1 in

order to include the glitching effect which may exhibit the upper limit of worst case

power consumption.

The design of the CORDIC processor is carried out by using two levels of

metalization. For some critical routing portions the prefabricated polysilicon gates of the

fishbone structure are used. The individual cell isolation is done by connecting the

polysilicon gates to the power rails. All the designs of the datapath elements have been

carefully optimized.



The simulated circuit extracted from the layout shows that the worst case delay of

the CORDIC processor is 22.72 nsec. At 5 V supply with 44 MHz operation frequency,

the dynamic power consumption, PDP and EDP of the CORDIC are 62 mW, 1.408 nJ

and 3.2 × 10−17 Jsec. respectively. With proper threshold voltage and device scaling, the

supply voltage can be lowered further to achieve quadratic improvement in power

performance(16).

3. The straight line HT:

3.1 The mathematical formulation:

The Duda – Hart parameterization for detecting straight lines in an edge image is

defined as(17)

ρθθ =+ sincos yx                     (5)

where ρ is the normal distance of the straight line from the origin of the co-ordinate

system and θ is the angle between the normal and x-axis as shown in Figure 2. The values

of θ and ρ are restricted in the intervals [0, π] and [−R, R] respectively. In computing the

transform, the ρ - θ space (often called the parameter space or the Hough space) is

quantized in steps of [θi, ρj], where i, j are two integers. The quantized parameter space is

represented by a 2-D accumulator array. The image space points lying on the line defined

by equation (5) with the parameters (θi, ρj) will vote to the (θi, ρj) th accumulator cell and

generate a histogram. Extraction of the straight line can be done by considering the

accumulator counts above a predefined threshold value.

Equation (5) can be implemented using CORDIC which is evident from equation

(1). From equation (1), one gets,

θθ sincos yxx +=′                                              (6)



θθ cossin yxy +−=′                                            (7)

Equation (6) and (7) show that the CORDIC provides two concurrent outputs with their

arguments lying π/2 angle apart.

Now replacing (45° + θ) in place of θ in equations (6) and (7), we have another two

equations as follows:

)]cossin()sincos[(2 θθθθ yxyxx +−++=′′                (8)

)]sincos()cossin[(2 θθθθ yxyxy +−+−=′′                  (9)

These equations imply that a scan range of θ ∈ [0, π] can be divided into four

independent subspaces A (θ ∈ [0°, 45°]), B (θ ∈ [45°, 90°], C (θ ∈ [90°, 135°]) and D

(θ ∈ [135°, 180°]). Thus, parallely computing equations (6), (7), (8) and (9) with θ ∈ [0°,

45°] covers the whole scan range of θ. This result can be utilized for parallel computation

of straight line HT.

Defining ρA, ρB, ρC and ρD as the sets of ρ values in the subspaces A, B, C and D

respectively, four equations can be formulated corresponding to the four subspaces as

shown below,

θθρ sincos yxA +=                                                                                  (10)

)]cossin()sincos[(2 θθθθρ yxyxB +−++=                                          (11)

θθρ cossin yxC +−=                                                                                   (12)

)]sincos()cossin[(2 θθθθρ yxyxD +−++−=                                       (13)

In equations (11) and (13) the term √2 is a constant and can be taken care by look

up table approach or by the addressing logic. Alternatively, √2ρB and √2ρD can be

considered as modified parameters instead of ρB and ρD. Finally, ρB and ρD can be



computed from their modified values after thresholding. Thus, defining ρB
/ (=√2ρB) and

ρD
/ (=√2ρD) as the modified parameters in the subspaces B and D respectively, one can

rewrite equations (11) and (13) in terms of ρA and ρC as follows,

ρB
/ = ρA + ρC                                                                                                  (14)

ρD
/ = ρC − ρA                                                                                                  (15)

Using CORDIC, equations (10) and (13) can be computed concurrently and from this,

equations (14) and (15) can also be computed.

3.2 Array architecture for straight line HT:

The array architecture for straight line HT has been constructed by suitable

mapping of equations (10), (12), (14) and (15). The entire θ scan range [0, π/4] is

quantized into N equal angular segments each having a value θ0 such that,

Nθ0 = π/4 ± δ      where δ = 0, if π/4 is an integer multiple of θ0

δ ≠ 0, if π/4 is not an integer multiple of θ0

The basic PE is shown in Figure 3 which is designated as HS. It consists of one

CORDIC rotor unit, two adders and four independent accumulator banks: AA, AB, AC and

AD for the storage of ρA, ρB
/, ρC and ρD

/ values respectively. The CORDIC rotor parallely

generates the addresses of ρA and ρC by computing equations (13) and (15). These two ρ

values are then utilized for parallel address computation of ρB
/ and ρD

/ using the adders.

N number of such PE (HS) are cascaded to realize the transform. The distributed

accumulator arrangement with each PE ensures conflict free voting operation. The data

transfer between the adjacent PE is done asynchronously. This will suppress the data

skewing and the computation becomes data driven. However, a suitable handshaking

protocol has to be adopted. Since the PEs are pipelined, in the steady state, parallel HT



computation at different θ (= jθ0, j ∈ {1, 2, …, N}) can be done for N feature points. The

peak detection can be carried out by checking the accumulator counts parallely for all HS.

The total architecture is shown in Figure 4. The whole operation is summarized in the

following pseudocode,

Let p ∈ {1, 2, …, N} be the index of the PE and q ∈ {1, 2, …, M} be the index of the

accumulator array for each PE. θ0 is the rotation introduced by a single processor and

Nθ0 = π/4 ± δ. ρpqA denotes the value of ρ corresponding to the q th accumulator cell in

subspace A for angle pθ0 and so on.

1. ∀ p th PE, initialize the accumulator cell counts to zero.

2. For each edge pixel (x, y) with grey level equal to one,

        ∀ p th PE, do in parallel

(a) compute in parallel

                    ρpqA = xp = x(p−1) cosθ0 + y(p−1) sinθ0 = x cos (pθ0) + y sin (pθ0)

                   ρpqC = yp = − x(p−1) sinθ0 + y(p−1) cosθ0 = − x sin (pθ0) + y cos (pθ0)

(b) compute in parallel

                   ρpqB
/ = ρpqA +ρpqC

                  ρpqD
/ = −ρpqA + ρpqC

(c) update q th Hough array in parallel for all the subspaces.

(d) Check the busy bit of (p+1) th PE.

if busy bit is high

   enter in wait state.

               if busy bit is low

                 transfer xp, yp to (p+1) th PE in logic low and high state respectively.



(e) assert busy bit of p th and (p+1) th PE in logic low and high state respectively.

(f) get new input.

(g) assert busy bit of p th PE in logic high state.

3. Look for peaks in the accumulator array∀ p.

3.3 Performance of the architecture:

To evaluate the performance of the proposed architecture and to compare it with

the other proposed methods we assume that in the proposed one θ space is quantized in

step of θ0, where Nθ0 = π/4 ± δ, n be the number of edge pixels to be processed and m be

the number of accumulators per subspace for full set of ρ for each θ0.

3.3.1 Computational complexity:

The total number of operations required for ρ computation using the conventional

method is 2nπ/θ0 trigonometric multiplication + nπ/θ0 additions whereas, in the proposed

method, the total arithmetic operations required is 6nπ/4θ0 (=1.5 nπ/θ0) additions which

is much less than the conventional method as the θ scan range is restricted between [0,

π/4±δ]. The total accumulator cell requirement in the proposed method is equal mπ/θ0,

which is same as the conventional one.

3.3.2 Area – Time complexity (AT):

Considering the area of one adder be O(a) and the area of one accumulator cell be

O(ac), the area of one PE is O(6a+4mac). Thus, the area consumed by the proposed

architecture is

A = O[(6a+4mac) (π/4θ0)] = O[N (6a+4mac)]



The latency of the proposed architecture is O (π/4θ0) and the time required to

compute the rest (n−1) feature points is O(n−1), where the time required for one PE is

taken as O(1). Thus, the total computation time becomes,

T = O [(π/4θ0)+(n−1)] = O[N + (n−1)]

If the time required for an adder is Ta, the total computation time T can be represented as

T = O[2{N + (n−1)}Ta ]

So the AT of the proposed one is equal to O[2N(6a+4mac) {N + (n−1)}Ta ].

4. Comparison with other architectures:

In this section the proposed architecture is compared with some of the existing

architectures based on the nature of PE, angle scan range, time requirement for histogram

generation and extra hardware requirements. The comparison is carried out by

considering the number of θ0 values in the range [0, π/4+δ] to be N, O(Ts) and O(Ta) be

the time required for one shift and one addition operation respectively, n is the number of

feature points and M be the required number of iterations for conventional CORDIC unit.

The results are shown in Table 3. All the referenced architectures except the architecture

in the reference(3) requires larger θ scan range than the proposed architecture implying

higher computational requirement than the proposed one. Though the effective scan range

for the architecture in reference(3) is approximately same to that of our architecture, the

total time requirement of the proposed one is less than that of the architecture of the

reference(3) as is evident from the Table 3. Thus, the proposed architecture enjoys

superiority in speed and computational requirement than others. Quantitative

measurements in Table 3 are done by considering θ0 = 2−4 = 0.625 radians = 3.579545°,



N = 13 and δ = 1.534085° and Ta = 7.1 nsec (in 1.6 µm sea of gates technology). Under

these considerations, a full set of ρ value generation for one feature point takes 295.36

nsec, which seem to be considerably low.

Since this architecture utilizes CORDIC, unlike multiplier based designs, the

precomputations of ‘cos’ and ‘sin’ values are not required which in its way eliminates the

requirement of RAM. This makes the architecture more time effective compared to the

multiplier based designs, as in the later case, the RAM access time become a

deterministic constraint for ρ computation as is evident in the reference(4).

In the proposed architecture, the CORDIC units require only adder-subtractor and

the architecture can simultaneously compute ρ for N angles in the θ scan range of [0,

π/4+δ]. Being composed of the scaling free CORDIC (discussed in Section 2), the

architecture is more hardware efficient compared to the other CORDIC based

implementations and does not require the extra conversion unit like the architecture of

reference(10).

The distributed accumulator cell arrangement with each PE ensures conflict free

voting operation. This facilitates a parallel approach for peak detection by simultaneously

checking the count of the accumulators for all θ0, i. e. for all PE.

The proposed one is modular and shows better regularity than other architectures

which is suitable for VLSI implementation. Being asynchronous and pipelined, it is

advantageous from low power and fault tolerant application point of view. Since the

computation is data driven, the PE synchronization problem (typical to the systolic arrays

when the array size becomes large) does not occur. This, in turn, suppresses the data

skewing and subsequent glitches which leads to power saving.



In light of the above results and discussion, it can be conjectured that this

architecture can be considered as a potential candidate for low power high performance

real time straight line HT using VLSI.

5. Circular and elliptic HT:

One common method applied for extraction of elliptic pattern from a given image

data is the tristage(12) approach. In such an approach, the computation is carried out in

three hierarchical stages namely, detection of the center, detection of orientation and the

major and minor radii estimation. This method can be applied for detecting circular

pattern as well where instead of three hierarchical stages only two hierarchical stages are

required viz., the estimation of the center and the radius of the circle. In both the cases,

the pattern detection procedure is computation intensive and one may require parallel

processing array architectures corresponding to the different stages of the hierarchy

where each array architecture can be considered as a subunit of the whole system.

Though in the hierarchical approach for detecting circle and ellipse all the stages are

computation intensive, the maximum computation involves at the final stage of the

hierarchy i.e., for estimating radius of the circle and the major and minor radii of the

ellipse. These stages demand diversified mathematical operations like squaring, division,

addition, square root evaluation and multiplication. From this point of view, in this

section, we have concentrated on developing parallel processing array architectures

corresponding to this stage of the hierarchy (which can be considered as a subunit of the

entire system for circular or ellptic Hough transform respectively) only. Our principal

aim is to reduce the computational requirements for detecting the radius of the circle and

semi-major and semi-minor radii of the ellipse using their parametric representation.



Subsequently, CORDIC based array architectures are proposed for them. Analyses made

here are based on two considerations that are,

• The origin of the curves is already known.

• The orientation angle of the ellipse is known.

5.1 Circular HT:

The equation of a circle can be stated as,

                          222 ryx =+                                                                              (16)

where, (x, y) is a point lying on the circle and ‘r’ is the radius. In parametric form the

length of the radius is given by,

                                  ryx =+ θθ sincos                                                                       (17)

where θ is the angle made by the radius vector with the positive x-axis as shown in Figure

5. Equation (17) is exactly similar to equation (5) and thus the same architecture for

straight line HT can be extended for circular HT. All the points lying on the same circle

will give same radius value for different θ. Considering the co-ordinate system where the

origin is coincident with the center of the circle, the θ scan range will be of [0, 2π]. This

range can be divided into eight subspaces (a, b, c, d, e, f, g, h) and the θ scan range can be

restricted to [0, π/4 ± δ]. The values of r in different subspaces can be calculated

according to the following equations,

θθ sincos yxra +=                          (θ ∈ [0, 45° ± δ])                                       (18)

θθ cossin yxrc +−=                         (θ ∈ [90°, 135° ± δ])                                 (19)

cabb rrrr +== /2                              (θ ∈ [45°, 90° ± δ])                                    (20)

acdd rrrr −== /2                            (θ ∈ [135°, 180° ± δ])                                  (21)



ae rr −=                                             (θ ∈ [180°, 225° ± δ])                                   (22)

/
bf rr −=                                             (θ ∈ [225°, 270° ± δ])                                  (23)

cg rr −=                                             (θ ∈ [270°, 315° ± δ])                                   (24)

/
dh rr −=                                             (θ ∈ [315°, 360° ± δ])                                   (25)

Where, the suffix of r defines their values in appropriate subspaces and rb
/ and rd

/ are

considered as modified parameters in the respective subspaces. It can be observed that

only (18) and (19) are needed to be computed which can be readily done using CORDIC.

Equations (20) and (21) can be derived from (18) and (19) by simple addition and

subtraction. The other four equations can be directly computed by only changing the

signs of the equations (18), (19) and (21). Thus, for detecting the radius of circle, the

architecture for straight line HT can be used with extra four accumulator arrays for each

PE since r-values for eight subspaces are to be stored. Finally, checking the votes of the

same indexed accumulator cells for different PE (i. e. for different θ), the radius of the

circle can be found out. If the circle has its center at (x0, y0), then in this formulation, x

and y have to be replaced by X = (x−x0) and Y = (y−y0). The basic PE (designate as HC)

and the architecture for the circular HT are shown in Figure 6 (a) and (b) respectively.

5.2 Elliptic HT:

The parametric equation of a point (x, y) lying on an ellipse with semi-major and

semi-minor radii ‘a’ and ‘b’ respectively, is given by

θcosax =                                                                                                     (26)

θsinby =                                                                                                     (27)



where θ is the angle made by the radius vector (from origin to the (x, y) point) with the

positive x-axis.

Now, defining 1/a = a/ and 1/b = b/, equation (26) and (27) can be written as

θcos)/1( xa =′                                                                                                (28)

θsin)/1( yb =′                                                                                                (29)

The quantities a/ and b/ can be considered as modified parameters instead of a, b and can

be quantized accordingly. Following the same line of mathematical formulation of

circular HT, here also the total θ scan range can be restricted to [0, π/4 ± δ] and the whole

Hough space of [0, 2π] can be divided into eight subspaces (a, b, c, d, e, f, g, h). The

modified parameter values in these subspaces can be computed according to the

following equations,

aa
/ = (1/x) cosθ     and   ba

/ = (1/y) sinθ             (θ ∈ [0, 45° ± δ])                     (30)

ac
/ = −(1/x) sinθ     and   bc

/ = (1/y) cosθ           (θ ∈ [90°, 135° ± δ])                (31)

√2ab
/ = ab

// = aa
/ + ac

/  and  √2bb
/ = bb

// = ba
/ + bc

/   (θ ∈ [45°, 90° ± δ])           (32)

√2ad
/ = ad

// = ac
/ −  aa

/  and  √2bd
/ = bd

// = bc
/ − ba

/   (θ ∈ [135°, 180° ± δ])       (33)

ae
/ = − aa

/   and be
/ = − ba

/                                          (θ ∈ [180°, 225° ± δ])       (34)

af
/ = − ab

//   and bf
/ = − bb

//                                          (θ ∈ [225°, 270° ± δ])       (35)

ag
/ = − ac

/   and bg
/ = − bc

/                                          (θ ∈ [270°, 315° ± δ])        (36)

ah
/ = − ad

//   and bh
/ = − bd

//                                        (θ ∈ [315°, 360° ± δ])        (37)

The suffixes of a/ and b/ define their values in appropriate subspaces. Thus, as in the case

of circular HT, only two equations (30) and (31) are to be computed to get the addresses

of the appropriate accumulator cells. Accumulator addresses governed by equations (32)

and (33) can be generated by simple addition and subtraction of equations (30) and (31).



The other four addresses can be computed by changing the sign of the addresses given by

equations (30) and (33). Finally, the votes of the same indexed accumulator cells for

different PE will determine the shape of the ellipse and the conversion from a/, b/ to a, b

can be carried out using a look-up table. However, the nature of equations (32) and (33)

suggests that each PE requires two CORDIC units operating parallely. Each PE also

requires eight 2-D accumulator arrays of which each one is dedicated for a particular

subspace. The basic PE designated as He and the architecture are shown in Figure 7 (a)

and (b) respectively.

If the center of the ellipse lies at (x0, y0) point, then in the above formulation the x

and y values have to be replaced by X = (x− x0) and Y = (y− y0) respectively.

5.3 Discussions on elliptic and circular HT architecture:

Compared to the conventional method, the proposed formulations require less

number of arithmetic operations to detect the radius of the circle and semi-major and

semi-minor radii of the ellipse. In evaluating these parameters conventional method

requires multiplication, squaring, subtraction, division and square root evaluation(12). In

our formulation, only the CORDIC rotation is required which in turn requires only

additions and cross-coupled bus connections. Thus, a large area and resource saving is

possible. In the proposed architectures concentric circles and ellipses can be found out

directly by checking the votes of the accumulator cells with different indices in their

respective cases.

6. Conclusions:

In this paper, a modified scaling free CORDIC based asynchronous array

architecture for straight line HT is proposed which eliminates the requirement of



precomputations and RAM, making this one hardware and time efficient compared to the

multiplier based architectures. Using an angle parallelization scheme the computation

burden is reduced to approximately 25 %. Moreover, this one enjoys superiority in

processing speed compared to some other architectures.

The architectures proposed in this paper for computing circular and elliptic HT

with known centers and orientations require less number of arithmetic operations

compared to the conventional formulations. In our formulation, the computation in eight

subspaces can be carried out parallely which results into saving of hardware resources

and speeds up the computation time. For computation of circular and elliptic Hough

transform utilizing the hierarchical method, these architectures can be considered as the

subunits of the respective systems. One the other hand, one may compute the less

computation intensive stages of the hierarchy viz., centers (for circle and ellipse) and the

orientation (for ellipse) using software and then can utilize these array architectures for

fast estimation of the radius (for circle) and major and minor radii (for ellipse).

All the proposed architectures require same number of accumulator cells as that of

the conventional formulations. The distributed accumulator arrangement ensures conflict

free voting operation and facilitates parallel peak detection. Concentric circles and

ellipses can be found out directly by checking the votes of different indexed accumulator

cells. The modularity and regularity of the proposed architectures makes them attractive

for VLSI monolithic integration. Being asynchronous and data driven, these architectures

may be advantageous for low power and fault tolerant applications. However, the elliptic

HT architecture suffers from the requirement of inverse of the pixel co-ordinates as

inputs. This can be solved by using two conventional CORDIC units operating in



vectorization mode. Though, this problem is not present in straight line and circular HT

architectures.

The basic CORDIC unit has been designed using TGL on 1.6 µm sea of gates

semicustom environment which exhibits 62 mW power consumption at 5 V supply and

44 MHz operation frequency. With device scaling, this CORDIC unit is expected to

operate at lower supply voltage, which implies that a quadratic advantage in power

consumption can be achieved.

Considering all these points, it can be conjectured that the proposed architectures

can be considered as good candidates for low power high performance real time HT

computation.
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Table 1

m = 1 m = 0 m = −1

Rotation

z → 0

x/ = x cos z + y sin z

y/ = −x sin z + y cos z

x/ = x

y/ = y − zx

x/ = x cos hz − y sin hz

y/ = −x sin hz + y cos hz

Vectoring

y → 0

x/ = √(x2+y2)

z/ = z − tan−1 (y/x)

x/ = x

z/ = z−(y/x)

X/ = √(x2 − y2)

Z/ = z − tanh−1 (y/x)

Table 2

Logic family Average output

capacitance (fF)

Average

Delay

(nsec.)

Power

dissipation

(mW)

Power

Delay

Product (pJ)

Energy Delay

product

(10−21 Jsec.)

Static

CMOS 304.106 1.256 1.5329 1.9253 2.4181

Domino

CMOS 192.969 1.35 2.1867 2.9522 3.9854

NMOS pass

logic 42.1623 0.153 0.052 0.007956 0.001217

TGL 138.609 0.256 0.1732 0.04433 0.01134



Table 3

Architecture Nature of PE Scan range of θ Time required

to generate

histogram

Extra

requirements

Rhodes et al.(8) Multipliers,

architecture is

WSI

[0, π] 20 msec.

(image size 256

× 256, 1/10 of

the image are

edge pixels)

Precomputed

values of sinθ,

cosθ and RAM

Hanahara et

al.(4)

Array

multipliers and

off chip

components

[0, π] 256 msec. For

1024 feature

points.

Precomputed

values of sinθ,

cosθ and RAM

Timmerman et

al.(3)

Radix-2

conventional

CORDIC unit.

Effective scan

range is [0, π/4]

O[2MNn (TS +

Ta)]

Scaling factor

compensation.

Bruguera et

al.(10)

Mixed radix

pipelined

CORDIC

[0, π/2] O[52Ta +

4(n−1) + Tconv]

Scaling factor

compensation,

extra

conversion unit

and RAM.

Proposed Scaling free

CORDIC. The

architecture is

asynchronous.

[0, π/4 ± δ] O[2{N+(n−1)}

Ta]

149.179 µsec

for 256 ×256

image and

23.569 µsec for

1024 points.

Scaling of ρ by

the constant

factor √2 in B

and D

subspaces.



Table Captions

Table 1. The CORDIC arithmetic function.

Table 2. Comparison of different logic families using the XOR structure.

Table 3. Comparison of different architectures for straight line Hough transform.

Figure Captions

Figure 1. The elementary CORDIC arithmetic unit.

Figure 2. Normal description of the straight line.

Figure 3. The basic PE for straight line Hough transform.

Figure 4. The array architecture for straight line Hough transform.

Figure 5. The parametric representation of a circle.

Figure 6 (a). The basic PE for circular Hough transform.

Figure 6 (b). The array architecture for circular Hough transform.

Figure 7 (a). The basic PE for elliptic Hough transform.

Figure 7 (b). The array architecture for elliptic Hough transform.
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