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Abstract 

 

The research presented in this thesis addresses the problem of Text Segmentation in 

Web images. Text is routinely created in image form (headers, banners etc.) on Web 

pages, as an attempt to overcome the stylistic limitations of HTML. This text 

however, has a potentially high semantic value in terms of indexing and searching for 

the corresponding Web pages. As current search engine technology does not allow for 

text extraction and recognition in images, the text in image form is ignored. 

Moreover, it is desirable to obtain a uniform representation of all visible text of a Web 

page (for applications such as voice browsing or automated content analysis). This 

thesis presents two methods for text segmentation in Web images using colour 

perception and topological features. 

The nature of Web images and the implicit problems to text segmentation are 

described, and a study is performed to assess the magnitude of the problem and 

establish the need for automated text segmentation methods. 

Two segmentation methods are subsequently presented: the Split-and-Merge 

segmentation method and the Fuzzy segmentation method. Although approached in a 

distinctly different way in each method, the safe assumption that a human being 

should be able to read the text in any given Web Image is the foundation of both 

methods’ reasoning. This anthropocentric character of the methods along with the use 

of topological features of connected components, comprise the underlying working 

principles of the methods. 

An approach for classifying the connected components resulting from the 

segmentation methods as either characters or parts of the background is also 

presented. 
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Chapter  1 

1. Introduction 
 

 

 

cientific and cultural progress would not be possible without ways to 

preserve and communicate information. Nowadays, automatic methods for 

retrieving, indexing and analysing information are increasingly being used in every 

day life. Accessibility of information is therefore a significant issue. World Wide Web 

is possibly the upshot of information exchange and an area where problems in 

information retrieval are easily identifiable. 

S

Images constitute a defining part of almost every kind of document, either serving 

as a carrier of information related to the content of the document (e.g. diagrams, 

charts, etc), or used for aesthetic purposes (e.g. background, photographs, etc). At 

first, mostly due to limited bandwidth, the use of images on Web pages was rather 

restricted and their role was mainly to beautify the overall appearance of a page 

without carrying important (semantic) information. Nevertheless, as the overall speed 

of Internet connections is rising an increasing trend has been noticed to embed 

semantically important entities of Web pages into images. More specifically, 

designing eye-catching headers and menus and enhancing the appearance of a Web 

page using images for anything that the visitor should pay attention to (e.g. 

advertisements), is a strong advantage in the continuous fight to attract more visitors. 

Furthermore, certain parts of a document, such as equations, are bound to be in image 

form, as there is no alternative way to code them in Web pages. 

Regardless of the role images play in Web pages, text remains the primary (if not 

the only) medium for indexing and searching Web pages. Search engines cannot 
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access any text inside the images [4], while analysing the alternative text (ALT tags) 

provided, proves to be rather a disadvantage, since in almost half of the cases it is 

totally misleading as will be seen in Section 1.2. Therefore, important information on 

Web pages is not accessible, introducing a number of difficulties regarding automatic 

processes such as indexing and searching. 

The research described in this Thesis addresses the need to extract textual 

information from Web images. The aim of the project is to examine possible ways to 

segment and identify characters inside colour images such as the ones found on Web 

pages. Towards the text segmentation in Web images, two different methods were 

implemented and tested. The first method works in a split-and-merge fashion, based 

on histogram analysis of the image in the HLS colour system, and connected 

component analysis. The second method is based on the definition of a propinquity 

measure between connected components, defined in the context of a fuzzy inference 

system. Colour distance and topological properties of components are incorporated 

into the propinquity measure providing a comprehensive way to analyse relationships 

between components. The innovation of both approaches, lies in the fact that they are 

both based on available (existing and experimentally derived) knowledge on the way 

humans perceive colour differences. This anthropocentric character of the two 

approaches is evident primarily through the way colour is manipulated, making use of 

human perception data and employing colour systems that are efficient 

approximations of the psychophysical manner humans understand colour. 

The concept of the “Web document” will be introduced in the next section, and 

text extraction from Web images will be discussed in the context of document 

analysis. The impact and consequences of using images in Web pages is assessed in 

Section 1.2. The significant need for a method that extracts text from Web images is 

discussed in Section 1.3, along with possible applications for such a method. 

Section 1.4 examines the distinguishing characteristics of Web images and 

summarizes interesting observations made. Characteristic paradigms of Web images 

are also given in Section 1.4. The aims and objectives of this project are detailed in 

Section 1.5. Finally an outline of the thesis is given in Section 1.6. 

1.1. Images in Web Document Analysis 

Following the exploding expansion of World Wide Web, the classical definition of 

what a document is had to change in order to accommodate the new form of electronic 
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document that appeared: the “Web Document”. Two distinct descriptions exist for 

every Web page, one is the code used to produce the output, and the other is the actual 

output itself. Although either description should ideally be adequate to describe a 

given Web page, not the same information is stored in each representation. For 

instance, information about the filenames of images contained in the document is only 

available in the Web page’s code, whereas the images themselves, thus the 

information they add to the document, are only part of the two-dimensional viewable 

output. The definition of Web Document is therefore not trivial, and should 

incorporate both representations. 

The key-role images play in Web Pages makes them an important part of every 

Web Document Analysis method. This stands true for all types of images, as images 

are used in Web pages for a variety of purposes, such as to define a background 

pattern for the document, as bullets in a list, deliminators between different sections, 

photographs, charts etc. The most significant kind of images, in respect to the amount 

of information they carry, are the ones containing text, such as headers, menus, logos, 

equations, etc. Images containing text carry important information about both the 

layout and the content of the document, and special attention should be paid in 

incorporating this information in every Web Document Analysis method. 

1.2. The Use of Images in the Web – A Survey 

In order to assess the impact of the presence of text in Web images, the Pattern 

Recognition and Image Analysis (PRImA) group of the University of Liverpool 

delivered a survey over the contents of images of around 200 Web pages [9]. The 

Web pages included in the survey originated from a variety of sites that the average 

user would be interested in browsing. Sites of newspapers and TV stations, on-line 

shopping, commercial, academic and other organizations’ sites as well as sites dealing 

with leisure activities, work-related activities and other routine activities were all 

included, so that the sample set reflects the average usage of World Wide Web today. 

The Web pages analysed were all in English language, and therefore the majority of 

sites were from the United States and the United Kingdom. For the purpose of this 

survey, there should not be loss of generality by this choice. 

In order to assess the impact of the presence of text in Web images, certain 

properties were measured for each image, related both to the textual contents of the 

images as well as to the contents of the ALT tags associated with each image. The 

 3



Text Segmentation in Web Images Using Colour Perception and Topological Features 

investigation of the alternative text provided is essential, in order to assess the 

necessity of a method to extract text from images, as this would depend on the 

availability of an alternative representation of the textual content of the images. In 

terms of the textual content of the images the following were measured for each Web 

page: 

• The total number of words visible on the page. This is the number of 

words that can be viewed on the Web page, regardless of whether they are 

part of the text or embedded in an image. 

• The number of words in image form. This is the number of the words that 

are embedded in images only. 

• The number of words in image form, that do not appear anywhere else on 

the page. This is an important measure, since it indicates whether a word 

can be indexed and consequently searched upon or not. 

Regarding the presence of an alternative description in the form of ALT tags 

associated with the text in images, the following were measured: 

• The number of correct descriptions. A description is considered correct if 

all the text in the image is contained in the ALT tag. 

• The number of false descriptions. These are descriptions were the ALT tag 

text disagrees with the text in the image. 

• The number of incomplete descriptions, where the ALT tag text contains 

some, but not all of the text in the image. 

• The number of non-existent descriptions, where no ALT tag text is 

provided. 

Overall, an average of 17% of the words in a Web page are embedded in images 

(see Figure 1-1). This is a significant percentage, considering that text in Web images 

is inaccessible using current technology, as will be discussed in Section 1.3. 
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Words in main 
text
83%

Words in 
image form

17%

Words in image form Words in main text

 

Figure 1-1 – Percentage of words in Web pages found in image form and in the main text. 

 

Even more alarming are the results about the usage of ALT tags. As can be seen in 

Figure 1-2 that follows, only 44% of the ALT tag’s text is correct. The remaining 56% 

is either incomplete (8%), false (3%), or non-existent (45%). That makes more than 

half of the text in images totally inaccessible without a method to extract it directly 

from the image. 

 

Non-existent
45%

False
3%

Incomplete
8%

Correct
44%

Correct Incomplete False Non-existent

 

Figure 1-2 – Percentage of correct and incorrect ALT tags in Web pages. 

 

Not encouraging either is the fact that of the total number of words embedded in 

images, 76% do not appear anywhere else in the main text (see Figure 1-3). This 

corresponds to 13% of the total visible words on a page not accessible for indexing 

and/or searching purposes. 
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Words that 
appear in the 

main text
76%

Words that do 
not appear in 
the main text

24%

Words in image form that appear in the main text
Words in image form that do not appear in the main text

 

Figure 1-3 – Percentage of words embedded in images not appearing in the main text. 

 

The results reported are in broad agreement with an earlier survey of 100 Web 

pages by Lopresti and Zhou [218]. This fact demonstrates that the situation is not 

improving. Furtherm rld Wide Web grows 

the n bly. More recently 

wsing, the location of the 

ima

ore, as the volume of information on the Wo

 total umber of inaccessible material increases considera

Kanungo, Lee and Bradford [90] reported similar results over a small number of 

images selected from web pages returned by the Google Internet search engine for the 

keyword “newspapers”. Although a very restricted sample was evaluated, the results 

are equally alarming, with a 59% of the words in images not appearing anywhere else 

in the Web page. Further verification of the situation can be found in Munson and 

Tsymbanenko [125] who attribute the poor recall results they obtain when searching 

for images by means of their associated text information, to exactly the fact that the 

ALT tag attribute value is rarely both present and relevant to the image’s content. 

An aspect not covered in any of these surveys, is the incorporation of a measure of 

importance for each image. Although it is a fact that important entities on Web pages 

are present in the form of images, a measure of importance for each image in terms of 

the information it carries would give a clearer view of the problem and should be 

included in any future work. Various ways exist to measure the importance of each 

image, most of them based on structural analysis of the Web page. The location of 

each image is vital, and is a feature incorporated in many new applications. For 

example, when performing Web page analysis for voice bro

ge is announced along with any associated caption [21]. Another way to assess the 
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importance of an image could be employing techniques used nowadays for evaluating 

the quality of Web pages, usually based on human visual perception and eyes 

movement [57]. 

1.3. The Need – Applications of the Method 

There is a plethora of possible applications for a method that extracts text from colour 

images. An immediate use of the method would be at the domain of indexing and 

searching. Search engines are unable to access any textual information found in image 

form directly. Most search engines index instead any alternative information that is 

readily available for the image, such as the filename or the ALT tag associated with 

the image. This, results to important terms of the Web page to be ignored, thus the 

information finally indexed is incomplete or even misleading if one considers the 

existence of incorrect alternative descriptions. A method to extract text from the Web 

ima

s indicating 

tha

t of a Web image, would 

allow the browser to present the text in a different way, for users with special needs. 

ges would be useful in many different stages. First, any search engine would be 

able to access and consequently index the textual information embedded inside Web 

images. This would result into improved indexing and more efficient and precise 

searching. Text extraction could also take place at a different stage, at the time of the 

creation of the document. A text extraction method could be used to automatically 

provide the correct alternative description for the images that the user has not already 

supplied one, or to double check the correctness of user inserted alternative 

descriptions and possibly propose the appropriate changes. 

The Web browser could also benefit in many ways from a method to extract text 

from images. Knowing the textual content of an image, it could provide a number of 

new functions, such as filtering capabilities or certain accessibility utilities for users 

with special needs. Filtering would be straightforward if the textual contents of 

images were known. Images containing certain offensive terms, or term

t they are advertisements could be easily removed from the Web page. If filtering 

was enabled one stage earlier, for example at the cache server asked for the Web page, 

filtering of advertisements or other types of images would be possible at the 

company/provider level, and would also result in lesser downloading times, since only 

the useful information would be passed on to the final user. As far as it concerns 

accessibility functions, there is a number of ways in which a text extraction method 

could prove of great value. Knowing the exact textual conten
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For

contrast

ultaneously. For example, reading traffic 

inform

 

voice browsing. For exam

eb images will be discussed derived from 

observations made over a large number of images that comprise the dataset used for 

the development and evaluation of the method (described analytically in Chapter 7). 

The observations made and the characteristics identified, shaped the way this research 

was conducted. 

The basic observation one can make about Web images is that they are computer 

oriented. Contrary to the types of images that typical OCR applications require, which 

 example, the text could be presented enlarged, in an easier to read font, using high 

ing colours. 

The most important application of a Web image text extraction method would 

probably be converting the Web page to voice. Conversion of the Web page to voice 

is not necessarily a function used only by users with special needs. There are many 

cases where having the computer read a Web page would save time and allow the user 

to continue with other activities sim

ation or a newspaper page while driving, or enabling bi-directional voice 

browsing. In current applications images are simply ignored, or in very few cases, 

positioning information or any alternative text is read instead [21]. 

Converting a Web page to text allows for a series of other applications apart from

ple, it would enable applications to summarize Web pages 

and produce smaller versions, suitable to be presented on the small display of a PDA 

or a mobile phone. Considering the rapid progress and wide acceptance of mobile 

technologies, this will probably be an important issue in the near future. 

Finally, the applications of a method to extract text from colour images are not 

necessarily limited to the World Wide Web. There are many other fields that such a 

method would be of great value, for example video indexing, or real life scenes 

analysis. The method could be used to extract text from video frames, such as names 

and titles from newscasts or scores from athletic events. Furthermore, it could be used 

for applications involving real life scenes, such as extracting the registration numbers 

of car plates, or the textual content of street and shop signs. 

1.4. Working with Web Images – Observations and 
Characteristics 

In this section, certain characteristics of W
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in most of the cases are scanned documents, Web images are created with the use of 

computers to be viewed on a computer monitor. 

The fact that computers are employed for the creation of the images entails that a 

plethora of tools are readily available at that stage. These tools include a wide range 

of filters, antialiasing capabilities, a variety of different effects to render characters 

and many more. Therefore, although Web images do not suffer from artefacts 

introduced during the digitisation process (skew, noise etc), artefacts produced by the 

software used for the creation of the image are evident in most of the cases. 

Antialiasing is probably the most common kind of artefact that strongly affects our 

ability to differentiate characters from the background. Antialiasing is the process of 

blending a foreground object to the background, by creating a smooth transition from 

the colours of one to the colours of the other. This produces characters with poorly 

defined edges, in contrast to the characters in typical document images (Figure 1-4). A 

second, but equally important problem, is the use of special effects when rendering 

characters in an image. These effects range from simple outlines and shadows, to 3D-

effects and the placement of words in arbitrary directions, and pose many difficulties 

to any text extraction method. 

 

 

 

(a) (b) 

Figure 1-4 – (a) An image with antialiased characters. The area marked with the red rectangle 

ased edges of 

characters are visible. 

appears in magnification on the left. (b) Magnified part of the image, where the antiali

 

As mentioned before, Web Images are designed to be viewed on computer 

monitors. This entails certain things about the size and the resolution of the images. 
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Contrary to typical document images, which have a minimum resolution of 300dpi 

and a typical size of an A4 page (thus their dimensions are in the range of thousands 

of pixels), Web Images have an average resolution of 75dpi. This is adequate for 

viewing on a monitor, which is the primary use for those images. Consequently, the 

size of the images is in most of the cases small. Since the images are to be viewed on 

a monitor with an average resolution of 800x600 pixels, the dimensions of Web 

Images are never larger than some hundred pixels. Another observation that would 

lead us to similar assumptions about the average size of Web Images is the function of 

the images in the Web pages. Headers, menu items and section titles occupy usually a 

small area of the page, which is reflected in the size of the images used for these 

entities. Furthermore, the size of the characters used is also much smaller than the size 

of characters on scanned documents (Figure 1-5). An expected character size in 

scanned documents is 12pt or larger, whereas in Web pages characters can be as small 

as to an equivalent of 5 to 7pt.  

 

 

 

(a) (b) 

Figure 1-5 – (a) An image containing small characters. (b) Magnified part of the image. 

 

Another important observation is that Web images are used in order to create 

impact. The ultimate function of images in Web pages is not only to beautify the 

overall look of the pages, but also to attract viewers. This should be combined with 

the fact that the creation of Web pages is not limited to professional designers (that 

could possibly comply to certain designing rules), but essentially open to everyone 

that owns a computer. Creativity is therefore the only limit when designing a Web 

page. Consequently, complex colour schemes are used most of the times, resulting to 

images having multi-coloured text over multi-coloured background (Figure 1-6). One 

would anticipate that just because creating impact is an important issue, high contrast 
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schemes between characters and background would be used. Although it is expected 

that the colours of pixels belonging to characters will be more similar between them 

than to colours of the background, the contrast between the two classes (text and 

background) is not always adequate to distinguish them. 

 

 
 

(a) (b) 

Figure 1-6 – (a) An image containing both multi-coloured characters and multi-coloured background. 

(b) An image with multi-coloured overlapping characters. 

 

A final observa Web images is that they are created with file-size in 

 h be easily communicated through the Web. This directly 

t some pression should be used, which is actually the case 

usin JPEG’s compression capabilities. This type of 

ion introd ges ffect in 

con sign  

This kind of lossy ab r analysis of the 

tent discarded in JPEG compression). The next most 

popular file type used for Web images, is GIF. Although GIF format preserves much 

ore information than JPEG, it is limited to 8-bit colour palettes. This vastly reduces 

the nt quantization artefacts 

in the im

tion about 

mind, since they ave to 

suggests tha  kind of com

with Web images most of the times. The vast majority of

g in some extent 

 images in the Web are saved 

as JPEG files, 

compress uces certain artefacts in the ima  that have no particular e

areas of almost stant colour, but can produce 

compression is even more notice

ificant distortions to characters.

le when colou

image takes place (as lightness information is mostly preserved, but colour 

information is to a great ex

m

 number of colours in images, and can introduce significa

ages, as well as dithered colours to appear. 
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(a) (b) 

Figure 1-7 – (a) A JPEG compressed image. (b) Magnified part of the image. The block structure 

produced by JPEG compression is visible in large areas, while more compression artefacts are visible 

near the characters. 

 

A summary of the main characteristics associated with Web images, and a 

comparison with typical document images required by OCR applications is given in 

Table 1-1. 

 

Characteristics Web Images Typical Scanned Document Images 

Spatial Resolution ~75dpi >300dpi 

Ima eges’ Siz  100s of pixels 1000s of pixels 

Characters’ Size Can be as small as 5-7pt >12pt 

Colour Schemes 
Multi-colour text over multi-colour 

background 

Black text over white background 

Artefacts Antialiasing, compression, dithering Skew, digitisation artefacts 

Character Effects 
Characters not always on a straight 

line, 3D-effects, shadows, outlines etc. 

Characters usually on a straight line, 

of the same font 

Table 1-1 – Summary of Web Images’ main characteristics and comparison to  

typical scanned document images. 

 

1.5. Aims and Objectives of this Project 

This research aims in identifying novel ways to extract text from images used in 

the World Wide Web. Text extraction comprises of two main steps: Segmentation of 

the image into regions, and Classification of the produced regions as text or non-text. 
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The objective of this project is the implementation and testing of new ideas for 

performing text extraction from web images, as dictated from the specific 

characteristics of the problem. A successful solution should be able to cope with the 

ma

 text and 

bac

age text extraction method is expected to be used, it is important that 

the

y of the text extraction method to decide whether an image contains text 

or not, is a desired property, but considered to be out of the scope of this research. For 

the evaluation of this research, only images containing text will be employed. 

1.6. Outline of the Thesis 

Following this introductory chapter, Chapters 2 and 3 provide a theoretical 

background for this research. Chapter 2 gives a detailed overview of segmentation 

methods, starting with methods used for greyscale image analysis, followed by a brief 

introduction to colour and a critical review of colour segmentation methods. Chapter 3 

provides an overview of text image segmentation and classification methods. Several 

aspects of text image segmentation are discussed and a number of classification 

methods for the segmented regions are presented and appraised. Previous work on the 

topic of text extraction from colour images is also part of Chapter 3. 

Chapter 4 describes in detail the first method used for segmenting text in Web 

images. This method works in a split-and-merge fashion, making use of the HLS 

jority of web images, producing precise segmentation results and high 

classification rates. Given the volume of fundamentally different images existent in 

the World Wide Web, this is expected to be a complicated task. 

The final solution should be able to correctly segment images containing

kground of varying colour, mainly gradient and antialiased text. It should be also 

able to cope with various text layouts (e.g. non-horizontal text orientation) 

The methods developed should not set any special requirements for the input 

images, while the assumptions about the contents of the image should be kept to an 

absolute minimum. 

Given the volume of web images available and the special types of applications 

where a web im

 execution time is kept short. Nevertheless, since the focus of this research is on the 

implementation and evaluation of novel methods, the execution time for the 

prototypes should be allowed to be reasonably long, as long as optimisation and 

improvement is possible. 

The abilit
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colour space. The method’s basic concepts and implementation aspects are discussed, 

and results obtained are presented. 

Chapter 5 describes the second segmentation method developed, which is based 

upon the definition of a propinquity measure that combines colour distance and 

topological characteristics of connected components with the help of a fuzzy inference 

system. An analytical description of the fuzzy defined propinquity metric takes place, 

followed by an explanation of the method and the presentation of results obtained. 

The connected component classification method developed is presented in 

Chapter 6. The classification of the connected components produced by the 

segmentation methods is a necessary post-processing step aiming in identifying which 

of them correspond to characters and which to the background of the image. 

More results of both segmentation methods and the classification method are 

presented and critically appraised in Chapter 7. A comparison between the two 

segmentation methods and the possibility of applying the methods developed to other 

fields is also included in Chapter 7. The chapter closes with a discussion summarizing 

on optimisation possibilities and key issues identified. Finally, Chapter 8 concludes 

this thesis reassessing the aims and objectives set and commenting on future work and 

open problems. 

Appendices on topics not covered in the theoretical chapters of this thesis are also 

provided. Details on human vision and colorimetry are given in Appendix A. 

Appendix B is a brief introduction in fuzzy logic and fuzzy inference systems. Finally, 

Appendix C presents the dataset used, along with the corresponding statistical 

information. 
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Chapter  2 

2. Image Segmentation Techniques 
 

 

 

egmentation is the process of partitioning an image into a number of 

disjoined regions such that each region is homogeneous with respect to 

one or more characteristics and the union of no two adjacent regions is  

homogeneous” [70, 140, 143]. 

“S
A more mathematical definition of segmentation can be found in [56, 197, 221]. 

Let X denote the grid of sample points of a picture, and let P be a logical predicate 

defined on a set of contiguous picture points. Then segmentation can be defined as a 

partitioning of X into disjoint non-empty subsets X1, X2, … Xn such as: 

 

1.  XX i
N
i ==1U

2.  for i=1,…N is connected iX

3. or i=1,…N TRUEXP i =)(  f

4. , for i≠j where XFALSEXXP ji =∪ )( i and Xj are adjacent. 

Eq. 2-1 

 

The first condition states that after the completion of the segmentation process, 

every single pixel of the image must belong to one of the subsets Xi. It should be 

noted, that the condition: 
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0,1, == ji
N

ji XXI , ji ≠  Eq. 2-2 

 

even though not mentioned, should also be in effect for the above definition to be 

complete. That last condition states that no pixel of the image can belong to more than 

one subset. 

The second condition implies that regions must be connected, i.e. composed of 

contiguous lattice points. This is a very important criterion since it affects the central 

structure of the segmentation algorithms [119, 197] . This second condition is not met 

in many approaches [31, 81, 141, 173]. 

A uniform predicate P as the one associated with the third condition is according 

to Fu and Mui [56] one which assigns the value TRUE or FALSE to a non-empty 

subset Y of the grid of sample points X of a picture, depending only on properties 

related to the brightness matrix for the points of Y . Furthermore, P has the property 

that if Z is a non-empty subset of Y, then P(Y)=TRUE, implies always that 

P(Z)=TRUE. The above definition is rather restricted in the sense that the only feature 

on which P depends on is the brightness of the points of the subset Y. In Tremeau and 

Borel [197] this is generalized in order to address other characteristic features of the 

subset pixels as well. According to them, the predicate P determines what kind of 

properties the segmentation regions should have, for example a homogeneous colour 

distribution. 

Finally, the fourth condition entails that no two adjacent regions can have the 

same characteristics. 

Segmentation is one of the most important and at the same time difficult steps of 

image analysis. The immediate gain of segmenting an image is the substantial 

reduction in data volume. For that reason segmentation is usually the first step before 

a higher level process which further analyses the results obtained. 

Segmentation methods are basically ad hoc and their differences emanate from 

each problem’s trait. As a consequence, a variety of segmentation methods can be 

found in literature, the vast majority of which addresses greyscale images. 

In the present chapter an overview of some of the existing methods for 

segmentation will be attempted, paying particular attention to segmentation methods 

created for colour images. The next section gives a brief anaphora on greyscale 
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segmentation methods, followed by the main section of this chapter, which focuses on 

colour image segmentation. 

2.1. Greyscale Segmentation Techniques 

Fu and Mui [56] in their survey on image segmentation classified image segmentation 

techniques as characteristic feature thresholding or clustering, edge detection and 

region extraction. This survey was done from a biomedical viewpoint, and the 

evaluation of techniques is based on cytology images. Authors’ comments are 

objective, but the main interest is clearly cytology imaging. A review of several 

methods for thresholding and clustering, edge detection and region extraction was 

performed. Most of the methods reviewed are towards greyscale segmentation, with 

the exception of Ohlander’s work [134] on colour image thresholding and a clustering 

method proposed by Mui, Bacus and Fu [124], which only uses colour-density 

histograms at a later stage, after initial segmentation has already been obtained. 

Haralick and Shapiro [69] categorized segmentation techniques into six classes: 

measurement space guided spatial clustering, single linkage region growing schemes, 

hybrid linkage region growing schemes, centroid linkage region growing schemes, 

spatial clustering schemes and spit and merge schemes. The survey mainly focuses on 

the first two classes of segmentation techniques; measurement space guided spatial 

clustering and region growing techniques for which a good summary of different 

types of region growing methods has been presented. The recursive clustering method 

proposed by Ohlander [134] and the work of Ohta, Kanade and Sakai on colour 

variables [136] are detailed among others in the section concerning clustering. There 

is also a small section about multidimensional measurement space clustering, where 

Haralick and Shapiro propose to work in multiple lower order projection spaces and 

then reflect these clusters back to the full measurement space. 

Pal and Pal [140] have made a somewhat more complete review of image 

segmentation techniques. They cover areas not addressed in previous surveys such as 

fuzzy set and neural networks based segmentation techniques as well as the problem 

of objective evaluation of segmentation results. Furthermore, they consider the 

segmentation of colour images and range images (basically magnetic resonance 

images). They identify two approaches for segmentation: classical approach and fuzzy 

mathematical approach, each including techniques based on thresholding, edge 

detection and relaxation. The paper attempts a critical appreciation of several methods 
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in the categories of grey level thresholding, iterative pixel classification, surface based 

segmentation, colour image segmentation, edge detection and fuzzy set based 

segmentation. 

Additional image segmentation surveys can be found in Zucker [221], Riseman 

and Arbib [158] and Kanade [89]. Also surveys on threshold selection techniques can 

be found in Weszka [204] and Sahoo et al. [172]. 

Following the suggestions of previous reviews, segmentation methods will be 

categorized as thresholding or clustering methods, edge detection methods and region 

extraction methods. In addition to these, there are certain methods that do not fall 

clearly in any of the above classes, rather combine two or more of the aforementioned 

techniques to achieve segmentation. The remainder of this section will address these 

categories of segmentation techniques, attempting a critical review of selected 

methods found in literature. 

2.1.1. Thresholding and Clustering Methods 

According to Haralick and Shapiro [70] “Thresholding is an image point operation 

which produces a binary image from a grey-scale image. A binary one is produced on 

the output image whenever a pixel value on the input image is above a specified 

minimum threshold level. A binary zero is produced otherwise”. There are cases 

where more than one threshold is being used for segmentation. In these cases, the 

process is generally called multi-level thresholding, or simply multi-thresholding. 

Multi-thresholding thus is defined as “a point operator employing two or more 

thresholds. Pixel values which are in the interval between two successive threshold 

values are assigned an index associated with the interval” [70]. Multi-thresholding is 

described mathematically as: 

 

kyxS =),( , if kk TyxfT <≤− ),(1 , k=0, 1, 2, …, m Eq. 2-3 

 

where (x, y) is the x and y co-ordinate of a pixel, S(x, y), f(x, y) are the segmented 

and the characteristic feature functions of (x, y) respectively, T0, …, Tm are threshold 

values with T0 equal to the minimum and Tm the maximum and m is the number of 
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distinct labels assigned to the segmented image [56]. Bi-level thresholding can be 

seen as a special case of multi-thresholding for m=2, thus two intervals are defined 

one between T0 and T1 and the second between T1 and T2. 

Level slicing or density slicing is a special case of bi-level thresholding by which 

a binary image is produced with the use of two threshold levels. “A binary one is 

produced on the output image whenever a pixel value on the input image lies between 

the specified minimum and maximum threshold levels” [70]. 

Based on the aforementioned definition a threshold operator T can be defined as a 

test involving a function of the form [60]: 

 

( )),(),,(,, yxfyxNyxT  Eq. 2-4 

 

where N(x, y) denotes some local property of the point (x, y) for example the average 

grey level over some neighbourhood. Depending on the functional dependencies of 

the threshold operator T, Weszka [204] and Gonzalez and Woods [60] divided 

thresholding into three types. The threshold is called global if T depends only on 

f(x, y). It is called a local threshold when T depends on both f(x, y) and N(x, y). Finally 

if T depends on the coordinate values x, y as well, then it is called a dynamic 

threshold. 

A global threshold can be selected in numerous ways. There are threshold 

selection schemes employing global information of the image (e.g. the histogram of a 

characteristic feature of the image, such as the grey scale value) and others using local 

information of the image (e.g. co-occurrence matrix, or the gradient of the image).  

Taxt et al [192] refer to these threshold selection schemes using global and local 

information as contextual and non-contextual thresholding respectively. According to 

Taxt et al, under these schemes, if only one threshold is used for the entire image then 

it is called global thresholding, whereas if the image is partitioned into sub-regions 

and a threshold is defined for each of them, then it is called local thresholding [192], 

or adaptive thresholding [214]. For the rest of this section, the definitions given by 

Weszka [204] and Gonzalez and Woods [60] will be used. 

Global threshold selection methods 

If there are well defined areas in the image having a certain grey-level value, then that 

would be reflected in the histogram to well separated peaks. In this simple case, 
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threshold selection becomes a problem of detecting the valleys of the histogram. 

Unfortunately, more often than not, this is not the case. Most of the times the different 

modes in the histogram are not nicely separated by a valley or the valley may be 

broad and flat, impeding the selection of a threshold. 

A number of methods are proposed that take into account some extra information 

about the image contents in order to make a threshold selection. For bi-modal 

pictures, Doyle [44] suggested the p-tile method which chooses as a threshold the 

grey-level which most closely corresponds to mapping at least (1-p) per cent of the 

grey level pixels into the object. If for example we have a prior knowledge that the 

objects occupy 30% of the image, then the image should be thresholded at the largest 

grey-level allowing at least 30% of the pixels to be mapped into the object. Prewitt 

and Mendelsohn [155] proposed a technique called the mode method, which involves 

smoothing of the histogram into a predetermined number of peaks. The main 

disadvantage of these methods is that knowledge about the class of images we are 

dealing with is required.  

A number of other methods have also been proposed to separate the different 

modes in the histogram. Nakagawa and Rosenfeld [130] assumed that the object and 

background populations are distributed normally with distinct means and standard 

deviations. They then selected a threshold by minimizing the total misclassification 

error. Pal and Bhandari [139] assumed Poisson distributions to model the grey-level 

histogram and proposed a method which optimises a criterion function related to 

average pixel classification error rate, finding out an approximate minimum error 

threshold. 

Local threshold selection methods 

A common drawback of all these methods is that they totally ignore any spatial 

information of the image. A number of methods were proposed that combine 

histogram information and spatial information to facilitate threshold selection. 

Weszka [205] proposed a way to sharpen the valley between the two modes for 

bi-modal images, by histogramming only those pixels having high Laplacian 

magnitude. Such a histogram will not contain those pixels in between regions, which 

help to make the histogram valley shallow. 

Weszka and Rosenfeld [206] introduced the busyness measure for threshold 

selection. For any threshold, busyness is the percentage of pixels having a neighbour 
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whose thresholded value is different from their own thresholded value. Busyness is 

dependent on the co-occurrence of adjacent pixels in the image. A good threshold is 

the point near the histogram valley, which minimizes the busyness. 

Watanabe et al [201] used the gradient property of the pixels to determine an 

appropriate threshold. For each grey-level they compute the sum of the gradients 

taken over all pixels having that specific grey-level value. The threshold is then 

chosen at the grey-level for which this sum of gradients is the highest. They reason 

that since this grey-level has a high proportion of large difference points, it should 

occur at the borders between objects and background. Kohler [95] suggests a 

modification of the Watanabe’s idea. He chooses that threshold which detects more 

high-contrast edges and fewer low-contrast edges than any other threshold. Kohler 

defines the set of edges detected by a threshold T to be the set of all pairs of 

neighbouring pixels, for which one pixel has a grey-level value less than or equal to T 

and the other has a grey value greater than T. The contrast of an edge comprising of 

pixels a and b is given as min{|I(a) – T|, |I(b) –T|}, where I(a) and I(b) is the grey-

level value (intensity) of the pixels a and b respectively. The best threshold is 

determined by that value that maximizes the average contrast, which is given as the 

sum of the contrasts of the edges detected by that threshold, divided by the number of 

the detected edges. 

Adaptive thresholding 

In cases where the image in question is noisy or the background is uneven and 

illumination variable, objects will still be darker or lighter than the background but 

any fixed threshold level for the entire image will usually fail to separate the objects 

from the background. In that cases adaptive thresholding algorithms must be used. As 

mentioned before in adaptive thresholding the image is partitioned into several blocks 

and a threshold is computed for each of these blocks independently. As an example of 

adaptive thresholding, Chow and Kaneko [34] determined local threshold values for 

each block using the sub-histogram of the block. Then they spatially interpolated the 

threshold values to obtain a spatially adaptive threshold for each pixel. 

Clustering 

Clustering, in the context of image segmentation, is the multidimensional extension of 

the concept of thresholding. Typically, two or more characteristic features are used 
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and each class of regions is assumed to form a distinct cluster in the space of these 

characteristic features. 

A cluster according to Haralick and Shapiro [70] is a homogeneous group of units, 

which are very like one another. Likeness between units is determined by the 

association, similarity, or distance between the measurement patterns associated with 

the units. Clustering is then defined as the problem concerned with the assignment of 

each observed unit to a cluster. 

Haralick and Shapiro [69] state that the difference between clustering and 

segmentation is that in clustering, the grouping is done in measurement space, while 

in segmentation the grouping is done in the spatial domain of the image. This is 

partially misleading since segmentation aims to do groupings in the spatial domain, 

but this can be achieved through groupings in the measurement space. The resulting 

clusters in the measurement space are then mapped back to the original spatial domain 

to produce a segmentation of the image. 

Any feature that one thinks is helpful to a particular segmentation problem can be 

used in clustering. Characteristic features commonly used for clustering include grey 

values taken with the use of different filters [59], or even features defined for the 

specific problem. As an example, Carlton and Mitchell [27] used a texture measure 

that counted the number of local extrema in a window centred at each pixel. They 

created three grey-level images using different thresholds. The grey-level value of the 

units in each of these resulting images is the number of local extrema produced by the 

used threshold. These three resulting images along with the original intensity image 

were used to define a four-dimensional space in which the clustering was performed. 

Clustering is mainly used for multi-spectral images. Consequently, clustering 

techniques are broadly used in colour image segmentation. As such, a detailed 

discussion of clustering methods will follow in chapter 2.2.3. 

2.1.2. Edge Detection based Methods 

Edge detection based segmentation techniques are based on the detection of 

discontinuities in the image. Discontinuities in a grey-level image are defined as 

abrupt changes in grey-level intensity values. Edges are therefore defined as the points 

where significant discontinuities occur. 
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The importance of edge detection lies to the fact that most of the information of an 

image lies on the boundaries between different regions, and that biological visual 

systems seem to make use of edge detection rather than thresholding [165]. 

Ideally, edge detection should yield pixels lying only on the boundary between the 

regions one tries to segment. In practice, the identified pixels alone rarely define a 

correct boundary sufficiently because of noise, breaks in the boundary and other 

effects. More often than not, the edge detection stage is followed by an edge linking 

and boundary detection stage, intending to combine pixels into meaningful 

boundaries. 

According to Davis [39], edge detection methods can be classified as parallel and 

sequential. In parallel techniques, the decision whether a pixel is an edge pixel or not 

is not dependant on the result of the operator on any previously examined pixels, 

whereas in sequential techniques it is. The edge detection operator in parallel 

techniques can therefore be applied simultaneously everywhere in the image.  

As far as it concerns sequential techniques, their outcome is strongly dependent on 

the choice of an appropriate starting point and on the way previous results affect both 

the selection and the result at the next pixel. Kelly [92] and Chien and Fu [33] used 

guided search techniques for this. The rest of this section will focus on parallel 

techniques. 

Since discontinuities in image are associated with high frequencies, an obvious 

way to enhance the edges would be high frequency filtering [60]. If for example we 

take the Fourier transform of the image and multiply it by a spatial filter, then the 

invert transform will yield enhanced edges. The design of the filter used is the crucial 

part for this process. 

Local operators 

Another common idea underlying many edge detection techniques is the computation 

of a local derivative operator. The first derivative of an image would feature local 

extrema at the points of transitions between regions of constant grey-level and zero 

plateaus at points in regions of constant grey-level. The second derivative is zero in 

areas of constant grey-level and presents zero crossings at the midpoints of transitions 

(Figure 2-1). 
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(a)

(b)

(c)

(d)

 

Figu

age, note the gradient edges of the stripe, which is usually the case with edges in images. 

l extrema appear at the points of transitions. (d) 

Seco

re 2-1 – (a) An image of a vertical white stripe over black background. (b) Profile of an horizontal 

line of the im

(c) First derivative of the horizontal profile, loca

nd derivative of the horizontal profile, zero crossings appear at the midpoints of transitions. 

 

The first derivative at any point in an image is obtained by using the magnitude of 

the gradient vector at that point. The gradient vector of an image at location (x, y) is 

defined as: 
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Eq. 2-5 

 

The magnitude of the gradient vector is generally referred to simply as the 

g

There is a number of operators approximating the first derivative such as 

Prewitt [154, 186], Sobel [45, 60, 186], Robinson [186], and Kirsch [94, 186] 

radient. 
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operators (Figure 2-2), which are based on a 3x3 neighbourhood. The Sobel operator 

has the advantage of providing both a differencing and a smoothing effect, which is a 

particularly attractive feature, since derivatives enhance noise. Prewitt’s operator is 
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Figure 2-2 – 3x3 Convolution Masks of some operators approximating the first derivative. Four out 

of the eight directions are depicted. 

 

Gradient operators are widely used, since they comprise a straightforward, 

computationally cheap parallel process. Local operators based on the second 

derivative have also been proposed. The Laplacian of a function is a second order 

derivative defined as: 
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The Laplacian operator may be implemented in various ways. It presents a number 

of disadvantages. Being a second order derivative operator, the Laplacian operator is 

very sensitive to noise. Furthermore, it produces double edges. 

A good edge detector should be a filter able to act at any desired scale, so that 

large filters can be used to detect blurry shadow edges and small ones to detect 

sharply focused fine details. Marr and Hildreth [113] proposed the Laplacian of 
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Gaussian (LG) operator as one that satisfies the above statement. The Gaussian part of 

the LG operator smoothes the image at scales accord g to the scale of the Ga

Then the zero crossings in the output image produced by the Laplacian part of the 

operator indicate the positions of edges. The space described by the scale parameter of 

the Gaussian and the zero crossing curves of the output image is known as the 

scale-space. Techniques based on scale-space analysis [26, 207] are also used to 

identify interesting peaks in histograms and will be discussed again in section 2.2.2. 

The Laplacian of a two dimensional Gaussian function of the form of Eq. 2-7 is 

given in Eq. 2-8. In Figure 2-3 the plot of the Laplacian of the Gaussian is shown, as 

well as a cross-section. The zero crossings of the function are at r=±σ, where σ is the 

standard deviation of the Gaussian. 
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Figure 2-3 – (a) A plot of the Laplacian of the Gaussian (∇2h); (b) a cross-section of ∇2h. 

 

The importance of Marr and Hildreth’s method lies partially to the introduction of 

the concept of scale to edge detection, a concept that has een widely used sin

54]. Lu and Jain [108] studied the behaviour of edges in the scale-space using the LG 

operator, aiming to derive useful rules for scale-space reasoning and for high-level 

 b ce [51, 
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com

posed 

which consider edge detection as an approximation problem. Hueckel [78] modelled 

the ideal edge by a step function and considered the actual edges in the image a

forms of this ideal model. Hueckel’s ideal edge was given by: 

db
dbps

>+⎩
⎨ +

=),,,,  Eq. 2-9 

=  Eq. 2-10 

odel of edges as large step changes in 

edges in natural scene images. They reason 

puter vision works. They gave a number of interesting theorems, facts and 

assertions, and analytically described the behaviour of edges in scale-space. 

Functional approximation techniques 

Apart from local operator based methods, there are a number of methods pro

s noisy 
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The best fit would be an edge of the above form that minimized a measure of 

closeness E between itself and the actual edge in the image. The measure chosen was 

the square of the Hilbert distances between F and f - where f(x, y) is the grey value of 

the pixel (x, y) - over a circular neighbourhood D around the point in question: 
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The results of the minimization procedure were the best fit and a measure of 

goodness for the fit. 

Elder and Zucker [49] state that the m

intensity would fail to detect and localize 

that a number of natural phenomena such as focal blurring, penumbral blurring and 

shading would produce a blurred edge rather than an ideal step response. They state 

that all these situations predict a sigmoidal luminance transition of the same form: 

 

)/()( rxfxI =  , where ( )21)arccos(1)( uuuuf −−=
π

 Eq. 2-11 

 

where r determines the degree of blur in the edge. Elder and Zucker constructed a 

model for the edge that encompasses a base step function for the edge, a Gaussian 
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blurring kernel to model the blur and a sensor noise function to model the zero-mean 

white noise introduced by the sensor. 

They state that because of a broad range of conditions, a number of edges having 

variable characteristics will be produced. Regardless of the physical structure from 

which they project, all edges should generally project to the image as sigmoidal 

luminance transitions according to the model proposed, over a broad range of blur 

scales. Elder and Zucker agree thus with other researchers [14, 104, 108, 113, 207] 

that operators of multiple scales must be used, since the appropriate spatial scale for 

local estimation depends on the local structure of the edge, and varies unpredictably 

over the image. They propose a way to define a locally computable minimum reliable 

 defined as the minimum scale for which the likelihood of error 

ignal to 

noi

scale (where reliable is

due to sensor noise is below a standard tolerance) for local estimation at each point in 

the image, based on prior knowledge of sensor properties. 

Haralick [67, 68] assumed that the intensity function of the image could be fitted 

with a number of sloped planes according to the gradient around each pixel, then 

edges were identified as the points having significantly different planes on either side 

of them. He attempted to least squares fit each pixel neighbourhood with a cubic 

polynomial in two variables. Having done that, the first and second derivatives could 

be easily calculated from the polynomial. The first partial derivatives determine the 

gradient direction. Given the gradient direction, the second directional derivative is 

used to determine whether a pixel is an edge location or not. 

Canny edge detector 

Canny [25] tried to mathematically derive an edge detector based on a set of certain 

rules governing the computation of edge points. According to Canny, a good edge 

detector should comply with three basic criteria. First, there should be a low 

probability of failing to mark real edge points, and low probability of falsely marking 

non-edge points. Thus, the edge detector should present good detection. The second 

criterion for the edge detector is that the points marked as edges should be as close as 

possible to the centre of the true edge. This is called good localization. Finally, the 

edge detector should give only one response to a single edge. Canny used the s

se ratio to mathematically model the first criterion about good detection. By 

maximizing the signal to noise ratio, good detection is ensured. The measure used for 

the localization criterion was the reciprocal of the root-mean-squared distance of the 
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marked edge from the centre of the true one. This measure increases as localization 

improves. To maximize simultaneously both good detection and good localization 

e ratio and the reciprocal of standard 

ith local processing techniques 

As mentioned before, edge linking usually follows the edge detection process. This 

edge linking (or boundary detection) process, aims to combine individual identified 

edge pixels into meaningful edges. The most straightforward way to do this, is to 

analyse the characteristics of pixels in a small neighbourhood around every identified 

edge pixel in the image [60], and link similar edge pixels. Similarity in that 

generally based on two properties: the strength of the response of the gradient 

operator used to produce the edge pixel (or any other metric indicating the strength of 

the

criteria, Canny used the product of signal to nois

deviation of the displacement of edge points. The third criterion, the single-response 

one, although implicitly captured in the first criterion, it was not captured in the 

mathematical form of it, and that was the reason why it had to be included as a third 

distinct criterion. Canny introduced a functional constraint, which eliminated multiple 

responses. The maximization of the product is done subject to this constraint. 

To generalize in two dimensions, Canny defined edges at directional maxima of 

the first derivative of the intensity function of the image and proposed a complex 

system of rules to combine edges detected at multiple scales. Canny’s operator was 

essentially one-dimensional, and was shown less accurate for orientation estimation of 

two-dimensional edges [109]. 

Edge linking w

case, is 

 edge pixel), and the direction of the gradient. In the case where a gradient operator 

was used to identify edge pixels, the strength of the response and the direction of the 

gradient are derived from the definition of the gradient vector [Eq. 2-5] and are given 

by equations: 
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Further processing usually consists of linking edge elements separated by small 

gaps and removing short segments that are unlikely to be part of an important 

boundary. Local processing methods for edge linking are usually generic and they do 

not give good results in many situations. More often than not methods aiming to 

identify certain shapes in the set of produced edge pixels are used. 

Line and curve fitting techniques for edge linking 

Lowe [107] describes a method to recognize three-dimensional objects from single 

two-dimensional images. His method is based on matching certain structures of 

identified lines with the three-dimensional description of the model in question. In 

order to group the edge points resulting from an edge detection process into lines, 

Lowe proposed a method based on a significance metric for each line fit. The 

significance of a straight line fit to a list of points was estimated by calculating the 

rati

rithm was proposed by Rosin and West [166]. 

n the straight-line description 

n is zero. This proved to happen often with short lines. For this 

metric, a lower significance value would indicate a more significant line. The 

o of the length of the line segment divided by the maximum deviation of any point 

from the line. This measure remains constant under different scales of the image. A 

line segment is then recursively subdivided at the point of maximum deviation, giving 

two smaller line segments, and the process is repeated until no line segment is larger 

than 4 pixels. A binary tree of possible subdivision for each line segment is thus 

created, and the significance of each sub-segment is calculated. Then following a 

bottom-up procedure a decision is made at each junction as to whether to keep the two 

sub-segments or replace them with the higher-order one. If the significance of any of 

the sub-segments is greater than the significance of the complete segment, then the 

sub-segments are preferred. This is a very compact approach, which manages to 

approximate any set of linked pixels with a number of line segments, independently 

from the scale of the image in hand. 

An extension of the above algo

They suggested that circular arcs could be detected i

using a similar algorithm to find the best fit of arcs and straight lines to the data. At 

each level of recursion, a decision is taken as to whether an arc is a better fit for the 

given set of points than a lower level description consisting of straight lines and arcs. 

Rosin and West used the reciprocal of Lowe’s significance metric, so that division by 

zero could be avoided when all the pixels lay directly on the straight line, thus the 

maximum deviatio
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sign

jects of known shape and size, locating those objects is 

gen

d due to Hough for replacing the problem of 

finding collinear pixels in the image, by the equivalent one of finding concurrent lines 

in the slope-intercept space. In general, the n lines in the slope-intercept space would 

intersect in n(n-1)/2 points, corresponding to the lines between each pair of points in 

the image plane (Figure 2-4). Finding exactly collinear sets of image points is possible 

by finding coincident points of intersection in the slope-intercept space, but this 

approach would be computationally exhaustive. Instead, Hough proposed to specify 

an acceptable error in the line parameter values, thus quantize the slope-intercept 

space in a number of cells. This array of cells is called the accumulator array. The 

method described reduces significantly the computational weight of working directly 

ificance metric for an arc is calculated similarly to the significance of line, as the 

maximum deviation of any point from the circle divided by the length of the arc 

segment. This is equivalent to the significance measure for straight lines, allowing 

direct comparison between the two. 

Hough transform based techniques for edge linking 

When the image consists of ob

erally a trivial task. In the vast majority of cases though, the actual objects in the 

image differ substantially from the description given, due to rotation, zoom, and 

certain shape distortions. In these cases even if an analytical expression of the shape is 

known beforehand, matching it with the edge pixels identified in the image is a 

complicated task. 

Suppose for example, the simple case where a number of edge pixels have been 

identified and the goal is to find lines that best fit on these pixels. The straightforward 

way to achieve it, would be to compute all the lines determined by every pair of 

pixels, and check the proximity of the rest of the pixels to each line. This is a 

computational prohibitive approach. One very effective method to solve the problem 

was proposed by Hough [77]. 

There are an infinite number of lines passing through a specific point on a plane. 

Each line can be described by it’s slope and intercept. The slope and intercept of 

every line passing through a specific pixel in the image plane would produce a 

straight line in the slope-intercept space. The Hough transform, involves transforming 

each identified pixel in the image into its equivalent straight line in the slope-intercept 

space. Rosenfeld [162] described a metho
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into the image space, while it is insensitive to missing parts of lines, noise and other 

non-line structures present in the image. 
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Figure 2-4 – (a) Image space for Hough transform; (b) Slope-intercept space for Hough transform. 

 

 with that approach, is that both slope and intercept, which were 

the param

One basic problem

eters used by Hough are unbounded (slope is infinite for vertical lines), 

complicating the application of the technique. Duda and Hart [46], proposed the use 

of a different parameter space. They proposed the use of the so-called normal 

parameterisation to describe a line. According to that, each line can be described by 

the angle of its normal θ and the algebraic distance from the origin ρ. Using these 

parameters, the equation of a line would be given by: 

 

θθρ sincos ⋅+⋅= yx  Eq. 2-14 

πθ <≤0 , DD 22 <≤− ρ  Eq. 2-15 

 

If θ is restricted to the interval [0, π] then the normal parameters for a line are 

unique. Each line in the image space would correspond to a sinusoidal curve, given by 

Eq. 2.1-10. Duda and Hart, transformed each identified pixel in the image to the 

corresponding sinusoidal curve in the parameter space. Collinear pixels in the image 

space, would correspond to two intersecting sinusoidal curves in the parameter space, 

thus the problem again was converted in finding concurrent curves in the parameter 

space (Figure 2-5). The advantage of using the normal parameterisation to describe 
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lines, is that both d ρ can be confined as shown in Eq. 2-15 where D is the 

distance between corners in the image, since points outside this rectangle correspond 

θ an

to lines outside the image in the image plane. 
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Figure 2-5 - (a) Image space for Hough transform; (b) θ-ρ space for Hough transform. 

 

n be described by an analytical 

is called a directed graph. If an arc is directed from node ni to node nj, then nj is called 

a successor of its parent node ni. The one node at level zero of the graph is called the 

Generalization to more complex curves that ca

equation is straightforward. In each case, the appropriate parameter space is 

constructed and quantized within the limits of the parameters. Then each identified 

edge pixel in the image would map to a number of accumulator cells for different sets 

of parameters. The accumulator cells with the higher number of counts would give the 

most probable parameters for the shape in question. If the desired region borders 

cannot be described using an analytical situation, a generalized Hough transform [12, 

40, 83] can be used. In this case, a parametric curve description is constructed based 

on sample situations detected in the learning stage. Finally, even if the exact shape of 

objects is unknown, as long as there is enough a priori knowledge to form an 

approximate model, a fuzzy Hough transform can be used [148]. 

Graph techniques for edge detection and linking 

Some methods have also been proposed to link edge elements based on representing 

them in the form of a graph and searching for an optimum path in it that corresponds 

to a meaningful boundary. A graph [59, 186] is a general structure consisting of a set 

of nodes ni and arcs between the nodes [ni, nj]. A graph in which the arcs are directed 
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start node, and the nodes in the last level are called the goal nodes. A numerical 

weight called cost can be associated with each arc. A sequence of nodes n1, n2, …, nk 

wit

 taking into account properties of edges, and the problem was 

red

he 

re of merit was defined as a 

 by itself with no 

supporting context, is probably not a part of any border. Edge relaxation is the process 

of the iterative evaluation of edge properties of each pixel towards achieving a better 

h each node ni being a successor of node ni-1 is called a path from n1 to nk and the 

cost associated with the path is the sum of the costs associated with its arcs. 

Martelli [114, 115] expressed the problem of detecting edges as a heuristic search 

for the optimal path in a graph. The nodes of the graph were the edge elements 

defined by two neighbouring pixels. Martelli introduced some constraints for the sake 

of simplicity. He assumed that the edge starts at the first row, ends at the last row, 

contains no loops and has no element whose direction is “up”. He constructed an 

evaluation function

uced to finding a path in the graph corresponding to an edge that minimized the 

evaluation function. 

Montanari [121] proposed a method for detecting curves in noisy pictures, where 

the properties of a curve are embedded in a figure of merit. This figure of merit was 

used to determine the relative value of different paths, but was not used to direct the 

search as in Martelli’s method. Instead, all the paths were enumerated, and then t

best one was chosen based on the figure of merit. The figu

function of the grey-level value of the pixels corresponding to the path and the slopes 

between adjacent pixels of the path. Dynamic programming was used to arrive at an 

optimum solution. 

The main advantage of using dynamic programming over boundary tracing as 

described in Martelli’s method is that a priori knowledge of start and end points is not 

necessary. Furthermore, Martelli’s method being sequential in nature does not provide 

for backtracking, so that once a mistake is made at some point, the resulting edge 

could prove far off from the actual one. On the other hand, Montanari’s approach 

based on dynamic programming requires higher execution time and more memory. 

Relaxation Techniques for edge detection and linking 

Considering identified edge pixels in the context of their neighbours can increase or 

decrease the quality of segmentation. For example a weak edge pixel between two 

strong edge pixels, could give an indication that the weak edge pixel should be part of 

the final edge segment. Contrary, a strong edge pixel positioned
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confide ach n proposed by Rosenfeld [163, 

ction Methods 

ng on the particular implementation, over a 

number of properties such as intensity, texture, colour or even semantic information 

ogeneity criterion is a very important side 

tion 

tech

nce of e  edge. Relaxation methods have bee

164], Zucker [222], Riseman and Arbib [157] and more recently Hancock and 

Kittler [65], which increase or decrease the confidence of each edge based on the 

strength of edges in a specified local neighbourhood. Hancock and Kittler make use of 

a dictionary to represent labelling possibilities for the neighbourhood of each pixel. A 

method based on crack edges (edges located between pixels) has also been proposed 

[66, 153]. Relaxation methods are parallel processes, and utilize spatial information, 

although the convergence rate of the process can often prove slow. 

2.1.3. Region Extra

The basic idea of region extraction methods is to divide an image into regions of 

maximum homogeneity. Homogeneity therefore is used as the main segmentation 

criterion here and can be defined, dependi

possibly available. The selection of the hom

of region extraction techniques. Another equally important part is the selection of the 

threshold -based on the same property as homogeneity- under which two regions can 

be characterised as being similar. 

Many region extraction methods can be found in the literature. They can roughly 

be categorized into region growing and merging techniques, region splitting 

techniques, region splitting and merging techniques and semantic region extrac

niques. 

Region growing and merging techniques 

The simplest form of region growing is pixel aggregation [60], which starts with a set 

of “seed” pixels in the image and from these grows regions by appending to each seed 

those neighbouring pixels that are similar to either the seed pixel or the pixels already 

in the region. Similarity is defined by the selection of the proper criterion for 

homogeneity and the proper threshold, as mentioned before. The results of the method 

are very sensitive to these selections as well as to the selection of the seed pixels. 

One of the first approaches to region growing is the one of Muerle and Allen 

[122]. A region was defined to be any portion of the image in which the distribution 

of intensity (grey-values) is reasonably uniform, thus they defined homogeneity in 

terms of intensity. The first step in their approach was to segment the image into a 

 35



Text Segmentation in Web Images Using Colour Perception and Topological Features 

number of cells of small size (2x2, 4x4, or 8x8) and calculate a statistical measure of 

intensity over the cells. Then, beginning with the first cell in the upper-left corner of 

the

of boundary segments, thus the 

per

o 

regions that could be sufficiently approximated by a single approximating function. 

He proved that if an image has been approximated by a large number of regions, then 

the number of approximating regions can be decreased by merging regions that have 

 image, they compared the statistics with those of each neighbouring cell to 

determine if they are similar, in which case they joined the two cells into a bigger 

fragment. The process was continued; growing the fragment by comparing it to all of 

its neighbours, until no neighbours remained that could be joined to the fragment. The 

next uncompleted cell was then used as the starting one and the process was repeated 

until all cells were assigned to some region. The only property employed by this 

method was intensity information. The results of the method are dependant to the 

order in which the cells are being assessed, as is every region growing and merging 

method. 

Brice and Fennema [20] used heuristics that evaluated parameters depending on 

more than one region. They started with individual pixels and following a process 

similar to that of Muerle and Allen [122] created regions of pixels having equal 

intensity. This first stage produces a large number of atomic regions in most of the 

cases. The concept of boundary was introduced. The boundary of each region is 

composed of a set of simply connected boundary segments, which are assigned 

strength according to the difference of intensities at each side of them. For each 

region, we can count the number of boundary segments having strength below a 

specific tolerance, as well as the total number 

imeter of the region. The heuristics introduced by Brice and Fennema were based 

on these boundary segments. The first heuristic, called the “phagocyte” heuristic, 

merges two adjacent regions if the boundary between them is weak (strength below a 

tolerance) and the resulting region has a shorter boundary than the previous two. The 

second heuristic, called the “weakness” heuristic merges two regions if the weak 

portion of their common boundary is some predetermined percentage of their total 

shared boundary. The first heuristic is more general, and the second is used to refine 

the results of the “phagocyte” heuristic, but cannot be used on its own since it does 

not consider the influence of different region sizes. 

Pavlidis [145] proposed a different approach to the problem of region growing 

using functional approximations. His technique was based on dividing the image int
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similar coefficients. Pavlidis initially sliced the image into one pixel wide stripes, and 

 larger ones, region 

spli

e the same as the mean grey level of the region. The 

algorithm subdivides regions imposing either a vertical or a horizontal partition, and 

continues doing so as long as a sub-region can be found whose mean grey level is 

sufficiently different from that of its parent region. Robertson et al. quantitatively 

defined the partition quality error of a region as the weighted sum of the grey level 

variance over every sub-region. The weights were given by the relative sizes of the 

sub-regions to the parent region. 

 

divided the stripes into segments such as the intensity of each of those segments could 

be approximated by a simple one-dimension linear function. These segments were the 

starting regions for the method, which considered joining regions with similar 

coefficients with the help of a graph representation of the starting segments. The only 

coefficient of the approximating function used in this implementation was its slope.  

Region splitting techniques 

Region splitting can be considered the opposite of region merging. While region 

merging is a bottom-up process combining smaller regions into

tting is a top-down process, starting with the whole image as one region, and 

dividing it in sub-regions so that the resulting regions conform to a homogeneity 

criterion. Although region merging and region splitting methods employ the same 

criteria about homogeneity and region similarity, the two methods are not dual, in the 

sense that even if identical homogeneity criteria were used, the two methods would 

not result in the same segmentation as can be seen in Figure 2-6. 

One of the first techniques using region splitting was proposed by 

Robertson et al. [160]. They defined a criterion for region uniformity, called 

G-regularity. Although the original algorithm was developed for multi-spectral 

images, the grey-scale equivalent of G-regularity would be the mean grey level 

(intensity) of any sub-region to b
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(a) (b) 

Figure 2-6 – (a) Different pyramid levels for a chessboard image; (b) The average grey-level for each 

pyramid level. Splitting the upper pyramid level does not result to regions of different average grey-

levels, so no splitting occurs. The lowest level’s regions have different average grey-levels so no 

merging can take place. Splitting and merging in this case would produce different segmentations, even 

if they use the same criteria. 

 

Splitting and merging techniques 

The next expected step in region extraction, was the joining of splitting and merging 

techniques. Horowitz and Pavlidis [76, 146] proposed a functional approximation split 

and merge technique, in which regions are described again in terms of an 

approximating function. The approximations are two dimensional here, in contrast 

with the previous work of Pavlidis [145]. A pyramidal structure was introduced 

(Figure 2-7), which is a stack of pictures beginning with the original picture at the 

bottom and pictures of decreased resolutions at higher levels. The picture at one level 

is produced from the picture at the level below by averaging the intensities of pixels in 

non-overlapping 2x2 squares. Thus, the picture at any level would be half the width 

and height of the picture at the level below. If any region in any pyramid level is not 

homogeneous, it is split into four regions, which are the corresponding regions at the 

level below. Similarly, if four regions exist at a pyramid having similar homogeneity 

values, they are merged into a single region in the above pyramid level. Splitting and 
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merging can therefore be described as moving up and down in this pyramidal 

structure. This pyramidal structure can be expressed as a quadtree where the root is 

the top level of the pyramid structure and each node is an element of some pyramidal 

level. A constraint imposed by the pyramidal structure used, is the assumption of 

square regions. A grouping operation that follows the split and merge operation is 

used in Horowitz and Pavlidis method that addresses this issue by merging adjacent 

regions regardless of the pyramidal structure. 

 

Sp
lit

tin
g

 

M
erging

 

(a) (b) 

Figure 2-7 – (a) Pyramid structure of an image. Each level is a decreased resolution copy of the image 

below; (b) Splitting and merging expressed as moving between levels of the pyramid. 

 

Based on the concept of splitting and merging, many approaches have been 

n adaptive split and merge algorithm. A 

Semantic region extracting techniques 

proposed. Chen et al. [32] proposed a

modification of the pyramidal structure, introducing overlapping regions, was 

proposed by Pietikainen and Rosenfeld [149-151], where each region has four 

potential parent regions and each parent region has sixteen possible child regions. A 

single-pass split and merge method was proposed by Suk and Chunk [191], using a 

dictionary of the twelve possible splitting patterns for a 2x2 block of pixels. A single-

pass method is advantageous it terms of memory usage which can prove high for split 

and merge methods [22]. 

In all the methods discussed up to this point, only heuristics based on local properties 

of regions were used, like intensity. Here, a number of techniques suggested that 

employ semantic information to facilitate merging will be described. Semantic 

segmentation methods interpret the regions as they are formed, using a-priori 
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information about the contents of the image, and let these interpretations influence the 

merging process. Semantic information was first incorporated in the region extraction 

process by Gupta and Wintz [63, 64] and Feldman and Yakimovsky [50, 212].  

Gupta and Wintz [63, 64] developed a system to segment satellite images. The 

clas

wo adjacent regions, the 

pro

ses of objects expected to be found in such images are related to earth structures 

such as water, sand, forest etc. This set of predetermined classes was the semantic 

information incorporated in the technique. The first step of the process is similar to 

that of Muerle and Allen [122]. The image is partitioned in cells and neighbouring 

cells having similar intensity distributions are merged. Following that step, each 

resulting region is interpreted as belonging to one of the predetermined classes. As a 

final step, neighbouring regions are checked again and merging of regions having 

been assigned to the same class occurs. 

Feldman and Yakimovsky [50, 212] took the idea one step further. They did 

incorporate semantic information about a number of possible classes in which each 

identified region should fall, but they also checked relations between regions, based 

on this same semantic information. The goal of the approach was to maximize the 

probability that the image was correctly segmented, thus maximize a predefined 

objective function. The objective function used is conditioned upon both the 

probability that the regions were correctly interpreted as one of the predetermined 

classes, as well as the probability that the boundaries were correctly placed between 

regions. For example, if two predetermined classes were defined, one for the “sky” 

and the other for “ground”, then we expect “sky” to be above “ground”, and the 

interpretation of the borders should reflect this knowledge. Feldman and 

Yakimovsky’s approach starts with a region merging process, controlled by general 

heuristics like the ones mentioned earlier. When this initial merging terminates, 

semantic information is incorporated and for every t

bability that their border separates them into two regions of the same interpretation 

is computed. If this probability is exceeding a specified tolerance, the two regions are 

merged. After this step terminates, the probability that a region belongs to each of the 

predetermined classes is computed for each region. The region with the highest 

confidence is assumed correct and marked as final. The interpretation probabilities of 

all its neighbouring regions are updated, in order to maximize the objective function 

mentioned before. The next higher confidence region is marked as final, and the 

process continues until all the regions have been assessed. 
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Semantic information in the aforementioned techniques was incorporated at a later 

stage, after an initial segmentation had already occurred. Although this initial 

segmentation reduces the computational overhead of the method, it is difficult to stop 

the process at a point when there are neither to many or too few regions in the image. 

Thus the conventional split and merge techniques, result in under-segmented or 

ove

etation hypotheses 

and

should die, and a new population is generated 

from the survived members. In that manner, good mergers (as assessed by the 

nes are discarded. In a method 

omplicated in the sense that the feature 

space is one-dimensional. The difficulty increases with the introduction of colour in 

r-segmented images. Furthermore, the results are sensitive to the split / merge 

order, so even if a merger produces a homogeneous region, there is no way to say that 

a different merger would not produce an even better one. Starting from partially 

processed data, semantic segmentation tries to maximize an objective function. Both 

the fact that some information could already have been lost, and the fact that the 

semantic segmentation part is also sensitive to the merge order, could result in finding 

only a local maximum of the objective function, thus the process ends in a local 

optimum of region labelling. 

Sonka et al. [186] describe a semantic genetic segmentation method that addresses 

these problems. The genetic segmentation method uses an objective evaluation 

function, similar to the ones used in previously mentioned methods, which gives a 

measure of the goodness of the segmentation. An over-segmented image called a 

primary segmentation is used as the starting point. The genetic algorithm is then 

responsible to generate a population of segmentation and interpr

 test them according to the evaluation function. The testing of the whole 

population occurs in a single step, in which a decision is made about which 

hypotheses should survive and which 

objective function) are allowed to survive and bad o

like this, no merge or split is final. A better segmentation is looked for, even if the 

current ones are already good. This means that ultimately the global maximum of the 

objective evaluation function will be reached, and not a local one. 

Incorporating semantic information into the segmentation process is 

advantageous, but it is also difficult and usually results in complex techniques 

expensive in memory usage and time. 

2.2. Colour Segmentation techniques 

Grey-scale image segmentation is not too c
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ima

of trying to extend to colour 

images, methods originally proposed for grey-scale ones. This introduces a number of 

problem d later on. 

sult of light in the visible region of the spectrum (having 

wav

which case it is called 

“psychophysical colour”. 

Wyszecki and Stiles [210] define psychophysical colour as following: “Colour is 

that characteristic of visible radiant energy by which an observer may distinguish 

differences between two structure-free fields of view of the same size and shape, such 

as may be caused by differences in the spectral composition of the radiant energy 

concerned in the observation”. For simplicity reasons, the word colour is used 

throughout this thesis referring to psychophysical colour. 

 

ges. The feature space of colour images is inherently multi-dimensional, since 

three (in some cases more) components are needed in order to describe each colour. 

Nevertheless, generally colour segmentation approaches do not treat a pixel’s colour 

as a point in a colour space; instead, they decompose it into three separate values, 

which they recombine later on. This is the natural result 

s, which will be explaine

In the first section of this chapter, a definition of colour is given and a brief 

description of colour systems and their importance for colour image segmentation is 

examined. The remainder of this chapter comprises a review of techniques used for 

colour image segmentation along with a critical appreciation of methods proposed. 

Finally, concluding remarks are given in the last section. 

2.2.1. Colour 

Colour is the perceptual re

elengths between approximately 400nm to 700nm). More formally, the word 

colour can be used to define two similar but distinct effects. Colour is used to define 

the aspect of human perception concerned with the ability to make a distinction 

between different spectral power distributions, in which case it is called “perceived 

colour”. The word colour is also used to define the characteristic of a visible radiant 

energy itself, which causes such a sensation, in 
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Figure 2-8 – CIE standard daylight illuminant D65 relative spectral power distribution. The power of 

each wavelength is normalized so that the power at λ=560nm equals 100. 

 

A colour stimulus is radiant energy of given intensity and spectral composition, 

entering the eye and producing a sensation of colour. This radiant energy can be 

completely described by it’s spectral power di 31 

example, Figure 2-8 shows the spectral power distribution of CIE (Commission 

Internationale de l’Eclairage or International Commission on Illumination) standard 

daylight illuminant D . Using 31 com

stribution. This is often expressed in 

components, each representing power in a 10nm band from 400nm to 700nm. For 

65 ponents is a rather impractical and inefficient 

way to describe a colour, especially when a number of colours must be described and 

communicated, which is the case with computer graphics. A more efficient way 

would be to determine a number of appropriate spectral weighting functions to 

describe a colour, and it proves that just three components are adequate for that, based 

on the trichromatic nature of vision. CIE standardized in 1931 a set of spectral 

weighting functions, called Colour Matching Functions, which model the perception 

of colour. These curves are referred to as x , y , and z , and are illustrated in Figure 

2-9. A more detailed discussion on human vision and colour systems is available in 

Appendix A, while colour systems in the context of colour image segmentation are 

 

briefly discussed later in this section. 
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Figure 2-9 – CIE Colour Matching Functions. 

 

Colour in Computers 

Colour is reproduced in Cathode Ray Tube (CRT) displays in an additive manner by 

different colours (red, green and blue) produced by the 

 determine the actual colours of an image. A set of primaries that closely 

rep

mixing three lights of 

phosphors of the screen. Thus three components are being used, namely R, G and B 

which express the participating power of each mixing colour. Each component is 

quantised in 28=256 levels, thus a CRT display can produce 2563 colours, by mixing 

different amounts of light of each component. Depending on the technical and 

physical characteristics of the CRT display, only a certain gamut of colours can be 

produced. The largest range of colours will be produced with primaries that appear 

red, green and blue, and that is the reason why phosphors producing colour stimulus 

with exactly those primaries are employed. Nevertheless, since there are no standard 

primaries and no standard white point (see Appendix A) RGB information alone is not 

adequate to

resent the primaries used in CRT monitors are the ones specified for the HDTV 

protocol by the standard ITU-R recommendation BT.709 [84]. The majority of 

monitors conform to Rec.709 within some tolerance, so it is a safe assumption that the 

same RGB code will produce the same colour on different CRT monitors. 

Size of Colour Images 

Since three components – namely R, G and B – are required to code each colour, in 

contrast to only one grey-scale component needed to code intensity, a colour image 

would generally contain three times the amount of information contained in a grey-
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scale one. Each component is usually quantised to 8 bits in order to eliminate 

distinguishable quantisation steps. Older hardware used to have problems handling 

full-colour images, due to the large memory requirements and the size of data that had 

to be manipulated. The large size of colour images does not pose that many problems 

to current hardware, nevertheless when size and transmission speed is an issue 

(e.g. World Wide Web), methods to reduce the overall size of colour information are 

welcome. 

Most of the existing techniques to reduce the size of colour images achieve so by 

optimal viewing 

resu

images that complicate image processing and image analysis techniques. 

Co

be 

sum

discarding some amount of “excessive” colour information. Some common 

techniques used are colour quantisation and bit dropping. Many image display devices 

and graphics file formats allow only a limited number of colours to be simultaneously 

displayed. This set of available colours is called palette. Colour quantisation is the 

process of selecting the optimal colour palette and the optimal mapping of each pixel 

of the image to a colour from the palette. A number of methods have been proposed 

for colour quantisation [19, 73, 138, 142]. When images are quantised to very few 

levels, error diffusion techniques are usually employed to achieve the 

lt [23, 138]. Bit-dropping is a special case of colour quantisation, where the 

palette of available colour is constructed by removing the lower order bits of each 

component. Usually three bits are used for the red and green component and two bits 

for the blue one, resulting to an 8-bit description of each colour. All types of colour 

reduction techniques discard useful colour information and introduce certain artefacts 

to the 

lour Systems 

Many colour systems have been proposed throughout history for the systematic 

ordering of colours. The choice of the colour system to use with a colour image 

segmentation method has a significant impact on the results. An understanding of the 

basic colour systems that are in wide use nowadays is vital for understanding colour 

image analysis. In this section, some basic information about colour systems will 

marized in the context of colour image segmentation. A more analytical 

discussion about colour systems and human perception along with mathematical 

transformations between key colour systems is given in Appendix A. 

The most widely used colour system in computer applications is RGB. As 

mentioned before, the RGB colour system directly describes the way colours are 
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mixed on computer monitors. Although RGB is hardware dependant, in the sense that 

the same RGB colour may be slightly different between different monitors, it is the 

default choice for most applications because of its simplicity and low computational 

cost. 

Various kinds of colour attributes can be calculated from the RGB components. 

he perceived distance of the 

col

Ma

I1=(R + G + B)/3, I2=R - B and I3=(2G - R - B)/2 are effective, and that in many 

An interesting set of attributes, in the sense that they are representative of human 

perception, is Hue, Lightness and Saturation. These are psychological attributes 

related to human impressions of colour. The use of such perceptually based quantities 

can prove more suitable for the analysis of images created to be viewed by 

humans [98, 195]. HLS, HVC and HSI are colour systems based on these attributes. 

A significant problem with most colour systems is that the distance of two colours 

in the colour system does not correlate in any way with t

ours (how similar or dissimilar they are). For this reason, CIE proposed certain 

transformations of the XYZ colour system, resulting in systems that exhibit greater 

perceptual uniformity than XYZ. CIE L*a*b* [116, 159] and CIE L*u*v* [30] are such 

colour systems, and are used when a colour distance measure that correlates well to 

the perceptual colour distance is needed. The only disadvantage of using either of 

these systems is that the systems being hardware independent it is difficult to convert 

to and from them, and extra information about the hardware used is needed. 

Colour Systems for Colour Image Segmentation 

ny researchers tried to identify which colour system, or which colour features are 

the best to use for computer imaging. Ohlander, Price and Reddy [135] employed nine 

redundant colour features (Red, Green, Blue, Y, I, Q, Hue, Saturation and Intensity) 

for colour image segmentation and reported that Hue was most useful, whereas the set 

of YIQ was rarely used. Nevatia [131] also concludes by extending the Hueckel 

operator for colour images that the intensity and chromaticity coordinates give better 

results than the R, G, B values in detecting colour edges. 

Ohta, Kanade and Sakai [136] conducted a systematic experiment of 

segmentation, and derived three effective colour features in terms of a linear 

combination of R, G and B components. They performed a recursive thresholding 

segmentation algorithm similar to Ohlander’s and calculated new colour features at 

each step by the Karhunen - Loeve transformation of R, G and B. They found that 
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cases the first two features only were adequate for a good segmentation. These three 

features strongly correlate to the three components of the CIE L*a*b* colour system. 

Schacter, Davis and Rosenfeld [176] also suggested that the use of a uniform 

colour  performance of colour 

ardware profiles are increasingly 

 developed. sRGB [190] is such a colour system, 

ly splitting the image in two, 

based on the peak selected. The nine colour features used were collected from three 

system such as the CIE L*a*b* could improve the

clustering. Furthermore, Zhang and Wandell [217] proposed a spatial extension of the 

CIE L*a*b* colour system in order to simulate the spatial blurring that naturally 

happens by the human visual system. The image is transformed into an opponent 

colours space and each opponent-colours image is convolved with a kernel whose 

shape is determined by the visual sensitivity to that colour area. 

Choosing the appropriate colour system to use is not a trivial task. Each 

application has different objectives and requirements, and one colour system cannot 

always be the right choice. The latest developments are towards systems that are 

hardware independent and computationally inexpensive. In order to preserve colour 

appearance between different monitors, special h

used, and new colour systems are

developed for use in the World Wide Web. 

2.2.2. Histogram Analysis Techniques 

Although colour information is fully described by three or more components as 

discussed before, the complexity of working with all colour components 

simultaneously, lead to simpler approaches that work with one or two colour 

components at a time. Some of the earliest approaches for segmenting colour images 

were based on 1D histogram analysis of colour components of the image. In most of 

these methods, histograms for all colour components available are computed, but 

segmentation happens by working on one of the histograms, and recursively splitting 

the feature space into clusters, one colour component at a time. A number of 

histogram analysis methods will be discussed in this section, working our way to 

more complex clustering schemes in section 2.2.3. 

Histogram Analysis Techniques 

One of the first colour segmentation methods proposed is by Ohlander, Price and 

Reddy [135]. The method is based on selecting the best peak from a number of 

histograms of different colour features, and recursive
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col

 then 

ide

d many of 

the methods that follow are also influenced by Ohlander’s approach. In addition, 

Ohlander, Price and Reddy, suggested several improvements for the basic scheme, 

such as removing small regions, work on a reduced image version, using of 

operators to produce more features (especially for monochromatic images) etc. 

inaga [195] proposed a recursive method based on histogram analysis of the 

haracteristics and a criterion defined as: 

our systems: RGB, HSI and YIQ. The method starts by considering the whole 

image as one region, and computing all nine histograms for it. The histograms are 

smoothed in order to eliminate small peaks, and the best peak is then selected among 

the remaining ones. The goodness of a peak is determined by a set of seven conditions 

based on previous work by Ohlander [134]. The image is then thresholded according 

to the peak selected. Points within the thresholds defined by the peak (the left and the 

right minimum) are set to “1” and the rest are set to “0”, thus creating a binary image. 

This image is subsequently smoothed in order to eliminate small holes in regions, 

small regions or thin connections between regions. Connected regions are

ntified in the thresholded and smoothed binary image, and a similar region 

segmentation is performed for the pixels of each region, and for the remainder pixels 

of the image not assigned to any of the regions extracted. The process stops when too 

few points are left, or no good peaks can be identified. 

Ohlander’s method has been the base of a number of approaches, which follow the 

same scheme of recursive thresholding of 1D histograms. Methods using different 

colour features, and a variety of conditions to select the best peak of the histograms 

have been proposed. For the experiment of Ohta, Kanade and Sakai [136] mentioned 

in the previous section segmentation is performed in a similar manner, an

textural 

Tom

three perceptual attributes of the Munsell colour system. The three attributes of the 

system are Hue, Value (which corresponds to Lightness) and Chroma (which 

corresponds to Saturation or Colour Purity). A mapping between four components 

(B/W, R, G, B) measured with a drum scanner and the three components of the HVC 

colour system, is determined by measurements of a number of standard-colour chips. 

The histogram of each attribute is then calculated for the whole image, and the most 

significant peak is selected from the set of the three histograms. Peak selection is 

performed based on certain peak c
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fwhmT
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f
a

p 100
⋅=  Eq. 2-16 

 

where Sp is the peak area, Ta is the area of the whole histogram, and fwhm is the full 

width at half-maximum of the peak. The pixels that fall in the range demarcated by 

the peak define a sub-region. The sub-region is extracted and the thresholding process 

is repeated for the pixels of the sub-region, leading to the detection of the most 

significant cluster. The process finishes when the histograms become mono-modal. 

Following a labelling step based on the above segmentation, the same procedure of 

recursive thresholding is applied to the remaining of the pixels, identifying in this way 

the rest of the important clusters. 

Tominaga also proposed a modification of the aforementioned algorithm [196]. 

The first step here is essentially the sam

ain of cluster m1. In a similar 

fash

r 

Lightness, Hue and Chroma. The method proposed is similar to Ohlander [135] and 

Tominaga [195] in the sense that clusters are identified by recursive thresholding of 

e as described above, modified to overcome 

the problem of handling overlapping clusters. The colour space used this time is the 

CIE L*a*b*. A second step is supplemented to the algorithm, which classifies again the 

pixels, based on a colour distance metric in CIE L*a*b*. A number of colours are 

initially identified according to the regions the image was initially partitioned into. So 

if K is the number of regions resulted by the first step, K colours (the colours of the 

regions) are identified as representative of the image. Let k1, k2, k3 …, kn be the set of 

representative colours. The first colour is used as the centre for a first cluster m1, so 

that m1=k1. The second colour is then compared to m1 in terms of its distance in CIE 

L*a*b*. If the distance is more than a threshold T, then a new cluster is created with 

centre m2=k2; otherwise, k2 is assigned to the dom

ion, the colour difference of each representative colour to each established cluster 

centre is computed and thresholded. A new cluster is created if all of these distances 

exceed the threshold T, otherwise the colour is assigned to the class to which it is 

closest. 

An approach that operates in the CIE L*a*b* colour space has been proposed by 

Celenk [31]. Celenk defines a set of cylindrical coordinates in CIE L*a*b* which 

resemble the Munsel colour system, and concur well with the accepted physiological 

model of colour vision. The coordinates used are named L*, H° and C* and stand fo
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the 1D histograms of the colour features. The colour space is projected onto the 

selected coordinate axes repeatedly until the image clusters are enclosed in some 

specified volume elements. The innovative point in Celenk’s approach is that a cluster 

isolation step is also employed to separate neighbouring clusters, based on Fisher 

linear discriminant function. 

When projecting the feature space onto a lower-dimensional space, it is expected 

that some clusters that were separable in the original feature space, are no longer 

separable in the lower-dimensional space. For example, a peak in a 1D histogram for 

a colour image may reflect a number of clusters (Figure 2-10a). Furthermore, any 

clustering that emanates from thresholding 1D histograms can only produce 

computational cost of these methods makes them a preferable choice in many cases. 

rectangular clusters in the original (Cartesian) feature space, limiting vastly the 

flexibility of the method (Figure 2-10b). Nevertheless, the lower complexity and 

 

Class A
Class B
Class C

Class A

Class B

  

(a) (b) 

Figure 2-10 – (a) Peaks in the 1D Histograms, reflect more than one cluster. (b) Even if a good 

separation of the feature space can be achieved by analysing 1D Histograms, only rectangular clusters 

can be obtained. 

 

Methods based on lower-dimensional space analysis, especially recursive 

thresholding techniques [135], are commonly used as a first step in more complicated 

methods [177] as will be seen in later sections. 
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2.2.3. Clustering Techniques 

The multidimensional extension of the concept of thresholding is called clustering. 

Clustering is the process of assigning units that share common characteristics in a 

number of homogeneous partitions in the feature space called clusters. Clustering 

algorithms in the literature can be broadly divided in hierarchical clustering and 

partitional (or non-hierarchical) clustering algorithms. 

Hierarchical clustering algorithms produce a tree structure of a sequence of 

clusterings. According to their tree-structure, hierarchical clustering algorithms can be 

cate

ngle partitioning of the data set in 

eve the 

nsive 

pro

gorized into nested and non-nested. In nested hierarchical clusterings, each cluster 

fits itself in whole inside a larger cluster of a higher scale, whereas in non-nested 

hierarchical algorithms a cluster obtained at a smaller scale can divide itself into 

several parts and fit those parts in different clusters at a higher scale. Nested 

tree-structures are usually easier to use, nevertheless once a cluster is formed, its 

members cannot be separated subsequently, making nested hierarchical clustering 

algorithms less flexible than non-nested ones. 

Partitional clustering algorithms produce a si

contrast to hierarchical ones. Most partitional clustering algorithms achi

clustering through the minimization of appropriate measures such as cost functions. 

The high complexity and computational cost of those algorithms necessitates the use 

of techniques such as simulated or deterministic annealing to lower the computational 

overhead and ensure to a certain degree that the global minimum of the criterion used 

has been reached. K-means clustering, ISODATA and c-means clustering are just a 

few examples of partitional clustering algorithms. 

Clustering is a generic process used across a variety of fields. In the context of 

colour image segmentation, the feature space commonly used for clustering is the 

colour space employed for the description of the image. Since colour spaces are 

inherently three-dimensional, clustering is usually a computationally expe

cess, therefore a number of methods have been suggested that work in lower-

dimensional spaces. A brief description of two two-dimensional clustering approaches 

will be given first, followed by a critical review of several multi-dimensional 

hierarchical and partitional clustering techniques. 
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Two-dimensional Clustering Techniques for Colour Image Segmentation 

Concerning multidimensional measurement space clustering, Haralick and Shapiro 

[69] propose to work in multiple lower order projection spaces and then reflect the 

the full measurement space. “Suppose, for example, that the 

rring effect of lateral retinal interconnection (by 

abstract image first, and then focus on the details). A data set, 

authors describe 

both nested and non-nested hierarchical clustering algorithms based on scale-space 

clusters identified back to 

clustering is done on a four band image. If the clustering done in bands 1 and 2 yields 

clusters c1, c2, c3 and the clustering done in bands 3 and 4 yields clusters c4 and c5, 

then each possible 4-tuple from a pixel can be given a cluster label from the set {(c1, 

c4), (c1, c5), (c2, c4), (c2, c5), (c3, c4), (c3, c5)}. A 4-tuple (x1, x2, x3, x4) gets the cluster 

label (c2, c4) if (x1, x2) is in cluster c2 and (x3, x4) is in cluster c4.” However, as Pal and 

Pal [140] comment on this suggestion, this virtually assigns a point (a 4-tuple) in two 

different classes, without it being any kind of probabilistic or fuzzy assignment. 

In an early work Ali, Martin and Aggarwal [3] employed 2D scatter plots of the 

three colour components in order to help define the clusters in the 3D space. The 

colour components used were X, Y, and I, where I approximates the intensity and X 

and Y are two chromaticity coefficients. The segmentation operation proposed was an 

interactive procedure which allowed the user to define the 3D clusters by selecting 

rectangular areas on the projections of the XYI normalized colour space onto the X-Y, 

X-I and Y-I planes. Areas of more complicated shapes were included in later 

refinements of the application [173], these included ellipsoid areas and areas bounded 

by two second-order curves in X or Y and a range in I. 

Hierarchical Clustering 

Leung, Zhang and Xu [99] give a comprehensive study of hierarchical clustering 

algorithms. Their rationale is that since the human visual system has become optimal 

in clustering images through years of evolution, a clustering approach should be 

sought which is influenced by the way humans cluster data. Therefore, they use 

scale-space theory to model the blu

which we perceive an 

according to the authors, can be considered as an image, were each datum is 

essentially a light point. By blurring this image, each datum becomes a light blob and 

smaller blobs merge into larger ones until the image contains only one big light blob. 

If each blob is considered to be a cluster, then the whole process can be described by a 

hierarchical clustering with resolution as the height of the tree. The 
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the

ion of the best clustering.  

K-m

1<i<K. Let also 

x1, 

ery feature vector of the data set to one of the clusters according to their 

distance (Euclidean) from the mean of the cluster. The mean of each cluster is then 

recalculated as the mean of all the feature vectors allocated to the cluster. The final 

step of the algorithm is to reassign all the feature vectors of the data set to the new 

lusters. 

y attractive 

in some applications where data are acquired over a period of time. 

ory, but the centre of attention is at ways to assess the goodness of a cluster and to 

select the best clustering. Towards this end, they propose a set of validity criterions 

for clusters. Exploiting the hierarchical clustering structure, they reason that a validity 

criterion can be the range of scales in which a cluster is visible, in other words, the 

lifetime of a cluster. They also define a mean lifetime for a particular clustering, based 

on the lifetimes of its clusters, and propose the use of this metric to facilitate the 

selection of the best clustering. One of the main advantages of this approach is that 

the hierarchical algorithms suggested have no need for initialisation, while scale-space 

theory provides a base for the construction of new rules for the validity of clusters and 

the select

eans Clustering 

One of the most popular algorithms for partitional cluster analysis is the K-means 

algorithm, first proposed by MacQueen [111]. The number of clusters for the K-

means algorithm must be known beforehand and is assumed to be K. In reality, when 

the number of classes in the image is not known, K-means clustering can be repeated 

for different values of K and the best clustering finally decided upon. 

Let mi be the mean of the vectors of cluster i, where 

x2, x3 … xn be the feature vectors (points) of the data set. The algorithm starts by 

making initial guesses for the mean vectors of the K clusters. There are many methods 

proposed to select the initial set of cluster means [2, 18], although in several cases a 

random choice is made. Having defined the means of the clusters, the next step is to 

assign ev

c

There are many variations to this algorithm, the most common one being to repeat 

the second part of recalculating the means of the clusters and reassigning the feature 

vectors of the data set to the new clusters until convergence, that is until no changes in 

the mean of any cluster occur. Another way to modify the K-means clustering 

procedure is to update the means one feature vector at a time, rather than all at once. 

This is often referred to as sequential K-means clustering and is particularl
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Essentially, K-means algorithm aims to minimize an appropriate criterion. The 

sum of squares criterion, given in Eq. 2-17, is most commonly used. More often than 

not, a local minimum is reached instead of the global one, necessitating the use of 

techniques such as simulated or deterministic annealing in order to achieve a better 

solution. 
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= ∈

been used a lot for colour image segmentation. An 

example is the method proposed by Weeks and Hague [203], who perform K-means 

 breaking the clustering process 

inate between the colours; instead 

they will perceive an average of the colours present. In order to simulate this 
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K-means clustering has 

clustering in the HSI colour space. They also propose

in two, one in the Intensity – Saturation two-dimensional space and one in the Hue 

one-dimensional space, biasing that way the segmentation process towards a colour’s 

Hue value, which they the consider more important for human perception. 

The K-means clustering technique has a number of weaknesses. The most 

prominent disadvantage is the fact that the results of the clustering depend on the 

number of clusters, and the way the initial means for them are initialised. It frequently 

happens, that non-optimal partitions are found. The standard solution to this problem, 

is to try a number of different starting points, or the use of techniques such as 

simulated or deterministic annealing as mentioned before. Depending on the initial 

selection of cluster means, it is possible that the set of feature vectors closest to one of 

the means is empty therefore that specific mean cannot be updated. Special cases like 

these have to be properly handled by each implementation. K-means clustering is 

often used as a first step in more complicated approaches. An example of such an 

approach will be given next. 

K-means Clustering and Probabilistic Assignment 

Mirmehdi and Petrou [118] suggested a method to segment colour image textures 

based on human perceptual characteristics. When an observer deals with multi-

coloured objects, their colour matching behaviour is affected by the spatial properties 

of the stimuli. For example, when a number of pixels of different colours are 

contained in a small area, humans cannot discrim
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characteristic of human perception, a multi-scale representation is constructed for the 

ster. Core 

clusters are then identified, by means of checking a confidence measure for each pixel 

with which it may be associated with each cluster. Pixels that present a confidence 

higher than 50% are assigned to a cluster. The image pixels of the core clus

used to construct 3D colour histograms, which are then used for probabilistic 

ent of all other pixels to the core 

nction 

bas

ters, e.g. one can 

dynamically select the appropriate number of clusters depending on the strength of 

emberships across clusters [24]. The objective function used is defined as 

 

Eq. 2-18 

 

where µik is the fuzzy membership value of the pixel k in the i cluster, dik is any inner 

product induced norm m m controls the nature of clustering (with hard clustering 

m), and U is the fuzzy 

c-partition of the image over the set V of the means of the c clusters. Local extrema of 

is objective function are indicative of an optimal clustering of the input data. 

image. Images of different scales are produced by smoothing the original image in 

three bands according to the suggestions of Zhang and Wandell [217], as discussed in 

section 2.2.1. A K-means clustering algorithm with a large K is then used to initialise 

the segmentation at the coarser level. After this first segmentation, clusters that share 

a common border are checked in terms of the average colour of their border pixels in 

the CIE L*u*v* colour system, and if their colour distance (Euclidean distance in 

CIE L*u*v*) is smaller than a tolerance, they are merged into a bigger clu

ters are 

assignm clusters. The 3D histograms are recalculated 

for every resolution following a coarse to fine scheme, and the probabilistic 

assignments are updated in each step. 

Fuzzy c-means Clustering 

The fuzzy c-means algorithm [15] uses iterative optimisation of an objective fu

ed on a weighted similarity measure between the pixels of the image and the 

means of each of the clusters. The number of clusters is once again predefined, 

although methods have been proposed that take advantage of the fuzzy character of 

the algorithm to determine the appropriate number of clus

m
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The algorithm starts by fixing the number of clusters c, and the value of m, and 

choosing any inner product induced norm me hen th  fuzzy c-partition, U0 is 

initialised (e.g. uniformly). For each step b (b=0, 1, 2, …), the set of means V  of the 

c clusters for the fuzzy c-partition Ub are calculated according to: 
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Next, the c-partition U

n
m

b is updated and the memberships in Ub+1 are calculated as 

follows. Let dij=||xk-vi||, where vi is the mean of cluster i. Then 
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Finally, the two c-partitions Ub and Ub+1 are compared, and if their difference is 

less than a preset threshold the process stops, otherwise it returns to the previous step 

of computing the new set of means Vb+1 for the new c-partition. 

A fuzzy c-means clustering algorithm has been proposed by Huntsberger, Jacobs 

and Cannon [81], for the segmentation of col ages. The number of clusters is 

predefined to four, but the pixels that are 

our im

not assigned to a cluster due to a low fuzzy 

membership value, are fed back to the procedure, defining four more clusters. Initially 

the algorithm clusters a randomly chosen sample of 2400 pixels taken from the image 

into c=4 cluste  this sample are then 

calculate membership functions for all the pixels in the image. Each pixel that 

presents a membership value above a pre-defined threshold is assigned to the 

corresponding cluster. The process is repeated for all the pixels not assigned to a 

rs. The cluster means calculated from used to 
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cluster during the first iteration, introducing four new clusters at each iteration. The 

number of 2400 pixels and the number of clusters were decided upon after 

experimentation with different values. At each iteration, the algorithm checks the 

cluster means to determine whether two cluster means are very close. The condition 

used by the authors is given in Eq. 2-21. If the difference computed for each feature is 

less than the set threshold, the two clusters are considered identical and are merged 

into one bigger cluster. The feature spaces used were the RGB colour space and the 

I1I2I3 colour space proposed by Ohta [136], while the inner product norm metrics 

tested were the Euclidean and the Mahalanobis distances. The authors concluded that 

the differences between the RGB and the I1I2I3 colour space as far as segmentation is 

concerned are minimal. 
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 for each feature “f”, Eq. 2-21 

ive. Using this knowledge 

of the location of valleys in each colour component histogram, they effectively divide 

the colour space in a series of hexahedra. Th  first phase thus identifies clu

terms of the hexahedra located, but only the ones containing above a certain number 

of pixels are considered good. A second step th n follows that classifies the rest of the 

pixels into one of the found clusters. Lim and Lee tried a number of different colour 

spaces (RGB, XYZ, YIQ, UVW, I1I2I3) and observed that I1I2I3 proposed by Ohta [136] 

gives the best results. 

Graph Partitioning 

Shi and Malik [180], formulated the segmentation problem as a graph part

problem. Their method reduces the problem of graph partitioning to solving an 

eigenvector and eigenvalue problem. Let G=(V, E) be a graph whose nodes are points 

in the measurement space and whose edges are associated with a weight representing 

 

An interesting colour segmentation method based on fuzzy c-means has been 

proposed by Lim and Lee [103]. They use scale-space histogram thresholding to find 

the number of clusters to use for the fuzzy c-means clustering. First, scale-space 

filtering is applied to the histogram of each colour component and the optimal scale is 

determined. Examining the smoothed (at the determined optimal scale) histograms, 

they locate valleys by use of the first and the second derivat

e sters in 

e

itioning 
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the similarity between two nodes. This graph G can be partitioned into two disjoined 

sets A and B by removing all the edges connecting the two partitions. The total weight 

of the edges removed is called cut and is given in Eq. 2-22. 
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One way to recursively partition the graph would be to find the minimum

each iteration and split the graph in two, until the regions produced are uniform 

enough. Nevertheless, the minimum cut favours cutting small sets of isolated nodes, 

for this reason Shi and Malik proposed another criterion, the normalized cut, g

Eq. 2-24, based on the association (defined in Eq. 2-23) of each partition to the full 

node set and the definition of cut given before. Furthermore, a criterion of how tightly 

the

 cut at 

iven in 

 nodes within a given set are connected to one another, named normalized 

association (Eq. 2-25) is defined based on the association metric. 

 

⎪⎩

⎪
⎨
⎧ <−

⋅=
−−−−

otherwise
rjXiXifeejiw X

jXiX

I
jFiF

2

)()()()( )()(

0
),(

22
σσ  Eq. 2-26 

DyyWD λ=− )(  Eq. 2-27 

∑= jiwid ),()(  Eq. 2-28 
j

 58



Chapter 2 – Image Segmentation Techniques 

)1()1(

0

0 x
d

d
xy

i

i

x
i

x
i

−⋅−+=
∑
∑

<

>
, where x a vector with 

⎩
⎨
⎧
−

∈
=

otherwise
Aiif

xi 1
)(1

 Eq. 2-29 

 

The edge weights are given by Eq. 2-13 were X(i) is the spatial location of node i, 

and F(i) is the feature vector. Shi and Malik tested their algorithm with different 

features, depending on the application. For colour images, the features used are based 

on the HSV colour system, while features are also proposed for texture and grey-scale 

image segmentation. The algorithm suggested is based in solving the system of 

equations Eq. 2-27, where D is a diagonal matrix with d (Eq. 2-28) on its diagonal, 

and W a symmetrical matrix with W(i, j)=w(i, j). Shi and Malik showed that the 

second smallest eigenvector is the real valued solution to the normalized cut problem, 

and is the one used in each iteration to split the graph, until the normalized cut 

exceeds a pre-defined threshold. 

Other Clustering Algorithms 

A morphological approach for 3D clustering in feature space is proposed by Park, 

Yun an 14  is to smooth the 3D colour 

ny colour 

sys

d Lee [ 3]. The first step of this approach

histogram by performing 3D Gaussian convolution with two standard deviations (σ1 

and σ2). Then the difference of the two resulting histograms is considered and peaks 

and valleys are identified. After this pre-processing it is observed that non-empty bins 

are widely scattered in the colour space, therefore, a closing operation follows after 

which clusters are identified and labelled in the colour space. A dilation process 

comes next, enlarging the clusters in a manner so that neighbouring bins not contained 

to a cluster to merge with one, still preserving the clusters themselves (not combining 

any two of them). Finally, a post processing stage follows, where the remaining 

unsegmented pixels are assigned to a cluster by means of checking the colour distance 

(Euclidean distance in the colour space) between each unsegmented pixel and the 

segmented neighbouring pixels. The unsegmented pixels are assigned to one of the 

clusters of their neighbouring segmented pixels, according to their colour distance to 

it. The authors use RGB; nevertheless, the algorithm can be used with a

tem. Partitional algorithms (such as K-means or fuzzy c-means) partition the 

feature space based on a distance measure, whereas the proposed one is concerned 

with only the shape, connectivity and distribution of clusters. 
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2.2.4. Edge Detection Techniques 

As mentioned in section 2.1.2, edge detection based segmentation techniques are 

based on the detection of discontinuities in the image. Edges are generally defined as 

the points where significant discontinuities occur. Discontinuities are considerably 

ne in colour images than in grey-scale ones. Numerous 

f the orientation and strength of an edge is computed. 

Fin

 information needed to 

more complicated to defi

methods exist to derive edge information for each pixel when only one component is 

used, as in grey-scale images. The fact that more than one component (usually three) 

are used to describe the colour of each pixel in colour images, introduces the need of 

an additional step in the process of edge detection, namely the recombination of the 

image, which can happen in different stages in the pipeline of edge detection. 

Effectively, a set of operations is performed on each component and the intermediate 

results are then combined to a single output. According to the point at which 

recombination occurs, colour edge detection methods can be categorized as Output 

Fusion methods, Multidimensional Gradient methods, and Vector methods. 

Output fusion methods work in each colour component independently, and the 

results are then merged to produce the final edge map. In multidimensional gradient 

techniques, a single estimate o

ally, in vector methods, no decomposition (and therefore no recombination) of the 

image happens; instead, the vector nature of colour is preserved throughout the 

process. In the remainder of this section, approaches that fall in each of the above 

categories will be presented. 

Output Fusion Methods 

In output fusion methods, grey-scale edge detection is carried out independently in 

each colour component, and then the results are combined to produce the final edge 

map. One of the first output fusion methods was developed by Nevatia [131]. Nevatia 

defined a colour system of one Luminance and two Chromaticity components. The 

Luminance component is given as a weighted sum of the R, G and B components of 

the image, while the chromaticity components are chosen to be representative of Hue 

and Saturation. Hueckel’s edge detector is applied to each component separately, but 

although the edges in the three components are allowed to be independent, a 

constraint is applied, that they must have the same orientation. The author states that 

the edges in the Luminance component contain most of the
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obt

Hue 

 the results reported. 

tion, which assigns a zero value of 

rele

mportant, in which case the defined measure 

of Hue relevance was taken into account at the recombining stage. In further work by 

Carron and Lambert [29], both the Hue relevance m ure and the way of com

the results of the three components were defined with the use of fuzzy inference. 

ain object boundaries, but does not underestimate the importance of edges in the 

two chromaticity components. 

A method that combines edges found in the H, S and I components of a colour 

image is proposed by Weeks, Felix and Myler [202]. The colour system used is the C-

Y system, which comprises three components, namely Y, R-Y and B-Y, where Y is a 

weighted sum of the R, G and B components representing the Luminance of the 

image. The H, S and I components are subsequently defined with the help of the C-Y 

ones. In order to avoid the 2π effect in the Hue component (imposed by the 2π 

modulus nature of the Hue space as explained in Appendix A), edges for the Hue 

component are instead computed in two derived components, I=cos(θ) and Q=sin(θ), 

where θ is effectively the Hue angle. This explains the decision to define the HSI 

components using the C-Y colour system since R-Y=S⋅sin(θ) and B-Y=S⋅cos(θ), which 

reduces the computational load of the method. Edges are computed for each 

component by applying the Sobel operator in the horizontal and vertical directions. 

Then the final edge map is produced by simply adding the edge results produced in 

each component. This method addresses the intrinsic 2π problem of the 

component in an effective way based on

Carron and Lambert [28] suggested a slightly different method to perform edge 

detection in colour images. The key point in their approach is the way the Hue 

component is treated. They defined the relevance of the Hue value of a pixel based on 

the Saturation value of the same pixel. When the Saturation of a pixel is low, Hue is 

rather unstable (if Saturation is zero, Hue is actually undefined), for this reason it 

should not be considered for any edge detection process. The relevance of the Hue 

component was defined by means of a sigmoid func

vance at Hues of pixels having a low Saturation and greater values to Hues of 

highly saturated pixels. For the edge detection process, the Sobel operator was used in 

the horizontal and vertical directions for each component and two ways were 

proposed to combine the information. Either regard the Hue information as a 

complement to Intensity and Saturation (simple adding the three gradients), or 

regarding the Hue information as more i

eas bining 
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Multidimensional Gradient Methods 

One of the first multidimensional gradient me ods proposed was by Robinson [161]. 

His work is focused on edge detection, but also on deciding on the proper colour 

system to use for it. For each pixel, Robinson applied eight directional masks

component and computed 24 directional derivatives. Subsequently the one with the 

largest m

th

 to each 

agnitude was chosen as the gradient at the specific pixel. Five colour systems 

were tested and a general conclusion according to Robinson is that edge detection 

should not be performed in the RGB colour space. 

A comprehensive study on the gradient of a multi-image came later on by 

Di Zenzo [43]. He formulated the problem of computing the gradient in a multi-image 

and derived a solution based on the 1st (gradient) and 2nd directional derivatives of 

each component of the image. A 2x2 matrix is formed from the scalar product of the 

gradient vector in each component. Assuming ƒ:R2→Rm is a continuous multi-image, 

the elements of the matrix are given by: 
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Then Di Zenzo suggests that the problem of finding the gradient’s orientation and 

magnitude at x, can be reformulated as the problem of finding the value of θ which 

maximizes Eq. 2-32. This can also be expressed as the problem of finding the 

principal eigenvalue and eigenvector of a matrix produced by summing the 2x2 

matrices produced over all components. Then the square root of the principal 

eigenvalue becomes the magnitude of the gradient and the corresponding eigenvector 

yields the gradient direction. Di Zenzo also considered the problem of deriving digital 

approximations for the gradient in a digital multi-image and suggested a 

straightforward application of the technique to colour images. The approach proposed 

by Di Zenzo has been widely used for edge detection in colour images. 
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A distinctly different approach has been proposed by Moghademzaddeh, Goldman 

and Bourbakis [120]. Their method starts with image smoothing, using an algorithm 

that preserves edges by checking the contrast between each pixel and pixel blocks in 

four directions. If the maximum and minimum contrasts are below a threshold, then 

there is little contrast around the centre pixel, thus the pixel is most probably not an 

edge and it’s value is replaced by the average colour of the surrounding pixels. If only 

the minimum contrast is below the specified threshold, then the pixel is probably an 

edge pixel, and it’s colour is computed as the average of the pixel colour and the 

block having the lower contrast to the pixel. If both the maximum and minimum 

contrasts are above a threshold, then the pixel is probably isolated and not similar to 

any of the neighbours, so it is considered noise and is removed. The edge detection 

part of the method is based on a set of three components, namely h, i and s, derived 

from the CIE L*a*b* colour system. The Hue component is considered important, 

since -according to the authors- it remains constant for the same objects regardless of 

shadows or illumination. Similarly to [29], Hue is weighted by the Saturation and 

Intensity components, since when any of them is small, Hue is unstable. This is 

defined with the help of fuzzy inference, by the creation of membership functions for 

the Saturation and Intensity components. As a result, a normalized Hue contrast can 

be calculated for each pixel in every direction. This is not adequate for edge detection, 

d by differences in any other component are obviously missed; 

normalized Hue contrast. One would expect that the edges missed by the Hue 

since edges cause

therefore, the authors also compute the Euclidean distance in RGB for each direction. 

This distance is averaged with the normalized Hue contrast, and four local contrast 

values are computed, one for each direction. The maximum value and its direction is 

recorded for each pixel and if larger than a threshold, the pixel is considered an edge 

candidate, whereas if lesser than a smaller threshold it is discarded. If the value falls 

in a medium range, the contrast values are recomputed, but this time the blocks of 

pixels considered are moved one pixel apart from the centre pixel. Although this 

method addresses well the problem of Hue inconsistency when Saturation or 

Luminance is low, it is still an incomplete solution, since Hue is unstable or even 

undefined for high Luminance values as well as low ones. This is not addressed here, 

and is certainly not addressed in the previous approaches by Carron and Lambert [28, 

29]. The authors of this approach also fail to explain the appropriateness of Euclidean 

distance in RGB as an additional measure of contrast, for edges missed by the 
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component, should be identified in the two remaining ones, namely the Saturation and 

the Luminance. Even if RGB is finally chosen, the Euclidean distance is not the best 

way to compute the contrast, for reasons explained already in section 2.2.1. 

Vector Methods 

An interesting edge detection method that does not perform any decomposition of the 

image into colour components has been suggested by Huntsberger and Descalzi [80]. 

The method is based on identifying clusters in the colour space, and assigning to each 

pixel membership values to the clusters identified. These values are subsequently used 

for edge detection. Specifically, the clustering part of the method is a fuzzy c-means 

clustering algorithm proposed by Huntsberger et al. [81] that has been reviewed in 

sec

els in the image. 

Moment-preserving bi-level thresholding is then the process of finding two thresholds 

tion 2.2.3. Very briefly, the algorithm starts with four clusters and introduces four 

new clusters at each iteration, until all pixels are assigned a membership value above a 

specified threshold. After this first step, each pixel has been assigned a certain 

membership value to each cluster. Edge pixels are then defined as the ones that 

equally belong to two clusters, in other words a color edge is defined as the zero-

crossing of the operator Edgek(µi,µj)=µi-µj, where µi and µj are the membership 

values of pixel k to the clusters i and j. A strong advantage of this method is that it is 

independent of orientation, and of any type of crisp or fuzzy threshold for the edge 

pixels; on the other hand, it is strongly dependant on the initial clustering and 

association of membership values to pixels. The authors examined different colour 

systems (RGB, Ohta’s colour system, CIE XYZ and RGB with a Riemannian norm 

metric) and reported better results when using RGB with a Riemannian metric. They 

reason that this happens because such a metric induces ellipsoidal shaped clusters, 

which in turn match the shape of clusters derived from human colour matching 

experiments. Although this stands true (Mac Adam’s ellipses [210]), if a colour space 

that presents some degree of perceptual uniformity is used, no complicated distance 

metric is actually needed. 

A method that treats colours as vectors has been proposed by Yang and Tsai 

[213]. Their method is based on dimensionality reduction and moment-preserving 

thresholding of blocks of pixels in the image, followed by edge detection in each 

block. The ith moment of a grey-level image is given by Eq. 2-33, where ƒ(x, y) is the 

grey value of pixel (x, y) and N is the number of pix
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h1 and h2 and the associated fractions of pixels p1 and p2 with h1 and h2 respectively, 

in a way that the first three moments of t ed image are the same as 

three moments of the original one. This can be done by solving the set of Eq. 2-34. 

The method of Yang and Tsai starts by partitioning the image into nxn blocks of 

pixels. Moment-preserving bi-level thresholding is then applied to each colour plane 

of each block, yielding two representative colour vectors for each block: (R1, G1, B1) 

and (R2, G2, B2), the difference vector of which defines a ertain axis in the

space. All pixels of the block are subsequently projected on that axis, thus a 1D 

representation of each block is obtained. Edge detection is then performed in the 

block in question if Eq. 2-35 stands true, where τ is a preset threshold and σr, σg, σb 

are

he threshold the first 

 c  colour 

 the standard deviations of the three colour planes of all image blocks. The edge 

detection bit is based on finding the chord of a circular window (defined so as to 

contain the block in question) partitioning the block in two areas and two grey levels 

(h1 and h2), so as the first three moments of the block are preserved, similarly to the 

bi-level thresholding described above. An edge is accepted if it observes the criterion 

given by Eq. 2-36, where σ2 is the variance of the observed data. 
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Dimensionality reduction of colour images is an ambiguous process in terms of 

whether it enables better results or not. It is a fact that it vastly reduces the 

computational overhead, but at the same time discards a great amount of information. 

Moment-preserving techniques aim to reduce this loss of information. Nevertheless, 

questions can be raised on the way the two colour vectors representative of each block 

were assembled from the thresholds that resulted for each colour plane in the method 
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by Yang and Tsai. Specifically, no clear explanation is given to why the final vectors 

were (R1, G1, B1) and (R2, G2, B2) and not some other combination, for example  

(R1, G2, B1) and (R2, G1, B2). Another issue in this method is the fact that only 

straight-line shaped edges are sought for. Unless the blocks used are small, line 

elements cannot be representative of edges, on the other hand, if small blocks are 

used, the number of pixels may not be adequate to perform statistical measurements 

such as computing meaningful moments. Finally, the way edge detection is 

performed, prohibits more that one straight edge element in each window, as for 

example near intersections of edges. 

Edge Detection using Colour Distributions 

A different approach to colour edge detection is described by Ruzon and Tomasi [168, 

170]. They propose the use of the so-called compass operator, which is based on 

measuring the difference between the colour distributions of the pixels lying on 

opposite halves of a circular window taken in different orientations. A circular 

window is centred on each pixel, and for each orientation, it is partitioned in two 

hemi-circles. The distribution of pixel colours on each side is represented as a colour 

signature, that is a set of colour masses in a colour space. The size of each point mass 

is determined by a weighting function, which is defined as a function that approaches 

zero as we move away of the centre of the window. Vector quantization is perform

before calculating the colour signatures, in order to reduce the number of colours, thus 

the computational cost of the algorithm. The distance between the distributions of the 

two halves is then computed for each orientation, using the Earth Mover’s Distance 

(EMD) [167]. Given dij a distance measure between colours i and j, where colour i is 

in o

 the minimum EMD is high, the edge model is violated, 

thus the authors call this minimum value “abnormality”. Furthermore, a measure of 

ed 

ne hemi-circle (S1) and colour j in the other (S2), EMD finds a set of flows that 

minimizes Eq. 2-38. The distance dij between two colours ranges in [0,1] and is given 

by Eq. 2-37, where Eij is the Euclidean distance of the colours computed in 

CIE L*a*b* and γ is a constant that determines the steepness of the function. The 

maximum and minimum values of EMD and the associated orientations are identified 

for each pixel. The maximum value gives the strength of the edge. The minimum 

value is equally important, because it can be considered a measure of the photometric 

symmetry of the data; when
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uncerta ro he existence and the size of a inty is p posed by the authors, related to t

plateau of maximum values for a range of orientations. 
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Based on the compass operator and the EMD distance between distributions, 

Ruzon and Tomasi extended the use of the compass operator to corner detection [169, 

lours are used instead of means, enables this 

Generally, region based techniques for colour images can be categorized into region 

splitting, region growing and merging, and split and merge techniques, similarly to 

grey-scale images. More often than not though, region growing techniques are used. 

Region splitting techniques are typically based on histogram analysis and although 

frequently encountered, they are rarely used alone. A paradigm already reviewed in 

section 2.2.2 is the histogram-based method proposed by Ohlander et al. [135]. Split 

and merge techniques are rarely encountered in the c ntext of colour

segmentation. A split and merge algorithm will be described next, while the rest of 

this section will focus on selected region growing techniques. 

images. The trace of the covariance matrix for a region is instead used here. The mean 

170]. The fact that distributions of co

approach to give accurate results in complicated situations based on the results 

presented. In a sense, the compass operator substitutes vector quantisation for 

smoothing, and the EMD for taking derivatives. At the same time, being a vector 

method, the method proposed by Ruzon and Tomasi avoids decomposing the image 

into separate colour planes. 

2.2.5. Region Based Techniques 

o  image 

Region Split and Merge Techniques 

A method based on recursive split and merge has been proposed by Gauch and Hsia 

[58]. The variance of the pixels in a region provides an indication of how 

homogeneous the region is. Although the variance of a region in a grey-level image is 

easy to compute, the problem is slightly more complicated when it comes to colour 
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colour of a region can be calculated by Eq. 2-39. Then the trace of the covariance 

matrix is given by Eq. 2-40. 
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where m1, m2, m3 are the means of each colour component for the given region, (c1i, 

c2i, c3i) is the colour of pixel i, and N is the number of pixels in the region. If this 

value is above a specified threshold, the corresponding region is recursively split, 

whereas if the value is below this threshold the region is added to a list of regions to 

be subsequently merged. The merging process can also be ruled by a condition based 

on the trace of the covariance matrix. The value is computed for the merged region 

and if below a threshold, the two regions can be merged. Alternatively, a comparison 

between the average colours of the regions could be used to rule the merging process. 

Simple Region Growing Techniques 

The second algorithm investigated by Gauch and Hsia [58] is a typical seed based 

region growing technique. They commented on a number of techniques to perform 

seed based region growing based on colour distance between the regions. The 

importance of re-computing the average colour of each region when a new pixel is 

added to it was stressed, since otherwise the outcome would be very much dependant 

on the initial selection of the seed pixels. Searching all the adjacent pixels of a given 

region at each iteration of the region process to identify the one with the smallest 

colour distance to the mean colour of the region would be preferable, but 

computationally expensive. Instead, the authors search for any neighbour that is 

within a specified colour distance to the mean colour of the region. As expected, the 

speed improvement is remarkable, while the authors report that no noticeable 

difference in the segmentation results is observed. Finally, the authors suggested that 

in order to obtain results independent of the initial selection of seed points, one should 

make sure that the seeds selected are not edge pixels. An edge detection algorithm can 
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be used to identify which pixels to avoid. The authors concluded that the best colour 

space to use depends strongly on the type of the image in question, nevertheless they 

generally favour RGB and YIQ to L*a*b* and HLS. 

A rather simple colour segmentation algorithm was proposed by Tremeau and 

Borel [197]. Their algorithm is based on region growing and region merging, which 

they perform simultaneously. Starting with a pixel as the seed, they grow a region 

checking the colour similarity between the pixel and its neighbours. After each region 

is identified, it is checked to the neighbouring regions, and if the difference of their 

average colours is under a specified threshold, the two regions are merged. The colour 

dist

he regions identified up to that 

mo ent, introduces an even larger dependency on the sequence of comparisons. On 

the other hand, this approach limits the number of tests and results in a 

computationally inexpensive process. 

A colour segmentation method for video-conferencing type images was proposed 

by Ikonomakis, Plataniotis and Venetsanopoulos [82]. The colour system they use is 

the HSI, as a perceptual oriented one. The innovative point of this method is the 

different treatment between chromatic and achromatic pixels. An achromatic pixel is 

defined as having Intensity at the edges o tensity scale or low Saturation. For 

these pixels, Hue would not be indicative of their colour, since it tends to be unstable 

(even undefined for extreme Intensity values) at these ranges of Saturation and 

Intensity. For achromatic pixels, the homogeneity criterion is defined in terms of their 

Intensity difference, whereas for chromatic pixels, four different distant metrics were 

ance used in both cases is the Euclidean distance in the RGB colour system. 

Finally, the authors also propose methods to estimate the thresholds used both for 

pixel and for region similarity. The method proposed suffers from a number of 

drawbacks. First, the choice of RGB and the Euclidean distance to calculate colour 

differences is rather a disadvantage, since RGB is neither related to human perception 

of colour, nor it is perceptually uniform so as to justify the choice of Euclidean 

distance. The authors do mention that the method is generic, and propose the use of 

CIE L*a*b* or CIE L*u*v* and Mahalanobis distance instead, but take no step in that 

direction. Furthermore, the algorithm proposed is very dependant on the sequence of 

pixel and region comparisons. Although this is true for all region growing methods, 

the fact that the comparison of each region to the neighbouring regions takes place 

immediately after the region’s creation (prior to having identify all the possible 

neighbouring regions), thus comparing with only t

m

f the In
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tested. These are the generalized Minkowski metric (Eq. 2-41), the Canberra metric 

(Eq. 2-42), and a metric defined by Tseng and Chang [198] called cylindrical distance 

metric (Eq. 2-43). The cylindrical distance metric computes the distance between the 

projections of the pixel points on a chromatic plane. 
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The method proposed is based on a classical region growing scheme, working in a 

left to right and top to bottom fashion growing regions from seed pixels by making 

appropriate comparisons (chromatic / achromatic) to their neighbouring pixels. 

According to the authors, the Cylindrical Distance metric produces better results. 

They also report that the Minkowski metric gives better results if they put more 

emphasis in the Saturation component, which is rather unexpected and directly 

contradicts to one of their previous statements that the Hue component has a greater 

discrimination power. The differentiation between chromatic and achromatic pixels 

can be a good enhancement. It is exploited in a different manner in the method 

described later on in Chapter 4. 

Region Growing Techniques Based on Combined Spatial and Colour Measures 

A comprehensive approach for region growing in colour images is given by 

Moghaddamzadeh and Bourbakis [119]. The authors define a set of procedures, which 

they combine in two different ways defining a method designed for coarse 

seg

edge detection approach [120] by the same authors reviewed in the previous section), 

mentation and one for fine segmentation. A number of pre-processing steps are 

used by the authors, in order to identify edges in the colour image. First, the image is 

smoothed using an algorithm that preserves certain pixels located at edges (same as in 
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and then the edges are identified in the image, by the use of an algorithm explained in 

a bit more detail in section 2.2.4. Two conditional criteria are defined that are used 

extensively throughout the region growing stage of the algorithm: the homogeneity 

criterion and the degree of farness measure. The homogeneity criterion checks the 

absolute colour distance between a given pixel and a segment, and the local colour 

distance between the pixel and its neighbouring pixels in the direction of expansion, 

in order to decide whether the given pixel can be merged with the segment or not. By 

checking the colour distance locally, this criterion keeps the segment growing if the 

colour is gradually changing (due to illumination or shading). The second criterion, 

the degree of farness measure, combines the spatial distance of a pixel to a segment, 

with the colour distance between the pixel colour and the segment average colour. 

The two distances are multiplied to produce the degree of farness measure. 

Segments are identified by scanning the image and growing any possible seed 

bas

ly 

rela

ed on either the edge information (produced at pre-processing) or the homogeneity 

measure. Only segments having a size over a specified threshold are considered good. 

A segment expansion procedure is also defined, which takes into account either of the 

two criteria defined before. Finally, a procedure is defined that checks for unassigned 

pixels and decides whether they should be assigned in a neighbouring segment, or – if 

adequately different – it grows a segment around the pixel in question. The method 

defined for coarse segmentation is essentially based on repeatedly finding segments 

and expanding segments, calling the procedures first for large segment sizes and 

subsequently for smaller ones. This coarse segmentation method finishes by checking 

for unassigned pixels as mentioned before. The fine segmentation method differs in 

the way segments are identified in the first place. Instead of performing region 

growing, a histogram table is constructed, which contains a sorted list of all the 

colours and the number of occurrences of each one. Segments of the colours 

presenting higher occurrences are identified and expanded first, followed by colours 

presenting lower occurrences. 

In recent work [215] the authors applied the dichromatic reflection model in 

addition to the two criteria described above to merge highlight and shadow areas with 

matte areas in the image. Although a comprehensive approach, the two methods 

suggested by Moghaddamzadeh and Bourbakis suffer from certain drawbacks main

ted to the two criteria defined. The homogeneity criterion works well, by allowing 

for gradients to be included in the segments, while at the same time checking the 

 71



Text Segmentation in Web Images Using Colour Perception and Topological Features 

colour distance of the pixels examined to the colour of the segment, thus not allowing 

for extensive colour changes. The problem though lies on the way colour distance is 

computed. The colour system used throughout this approach is the RGB, and the 

colour distance employed is the Euclidean distance in the RGB colour space. As 

mentioned in section 2.2.1, RGB is not perceptually uniform; therefore, a distance 

measurement in that space does not give exact information about colour difference. A 

possible second drawback could be the way the spatial distance and the colour 

distance are combined to give the degree of farness measure. A direct multiplication is 

not necessarily the best way to combine the two, as it often results to crisp decisions. 

A fuzzy technique like the one described in Chapter 5 could possibly give better 

results. Nevertheless, the aforementioned approach is quite comprehensive and 

innovative and addresses issues often missed by other researchers, such as the need to 

intelligently combine spatial and colour attributes when segmenting colour images. 

Exactly the fact that RGB is not suitable for measuring colour differences points 

out Schettini [177], who proposes instead the use of L*h*C* colour system. Initially 

the RGB values are converted to CIE L*u*v*, which exhibits perceptual uniformity to a 

much higher degree than RGB. Subsequently, two psychological features, namely Hue 

(h*) and Chroma (C*) are derived from the CIE L*u*v* components. The method 

proposed by Schettini starts by performing histogram directed colour clustering, based 

on recursive one-dimensional histogram analysis (see section 2.2.2). The output of 

this first step is an over-segmented image where connected regions are identified and 

labelled. At this point, a region merging process takes place, based on colour 

similarity and spatial proximity of regions. Fisher distance is adopted to verify the 

spectral homogeneity of adjacent regions. This takes into account both the mean value 

and

ity (as computed by the similarity 

function defined) greater than a specified threshold. This approach addressed a 

number of issues missed by the previous one by Moghaddamzadeh and 

 the variance of the colour feature. The spatial characteristic employed is a 

measure of connectivity based on the length of the shared boundary between two 

regions. A similarity function that combines the two is then defined by multiplying 

the two measures. The region merging strategy is based on the region adjacent graph, 

in which each node represents a region, and two nodes are joined by an arc when the 

corresponding regions are adjacent. The merging process then is carried out 

iteratively, by simultaneously merging all those pairs of regions mutually most 

similar, until all the adjacent regions have a similar
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Bourbakis [119]. The colour system used is this time perceptually uniform, and the 

ns produced by such methods are strongly 

dependant on the order in which regions are grown or merged. On the other hand, 

or more flexibility during the 

e consequent need for transferring vast 

am

 

perception. To this end, one of two actions is usually taken: Perceptually uniform

spatial property used is the length of the shared boundary between regions, which is 

superior to the Euclidean distance as will be seen in Chapter 6. In addition, the 

process used for merging the regions is not much dependant on the order of mergers, 

while it is also suitable for parallel processing, which are both great advantages. 

One of the disadvantages of region growing and merging techniques is their 

inherently sequential nature, which often results to computationally expensive 

methods. Furthermore, the final regio

region growing and merging techniques allow f

segmentation process, since they work locally in the image. Finally, although any 

prior information on the image contents is useful, region based techniques generally 

do not need any kind of prior information to work. 

2.3. Discussion 

Although certain approaches for colour image segmentation date as back as in the 

early sixties, much progress has only been observed in the last two decades. This is 

mainly due to the fact that computer systems able to represent true colour information 

were made affordable to the average computer user only lately. On top of that, the 

rapid growth of the World Wide Web, and th

ount of colour image information, gave a boost to research related to colour image 

processing, analysis and compression. 

Trends in Colour Image Segmentation 

Certain trends can be identified in regard to colour image segmentation by examining 

the methods presented here. Regarding the colour spaces used, a certain tendency is 

observed towards creating methods that respect the characteristics of human

 

colour systems such as CIE L*a*b* or CIE L*u*v* are used whenever a colour distance 

measure is needed. Alternatively, colour systems that resemble the perceptual factors 

that enable humans to differentiate colours (the most prominent of which are Hue, 

Lightness and Saturation) are used. In certain cases, both steps are taken, that is the 

colour system finally used is a Hue, Lightness, Saturation one, defined directly on a 

perceptually uniform system instead of RGB. 
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In the context of colour image segmentation, fuzzy logic (explained in more detail 

in Appendix B) is used in a number of methods to describe the relative importance of 

. [29, 120]). Although 

e literature, for example a modified 

spli

egory, and as analysed in Chapter 1 that denotes a 

diff

the different colour components of the colour system used (e.g

fuzzy logic can be used to define combined metrics (e.g. the farness measure [215]), it 

is not widely used. A successful application of fuzzy logic to define a metric 

combining the colour distance and the topological relation between connected 

components is described as part of the segmentation method suggested in Chapter 5. 

Regarding the techniques employed, by examining the literature it can be seen that 

researchers opt at creating methods combining different techniques, aiming at 

exploiting the advantages of each one. A categorization of methods was attempted in 

this chapter therefore mostly methods representative of individual categories were 

reviewed. Nevertheless, some hybrid methods were also presented here, such as the 

method of Schettini [177], which combines recursive histogram analysis and region 

merging. More hybrid methods are available in th

t and merge algorithm [36, 41] where splitting steps are performed with respect to 

the edge information and merging is based on grey value statistics of merged regions. 

Colour Image Segmentation in the Context of Web Images 

Most methods available in the literature for colour image segmentation focus on 

images of natural scenes. Undoubtedly, this encompasses a wide range of 

applications, such as analysis of photographs, video sequences, robot vision and many 

more. Techniques have been also proposed for specialized applications, such as 

aerial/satellite imaging, medical imaging etc. Although the range of the proposed 

techniques indisputably covers most areas of interest, there are still certain cases, 

where most methods are inapplicable and different approaches must be sought. A 

prominent example where this stands true is the field of artificially created images 

especially images created with the use of computers. Most colour images used in the 

World Wide Web fall into this cat

erent range of advantages and disadvantages. 

Specifically, regarding the Web Images that are of interest of this research, that is 

the ones containing text, there are a number of facts that have to be accounted for 

before adapting any of the methods reviewed here. A basic problem is the type of 

segmentation sought in this case. The objective of the colour segmentation methods 

reviewed here is to partition the image in areas that exhibit similar colour properties. 
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Although this might be useful for Web Images, the main objective in this case is to 

separate the text from the background, and as mentioned before in Chapter 1, the text 

does not always exhibit uniform colour properties. In contrary, text can be gradient or 

mu

contain the cases were 

ulticolour characters are present. Higher tolerances in respect to colour 

 GIF, 

which only supports 8-bit indexed colour information. This introduces colour 

quantisation that can be a problem to certain methods, especially those working in the 

feature space. Unwanted peaks can be produced in histograms due to that, and points 

of great frequency can appear in the 3D colour space impeding colour clustering. 

JPEG compression can also introduce problems due to the compression scheme used. 

Methods that work in each colour component separately will have problems 

identifying meaningful segments, because artefacts produced by discarded 

information are especially noticeable in certain components. 

Conclusion 

This chapter gave an overview of colour image segmentation techniques. Selected 

methods were reviewed for each category. Although particular attention was paid to 

review current approaches, many older methods were also included for completeness, 

lti-coloured, thus rendering inapplicable most of the methods. Nevertheless, it is of 

our understanding that whatever the variation of colour in the text and in the 

background, there must be adequate difference between the two, so that humans can 

read the text. Moreover, the text in such images is supposed to create impact, which 

reinforces the previous statement. 

To summarize, regarding colour segmentation of Web images, the very definition 

of the objective of segmentation must change to reflect the desired output of 

separating the text from the background. Towards this end, document analysis 

techniques are probably most appropriate and are reviewed in the next chapter. Some 

of the methods reviewed here can also be used for segmentation of Web images, as 

long as special consideration is taken in order to produce partitions that can contain 

colours of a higher variation. This is needed in order to 

gradients or m

difference can be set in order to achieve that. 

One more fact that might pose problems in adapting certain colour segmentation 

methods for use with web images is the existence of problems inherent to the file 

formats used. As an example, one of the most commonly used formats for images in 

the World Wide Web, where small sized images are easier to communicate, is
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were applicable. The theoretical background of this research concludes with the next 

chapter, which examines aspects of text image segmentation and classification. 
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Chapter  3 

3. Text Image Segmentation and Classification 
 

 

 

egmentation as defined in the previous chapter, is the process of partitioning 

an image into a number of homogeneous disjoined regions. This definition 

has to be slightly altered when referring to text image segmentation. The product of 

text image segmentation is a higher-level description of the image in hand, in terms of 

regions of interest. Regions of interest typically are areas in the image where text lies. 

Depending on the application, other structural elements of the text image, such as 

tables, figures, separators etc. might also be regions of interest. After having identified 

a number of regions, the type of contents of each region must be established; this 

process is called classification. Classification of the regions can take place either 

independently after segmentation, or in parallel, interacting with the segmentation 

process. 

S

The underlying assumption here is that text exists in the image being analysed. 

Consequently, specialised segmentation and classification methods make extensive 

use of features emanating from the existence of text in the images. Images found in 

the World Wide Web more often than not, contain text; therefore, they constitute a 

special type of text images. A review of the main text image segmentation and 

classification techniques will be given in this chapter. A number of bi-level page 

segmentation methods will be detailed in the next section, followed by methods 

specialised in colour documents. In Section 3.3, methods for text extraction from 

video sequences will be discussed and in Section 3.4 the more generic problem of 

finding text in real-life scenes will be addressed. Finally, Section 3.5 will detail the 
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few existing approaches for extracting text from Web Images. A discussion on the 

methods presented follows in Section 3.6. 

3.1. Bi-level Page Segmentation Methods 

In the context of Text Image segmentation, Page segmentation has received much 

attention mainly due to its many applications. Page segmentation specialises in 

analysing document images. Typically, document images are bi-level (most often dark 

ink over light background). In bi-level images of document pages, the two classes, 

namely the foreground and the background, are already separated: pixels of one 

colour denote background and pixels of the other denote foreground. Regions of 

interest in this case would be neighbourhoods of foreground pixels. 

Since the foreground and background are already separated, the way regions are 

described in the page can be slightly relaxed. What this means, is that strict definitions 

of the regions, such as connected components of foreground pixels, can be used but 

this level of detail is not always necessary (and many times, not easy to use). Less 

relaxed descriptions of the regions of interest, for example by use of bounding boxes 

or contours of regions, can also be used. Such descriptions though, allow part of the 

background to be contained in the final regions. This is not a problem for bi-level 

images, since the foreground and background are readily separated by means of their 

colour. In contrast, including parts of both the foreground and background in the 

region description is unacceptable for colour documents, since a separation of the two 

classes cannot be easily achieved afterwards. 

In general, all methods devised for bi-level images assume either implicitly or 

explicitly that the two classes (foreground and background) are already separated. 

Due to this fact, most bi-level page segmentation techniques (e.g. techniques based on 

Projection Profiles or Analysis of the Background) are not directly applicable to 

colour text image segmentation. Nevertheless, there are a number of techniques 

(e.g. Connected Component Grouping, Segmentation by Image Transformations) that 

in principle can be applied to colour images. 

Morphological Operations 

A number of techniques based on morphological operations are commonly used either 

as a pre-processing step (e.g. noise reduction) or as part of the segmentation process 

itself [71]. The morphological operations typically used are dilation and erosion, and 
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the combinations of them: opening and closing. Dilation is the process of converting 

to foreground colour the pixels in the immediate neighbourhood of 

foreground-coloured pixels, thus expanding foreground areas and possibly restoring 

lost links between them. The invert process is called erosion. A dilation process 

succeeded by erosion is called closing, while the opposite process is called opening. 

Although morphological operations cannot be directly used with colour images, 

Run Length smearing (which has the same effect as a closing operation applied in one 

direction only) can be performed based on colour similarity between pixels. Run 

Length smearing connects together foreground pixel runs in a row or column of a 

binary image according to their distance. In the context of colour images, given a run 

of pixels we can check for a run of pixels of similar colour in the same row or column, 

and if the distance between the two is less than a predefined distance, connect the two. 

Connected Components Grouping 

A connected component is a set of connected pixels of the same colour. A description 

of a document image in terms of connected components, is the lowest level of 

representation possible. Connected components may be extracted in numerous ways. 

A labelling process is probably the approach most widely used. An initial foreground 

pixel is identified and assigned a tag, then all its neighbouring foreground pixels are 

marked with the same tag and the process continues by progressively expanding the 

neighbourhood to include more pixels of the same colour. Other ways to extract 

connected components is by contour tracing, and as the final stage of projection 

profile analysis. Connected components can be represented by the runs of pixels they 

comprise, in terms of their contours, or by their bounding box, that is the minimum 

enclosing rectangle of the component. 

Connected components are used typically in bottom-up approaches, which group 

together components to form progressively higher descriptions of the regions of the 

document. Usually, before grouping connected components together, a classification 

step takes place which aims to deduce the type of each one. The most common 

distinguishing characteristic of connected components of different types is their size 

(width or height is typically used, depending on the orientation of the printed text). 

Another set of characteristics has to do with the overall shape of components. The 

Aspect Ratio (the ratio width/height or height/width depending on the particular 

method) is the most widely used such characteristic, while others based on the 
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perimeter and the area of the component, are also in use. Finally, features based on the 

complexity of connected components such as the number of black to white, or white 

to black transitions, as well as structural features have been used. 

Connected components are usually grouped together based on their between 

distance. The thresholds used are usually derived from the components themselves: 

either the dimensions of the most populated class of connected components [38] or 

analysis of the spacing between them [132]. Usually components of the same type 

only are grouped together [53]. Nevertheless, methods have been proposed that group 

together closely placed components irrespectively to type [171]. 

Methods based on connected component analysis can generally be used for 

segmenting colour documents. A connected component in this case would be a set of 

connected pixels of similar colour. The definition of “similar colour”, depends on the 

application, and can strongly affect the result of segmentation. 

Projection Profile Analysis 

A global feature of the images used in numerous page segmentation methods is 

projection profiles. A projection profile is a histogram of foreground pixel 

occurrences along consecutive parallel lines whose indication is perpendicular to that 

of the profile. Projection profiles have been used for estimating the skew angle of the 

document image [1, 10] as well as to detect the orientation of the text lines [1, 85]. As 

far as it concerns page segmentation itself, projection profiles are typically used in 

top-down segmentation methods, in order to locate horizontal and vertical streams of 

background space. The assumption here is that printed regions are rectangular and 

separated by background space. Usually the document image is recursively split into 

rectangular regions [42, 128, 129]. The level of detail of the process can be very low 

(columns or paragraphs [199]) or very high (details of characters [127]). The very 

essence of calculating a profile in an image requires that the foreground and the 

background are already separated, or some other form of segmentation has already 

been performed. In this second case, projection profiles derived from the regions 

produced (connected components or bounding boxes [10]) can be used. 

A method based on projection profile analysis which is somewhat unaffected by 

small skew angles of the document is suggested by Parodi and Fontana [144]. They 

subdivide the document into overlapping small columns of height equal to the image 

height. For each of them, the projection profile is computed and non-white scan lines 
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called line elements are extracted. The line elements are ultimately combined to find 

the text lines. By using small columns the authors drastically reduce problems 

associated with skew (according to the authors, skew angles of up to 10 degrees do 

not pose any problem). 

Analysis of the Background 

The background space of the image can provide information about the layout of a 

document. The positions in the image of long horizontal and vertical stripes of 

background colour would yield the positions of separators between logical entities of 

the image, such as columns, paragraphs, headers and footers. Baird [11] and Spitz 

[187] perform an initial segmentation and subsequently analyse the space not covered 

by the connected components produced, in order to identify stripes of background 

colour. This can be seen as a post-processing step, in which a higher-level description 

of the image is achieved, after an initial segmentation has already been performed. 

Antonacopoulos [5] on the other hand, uses background information as the means 

for segmenting the image. He argues that background space always surrounds the 

printed regions in the document image, and produces a description of the background 

space by means of tiles. Using this description, the contours of regions of interest are 

identified. In contrast to previous methods, which would only search in horizontal and 

vertical directions, Antonacopoulos approach is unaffected of the skew angle of the 

document. 

Segmentation by Image Transformations 

A somewhat different approach to the segmentation problem, is based on the fact that 

regions of different type possess different characteristics. By applying some global or 

local transformation to the image, it is possible to identify regions of certain 

characteristics. This process essentially performs segmentation and classification at 

the same time. 

A widely used characteristic for distinguishing regions of printed text, is that 

character lines are linear. Based on that, methods exist that make use of the Hough 

transform to determine various parameters for a page. The skew angle of the 

document [74] and the interline spacing [52] are some of them. Srihari and 

Govindaraju [188], based on Hough transform determine the textural signature of a 

text line. Then they test individual blocks of the image to decide whether they contain 

text or not, based on the existence of this textural signature. 
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Generally, regions can be classified by their textural properties. The distinct 

texture produced by straight lines of characters placed in a paragraph is quite regular 

comparing to the more diverse texture of graphic regions. The periodicity of character 

lines is used by Hase and Hishino [72], who propose a method based on the Fourier 

transform. They apply a Fourier transform to the whole page, and the period between 

lines is identified. Subsequently, regions of the image are tested and if the same 

period is observed, they are classified as text. 

Textural properties of regions can be used for classifying regions of colour 

documents as well. Simple measures of periodicity or co linearity are difficult to be 

used without some preliminary knowledge of the foreground colours, but in principle, 

many aspects of textural based segmentation are applicable to colour documents. 

Greyscale Document Images 

In the broad sense of document image segmentation, greyscale documents fall rather 

in the category of bi-level segmentation methods, rather than colour ones. The reason 

for that is that more often than not greyscale documents are first binarized, by means 

of some thresholding technique, and subsequently processed as bi-level documents. 

Numerous methods have been suggested for binarizing greyscale documents. 

They range from methods using predefined fixed thresholds [88] to more complicated 

methods, using image features to derive the threshold values used [48, 133]. For 

example, Sauvola and Pietikainen [175] split the document image in rectangular 

windows, and compute the values of two features for each window: the average grey 

value, and the transient difference (which measures local changes in contrast). The 

two values are combined with the help of a fuzzy inference system and the output is 

used to select the proper binarization algorithm. Thresholds are then calculated for 

every nth pixel and interpolation is used for the rest in order to reduce the 

computational time. 

It should be made clear here that there are cases where segmentation is performed 

directly on the greyscale images. Generally, such methods exploit the gradient 

information of the images, and refer to a topographic analogy where background 

regions (lighter colours) are like “valleys” and foreground regions (darker colours) 

appear as “furrows” carved on the background [178, 185]. An example can be found 

in Muge et al. [123] who make use of the gradient of the image, and apply a series of 

basic directional morphology operators to obtain the expected segmentation. 
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3.2. Colour Page Segmentation Methods 

Segmenting colour documents is understandably a much more complicated task than 

segmenting bi-level or even greyscale ones. Many researchers avoid going into the 

field of colour document analysis, by converting the colour documents into greyscale 

ones, or by examining the lightness component only. They argue that text (especially 

when rendered in a single colour) would still stand out in the greyscale representation, 

as a single shade of grey, adequately different from that of the background. 

For example, Goto and Aso [62] propose a method for analysing colour images of 

complex background, which is based on a greyscale representation of the original 

image. They assume that characters in a single text string are printed in a solid, 

uniform colour. The method starts by applying multi-level thresholding to the 

greyscale image to create a set of sub-images for each range of grey values as 

indicated from the histogram of the image. An initial pixel labelling process takes 

place in the sub-images, and then region growing between neighbouring (in terms of 

grey ranges) sub-images follows. 

According to the authors, the proposed method performs much better than 

methods created purposely for colour documents, specifically the methods of 

Ohya et al. [137], and Sobottka et al. [183, 184]. The method of comparison though, is 

by feeding the greyscale version of the image into those methods as well, which might 

be unfair at least for the method of Sobottka et al. since it is created to work with full 

colour images. The method of Sobottka et al. (discussed in this section) specialises in 

book and journal covers, while the method of Ohya et al. (detailed in Section 3.4) is 

created for recognizing text in scene images. 

Colour Reduction for Colour Document Analysis 

Since full colour information can be difficult to manipulate and computationally 

expensive to use, many researchers suggest that some type of colour reduction be 

performed before processing. The necessity of colour reduction for scanned colour 

documents in particular, is further dictated by the nature of the scanning process. Due 

to the characteristics of the optical scanner, scanned documents contain more colours 

that the original printed document. In the specific case of colour documents, it is of 

great importance that no information is dropped which concerns the textual parts of 

the document, since that would hinder the segmentation and subsequently the 

recognition process.  
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A segmentation method based exactly on colour clustering is proposed by 

Worring and Todoran [208]. The document model they use, assumes that each 

document can be decomposed in a number of (possibly overlapping) frames of 

arbitrary shape, the content of which might be text or pictures. They restrict this 

model to documents where the background colour of each frame is uniform. The 

authors suggest that transitions from one colour to another (for example at the edge 

between two frames), would be rather smooth due to the printing and scanning 

process, unlike the step edges appearing in the original. In the colour space, these 

smooth transitions would appear as lines connecting the two (clusters of) colours. The 

method aims in identifying those lines in the colour space. Initially, the N most 

dominant colours are selected from the RGB histogram therefore N clusters are 

identified. This number of clusters is subsequently reduced by combining clusters that 

lie in close proximity in the colour space. This process, takes place in already reduced 

colour space. Lines are then identified in the colour space by means of edge detection 

(in the colour space). Having identified a set of lines, the colour of each pixel is 

checked, and the lines that present a distance to that colour less than a predefined 

threshold are identified. If one line is identified, the pixel is assigned to this line; 

otherwise, spatial characteristics are used to facilitate the decision process. Although 

the suggested method can produce satisfactory results in simple colour documents, the 

number of assumptions made does not allow for a general use. 

Perroud et al. [147] examine two histogram based clustering approaches, one in 

the RGB space and a second in the RGBY space, where Y is a spatial component, 

which represents a quantity from the image plane. The histogram based approach, in 

its simplest form (1D), is based in analysing a quantised version of the histogram. For 

each cell in the histogram, the two neighbouring cells are checked and a pointer to the 

larger one is created. If both neighbours are equal and larger than the cell in question, 

a pointer to the left one is created by default, whereas if none of the neighbours is 

larger, no pointer is created. At the end of this process, the histogram contains chains 

of cells pointing to a local maximum. Clusters can then be defined with the help of 

those chains. When this method is extended to three dimensions, as in the case of 

RGB clustering, each cell in the quantised 3D histogram has 26 neighbours. Chains 

could then be identified in a similar way, by checking all 26 neighbours each time. 

The suggestion of the authors was to consider spatial information as well as colour 

during the histogram based clustering. Therefore, a fourth dimension, namely Y is 
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employed. The four-dimensional histogram contains information about the number of 

occurrences of a colour value dependent on its spatial position. In this case, the image 

row is taken as the spatial position (i.e. the Y component). A different quantisation 

step is used for the Y component, since it represents a quantity of the image plane. 

Other than that, each cell will have 80 neighbours in the 4D space, and the process of 

creating chains works in the same manner as in simpler cases. If after the end of the 

clustering process the same line of text spreads over multiple Y-cells, an 

over-segmentation is possible. To overcome this problem, a post-processing step is 

used. The post-processing procedure checks if above and below the separating line of 

two cells there are adjacent pixels that belong to the same RGB-cell of the histogram. 

In such a case, the clusters are merged. The authors suggest that clustering in the 

RGBY space is superior to clustering in the RGB space since the use of spatial 

information allows a direct segmentation of the documents into text components. 

Nevertheless, this is based on the fact that text lies on horizontal lines (unless a 

different spatial feature is used), and is of the same colour. These two conditions are 

necessary for a line of text to fall in the same cluster. 

Scanned Colour Documents 

In the context of colour documents, an interesting approach that combines a 

bottom-up and a top-down segmentation process is proposed by Sobottka et al. [183, 

184]. They use the previously described algorithm of Perroud et al. for colour 

reduction as a pre-processing step. The clustering method used is in RGB colour 

space (3D), while they report that the HSV colour space was also tested, and performs 

poorer than RGB in this case (it produces too many clusters). The top-down approach 

proposed is based in recursively splitting the image into regions in the horizontal and 

vertical directions. Regions containing text include at least two colours. Based on this 

knowledge, homogeneous regions are rejected as background ones. Each row or 

column (according to the direction of splitting) is tested to see if it contains one or 

more different colours. If a row (column) is found in which all pixels have the same 

colour, the region is split along this row (column). Splitting terminates if at least 2 

colours arise for all rows and columns of the region. During segmentation, 

information about possible text and background colours is acquired: the colour of the 

rows or columns where split occurs is considered to be the background colour, while 

another colour that occupies a certain percentage of the region is considered to be the 
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text colour. The top-down segmentation accurately segments small sized text, while 

over-segmentation of the characters is not possible. The bottom-up process acts in a 

complementary manner to the top-down process. A region growing is performed here: 

beginning with a start region of at least three horizontally or vertically aligned pixels 

of the same cluster, pixels within a 3x3 neighbourhood are iteratively merged if they 

also belong to the same cluster. This bottom-up approach presents difficulties 

segmenting very small characters, while it can split graphic regions into sub-regions. 

Regions are grouped into lines of text, based on basic text line hypotheses (distance 

between components, co-linearity of characters, distance between lines). This region 

grouping is performed independently for the results of each process, and the 

identification of text lines makes use of the fact that both types of analysis predicted 

the same output. This method assumes that both the background and the text (at least 

at the character level) are of uniform colour. Although the majority of documents 

conform to those specifications, a number of complex images where text is of gradient 

colour, or where text is rendered on photographic background would possible pose 

certain difficulties. 

Another method, which is not specifically designed for colour documents, but for 

a broad range of colour images containing text, comes from Jain and Yu [86, 87]. 

They propose a method based on decomposing the given image in a number of 

foreground images and one background one, by using colour information. They use 

slightly different approaches for 8-bit palettised images and for 24-bit true colour 

ones. For 8-bit images the authors argue that characters occupy a sufficiently large 

number of pixels, so a foreground image is created for each palette entry with a 

number of corresponding pixels larger than a predefined threshold (400 pixels). 

Therefore, each foreground image contains pixels of the same colour. Furthermore, 

the number of foreground images accepted is limited to eight. The colour with the 

largest number of pixels is considered the background colour. Also, as background 

colour is considered the colour with the second largest number of pixels, if that 

number is above a predefined threshold (10.000 pixels). The authors further assume 

that if the text colour is not uniform, the surrounding background colour will be. 

Based on that, they produce one more foreground image, which consists of all the 

pixels that do not belong to the background. The process for true colour images is 

similar, but some pre-processing takes place first. Bit-dropping is performed to each 

of the RGB components, and only the highest two bits of each one are kept (this 
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reduces the maximum number of colours to 64). Subsequently, colour quantisation 

takes place, which further reduces the number of colours. From that point onwards, 

the extraction of foreground images is the same as with 8-bit images. In each of the 

foreground images produced connected components are identified. The smaller of the 

connected components are discarded, while the rest are combined into lines based on 

size similarity and alignment in the image. The components that are not part of any 

text line, are further checked (for the case of characters touching each other) by use of 

horizontal and vertical profiles. Similarly to other methods described, the method of 

Jain any Yu suffers from a number of assumptions that do not always stand true. The 

assumption that the background is of uniform colour may make sense for some colour 

documents, but not for other types of images such as video frames (Section 3.3), 

Scene Images (Section 3.4) and web images (Section 3.5) the method is supposed to 

cope with. In fact, the authors present a low accuracy rate for documents with 

complex backgrounds. The second disadvantage of this method is the fixed 

thresholds. Since the thresholds used refer to numbers of pixels, it would be more 

reasonable to be dependant on the size of the image, and not pre-defined to specific 

values. 

Short Discussion 

Unlike bi-level images, or greyscale images, where a bi-level representation of the 

image can be obtained by thresholding, in colour images separation of foreground and 

background is not a trivial task. Segmentation here involves not only a rough 

description of regions containing text, but actually extracting the text, and ultimately 

making it possible for a subsequent process to obtain a binirised version of the image 

for recognition purposes. The majority of segmentation methods suggested for 

bi-level images are not directly applicable here. 

3.3. Text Extraction from Video 

Text extraction from video sequences has been paid much attention lately. Extraction, 

in contrast to segmentation, has the broader meaning of identifying regions of interest 

and actually separating the foreground from the background information. Text 

extraction from video scenes refers mainly to extracting text superimposed on video 

scenes, like captions, or film credits. This task can be facilitated from the fact that this 

type of text either remains at the same position for a number of consecutive frames, or 
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scrolls independently from the background scene. Therefore, the analysis of the 

differences between consecutive frames or motion analysis can facilitate this process 

enormously. Not limited to that type of textual information, methods have been 

proposed, which aim in extracting text from video scenes; that is from the actual 

content of the video sequence. These techniques are conceptually identical to 

extracting text from real-life scenes, which will be analysed in Section 3.4. 

Extraction of Superimposed Text 

Lienhart and Stuber [102] propose a method to extract text from video sequences. 

Their method is limited to text superimposed on video frames (captions, end credits 

etc). They work with greyscale instances of the video frames, and base their method 

in several characteristics that superimposed text possess, such as characters being 

rigid and of uniform colour, text being static or linearly moving in one direction 

(when scrolling), size restrictions etc. The method starts with a colour clustering 

process, based on the Split and Merge algorithm proposed by Horowitz and 

Pavlidis [75]. The split process begins with the whole image as a segment, and splits it 

in quarters checking each time the colour homogeneity of the sub-segments produced. 

If a sub-segment is not homogeneous, splitting continues, otherwise splitting stops. 

The merging process, checks the final segments and if neighbouring segments have 

similar average grey value they are merged. This produces a number of final regions, 

which initially are text candidates. A number of tests are then performed, and most of 

the regions are discarded. The first test discards regions of very large or very small 

size. Then motion analysis takes place, and the remaining regions are matched with 

regions of consecutive frames. They argue that text should remain unchanged in 

shape, rotation and colour, and it should be displaced only for a small distance (if at 

all). Based on that, regions without an equivalent in the subsequent frame are 

discarded, so are those the equivalent of which has significantly different average grey 

value. The next test has to do with contrast analysis. Since superimposed text is 

placed in an image specifically to be read by the viewers, it should be sufficiently 

different from the background (usually outlined text is used for that reason), which 

would produce strong edges. Therefore, strong edges are identified in the image and 

dilated. The regions that do not intersect with any dilated edge are discarded. Finally, 

an extra filtering is performed based on the fill factors and the aspect ratio of the 

remaining regions. This method is completely based on special characteristics that 
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according to the authors superimposed text posses. The characteristics suggested are 

quite logical and stand true for most of the cases. 

A different method is proposed by Kim [93], which works in the RGB colour 

space. The colour histogram of the image is first computed, and dominant peaks are 

identified in it. The colours corresponding to each of the peaks identified, are 

extracted in a separate colour plane, and text extraction is performed in each colour 

plane individually. This automatically limits this approach to characters of uniform 

colour (since otherwise they would have been exported in a different colour plane). 

First, certain components are discarded based on their shape and positioning. Those 

are components touching the borders of the picture, or excessively long ones. Only 

pixels of a certain colour (the corresponding histogram peak) lie in each colour plane; 

those pixels are considered the foreground ones, while the rest consist the 

background. Each row of the colour plane is examined, and it is determined whether it 

has enough foreground runs of pixels to be part of a horizontal text line. Rows having 

too many or too few runs of foreground pixels are discarded. If more than three 

consecutive rows pass this text, the stripe defined is considered as a text candidate. A 

similar procedure then takes place during which columns of each horizontal stripe are 

checked to determine whether they include any foreground pixel or not. In this way 

the horizontal stripe is split into a number of regions, which are subsequently tested 

against some more text heuristics (aspect ratio restrictions, density etc). Finally, all the 

remaining regions are grouped again into horizontal lines. Similarly to the method by 

Lienhart and Stuber [102], this one is limited to text superimposed in the image, 

horizontal and of uniform colour. 

Quality Improvement of Extracted Characters 

Sato et al. [174] address a different problem of text extraction from video sequences: 

the low quality of the extracted text. Based on the fact that a text line appears in a 

series of consecutive frames, they use this excess information to improve the quality 

of the characters. For the extraction of text regions a method devised by the same 

research group [182] is used, which works with greyscale instances of the frames. The 

first step towards improving the resolution of text regions is to employ a sub-pixel 

interpolation technique. They effectively magnify the text region by a factor of four 

by placing the original pixels every fourth row and fourth column, and calculating the 

values of the intermediate pixels by linear interpolation. More comprehensive 
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techniques to improve the resolution of text areas are available in the literature (e.g. 

Thouin and Chang [193, 194]), but linear interpolation is adequate as a first step here. 

For the second step of this method, the authors assume that captions have high 

intension values (lighter colours than the background). Based on that, an enhanced 

image (of each sub-pixel interpolated frame) is produced from the minimum pixel 

value in each location that occurs during the frames containing the region. 

Subsequently, four filters are defined (horizontal, vertical, left diagonal and right 

diagonal), and each one is applied in the enhanced images produced by the previous 

step. The rationale behind this filtering is that characters consist of those four different 

diagonal elements. The results of the four filters are then integrated, and the final 

image is thresholded. Finally, projection profiles are used to split the regions into 

characters, and basic character recognition is used to select the best final 

segmentation. Although restricted by the fact that captions are expected to be of light 

colour, this method addresses a problem which is very common to video (and web 

image as will be seen later on) text extraction: the low quality of (small) characters. 

Extraction of Scene Text 

Li et al. [100, 101] extended their method to both text superimposed in the video 

frames, as well as text appearing as part of the scene. Their method uses a 16x16 

window to scan the image and classify each region as text or non-text. They move the 

window by four pixels every time, so that the algorithm is reasonably precise and fast. 

The authors argue that the regions where text is printed will present higher 

frequencies (due to stronger edges between the text and the background) than other 

non-text regions. Consequently, they aim in analysing the scale space of the image to 

identify text regions. To do that, they decompose the image using wavelets into four 

sub-bands. The text regions as expected show high activity in the high-frequency 

bands of wavelet analysis. Having decomposed the image into four bands, for each 

16x16 window the mean, the second and the third order moments (Eq. 3-1) are 

computed in the four sub-band images. The second and the third order moments of the 

four sub-bands are used as the features for classification of the window as either text 

or non-text. For the classification process, a neural network is used, trained with a big 

number of text and non-text samples. After each window has been classified, a 

number of regions (based on the pixels of text windows) are identified. The projection 

profile of the canny-edge map of each region is then used to extract the text elements. 
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Short Discussion 

Scene-text extraction can be seen as an introduction to Section 3.4 (Text extraction 

from Real Scene), the only difference being that in video scenes more than one frame 

exists containing the same text, while in real life scenes just one image is available. In 

contrast to superimposed text, where the location of the text is generally static or 

linearly changing, scene text is moving with the scene, and is affected by camera 

movement. As a result, scene text is difficult to track, and research has been 

conducted on methods to track text regions in video sequences. Li et al. [101] based 

on the method discussed before propose a technique for tracking the text regions 

identified. Another suggestion comes from Cui and Huang [37], who propose a 

method for extracting characters of license plates from video sequences. They argue 

that as vehicles are moving along the road, the trajectories of points on the licence 

plates are parallel in 3D space, and will have a common vanishing point in the image 

plane. They select a number of points (based on a rank value each pixel of the licence 

plate has been assigned) and use them to calculate the trajectory of the licence plate. 

By doing that, they can correct any perspective distortion the plates might have. 

3.4. Text extraction from Real Scene Images 

Real scene images are usually photos containing text. Characters in real scene images 

can suffer from a variety of noise components. They originally exist in 3D space, so 

they can be distorted by slant, tilt, and the shape of objects they are printed on. 

Moreover, uncontrolled illuminating conditions often result to text of non-uniform 

colour. 
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Methods Limited to Horizontal Text 

Ohya et al. [137] present a method for the extraction and recognition of characters in 

real scene images. They work with grey-level images, and start by binarising the 

image using local thresholding. For local thresholding, the image is split into 

sub-blocks, and a threshold is determined for each one. Then the thresholds specified 

are interpolated to the whole image. For sub-blocks of a uniform grey value, 

performing thresholding yields a number of unwanted noise components; therefore, a 

bimodality check is usually employed to determine whether a sub-block should be 

thresholded or not. The authors though, argue that such a bimodality check would 

result in loosing real character segments, so they threshold every sub-block of the 

image instead. The characters in a real scene image are not necessarily only black or 

only white, so the method does not favour one situation in particular. Instead, the 

method identifies all components in the image, and initially selects character-like ones 

by assessing the grey differences between adjacent components. 

Character-like components are expected to have adequate difference from their 

adjacent ones. Components in close proximity that have the same bi-level value (after 

binarizasion) or similar average grey values are identified and marked as possible 

parts of characters. This process addresses the problem of multi-segment characters 

(like “i”, “j” or some Chinese characters) and aims in creating character pattern 

candidates. Character pattern candidates are then classified. This classification process 

involves checking the similarity between the character pattern candidates and a set of 

character categories stored in a database. High similarity patterns are then 

post-processed with a relaxational operation, in order to remove ambiguities. The 

algorithm is reported to work well with a number of different types of images: road 

signs, licence plates, signs of shops etc, which include a variety of characters. Due to 

the nature of the classification process, the characters are required to be printed 

horizontally. 

Another approach comes form Wu et al. [209]. They propose a two-step method to 

segment an image into text regions, and a robust (but not very generic) way to 

binarize the extracted text regions. First, a texture segmentation algorithm takes 

advantage of certain characteristics of text to segment areas possibly containing text 

lines. The second phase focuses on the previously detected areas and constructs 

“chips” from strokes taking into account text characteristics. This phase starts by 

creating strokes from significant edges in the picture. Strokes that are unlikely to 
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belong to any horizontal text string are then eliminated, while the remaining ones are 

aggregated to form “chips”. Next, the “chips” are filtered, and the ones unlikely to 

belong to any horizontal text line are eliminated. Finally, the remaining “chips” are 

aggregated again to describe the text lines more accurately. For these processes, the 

authors assume that characters of the same text line should be of similar height, and 

horizontally aligned. This process is repeated for a number of scaled images of the 

original, in order to identify text of various sizes. All the results are finally combined. 

After segmenting the text lines, each region identified is smoothed, and the intensity 

histogram of the smoothed region is computed. The text (assumed to be of adequate 

difference from the background) should give one peak in the histogram (left or right, 

depending whether it is black or white), while the background should give another 

peak. Based on histogram analysis, a value is selected at the valley of the two peaks, 

and the image is thresholded. Although the authors suggest that this method can be 

used for scene images, the assumptions they make are not that generic. Text is 

assumed horizontal, and of uniform size, which is certainly not the case for text found 

in scene images, where camera perspective can distort the text and the positioning of 

the objects carrying text can be arbitrary. 

Methods Unaffected by Different Orientation Angles 

A method which better addresses problems of different orientation angles of text lines 

in real scene images is proposed by Messelodi and Modena [117]. The method 

proposed, does address skew problems, but it is only described and tested on images 

of book covers, where acquisition takes place in a real environment, under 

unconstrained conditions, but the positioning is carefully adjusted so that the vertices 

of the book cover approximately match the corners of the image frame. Moreover, the 

colour contents of the image are not always representative of real scene images, since 

book covers generally have text printed on a uniform background. Having mentioned 

that, this method does address the problem of lines having different orientations in the 

image, as well as problems of touching characters or lines. The process starts by 

obtaining a number of bi-level images. For the book cover images, this is achieved by 

performing first intensity normalization and then analysing the histogram of the 

resulted (normalized) image. This histogram is strongly unimodal, since flatted 

regions are typically the major part of the image. Those flat regions will have been 

assigned similar grey values after intensity normalization, so they appear as a single 
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peak in the histogram. Text, graphics and other non-textual components, which are 

usually darker or lighter from the background, make contribution to the histogram 

tails. Consequently, two thresholds are selected (and two bi-level images are 

produced), to capture the left and the right tail of the histogram. Components are then 

identified in the bi-level images and filtered according to several heuristics, which aim 

at characterizing single textual objects. Component characteristics used are 

dimension, convexity, local contrast and elongation (aspect ratio). 

During the last step, the remaining components are grouped to produce a set of 

text lines. The components are clustered into text lines by means of a hierarchy 

divisive procedure. Initially a single cluster contains all the components, which 

represents the root node of a tree. Then a set of expansion rules is used to recursively 

expand each node. A generic node of the tree is represented by a structure with 

numerous fields like the direction of the block of components, the width and height of 

the block etc. To compute the direction of the block, a number of potential angles are 

generated from pairs of components, and a projection profile is generated for each 

angle. The projection profile with the minimum entropy corresponds to the correct 

angle. The expansion rules are based on a second set of heuristics concerning the 

characteristics of groups of components belonging to the same line of text. Such 

characteristics used are closeness, alignment and comparable heights. First, a 

“closeness segmentation” is applied once, which creates clusters of components based 

on their topological proximity. At this stage, areas of text printed in different angles 

are exported in different clusters. Then “alignment segmentation” is performed which 

aims in separating blocks of similarly oriented text to text lines. 

Clark and Mirmehdi [35] go one step further, and suggest two approaches to the 

location and recovery of text in real scenes. The first method, is focused on situations 

where text lies on the surface of an object and the edges of the object are rectangular 

and aligned with the text. This is the case for paper documents, posters, signs, stickers 

etc. The objects on which text is printed have strong visible edges, and depending on 

the camera perspective and the positioning of the object in the scene, the rectangles 

around text regions will appear as quadrilaterals in the scene image. Such 

quadrilaterals are extracted from the image with the use of edge detection, Hough 

transform and grouping of extracted line segments. Quadrilaterals that do not refer to 

objects containing any text are then eliminated. A confidence measure is employed for 

this process, based on the histogram of edge angles for each region. Because the 
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printed text independently of magnification has a closed shape, the histogram of the 

edge angles will have rotational symmetry 180º. This property is used to define the 

confidence measure used for rejection of non-text regions. Having identified the 

quadrilateral describing a text region, the perspective of the text region can be 

removed. 

In cases where text is not surrounded by a clearly identifiable quadrilateral, Clark 

and Mirmehdi suggest another approach, based on identifying the vanishing point of 

text lines. For this method to be used, paragraphed text (of at least three lines) is 

required. The text regions are initially identified using texture characteristics of text. 

Five measures are defined for each pixel, based on a small circular neighbourhood 

around it. These measures are combined with the use of a neural network, which 

classifies each pixel as part of a text region or not. Having identified text regions in 

the image, the vanishing point of the text lines has to be computed. To do that, the 

authors defined a circular search space for which each cell c = (r, θ) corresponds to a 

hypothesised vanishing point V(Vr, Vθ) on the image plane, with scalar distance 

Vr = r/(1-r)  from the centre of the image and angle Vθ = θ. A projection profile of the 

text is generated for every vanishing point. Then similarly to [117], the projection 

profile with the minimum entropy corresponds to the correct skew angle. Having 

identified the vanishing point, segmentation into text lines and deskewing takes place. 

Short Discussion 

Many similarities exist between scene text extraction from video frames and real 

scene images. All approaches created for detecting text in scene images should be 

straightforward to use for text extraction from single video frames. Similarly, most of 

the methods proposed for scene text extraction from video, with the exception of 

methods making use of the fact that text appears in multiple frames, can be used for 

text extraction from scene images. 

Even though a number of approaches have been suggested, there is no generic 

way to extract text from video frames or scene images. Almost all methods expect text 

to be of uniform colour (e.g. [35, 117, 137, 209]), while a number of methods expect 

text to be printed in a specific direction (e.g. [137, 209]). Another common 

assumption, either implicit or explicit to the method, is that the background of text 

regions is of uniform colour (e.g. [35, 117]) or that the characters have high contrast 

with their background (e.g. [137, 209]). Finally, most of the approaches proposed, 
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deal with a grey-level version of the original colour image. These characteristics 

hinder the use of many of those methods with images taken in real environment, under 

unconstrained conditions. 

3.5. Text Extraction from Web Images 

Web Images are generally computer created. As such, they belong to a special 

category of images called synthetic images. As described in the introduction of this 

thesis, the fact that Web Images are created with the use of computers, to be shown on 

computer monitors, entails a number of characteristics, and inherent problems. The 

problems associated with Web Images, are not the typical problems one expects to 

find in scanned documents or video frames and scene images like skew, 3D 

perspective, illumination or scanning artefacts, noise etc. Instead, artefacts produced 

by compression or anti-aliasing are common, while text itself, as a result of the artistic 

expression of the creator, can appear colourful, in various orientations, outlined or 

shadowed etc. The main characteristic of Web Images though, is that text is rendered 

in colour, and most of the times, either the text or the background (or both) are 

multi-coloured. As can be seen, extracting text from Web images can be an extremely 

complicated process. 

Comparing to previous categories of image text examined here, text in Web 

Images is created with the image. In that sense, Web Image text extraction is closer to 

the extraction of superimposed text on video frames, rather than scene text, or scanned 

documents. 

The main contribution to the specific problem of Web Image text extraction 

comes from Lopresti and Zhou [105, 106, 218-220]. They propose two methods to 

locate text in images, as well as methods to recognize text, and although they make a 

number of assumptions that do not always hold, their approaches can produce 

satisfactory results to a significant sub-group of Web Images, namely images stored as 

GIF files (8-bit palettized colour). 

The main underlying assumption to the method proposed by Lopresti and Zhou 

for locating text in Web Images [218], is that text is printed in uniform colour. This 

contradicts to the main characteristic of Web Images, that text is usually 

multi-coloured. This assumption automatically limits the applicability of the method 

to a certain subset of Web Images. Based on that assumption, the text extraction 

method is based on identifying in the image connected components with the same 
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colour. First, colour quantisation is performed by clustering in the RGB colour space 

based on the Euclidean minimum-spanning-tree technique (EMST). According to 

EMST, each colour is represented as a node in a tree, and each pair of nodes is 

connected by a weighted edge, the weight of which equals the distance (RGB 

distance) between the two nodes (RGB colours). By eliminating the edges with the 

larger weights, the tree is partitioned in disjoined clusters. Pixels of the same colour 

are then grouped in connected components, which are subsequently checked to 

evaluate if they could be text candidates. The evaluation is performed in a similar 

manner to a number of previously detailed methods: based on geometrical features of 

the components such as size, aspect ratio, the presence of holes and branches etc. 

In more recent papers [106, 220], Lopresti and Zhou changed slightly the 

clustering algorithm of their method to include spatial information as well as colour 

information. This was done mainly to address a problem inherent to images of a 

limited palette of colours such as GIFs. Dithering is sometimes used to create colours 

that are not defined in the palette used. In such a case, to create a colour, pixels of two 

(or more) colours are mixed in a certain way in an area of the image, so when seen 

from a distance, its colour appears to be the mixture of the two colours participating. 

If that is the case with text, the simple clustering algorithm, would separate the two 

colours (in different clusters), resulting in splitting the text. In order to avoid that, the 

authors introduced a measure for the spatial proximity of colours. Let dp(X) denote the 

distance between a given pixel p and the closest pixel with colour X. Denote by N an 

m x m neighbourhood in the image, and by c(p) the colour of pixel p. Let PN(X) 

represent all pixels of colour X in the neighbourhood N. Then the spatial distance from 

colour X to colour Y in the neighbourhood N is calculated by Eq. 3-2, where #PN(X) is 

the number of elements of PN(X). Because the distance defined in Eq. 3-2 is not 

symmetric (i.e. DN(X,Y) ≠ DN(Y,X) ) the distance defined in Eq. 3-3 is used. 
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The images are first divided into non-overlapping mxm blocks and each block is 

processed. The blocks are small enough so that each region is roughly bi-tonal. A 

local clustering algorithm then exports a small number of clusters from each block 

(one to three). Initially pixels of each block are grouped to three clusters, and then the 

method decides based on the distance described here, whether pairs of clusters should 

be merged. After this pre-processing step at the local level, the EMST algorithm runs 

with the already colour reduced image. The character-like connected component 

identification takes place as before, based on geometrical characteristics of the 

components, but now a second step is added. After using features that are relatively 

invariant to character touching (e.g. stroke width or white-to-black ratio) to identify 

character-like components, the elongated components are singled out, and a 

post-processing step splits those components based on breaks identified in their 

vertical profile. For this step, the method further assumes that text is printed 

horizontally. Finally, a layout analysis step takes place, which combines components 

in words, and checks the “goodness” of each grouping by use of a measure called 

saliency, based on the degree of height and the positional alignments of the characters 

in a word. 

Apart from Web Image text segmentation, Lopresti and Zhou suggested two 

methods [105, 219] for performing OCR on the extracted text regions. A foreground 

colour is chosen for each region (based on the assumption that the text is of uniform 

colour). Then the method computes the difference between that colour and the colour 

of each pixel in the region. The result forms a 3D surface, which is used for 

recognition. The recognition method proposed is based on a polynomial surface fitting 

proposed by Wang and Pavlidis [200]. Each character is treated as a 4th degree 

polynomial function. This is done by least square fitting of the polynomial function on 

the 3D surface of the character. Features derived from that polynomial representation 

are then used to match the character to a database of prototypes. The problems with 

that approach are two. First, the polynomial surface representation method is a 

computationally intensive operation. Second, the polynomial representation can 

capture only the global shape of characters. Characters whose shapes are similar to 

each other (e.g. “c” and “e”) may not be distinguished reliably. 

Another OCR method suggested by Lopresti and Zhou, is based on n-tuples. An 

n-tuple is simply a set of locations in an image with specified colours. For 

recognition, n-tuples are superimposed onto an image and colours are compared. A 
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degree of how much an n-tuple matches to the underlying area is then calculated. To 

use n-tuples, each pixel is assigned a value in the range [0,1] representing the 

certainty of it to belong to the foreground. N-tuples is an old OCR technique, which 

due to a number of problems it presents has received only scant attention. 

In a similar manner to Lopresti and Zhou, Antonacopoulos and Delporte [7] 

propose a way to extract characters from Web Images. They improve on the previous 

suggestions in two ways. First, by providing support for full colour (JPEG) images, 

which represent a great percentage of Web Images. Furthermore, gradient characters 

extraction receives more attention. For full colour images, the authors perform a bit 

dropping operation, keeping only the 3 most important bits of each colour component, 

thus reducing the maximum number of colours to 512. Subsequently, colour 

clustering is performed to further reduce the number of colours in the image. Two 

approaches to colour clustering are suggested. The first is based on analysing the 

histogram of the image, and ordering the colours according to their prominence. The 

most dominant colour is then taken as the centre of the first cluster, and colours 

presenting a distance less than a pre-defined threshold to the centre of the cluster, are 

assigned to it. The most important of the remaining colours is then selected and a new 

cluster is created. The process continues until all available colours have been assigned 

to a cluster. The second clustering method suggested is the Euclidean 

minimum-spanning-tree technique (EMST) as described previously. This second 

algorithm is used in more complex colour situations. Subsequently, a connected 

component analysis is performed, during which special attention is paid to gradient 

components. Subsequently, components are evaluated based on certain features, like 

size, aspect ratio and the number of strokes crossed by each image scanline. This last 

feature, essentially measures the black-to-white transitions, which cannot be more 

than four on a scanline (case of letter “M”), at least for the Latin character set. Then 

components are evaluated are grouped in words based on their colour, their alignment, 

and proximity in the image. 

A framework for analysing Web Images is proposed by Koppen et al. [96]. The 

framework consists of four stages, the colour seperation stage, the information 

granulation-specification modules (GVMs), the task stage and the recognition stage. 

Each image is initially split in colour components. Five sub-images are produced, one 

for each component of the CMYK colour system, and a fifth one for the Saturation 

component of the HIS colour system. Each sub-image is then used as input to one or 
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more GVMs. The GVMs are designed to solve specific problems, they consist of three 

parts: a method maintainer, a parameter chooser and a tester. The parameter chooser 

provides the method maintainer with a set of parameters for each run of the method on 

the input images. Then the resulting images are tested and all successfully processed 

images are put into a queue, the task manager then decides for the further processing 

of the results: it either feeds them into more GVMs or passes them to the recognition 

stage. The GVM of interest here, is the one specifically designed for text extraction. 

The input of the text location GVM is each colour component sub-image. Text 

regions are detected from their structural properties, while a filtering operation 

enhances the contrast in the image. The authors argue that the structural property 

indicating a sequence of characters is the repetition of nearly parallel edges in a region 

of the image. Parameter switching is performed, and for each set of parameters an 

output image is produced. Each output image is evaluated by means of topological 

features of the extracted components. The positively evaluated images are then fed 

into the recognition GVM.  The authors mainly describe the framework in this paper, 

rather than specific modules, so specific details for the text extraction module are not 

available. 

Short Discussion 

Not many methods have been proposed specifically for extracting text from Web 

Images. The variability of Web Images does not allow for most methods to work but 

only with a minor percentage of images. For example, Zhou and Lopresti [105, 106, 

218-220] only deal with 8-bit palettized images, where the text appears in uniform 

colour. Antonacopoulos and Delporte [7], deal with 24-bit images as well, but also 

require text to be of uniform colour. Moreover, all methods require text to be 

horizontally printed and generally not touching. As can be seen, only a limited 

number of Web Images conform to the specifications set here. For the rest, there is 

essentially no method suggested in the literature. 

3.6. Discussion 

A number of text segmentation and classification approaches were presented in this 

chapter. Although text segmentation and classification was examined in the context of 

various different fields, some common trends can be identified. 

 100



Chapter 3 – Text Image Segmentation and Classification 

Trends in Text Extraction and Classification 

The first such trend has to be related to the location of text in images. Most of the 

approaches presented use either connected component analysis, or texture analysis to 

identify regions of interest in the image. Connected component analysis is generally 

used after some pre-processing has been performed. Usually, this pre-processing aims 

in splitting the image in question in a number of sub-images in which pixels are 

separated in foreground and background ones. Another type of pre-processing, used 

before connected component analysis, is bit-dropping, or colour clustering (or both), 

in order to reduce the number of colours in the image. Then a colour is selected as the 

foreground one, and connected component analysis can be performed. Texture 

analysis on the other hand, requires much less pre-processing as is based on textual 

properties. 

No matter what type of analysis is used to extract text from images, there is 

always a number of underlying assumptions for every approach. Those assumptions 

are usually reasonable and not many. The most common of them, is that the text is 

rendered in uniform colour. This is actually needed for almost all connected 

component based methods with few exceptions such as Antonacopoulos and 

Delporte [7] who provide for gradient text. On the other hand, the majority of textual 

analysis based methods require that the text presents sufficient contrast to the 

surrounding background. 

Numerous more assumptions come to play during the classification process. Text 

is usually considered horizontally aligned. The sizes of characters of the same line are 

considered similar, which alone is quite reasonable, but it automatically suggests that 

no characters are touching, or broken in smaller components. Some methods even 

require that the aspect ratio between characters on the same line is similar, which is 

not true for all the characters of the Latin alphabet, where vertically elongated 

characters like “l” and “i” coexist with square characters like “x” and “o” and 

horizontally elongated ones like “m” and “w”. 

Finally, most of the methods show a tendency towards working with grey scale 

versions of the images. Although it is certainly computationally efficient to work in a 

1D colour space than a 3D or 4D one (depending on the colour system used), a certain 

amount of information is discarded. 
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Conclusion 

This chapter gave an overview of text segmentation and classification techniques. 

Generally, a number of good approaches exist to segment text in rather simple 

situations: text of uniform colour, horizontal text lines, high contrast between the text 

and the background etc. Nevertheless, Web Image text does not generally fall in any 

of those categories. The rest of this thesis will focus in novel methods for extracting 

text from Web Images. 
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Chapter  4 

4. Split and Merge Segmentation Method 
 

 

 

he first of the two methods investigated towards text segmentation in Web 

images is presented in this chapter. This method works in a split and merge 

fashion, aiming at constructing connected components that ultimately describe the 

characters in the image. The two parts of the method, namely the splitting process and 

the connected component aggregation (merging) process, are explained in detail. 

Certain aspects of the method that are of particular interest are also detailed in 

dedicated subsections. 

T

4.1. Basic Concepts – Innovations 

Both text segmentation methods that were produced as part of this research share a 

common belief about the way Web Images are constructed. As explained in 

Chapter 1, Web Images are created to be viewed by humans, thus it is reasonable to 

expect that particular colour combinations are used that enable humans to differentiate 

(relatively easily) between the textual content of the image and the background. Based 

on that observation, the common denominator both methods share is their 

anthropocentric character. Although approached in a distinctly different way in each 

method, the safe assumption that a human being should be able to read the text in any 

given Web Image is the foundation of both methods’ reasoning. 
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A number of colour segmentation methods based on human perception exist in the 

literature as detailed in Chapter 2. Nevertheless, the field of colour document analysis 

lacks of perceptually oriented segmentation methods. The methods described here aim 

to fill this gap, by applying human perception information in the field of text 

segmentation in colour images. Moreover, the manner such information is exploited 

here, presents significant differences from perceptually oriented colour segmentation 

methods found in the literature, as will be shown later on. 

Anthropocentric Approach 

Towards addressing the observations made and implementing the anthropocentric 

character of the method, two stages are employed in the Split and Merge method. 

First, the splitting process of the method is based in the HLS colour system, which 

provides a colour representation much closer to the way humans understand colour 

than RGB. Then, the component aggregation phase utilises biological data available 

about human colour discrimination in order to assess the colour similarity of different 

image regions. 

The use of HLS as a perceptually oriented system has been previously explained 

in the context of colour segmentation in earlier chapters. Research has been conducted 

in order to assess the usefulness of a number of factors towards colour 

discrimination [181]. The outcome of this work and related research is that 

wavelength separation, colour purity and lightness are the factors that influence most 

the perception of chromatic colour. A list of further factors that influence chromatic 

colour discrimination is given in Appendix A. 

The Hue component of the HLS system corresponds to the perceived wavelength 

of each colour, thus higher differences in Hue are translated to better wavelength 

separation. As wavelength separation increases, the ability to discriminate between 

colours increases accordingly. The Saturation component corresponds to colour 

purity. Increases in the purity of colours maximize the perceptual distance between 

them, whereas colours with a low saturation value are difficult to be separated with 

regard to their chromatic content. Finally, changes in Lightness also influence greatly 

the appearance of colours. Increases in Lightness produce increases in Saturation, 

thus, more bright colours would appear more saturated and would be easier to 

distinguish. It should be noted that this increase of Saturation as the intensity of the 

illumination grows (or as the luminance of the emitted light is raised) reaches a 
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different maximum for each Hue [189], beyond which further increases in intensity 

produce a reduction of Saturation. It should also be mentioned here that changes in 

Hue also occur as Lightness changes, a phenomenon known as the Bezold-Brucke 

Effect [156, 211], although such level of interaction is outside the scope of the 

research presented here. Based on the above information, the suitability of HLS for 

colour analysis of images can be well justified. This type of information about factors 

enabling colour discrimination and the interaction of colour attributes is taken into 

account in the first part of the Split and Merge method. 

The next stage of component aggregation employs existing biological data on 

Wavelength discrimination and Lightness discrimination, involving the appropriate 

HLS components in accordance to the factors explained above. Each type 

(Wavelength, Lightness or Colour Purity) of discrimination information is used at 

each level of processing, working towards the final segmentation of the image. 

4.2. Description of the Method 

The method starts by a pre-processing step, which aims at separating the chromatic 

from the achromatic pixels of the image (see next section). The image is split in two 

layers at this point, one containing the achromatic pixels and another containing the 

chromatic ones. 

Subsequently, the splitting process takes place. The histogram of Lightness for the 

pixels of achromatic layer is computed, and peaks are identified. A short analysis of 

the peaks identified follows, where peaks corresponding to similar Lightness values 

are combined. The left and right minima (see Section 4.4.2) of each peak (or 

combination of peaks) define a range of Lightness values. For each range of Lightness 

values, a new sub-layer is introduced, and the corresponding pixels are copied over. 

In a similar manner, the histogram of Hues for the pixels of the chromatic layer is 

computed, peaks are identified and the chromatic layer is split into sub-layers of 

different Hue ranges. For each of the sub-layers produced from Hue histogram 

analysis, the Lightness histogram is computed and the process is repeated. This goes 

on, alternating the component used at each step until a specified number of splits are 

performed or until only one peak can be identified in the histogram. Following this 

process, a tree of layers is produced, where the original image is the root of the tree, 

and the layers produced are the nodes. 
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After the splitting process is finished, a bottom-up merging process takes place. 

Connected components are first identified in each of the bottom layers (leaves of the 

tree). Then the neighbouring pixels of each connected component are checked, and if 

“similar” to the component, they are flagged as a potential extension for it. Similarity 

depends on the type of layer, that is, if the layer in question was produced by splitting 

its immediate parent layer based on the Hue histogram, then Hue discrimination data 

are used to assess if a viewer can possibly differentiate between the Hue of the 

component and the Hue of the neighbouring pixel. Similarly, if the layer was 

produced by splitting based on the Lightness histogram, Lightness discrimination data 

are used. By the end of this phase, connected components have been identified in each 

of the bottom layers, along with potential extensions for each one of them. These 

potential extensions are referred to as vexed areas from now on. 

Starting with each of the bottom layers (leaves), the overlapping of pairs of 

components (and their vexed areas) is computed (see Section 4.5.3) and if greater than 

a specified threshold, the two components and their associated vexed areas are merged 

into one new component (with a new vexed area). After this process finishes at the 

bottom layers, the resulting components are copied one level up, and their vexed areas 

are refined according to the type of the layer they are copied into. Then the same 

process of component aggregation based on overlapping is performed and the process 

continues, working its way up towards the root of the tree. The merging process stops 

when the original image layer is reached. Each of the above steps is described in 

detail next. 

4.3. Pre-Processing 

In this section, a brief anaphora to the transformations used between colour systems is 

given, and the pre-processing step of separating the chromatic from achromatic pixels 

is detailed. 

Transformations between Colour Systems 

The image data (RGB) is not directly available in HLS, thus a transformation is 

needed between the two. The RGB and HLS colour systems are interchangeable, 

meaning that there is a 1:1 correspondence between RGB and HLS values. The 

transformation used here is the one proposed by Foley et al. [55] and is detailed in 

Appendix A. 
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Although HLS is used throughout this method, biological data are given in 

physical units (e.g. wavelength instead of Hue) and a way to translate them into HLS 

is needed. This is done with the help of CIE XYZ, which acts as an intermediate 

system, since it is directly defined on physical data. Although the conversion to 

CIE XYZ depends on the hardware used, as explained in Chapter 2 and in 

Appendix A, the majority of monitors conform to the standard set by ITU-R 

recommendation BT.709 [84] within some tolerance. The transformation suggested by 

Rec.709 (which is also the standard for the sRGB colour system) is therefore used 

here to convert from RGB to CIE XYZ and vice versa. The transformation matrix 

employed is given in Appendix A. 

Separation of Chromatic from Achromatic Pixels 

Before any analysis begins, the separation of chromatic from achromatic pixels in the 

image occurs. Chromatic colour is any colour for which a dominant wavelength can 

be identified. As such, any colour that one can characterize as red, green, blue, purple 

etc. is a chromatic colour. On the opposite, if no dominant wavelength can be 

identified for a given colour, that colour is said to be achromatic. Any shade of grey, 

including black and white, is achromatic. 

Separating chromatic and achromatic pixels at this stage is important for the 

following reason: any process that examines Hue values will fail if applied to 

achromatic pixels, since the Hue for those pixels is undefined or unreliable. No 

specific Hue value can be given to any pixel that has zero saturation (thus is grey), so 

by definition a Hue value of zero is assigned. If the histogram of Hues is computed at 

that point, all grey pixels will be counted as having Hue equal to zero, (also equivalent 

to being red). If saturation is not zero, but just very low, a Hue value can be defined, 

but still it should not be used. The reason for that is twofold. First, the Hue value 

assigned is very unreliable for small Saturation values, so it doesn’t carry much useful 

information. Second, and probably most important, the human viewer cannot actually 

perceive any Hue for a pixel with a low Saturation, instead they will just see it as a 

grey pixel. 

Pixels with very high or very low values of Lightness, also lack any chromatic 

information (as explained before), so they should also be identified as achromatic 

ones. 
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The magnitude of the problem can be illustrated by the Hue histograms in Figure 

4-1. It can be seen that the original histogram is not representative of the Hue content 

of the image, since a large number of pixels are actually achromatic. 
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Figure 4-1 – (a) Original Hue histogram. (b) The same histogram, after removing all achromatic pixels. 

 

The exact levels of Saturation and Lightness for which colours should be 

considered achromatic are difficult to set. This is due to a number of factors, mainly 

the interaction of different colour attributes. Biological information exists on the 

amount of pure Hue needed to be added to white before the Hue becomes detectable 

[126, 210]. This data is shown in Figure 4-2. Nevertheless, there is a major problem 

using this data, which can be more easily explained in the CIE XYZ colour space. 
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Figure 4-2 – Amount of pure hue added to neutral colour before the hue becomes detectable. 
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The existing biological data is given in terms of wavelength, which is the physical 

property corresponding to the notion of Hue. In order to find which wavelength is 

associated with a given Hue, a conversion to CIE XYZ must be obtained. Having the 

CIE XYZ values, as well as the coordinates of the White Point (the chromaticity 

coordinates of the reference white colour as suggested by the standard BT.709 [84]), 

the computation of the wavelength is as follows. The XYZ values are normalized and 

a line is drawn from the White Point to the point defined by the normalized x, y, z 

values on the x+y+z=1 plane. The line is then extended until the spectrum locus (the 

horseshoe-shaped outline of the chromaticity diagram), and the wavelength is read by 

the point at the intersection of the line and the spectrum locus. For example, points A 

and B in Figure 4-3 intersect the spectrum locus at 504nm and 595nm respectively. 

Those wavelengths are called the dominant wavelengths for colours A and B. All the 

colours at a given straight line from the white point to a specific wavelength, have 

exactly the same dominant wavelength, but the closer they lay to the white point, the 

less saturated they are. 

 

 

Figure 4-3 – Dominant wavelength specification with the CIE chromaticity diagram. The dominant 

wavelength can be read directly from the spectrum locus for spectral colours (like A and B), or 

specified as the complementary wavelength for non-spectral colours (colour C). 

 

What now becomes evident is that not all Hues can be directly associated with a 

wavelength. As can be seen in Figure 4-3 if any point falls on the locus of 
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“non-spectral” colours (the shadowed area in the figure), like point C, the intersection 

of the line connecting the white point and the point in question falls on the straight 

line at the bottom of the XYZ gamut, connecting blue and red, which is called the line 

of purples. For any point that falls in that region the line is instead extended at the 

opposite direction, and the dominant wavelength is considered to be the wavelength of 

the complementary colour. For the case of point C, the dominant wavelength is 

calculated as 557nm. 

The physical explanation behind this is that every perceived colour is usually not 

monochromatic (a single wavelength), instead its spectrum comprises of a range of 

wavelengths. A certain wavelength may be dominant in that spectrum, in the sense 

that light of that wavelength has much more intensity than light of any other 

wav

g the amount of pure Hue needed to be added to white before the Hue 

becomes detectable, this time including the Hues of the purple line. The results of the 

experiment correlate strongly with the data of Figure 4-2, enabling us to accept them 

as true indications. In addition, two more experiments were conducted measuring the 

amount of pure Hue needed to be added to black and to a mid-grey before the Hue 

becomes detectable. The results obtained along with details about the experimental 

set-up are given in Appendix A. To summarize, for each Hue three values were 

obtained: the amount of pure Hue added to White, the amount of pure Hue added to 

Black and the amount of pure Hue added to a Mid-grey before the Hue becomes 

detectable. 

 

elength in the spectrum of the colour. In this case, the colour is perceived as of 

this wavelength, and depending of the amount of white background radiation it will 

appear more or less saturated. For a colour laying on the line of purples, the spectrum 

is somewhat different. Instead of having a background white radiation where light of a 

specific wavelength is dominant, it presents high white radiation from which light of a 

specific wavelength is missing. The colour perceived in this case is the 

complementary colour of the wavelength missing, for the case used before, the purple 

colour of point C is actually white radiation with wavelength of 557nm missing. This 

is illustrated in Figure 4-4. 

It is now evident that the biological data given before is not complete, since it 

does not give any information about the Hues of the line of purples. In order to cover 

this range of Hues, certain experiments were conducted as part of this research, 

re-measurin
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(a) 

400 450 500 550 600 650 700 750

Wavelength (nm)

R
el

at
iv

e 
In

te
ns

ity

 

(b) 

400 450 500 550 600 650 700 750

Wavelength (nm)  

R
el

at
iv

e 
In

te
ns

ity

Figure 4-4 – Sample spectra of a green colour and its complementary purple one. The colour bar 

under spectrum (b) shows the complementary colours for each wavelength. These samples are for 

illustrative purposes only. A colour having a spectrum like (a) for example would not necessarily be 

perceived as pure green by a human. 

 

The three sets of values (as explained above) enabled the accurate definition of the 

border surface between chromatic and achromatic pixels. The least detectable steps 

from black and white, give information about colours at the edges of the Lightness 

com s from mid-grey, give information about 

Saturation thresholds. For illustrative purposes, a vertical slice of the HLS colour 

ental results. These three points are along the lines that 

connect white to pure colour (WC), mid-grey to pure colour (GC) and black to pure 

colour (BC). 

ponent, while the least detectable step

space is presented in Figure 4-5. The line that separates chromatic from achromatic 

colours for each Hue consists of four segments, connecting white, black and three 

points indicated by experim
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Figure 4-5 – A vertical slice of the HLS colour system. The three directions on which measurements 

were taken namely White to Pure Colour (WC), Mid-grey to Pure Colour (GC) and Black to Pure 

Colour (BC) are illustrated in the figure. The green area signifies the area of achromatic colours as 

defined by experimental data. 

 

During pre-processing, this information is applied to the image, separating the 

achromatic pixels from the chromatic ones. The image is therefore split in two layers, 

one ixels (grey-levels) and the other all the chromatic  containing all the achromatic p

ones (Figure 4-6). The achromatic layer is strictly kept out of any process involving 

Hue (it is processed based on the Lightness component only), whereas the chromatic 

one is processed based on both the Hue and the Lightness components. 

 

Original Image

Chromatic LayerAchromatic Layer
 

Figure 4-6 – After pre-processing, the Original Image is split in two layers: one containing the 

e containing the chromatic ones. achromatic pixels and on

 

We consider using data derived by experiments in realistic situations, taking into 

account the effect of different Hues, superior than using a single saturation (and 
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lightness) threshold (e.g., [28, 29, 82]) for separating chromatic and achromatic 

pixels. Although it is agreed that defining a fuzzy threshold based on the experimental 

data instead of a crisp one would be preferable, for the purposes of this application, 

the above process was considered adequate. 

4.4. Splitting Phase 

After the separation of chromatic from achromatic pixels, the splitting process begins. 

istograms of each layer are analysed, and each layer is considered 

For

ation is important in 

ord

During this phase, h

for further splitting into sub-layers. A detailed description of the splitting algorithm 

follows in the next section, while the histogram analysis process used to control 

splitting is described in Section 4.4.2. 

4.4.1. Splitting Process 

After the pre-processing step, the original image has been split in two layers as 

illustrated in Figure 4-6. The splitting process further splits those layers, according to 

global information obtained from the histograms of each layer. 

Achromatic Layer 

 the achromatic layer, the histogram of Lightness is computed. Since this layer 

contains only grey-scales, the Hue or Saturation histograms do not provide any useful 

information, thus they are not used. The histogram of Lightness is analysed as is 

described in the next section, and intervals in the histogram are identified in terms of 

histogram peaks. According to those intervals, the layer is split into sub-layers, each 

containing pixels in a range of Lightness values. The sub-layers produced cannot be 

split further, since the only information available for achromatic pixels is their 

Lightness values. Therefore, the splitting process for the achromatic layer stops at this 

point. The histogram analysis process (peak identification and combination of certain 

adjacent peaks) is detailed in Section 4.4.2. 

Chromatic Layer 

The layer containing chromatic pixels is treated slightly differently. There are three 

ways to split this layer: based on the Hue histogram, based on the Lightness 

histogram, or based on the Saturation histogram. Generally, Satur

er to separate chromatic from achromatic pixels, but for pixels that carry some 

chromaticity information, the factors that play an important role in colour 
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discrimination are mostly Hue and Lightness [181]. For this reason, the Saturation 

histogram is not used here; the splitting of the chromatic layer is based on the Hue and 

the Lightness histograms only. Splitting starts with one of the two, and continues in a 

recursive way, alternating between Hue and Lightness histograms in each iteration. 

After experimentation, starting with the Hue histogram proved to produce more 

efficient splitting. Efficiency in this case translates both to the number of layers 

fina

aset, the gradient colours 

typically used are of almost constant Hue and variable Lightness. Therefore, splitting 

the image based on Hues first, has more chances to produce a split where the text is 

will be split along different layers, and the subsequent recursive splitting will ensure 

tha

lly produced, which needs to be small, and to the actual content of the layers. 

Starting with the Hue histogram produces in most cases fewer and more meaningful 

layers. This conclusion agrees with previous research [82, 119, 203] stating that Hue 

has the greatest discrimination power among colour components. The appropriateness 

of Hue as the first splitting component can also be justified by simple observations on 

the images of the dataset. More often than not, humans differentiate objects according 

to their Hue, and then interpret differences in Lightness as shadows or highlights of 

the objects [119]. This claim, originally made for natural scenes, is also true to some 

extent for Web Images. Based on the images of the dat

extracted in one layer, rather than scattered along different ones. 

Of course, even if the text is of constant Hue, thus extracted in only one layer, 

parts of the background having the same Hue will also be present in that layer, 

necessitating the subsequent recursive splitting. If the text is not of constant Hue, it 

t it will finally (in subsequent layers) be separated from the background. The latter, 

is the worst-case scenario. Still, as long as text components exhibit higher similarity 

between them, than with parts of the background, the merging process that follows 

should be able to combine them properly. 

To summarize, the chromatic layer produced by the pre-processing phase, is first 

split based on its Hue histogram. The Hue histogram is analysed (see Section 4.4.2) 

and intervals of Hue values are identified (in terms of histogram peaks, and 

combinations of adjacent peaks). For each interval identified, a sub-layer is produced, 

and the corresponding pixels are copied over. Those sub-layers (produced from the 

Hue histogram analysis) are further analysed based on their Lightness histograms, and 

split accordingly. The process continues in a recursive way, alternating between Hue 
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and Lightness histograms in each iteration. A tree structure of layers is created by this 

process, an illustration of which can be seen in Figure 4-7. 

 

Original Image

… …

…
…

…

Lightness Layer

Lightness Layer

Lightness Layer

Lightness Layer

Lightness Layer

Lightness Layer

Lightness Layer

Lightness Layer

Lightness Layer

Hue Layer

Hue Layer

Hue Layer

Chromatic LayerAchromatic Layer

Figure 4-7 – The tree structure of layers produced by the splitting step of the Split and Merge Method. 

 original image is split in an achromatic and a chromatic layer. The achThe romatic one is split once 

 starting with the Hue 

ach iteration. 

based on its Lightness histogram. The chromatic layer is recursively split,

histogram and alternating between the Hue and Lightness histograms in e

 

The recursive splitting stops in one of the following cases: a maximum pre-

ve been reached or only one peak can be found in 

d equal 

, then 

o its Lightness 

d at first 

limiting, it was found after experimentation with different values, that if the 

eady been separated, and now components 

of each class start to become split across layers. Furthermore, the number of new sub-

layers p ntly the merging process that follows. 

defined number of splitting steps ha

the histogram. The maximum pre-defined number of splitting steps, was define

to 2, so the initial chromatic layer is first split according to its Hue histogram

each of the sub-layers produced is split once more according t

histogram and the process stops. Although allowing only two steps may soun

very 

number of steps increases, much unnecessary splitting occurs, in the sense that the 

two classes (text and background) have alr

roduced is very high and delays significa

It was experimentally found that two splitting steps were adequate to produce a good 

separation of the two classes, while this produces a reasonable number of layers. 
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The second criterion for stopping the splitting process is much more 

straightforward. If the histogram examined for a particular layer contains only one 

peak, therefore the histogram analysis returns only one possible interval for splitting, 

no further splitting occurs. If a split was to happen in this case, only one sub-layer 

would be produced from the layer examined, so effectively no further splitting is 

possible. 

The algorithm (in pseudo code) of the above process, covering the pre-processing 

and the splitting step of the Split and Merge Method is given in Figure 4-8. 

 
For Each Pixel in OriginalImage 
{ 
  If PixelColour is chromatic  
     Then copy Pixel to ChromaticLayer 
  Else copy Pixel to AchromaticLayer 
} 
Split(AchromaticLayer, Lightness, 1) 
Split(ChromaticLayer , Hue      , 2) 

Split(Layer, ColourComponent, MaximumNumberOfSteps) 
{ 
  If MaximumNumberOfSteps has been reached Then Exit 
  Compute Histogram of ColourComponent for Layer 
  Analyse Histogram 
  If PeaksIdentified == 1 Then Exit 
  For Each Peak identified in Histogram 
  { 
    Create SubLayer for the interval specified by Peak 
    For Each Pixel in Layer 
    { 
      If ColourComponent value of PixelColour falls under Peak 
         Then copy Pixel to SubLayer 

erOfSteps) 
    Else If (ColourComponent == Hue) 
        Then Split(SubLayer, Lightness, MaximumNumberOfSteps) 
 } 
 

    } 
    If (ColourComponent == Lightness) 
        Then Split(SubLayer, Hue, MaximumNumb

 
}

Figure 4-8 – Pseudo code of the pre-processing and splitting steps of the Split and Merge Method. 

Commands and reserved words are typed in Bold. 

4.4.2. Histogram Analysis 

Histogram analysis aims at identifying interesting peaks in a histogram of the layer in 

question, which will be subsequently used to split the layer. Only the pixels that 

belong to that layer are taken into account when computing a histogram. Bearing in 

mind that a merging phase follows, it is preferable at this point to over-split the image, 

even if that entails breaking characters across different sub-layers, rather than to 
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under-split the image. Nevertheless, if a peak in the histogram can be identified as 

xels 

bel

 

denoted Wright. In a similar manner, two heights can be defined for a peak: the 

difference between the maximum and the left minimum of the peak, denoted Hleft, and 

difference between the maximum and the right minimum of the peak, denoted 

Hright. 

 

containing only pixels belonging to text, that would be beneficial. The question that 

arises at this point is whether there are any “text peaks” (peaks containing only pi

onging to text) in the histogram or not, and if yes, what are their distinguishing 

characteristics so that histogram analysis can positively identify them. Furthermore, 

the possibility of performing some kind of post-processing, such as histogram 

smoothing, in order to reduce the final number of peaks produced is investigated. 

The general structure of a peak is illustrated in Figure 4-9. A peak is identified by 

a left minimum, a maximum and a right minimum. The width (W) of a peak is defined 

as the distance between the positions of the left and right minima. The peak width can 

be broken in two parts: the distance between the position of the single maximum of 

the peak and the position of the left minimum, denoted Wleft, and the distance between 

the position of the single maximum of the peak and the position of the right minimum,

the 

Hright

Wleft

Hleft

Wright
 

Figure 4-9 – The structure of a peak. Interesting features of the peak can be its size, its aspect ratio, the 

slope of ascend or descend, the width and height of the peak, etc. 
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Every histogram can then be decomposed to a number of such peaks. Special 

consideration is given to Hue histograms, due to the fact that the Hue component is 2π 

modulus. That is, since Hue is expressed as an angle, it presents a circular repetition 

wh

e of the peak can be defined as the number of pixels under the peak. In 

oth

s than the 

background. Nevertheless, because text can share some colours with the background, 

the size of the peak representing those colours will be significantly larger than 

expected (Figure 4-10). Small peaks located on top of larger ones are therefore lost. 

Finally, even the first assumption that text occupies a small portion of the image is not 

always true; sometimes the larger peak in the histogram actually corresponds to text. 

In conclusion, size cannot be used to sufficiently indicate the presence of a text peak. 

ere value 256 is mapped back to zero (or, value –1 is mapped to 255). For Hue 

histograms only, a peak is allowed to exist bridging the two ends (e.g., with a left 

minimum at 250 and a right minimum at 5). 

Text Peak Features 

Based on the general structure of a peak, certain features can be defined. Such 

features are discussed next in the context of identifying text peaks in a histogram. 

The siz

er words, that would be the integral of the peak structure. Size is a useful metric, if 

the number of pixels belonging to text is known beforehand. Although this is not 

generally the case, text is normally expected to comprise fewer pixel
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Figure 4-10 – (a) Original Image. (b) Pixels under Peak A. Peak A includes the yellow characters and 

part of the background. (c) Pixels under Peak B. Peak B includes the greenish characters and part of 

the background. (d) The Hue histogram for the image. The text and the background share colours. 
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 The left or right slope of the peak is the rate of ascent or descent respectively of 

the peak. It is defined as Sleft=Hleft/Wleft and Sright=Hright/Wright. A high left and right 

slope indicates that the colours of the peak are well separated from the neighbouring 

colours. If the text has high contrast to the background, then the slopes of a peak 

representing the colours of text pixels will be relatively high. Sometimes, however, 

made about the slope of text peaks, and 

therefore this feature cannot be used to indicate the presence of a text peak. 

e of colours captured by the peak. If the 

anti-aliasing is used and therefore the transition from background to text is quite 

smooth. Consequently, the peaks representing the colours of text will have a lower 

slope. Generally, no assumption can be 

The width of a peak represents the rang

peak in question were a text peak, then a large width would indicate that a gradient of 

colours has been used for the text, while a narrow peak would indicate relatively 

monochrome text. However, no general assumption can be made about the width of a 

text peak. The height of the peak is representative of the number of pixels under the 

peak, but the size feature is more indicative of this property, and has already been 

discussed. 

The width ratio and the height ratio [8] are defined in Eq. 4-1 below. They are 

metrics of the symmetry of the peak. The closer both of them are to one, the most 

symmetric the peak is, in the sense that it raises and falls in the same way. 
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Different combinations of the above features were tried for peak selection, but 

none proved able to give a strong indication of a peak representing pixels of text. A 

scatter plot of the width a

⎪
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right

rightleft
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Ratio  Eq. 4-1 

nd height ratios of peaks is given in Figure 4-11. Peaks from 

histograms of a number of pictures were examined and categorized as: peaks that 

correspond to pixels of the background, peaks that correspond to pixels of the text, 

and peaks that contain pixels of both classes. As can be seen in this example, it is 

difficult to define a clear decision boundary between the classes or a set of rules that 
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separates the classes well. Different peak selection processes were tried, that involved 

restrains in the size, slope, width, width ratio and height ratio of peaks, but they all 

proved to discard some of the text peaks, while being rather time-consuming. 

Complicating the process of peak selection is not beneficial for the whole 

segmentation process, especially since there would always be some uncertainty about 

the peaks finally selected. Therefore, the decision at this stage was made to avoid 

discarding any potentially useful information by selecting the wrong peaks, so no 

peak selection process is finally used. Nevertheless, creating a different layer for 

every single peak identified in the histogram is highly inefficient, so the possibility to 

combine peaks in order to reduce the final number of peaks produced was 

investigated. 
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Figure 4-11 – Characteristic feature space for Width Ratio and Height Ratio of peaks. The peaks 

visible were collected from the Hue histograms of a number of images. (NOTE: The data in this scatter 

plot have been slightly jittered for easier viewing) 

 

Reducing the Number of Exported Peaks 

Towards reducing the final number of peaks produced, a number of smoothing and 

heuristic methods to combine peaks were tried. The criterion for deciding which 

method to use is the following. There are a number of mixed peaks (peaks that contain 

pixels of the text and of the background) in each histogram. If a peak that represents 

text pixels is accidentally merged during the smoothing process with a peak that 

contains background pixels, a mixed peak will also be produced, thus increasing the 

 120



Chapter 4 – Split and Merge Segmentation Method 

number of mixed peaks of the histogram. Therefore, a successful smoothing should 

decrease the overall number of distinct text and background peaks, while it should not 

increase the number of mixed peaks. It should be noted that special attention should 

be paid to the fact that if a mixed peak is merged with a background or a text one, 

then the number of mixed peaks will not increase, while a wrong merger will happen. 

For that reason, the results for each smoothing and heuristic technique examined were 

also visually inspected, before deciding on which technique to employ. 

Weighted-averaging the histogram at different scales was initially examined. 

Weighted averaging reduces vastly the number of peaks in the histogram, merging a 

num

peaks are derived from the maxima of the initial peak structures. Certain 

fea

an 

smo

e. 

The x-coordinate of the centre of gravity of a peak indicates the mean Hue or mean 

Lightness of the peak, depending on the type of histogram. The y-coordinate of the 

ber of small peaks with bigger ones, which in most situations is not desired, since 

some small peaks often correspond to text. Therefore, smoothing by weighted 

averaging was not used. 

A structural approach for smoothing noisy signals suggested by Antonacopoulos 

and Economou [8] was also implemented and tested. Data points are expressed in 

terms of peak structures, and peak structures are subsequently expressed in terms of 

meta-peak structures. Meta-peak structures consist of a left minimum, a maximum 

and a right minimum point, exactly like the initial peak structures, but the points for 

the meta-

tures of peaks, such as the width and height are then analysed, and the meta-peaks 

are classified as either noise or characteristic peaks of the signal. Following that, the 

noise peaks are smoothed, while the characteristic ones are preserved. Originally 

devised for smoothing noisy signals, this method was slightly changed to fit the 

specific problem of colour histograms. The issue here is not to separate noise from 

characteristic peaks, but to decide which peaks can be safely combined without 

effectively merging text and background pixels. For this reason, absolute measures 

such as widths and heights of peaks were not used; instead, the width ratio and height 

ratio of peaks were employed. This approach produced far better results th

othing by weighted averaging, however in a few cases, smoothing produced 

wrong mergers between peaks, therefore this method was not finally employed. 

A different technique used was a heuristic method based on comparing the centres 

of gravity between peaks. A comparison between the centres of gravity of two 

successive peaks can give an indication of both their proximity and their relative siz
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centre of gravity is indicative of the number of pixels in the peak. Two successive 

ent, so the described 

me

The method ultimately used is based on the concept of checking horizontal and 

vertical distances of peaks, but improves over the previous technique in two factors. 

First, no crisp threshold is used for the horizontal distance, instead, information about 

the way humans discriminate between different Hue (or Lightness) values is 

employed to ensure that no combination of peaks is allowed to be formed that 

encompasses dissimilar Hues (or Lightness). Second, instead of checking the vertical 

distance between peaks against a threshold, the ratio of the maxima of the two peaks 

is checked, thus addressing the y-scaling problem more efficiently (rather than 

defining the threshold accordingly to the maximum count in the histogram). 

Furthermore, not using the centres of gravity of peaks relieves the method of some 

extra computations and slightly improves the processing time of this step. 

In order to assess Hue similarity and Lightness similarity, available biological data 

[13, 211] about wavelength and lightness discrimination were used. Wavelength 

discrimination data were extended to cover Hues that are not directly associated with 

Lightness were also measured in order to verify the applicability of the theoretical 

model to realistic viewing situations. Those experiments are explained in detail in 

Ap

process. 

peaks are combined if both the horizontal distance and the vertical distance of their 

centres of gravity are below pre-defined thresholds. The rationale for this is as 

follows. A small horizontal distance indicates a small difference between the Hue or 

the Lightness of the peaks. If this is small enough, then the visual similarity between 

the pixels the peaks represent is adequately high for the pixels to be counted under the 

same peak. If the vertical distance is small, that means that the number of pixels of the 

successive peaks is almost the same, which in turn indicates that there is a gradient of 

colours in the image. After experimentation with different values, the horizontal 

threshold was set to 5 and the vertical threshold to 1/50 of the maximum count in the 

histogram (an absolute value cannot be used for the vertical threshold, since the 

numbers of pixels in each image/layer differ vastly). This method produced better 

results than the previous ones; still there is room for improvem

thod was not finally selected. 

specific wavelengths as explained in Section 4.3. Least perceived differences in 

pendix A. The Hue and Lightness discrimination data used in this method are 

presented in the next section, as they are an integral component of the merging 
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The grouping technique works as follows. For every pair of adjacent peaks, the 

range of Hue (or Lightness) values spanned by both peaks is examined. If the Hue (or 

Lightness) value at the left minimum of the left peak is similar to the Hue (or 

Lightne e a ertical distance of 

ased on Hue or Lightness discrimination data (depending 

on the histogram type), and on the ratio of the maxima of the two peaks. The final 

peaks produced, define the intervals used by the splitting process described before. 

4.5. Merging Phase 

The merging process that follows the splitting phase, works the opposite way, 

identifying connected components in the leaf-layers of the tree structure produced, 

haracters in the image by merging 

com e character according to colour similarity. 

Sim

t of pixels having 

visually similar (as humans perceive them) colours. The experiments were conducted 

in orde rify , luminance and colour purity 

ss) valu t the right minimum of the right peak, then the v

the peaks is tested. The ratio of the smallest maximum of the two peaks to the largest 

maximum is computed and if below a pre-defined threshold, the peaks are grouped 

together. The ratio ranges from zero to one. A value of 0.3 was selected after 

experimentation as an appropriate threshold, that is the smallest peak maximum of the 

two is not allowed to be less that 0.3 of the largest one for a grouping to take place. 

To summarize, for each layer an appropriate histogram (either Hue or Lightness) 

is computed and expressed in terms of peaks. Every pair of subsequent peaks is 

considered for grouping, b

and aggregating the components following a bottom-up scheme. This process, aims to 

produce components that represent the c

ponents that belong to the sam

ilarity is assessed based on experimentally derived discrimination data for Hue, 

Lightness and Saturation. The use of such experimental data ensures that the 

components produced after the aggregation process will consis

r to ve  and extend existing wavelength

discrimination data. The discrimination data finally used are detailed in this section, 

while the experiments conducted are described in Appendix A. 
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Figure 4-12 – A Web Image after the splitting phase (not all layers produced are visible in the figure). 

Pixels that do not belong to a layer are presented as a light-coloured background. 

 

The different steps of the merging process will be discussed in detail next, 

accompanied by an example of the application of the process on a Web Image. The 

Web Image, which is used as an example for this section and its corresponding 

splitting, is shown in Figure 4-12. 

4.5.1. Connected Component Identification 

Each leaf-layer of the tree structure produced by the splitting process contains a sub-

set of the pixels of the original image, as filtered through the recursive splitting. 

Effectively, one can associate 1 to pixels belonging to a given layer, and 0 to the rest, 

constructing a bi-level representation of the layer. A one-pass connected component 

identification algorithm [5] is applied to this bi-level representation and a number of 

connected components are thus detected in each of the leaf-layers. For each of the 

connected components detected, the average colour is calculated from the colours of 

the pixels belonging to it. 
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(a) (b) 

Figure 4-13 – One of the leaf-layers as illustrated in Figure 4-12 and the associated connected 

components identified (indicated in different colours). 

 

Figure 4-13 illustrates one of the leaf-layers produced for the sample image of 

Figure 4-12, and the connected components identified in the layer. Each connected 

component is shown in a different colour for illustrative purposes. 

ined, and if their colour is similar to the average 

colour of the component, they are flagged as a potential extension for the component. 

This potential extension will be referred to as the vexed area of the component for the 

rest of this thesis. The neighbouring pixels of each component do not necessarily 

belong to the layer being examined, and the method does not require them to. Instead, 

the colour of any pixel checked is retrieved from the original image. 

Similarity is assessed according to the type of the layer, meaning that if the layer 

is a Lightness layer (produced by splitting based on the Lightness histogram), 

similarity is assessed by examining Lightness differences between the components, 

whereas if a Hue Layer, similarity is assessed by examining Hue differences. At this 

point, Hue and Lightness discrimination data are employed in order to decide whether 

two Hues or Lightness values are perceived as similar or not. 

Hue Discrimination 

The ability of humans to discriminate between two colours of different wavelength, 

depends on the wavelengths in question. For example, assume that two colours have a 

wavelength difference δ. Humans find it more difficult to differentiate between two

cause humans are more 

sensitive to the yellow wavelengths than they are to green ones. More specifically, a 

4.5.2. Vexed Areas Identification 

The neighbouring pixels (in the original image) of each connected component 

identified are subsequently exam

 

colours if they both lie in the green band than if the two colours lie in the yellow band 

(with the distance remaining δ in both cases). This is be
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diff

range is considered similar to the Hue in question. The data 

sho

re obtained for a wide range of Web Images. 

erence of only 2 nanometres would be adequate to discriminate between two 

colours in the yellow band, while a difference of at least 4 (relatively larger in 

practice) nanometres would be required for colours in the green band. Such biological 

information about wavelength discrimination is available, but as mentioned before it 

is incomplete, in the sense that information does not exist for all possible Hues. The 

experiments conducted in order to extend this data to Hues that are not directly 

associated with specific wavelengths are presented in Appendix A. 

The thresholds finally used for Hue discrimination are illustrated in Figure 4-14. 

For each Hue in the range from 0 to 255, a minimum and a maximum Hue value is 

defined. Every Hue in this 

wn above are derived from the strict Hue discrimination data presented in 

Appendix A. The thresholds have been relaxed by a factor of 2 compared to the Hue 

discrimination thresholds measured. This is because the measurements that were 

conducted aimed to identify the least noticeable difference required for two Hues to 

be perceived as dissimilar, while for the merging process, we need to allow for 

slightly greater tolerances, in order to be able to cover situations of Hue gradients or 

anti-aliasing. The factor of 2 was experimentally determined, so that reasonable 

results a

 

50

100

H
ue

 V
a

150

200

250

300

lu
e Thresholds

Hue

0

-50
0 25 50 75 100 125 150 175 200 225 250

Hue Value
 

Figure 4-14 – The Hue discrimination thresholds used. For each Hue value (denoted with the black 

line), there is a minimum and a maximum Hue value defined (denoted with the red lines). 
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Lightness Discrimination 

Similarly to Hue discrimination, humans have different Lightness discrimination 

abilities for dark and light colours. Lightness perception is roughly logarithmic. 

Humans cannot differentiate between two colours if the ratio of their intensities is less 

than approximately one percent. In the context of computer graphics, CRT monitors 

are inherently non-linear, that is the intensity of light reproduced on the screen of a 

CRT monitor is a non-linear function of its voltage input, which in turn is set by the 

RGB values of the pixels. Those RGB values can be corrected to compensate for this 

non-line , a process known gamma correction

An experiment was performed to measure Lightness discrimination for all 255 

 in Appendix A. Based on the results obtained, the Lightness thresholds are 

defined as shown in Figure 4-15. 
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Figure 4-15 – The Lightness discrimination thresholds used. For each Lightness value, the maximum 

positive change for which two colours are considered similar is shown. 

 

For each Lightness value, the minimum increase that can be made without 

producing any noticeable change between the two colours is shown. The thresholds 

used, are also relaxed compared to the measurements made, similarly to the Hue 
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discrimination thresholds. Since the discrimination ability ranges vastly between dark 

and light colours, for the Lightness component, the measured values were not simply 

mu plied by a factor. Instead, the power function form of the distribution was 

preserved, but the gamma was changed to k p the thresholds strict (comparably to 

the measured ones) for dark colours, and much more tolerant for lighter ones. The 

first fifty values are approximated by a different power function in order to better 

match the measured ones. 

As an example, the vexed area of one of the components of the layer in Figure 

4-13 is shown in Figure 4-16. The neighbouring pixels are tested in respect to their 

values in the original image, which is also shown in the figure. As can be seen, the 

tness values (since the layer 

shown is a Lightness layer) that are in the 8-connected extended neighbourhood of the 

com

com

lti

ee

vexed area encompasses all pixels that have similar Ligh

ponent. The vexed area as can be seen, overlaps with a number of other 

ponents. This fact is used next to facilitate the decision to merge two components 

or not. 

 

  

(a) (b) 

Figure 4-16 – (a) Original image. (b) A Lightness layer of the image with the connected components 

identified. The vexed area for the outlined component (component representing part of “e” character) 

is illustrated in blue colour. 

4.5.3. Merging Process 

After connected components and their associated vexed area have been identified in 

all leaf layers, the merging process takes place, starting from the leaf layers. The 

decision whether to merge or not two components is based on the amount of 

overlapping between the components. The idea is illustrated in Figure 4-17. The way 

“overlapping” is defined will be discussed next. 
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(a) (b) (c) (d) 

Figure 4-17 – (a) First component (red) and its vexed area (blue). (b) Second component (yellow) and 

its vexed area. (c) The two components overlapping. (d) The merged component and the new vexed 

area. 

 

Overlapping 

The most obvious, perhaps, measure one can evaluate given two components, is the 

number of pixels of the vexed area of one of the components that overlap with pixels 

belonging to the other component. Given two components a and b, and their 

associated vexed areas av and bv, this number of pixels is denoted NOP(av, b) and 

NOP(a, respectively. NOP , b) is the number of common pixels of the vexed 

ponent b with component a. 

The number of overlapping pixels between components a and b is then defined as the 

sum

bv), (av

area of component a with component b (effectively NOP(av, b)=|av∩b|). NOP(a, bv) 

is the number of common pixels of the vexed area of com

 NOP(av, b) + NOP(a, bv). 

The maximum possible number of overlapping pixels between two components a 

and b, cannot be greater than the sum of the sizes of the components. Overlapping, 

denoted Ovl(a, b), can be consequently defined by Eq. 4-2. 

 

)()(
),(),(

),(
bSizeaSize

baNOPbaNOP
baOvl vv

+
+

=  Eq. 4-2 

 

Overlapping is therefore defined in the range [0,1] and values near 1 would 

indicate some strong overlapping. Although this is a good definition, there are special 

cases when there would be in our interest to merge two components, where Eq. 4-2 

produces a rather small value. An example of such a case is illustrated in Figure 4-18. 

 

 129



Text Segmentation in Web Images Using Colour Perception and Topological Features 

    

(a) (b) (c) (d) 

Figure 4-18 – (a) A character broken in two components. (b) Bottom component and vexed area. 

(c) Top component and vexed area. (d) Overlapping of components. 

 

Suppose a character rendered in a gradient. During the splitting process, the 

character might be broken in different components, for example the top of the 

character might be one component and the bottom of the character another one. The 

vexed area of the top component would then cover some portion of the bottom one, 

and vice-versa. If, furthermore, the background is sufficiently different to the colours 

of the two components (that is a very simple situation for which the method has to 

work well), the whole of the vexed area of the top component is overlapping with the 

bottom one, and vice-versa. 

The fact that the whole of the vexed area of one component overlaps with an other 

com that the components should be merged, 

yet, Eq. 4-2 fails to provide a value close to 1. The reason for this is that the maximum 

possible number of overlapping pixels is defined to be equal to the sum of the s

the two components. For this case, the maximum possible number of overlapping 

pixels should be the sum of the sizes of the two vexed areas. This is because the vexed 

 [0,1]. 

 

ponent, should give a strong indication 

izes of 

areas are much smaller than the components that participate in the comparison. For 

the example of Figure 4-18, if b is the bottom component and t the top one, then 

NOP(bv, t)=13, NOP(b, tv)=16, Size(b)=36, Size(t)=53, Size(bv)=13 and Size(tv)=16. 

To cover this case, Eq. 4-2 could be changed accordingly, replacing the denominator 

to the sum of the sizes of the vexed areas of the components (Eq. 4-3). Since the 

maximum possible number of overlapping pixels cannot be greater than this sum, 

overlapping will still be in the range of
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)()(
),(),(

),(
vv

vv

bSizeaSize
baNOPbaNOP

baOvl
+
+

=  Eq. 4-3 

 

In real conditions though, this definition, which is based on the vexed areas rather 

than on the components, fails to identify some of the more obvious situations. An 

example is given in Figure 4-19, where the vexed areas are way too big compared to 

the other one. 

the components involved, resulting to a very small overlapping value, despite the fact 

that the vexed area of each component completely covers 

 

    

(a) (b) ) (d) (c

Figure 4-19 – (a) A character broken in two components. (b) Bottom component and vexed area. 

(c) T ts. op component and vexed area. (d) Overlapping of componen

 

The remedy is to change the denominator once more, to the actual maximum 

possible number of overlapping pixels, which will be dependant on the given 

com each time. The final definition for the 

sed in this method, is given in Eq. 4-4. 

ponents, and the given vexed areas 

overlapping, which is the one u

 

( ) ( ))(,)(min)(),(min
),(),(

),(
vv

vv

bSizeaSizebSizeaSize
baNOPbaNOP

baOvl
+
+

=  Eq. 4-4 

 

It should be mentioned here, that in both Eq. 4-4 and Eq. 4-3 the denominator 

could be equal to zero. This happens when both components a and b have a null vexed 

area. In this case, the numerator will also be zero, and the overlapping is defined to be 

zero as well, since no pixels overlap at all. 
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(a) (b) (c) (d) 

Figure 4-20 - (a) A character broken in two 

(c) Top component and v

components. (b) Bottom component and vexed area. 

exed area. (d) Overlapping of components. 

 

Although the above definition is more complete than the previous ones, there are 

still some special cases that should be dealt with. Such a special case is illustrated in 

Figure 4-20. For the situation presented in this figure, Eq. 4-4 gives an overlapping 

value equal to 1. The question here is whether we feel confident to base the merging 

of two components on the overlapping of one or just a few pixels. This depends on the 

size of the components involved, if the sizes of the components involved are 

comparable to the number of pixels overlapping, then it is probably a good call, 

otherwise its probably not. This leads to the definition of a weighting function, which 

should reflect exactly this confidence. Such a weighting function is given in Eq. 4-5. 

 

)()(
),(),(

),(
bSizeaSize

baNOPbaNOP
baW vv

+
+

=  Eq. 4-5 

 

The above weighting function is quite comprehensive, and on a closer look, it is 

the same as the first definition of overlapping (Eq. 4-2) and ranges in [0,1]. 

Nevertheless, it also presents some special cases, as can be seen in Figure 4-21. Here 

the small component should probably be merged with the large one, and the 

overlapping value as computed by Eq. 4-4 is certainly large enough (equal to 1) to 

indicate that, but the weight computed by Eq. 4-5 is small, due to the big size of one 

of the components. 
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(a) (b) (c) (d) 

Figure 4-21 - (a) A character broken in two components. (b) Bottom component and vexed area. 

(c) Top component and vexed area. (d) Overlapping of components. 

 

It proves better to base the weighting function on the smaller of the two 

components only, so the final weighting function is given in Eq. 4-6. The weight is no 

longer in the range [0,1], so by definition any value greater than 1 is bound to 1.  

 

( ))(),(min2
),(),(

),(
bSizeaSize
baNOPbaNOP

baW vv

⋅
+

=  Eq. 4-6 

 

For each pair of components a and b the value ),(),( baOvlbaW ⋅  is computed, 

and if above a pre-defined threshold the components are considered for merging. The 

value of the threshold used in the method was set equal to 0.5625 (=0.752). From now 

on, the term overlapping refers to weighted overlapping. 

 

Merging in the Leaf-Layers 

Merging is first performed in all the leaf layers. Subsequently, components in layers 

having a common parent layer (as shown in Figure 4-12) are merged by copying the 

components one level up (to the common parent-layer) and performing merging in the 

parent-layer. The merging process is the same for both the leaf and the intermediate 

layers, and is based on the overlapping between components as defined previously. 

combination of components is checked first, and if their 

overlapping value is above the predefined threshold, a possible merger is identified. 

All

The merging process in the leaf-layers is described next. 

Every possible 

 identified mergers are kept in a sorted list, and merging starts with the merger 

having the bigger overlapping value. After each merger, the list is updated. Other 
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mergers in the list involving either of the two components just merged are changed to 

refer to the new one, and the overlapping values are recomputed. In addition, possible 

new

e new component is the union of the two initial components, and the 

on of the vexed areas of the initial components. This can be 

mponents that represent parts of the “o” 

cha

 

step

 mergers for the newly created component are searched for, and if found added to 

the sorted list. The merging process stops, when all possible mergers have been made, 

that is, there are no mergers in the layer with an overlapping value greater than the 

threshold set. Th

vexed area for it, is the uni

seen in Figure 4-17. 

It should be noted at this point, that all possible combinations of components are 

checked, not only pairs of components whose borders are touching. The reason for 

that is that due to extensive splitting, characters often split to many disjoined 

segments, and it is advantageous to merge these segments at this stage, as long as 

there is a link between them (ensured by an overlapping value greater than zero). Such 

an example can be seen in Figure 4-22 that follows. The initially identified 

components are shown on the left, and the components resulted after merging are 

shown on the right. As can be seen, the co

racter have been merged together, since their vexed areas overlap adequately. The 

same happens to components representing parts of the “e” character. As will be seen 

next, the final components are required to be connected, that is a situation like the one 

described above where a component comprises of many disjoined segments is not 

allowed. Nevertheless, it proved beneficial to the overall process to allow this for one

 at the time, meaning that it is allowed while merging components of the leaf 

layers, or layers of the same level, but any disjoined components are broken before 

they get copied one level up in the tree structure. More about this will be given later 

on, in the section about component integrity. 

 

  

(a) (b) 

Figure 4-22 – (a) Components identified before merging. (b) Components resulting after the merging 

process. Notice that some non-touching components have been merged. 
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Moving Up in the Tree-Structure 

ce in the leaf layers, merging between the 

ens by copying the 

s in the 

erging 

nished in all level-3 leaf layers, all the components are copied one level up, 

layers are copied in their parent level-2 Hue layer. Consequently, after this copying, 

all 

After all possible mergers have taken pla

components of layers of the same level is performed. This happ

components of the leaf layers one level up, and repeating the merging proces

layer that receives the components. For example, based on Figure 4-12, after m

has fi

following the tree structure. In this example, the resulted components in the Lightness 

components in the Hue layer will have similar Hues (since they were identified in 

children layers of this Hue layer), and will have vexed areas defined based on the 

Lightness thresholds (since vexed areas were identified in the Lightness layers). By 

performing a merger in the Hue layer at this point, effectively, we merge components 

of all the level-3 Lightness layers, based on Lightness defined vexed areas. 

Two components will only overlap at this stage, if their Lightness values are 

sufficiently similar (according to the Lightness thresholds used). The rationale behind 

merging at this point is to address characters of constant Hue, comprising of areas of 

slightly different Lightness. Examples are characters in gradient colour (in the 

Lightness component), or characters with shadows or highlights. These characters will 

have been broken across different Lightness layers, but if their consisting components 

are similar enough in terms of Lightness, their vexed areas will adequately overlap at 

this point. 

 

  

(a) (b) 

Figure 4-23 – (a) Hue Layer with components of all its children layers copied over. (b) Components 

resulted after merging. 

 

An example of the above process can be seen in Figure 4-23. All components of 

the children layers copied over in the shown Hue layer are illustrated in the image on 

 135



Text Segmentation in Web Images Using Colour Perception and Topological Features 

the left, while the components resulted after merging are shown in the image on the 

right. 

After all possible mergers occur in this layer, two additional processes take place: 

the refinement of the vexed areas of the resulting components and the examination of 

the integrity of the components resulting from mergers. These two processes will be 

explained next.  

Vexed Area Refinement 

The vexed areas of the components were identified in the leaf layers, according to the 

type of the leaf layers. After being copied one level up, and after merging has been 

performed, the vexed areas of the components remaining need to be refined, so that 

they are representative of the new layer in which they now reside. For example, after 

copying all the components identified in the Lightness type leaf layers to the parent 

Hue layer, the vexed areas must be refined so that they contain pixels not only of 

similar Lightness to the component, but of similar Hue as well. This is important, as 

merging between Hue layers of the same level will be performed next, and this 

merging must be based on Hue similarities. 

The vexed areas are refined according to the type of layer they reside in, that is 

they might be refined based on Lightness similarity (for Lightness layers) Hue 

similarity (for Hue layers) or combined Lightness, Hue and Saturation similarity (for 

the Chromatic and Achromatic layers). When the process reaches the original image 

(the root of the tree), no refinement is necessary, since no other merging can happen. 

The Hue and the Lightness similarity thresholds were defined earlier in 

Section 4.5.2. For the Hue and Lightness layers the process of vexed area refinement 

is as follows. For each component in a given layer, each pixel of the vexed area of the 

component is compared to the average colour of the component, and if not similar, it 

is removed from the vexed area. Similarity is based on the type of the layer as 

mentioned above. The pseudo-code of that process is shown in Figure 4-24. 
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RefineVexedAreas (Layer) 
{ 
  For Each Component in the Layer 
  { 
    For Each Pixel in the VexedArea of the Component 
   
   

 { 
   If ( Colour(Pixel) is NOT similar to Colour(Component) ) 

        Then Remove Pixel from VexedArea 
    } 
  } 
} 

Figure 4-24 – Pseudo-code for the Refinement of Vexed Areas function of the Split and Merge Method. 

 

The process is slightly different when it comes to the chromatic or the achromatic 

layer. Refining the vexed areas at this point, aims to prepare the components of the 

two layers (the chromatic and the achromatic) to participate in a merging process 

across this tree level, effectively checking the overlapping between achromatic and 

chromatic components. Consequently, the vexed areas at this point should represent 

som  potential extension for each component based on the Saturation value of the 

component; for example, a low saturated chromatic component could potentially be 

merged with an achromatic one. For the chromatic layer, refining the existing vexed 

areas based on some kind of saturation similarity is of no real benefit. This is because 

the vexed areas of the components of the chromatic layer do not contain any pixels 

outside the range of the hues of the children hue-layers, whereas on the other hand 

achromatic pixels have undefined hue (conventionally set to zero). That effectively 

means, that if for example a very low saturated green component exists, even if the 

green hued pixels, since it was refined as such in the children Hue layers. For this 

rea

 possibly contain some chromatic pixels. If this was not the case, it would 

e

colour of the component is very low saturated indicating that it could be merged with 

some neighbouring grey component, its vexed area will not contain anything but 

son, instead of simply comparing the saturation of each pixel of the existing vexed 

areas to the saturation value of the component to which the vexed area belongs, we 

discard the existing vexed areas, and construct new ones, based on mixed Lightness 

Hue and Saturation similarity as will be described next. By doing this, we ensure that 

the vexed areas of the components of the chromatic layer can possibly contain some 

achromatic pixels, and vice versa: the vexed areas of components of the achromatic 

layer, can
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ma

ked and if similar to the colour of 

the component they are added to the vexed area. The only difference here, is the way 

of examining visual similarity, between the colour of a pixel and the colour of the 

component. Three types of similarity tests are used: Hue, Lightness and Saturation 

similarity. The thresholds used for Hue and Lightness similarity are the same as 

defined before, while the process used for checking Saturation similarity is described 

below and is based on the Saturation thresholds detailed in Section 4.3 for separating 

chromatic from achroma c colours. The way the three types of similarity thresholds 

are combined is as follows. If both colour volved in the comparison are chromatic, 

then they are considered similar only if they are of similar Hue, Lightness (as defined 

both 

colours are achromatic (thus they are both low-saturated, and Hue is therefore 

unimportant), then only Lightness similarity is examined. Finally if one of the colours 

ther one is achromatic, then the colours are considered similar if 

the colours are similar if 

max(S1, S2)/min(S1, S2) < 2. If one of the colours is chromatic, and the other 

achromatic, then they are considered similar (in terms of Saturation) if the chromatic 

one is “very close” to the threshold between chromatic and achromatic colours 

defined for the Hue of the chromatic colour. “Very close” in this case was defined as 

double the threshold between chromatic and achromatic colours. Therefore, a 

chromatic colour with a saturation value less than double the threshold below which it 

is considered achromatic would be similar (in terms of Saturation) to an achromatic 

colour. 

ke no sense to check for overlapping between components of the chromatic and the 

achromatic layer. 

The process of finding the vexed areas for components in the chromatic and the 

achromatic layers is similar to the process of finding vexed areas in the leaf layers. 

The neighbouring pixels of each component are chec

ti

s in

by the thresholds given in Section 4.5.2) and Saturation (as is defined next). If 

is chromatic and the o

the are of both similar Lightness and similar Saturation. 

The Saturation thresholds used are based on the same thresholds used for 

separating chromatic from achromatic colours. The process to decide when two 

colours are similar in terms of saturation is as follows. If both colours are achromatic, 

they are considered similar (in terms of saturation), since they both have very small 

saturation. If both colours are chromatic, they are considered similar (in terms of 

saturation) if the ratio of their saturation values is less than 2. That is, if S1 and S2 are 

the saturation values of the two colours, then 
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Component Integrity 

The next operation performed is the examination of the integrity of each component. 

ms at breaking components comprising many disjoined segments 

are two distinct types of such components. 

ere a component comprises two 

of the component. This can happen 

components is considered, as long as there 

overlapping value greater than zero). As 

 to happen, but only for one step at the time. Mergers 

n merging in the leaf layers, 

f layers of the same level. Nevertheless, 

still comprise of a number of disjoined 

ents, they are broken again, since the initial merging did not produce a connected 

This operation ai

into disjoined components. There 

The first situation is illustrated in Figure 4-25, wh

disjoined segments, connected by the vexed area 

as during the merging process every pair of 

is a link between them (ensured by an 

d before, this is allowedmentione

are allowed to happen between disjoined components whe

or when merging between components o

before copying one level up, if components 

segm

component. 

 

   

(a) (b) (c) 

Figure 4-25 (a) Component comprising two disjoined segments (red) and its vexed area. (b) First 

component after breaking and its vexed area. (c) Second component after breaking and its vexed area. 

 

One can say that it is meaningless to break the components in this situation, since 

the vexed areas are still overlapping, and the components will be merged again in the 

next level. Although this might be true, by moving up in the tree structure, more 

components are introduced in each step, and there is the possibility that some other 

merger (between one of the broken components and a new component) will present 

greater overlapping and should happen first, which might change the whole series of 

mergers. 
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The second type of component is illustrated in Figure 4-26. This situation occurs 

after merging two disjoined segments, and then refining the vexed area. Although 

when the components where merged some overlapping between them existed, after 

refining the vexed area, part of it is discarded, and the two disjoined segments are not 

anyhow linked anymore, thus they must be broken. 

 

   

(a) (b) (c) 

Figure 4-26 – (a) Component comprising of two disjoined segments (red) and its vexed area. (b) First 

component after breaking and vexed area. (c) Second component after breaking and vexed area. 

 

Recursive Merging 

The merging process is repeated level by level, moving up in the tree structure until 

the root of the tree (the original image) is reached. Specifically, all components 

created in layers of the same level in the tree structure are copied one level up. At the 

next level the same steps are followed: merging, refinement of the vexed areas 

(according to the type of the new layer), and component integrity checking, and the 

new components are copied one more level up. The pseudo-code for the merging 

process is shown in Figure 4-27. This function is called once for the parent layer, and 

recursively performs merging in a bottom-up manner. 
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Merge (L
{ 

Vexed Areas for the Components 
 Overlapping Components 

  } 
  Else //Layer has children layers 
  { 
     For Each ChildLayer  
     { 
       Merge(ChildLayer) 
       Copy Components of ChildLayer in Layer 
     } 
     Merge Overlapping Components 
     RefineVexedAreas(Layer) 
     CheckComponentIntegrity(Layer) 
  } 
} 

ayer) 

  If (Layer is leaf-layer) 
  { 
    Find Connected Components in the Layer 
    Find 
    Merge

Figure 4-27 – Pseudo-code for the mergi t and Mergeng function of the Spli  Method. 

 

4.6. Results and Short Discussion 

In this section, some representative results of the method for various images will be 

sho

able for 

Web images), visual inspection is the only method of assessment that can be used. 

Since visual assessment is inherently subjective, in cases where it is not clear whether 

a character-like component contains any pixel of the background or not, the evaluator 

decides on the outcome based on whether by seeing the component on its own they 

can recognize the character or not. The foundation for this is that even if a few pixels 

wn. Detailed results obtained by evaluating the method using a big number of 

images collected from the World Wide Web as well as details about the data set used 

will be given in Chapter 7. In addition, in Chapter 7 a comparison between the two 

methods described in this thesis is made. 

The evaluation of the segmentation method was performed by visual inspection. 

This assessment can be subjective since the borders of the characters are not precisely 

defined in most cases (due to anti-aliasing or other artefacts caused by compression). 

Nevertheless, since no other information is available about which pixel belongs to a 

character and which to the background (no ground truth information is avail
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have been misclassified, as long as the overall shape can still be recognized, the 

character would be identifiable by OCR software. 

The following rules apply regarding the categorization of the results. Each 

character contained in the image is characterised as identified, merged, broken or 

missed. Identified characters are those that are described by a single component. 

Broken o the characters d  than one  as 

ne component, 

yet no part of the background is merged in the same component, then they are 

characterised as merged. Finally, missed are the characters for which no component or 

combination of components exists that describes them completely without containing 

 the ba kground. 

In the figures below, a number of images can be seen along with the 

corresponding results. For every image, the original is given along with an image of 

the final segmentation, and an image of the segmented characters. In the image of the 

ponent is painted in a random colour. In the image of the 

segmented characters, the black characters denote correctly identified ones, the red 

 broken ones and the blue characters merged ones. Any missed character is 

ted at all. It should be made clear at this point, that the images of the 

segmented characters shown, are produced manually at this point, and are meant to 

serve s a better illus l segmentation. Aut  

nes, are escribed by more component, as long

each of these components contain only pixels of the character in question (not any 

background pixels). If two or more characters are described by only o

pixels of c

final segmentation, each com

characters

not illustra

 a tration of the fina omatic classification of

components will be discussed in Chapter 6.  

 

   

Original Final Segmentation Segmented Characters 

Figure 4-28 – An image containing multi-coloured characters smoothly blending to the background 

and the corresponding results. Note how character “E” is erroneously merged with part of the shadow, 

and character “w” is split in two components. Lowering the Lightness similarity thresholds in this case 

would allow taking “w” as a whole component, but would produce more cases like “E”. 
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Original Final Segmentation Segmented Characters 

Figure 4-29 – Image containing single-coloured background and multi-coloured text. Anti-aliasing 

produces a fuzzy area between characters “o” and “u” that ultimately causes the merging of the 

characters. 

 

   

Original Final Segmentation Segmented Characters 

Figure 4-30 – An image containing characters with shadows. Most of the text is written circularly. 

 

The method is not configured to give the optimum results in every individual 

situation; instead, the thresholds were selected so that reasonable results can be 

obtained over a range of fundamentally different images. An example can be seen in 

Figure 4-31. Using stricter Lightness thresholds, the method produces a better final 

segmentation for the same image as in Figure 4-28. Nevertheless, using stricter 

lightness thresholds can produce worse final segmentations in other images as can be 

seen in Figure 4-32. In this example, the highlights and shadows (areas of higher or 

lower Lightness respectively) of the characters in the word “Google”, are segmented 

as separate components in the case that stricter Lightness thresholds are used. 
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Original Final Segmentation Segmented Characters 

Figure 4-31 – Results for the same image as in Figure 4-28, using stricter lightness thresholds. In this 

case, letter “E” is identified, and letter “w” is not broken into smaller components. 

 

Original 

 

Final 

Segmentation 
  

Segmented 

Characters 
  

 Normal Thresholds Strict Thresholds 

Figure 4-32 – An image with multi-coloured characters. Because a number of shades of the same colour 

are found in each character, using stricter lightness thresholds prevents the method from identifying 

each character as a whole component. 

 

Both the Hue and the Lightness similarity thresholds used can be optimised for 

each individual image, so that the best segmentation is obtained each time. For 

example, images with well-separated Hues that at the same time have Lightness 

gradients would benefit from strict Hue similarity thresholds and more relaxed 

Lightness similarity thresholds. Nevertheless, it proved considerably difficult to 

automatically decide what thresholds to use, since the colour content of the image (in 

terms of well or not well separated Hues or Lightness) is not easy to analyse. The 

histograms or Hue and Lightness could be used towards analysing the colour content 
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of the image, but as detailed in Section 4.4.2, this is not a trivial process. The 

thresholds used here are a trade-off, so that the method works reasonably well with a 

wide range of images. 

.7. Conclusion 

The method described in this chapter aims to segment multi-colour Web images 

containing text. The method works in a split-and-merge manner and involves an 

inn te r information. As stated in the introduction of this 

chapter, this is an anthropocentric 

perceive colour. To achieve th

use of HLS as an appropriate colour space and the introduction of certain similarity 

thresholds for each colour component as derived by experiments conducted in realistic 

situations. 

 of experimental data is used throughout the splitting and merging 

process, ensuring that components will finally consist of pixels having visually similar 

col r mponents and components with 

ication will be discussed in Chapter 6. 

4

ovative way to manipula  colou

approach, modelling closely the way humans 

is, certain key steps were taken, mainly regarding the 

A key point of this approach is the separation of chromatic from achromatic pixels 

in the image. Although this is not a new idea [28, 29, 82], we consider the use of 

experimentally derived data, that take into account the effect the different Hues, 

superior than using a single saturation (and lightness) threshold. 

Furthermore, experimental data about Hue and Lightness discrimination were 

used to define the appropriate thresholds for Hue and Lightness similarity. The 

experimental data derived for colour purity are directly related to Saturation 

similarity, and are used as such whenever a decision based on Saturation needs to be 

made. This set

ours. P ovision for the identification of gradient co

shadows or highlights, is supplied by allowing for some flexibility of the strict 

similarity thresholds derived from the experimental data. 

The next open problem towards text extraction is the identification of 

character-like components. Results such as the above are not immediately usable by 

OCR methods, since there is no information regarding which components represent 

characters and which ones represent parts of the background. Therefore, each 

component must be assessed and characterized as either character-like or background. 

This process of component classif
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Chapter  5 

5. Fuzzy Segmentation Method 

mponents) representing the characters 

em age. This segmentation method is based on a metric of closeness 

between components called Propinquity, which is defined with a fuzzy inference 

system. The Propinquity can be calculated between any two components, and is 

defined based on the colour distance and the topological relationship between the 

components. The basic concepts are discussed next, followed by a detailed description 

of the method. 

5.1. Basic Concepts – Innovations 

The Split and Merge Method discussed in Chapter 4, manipulates colour by treating 

separately different colour attributes and using discrimination information for each 

sumption that Web Images are created in such a way as to enable human 

beings to read the textual content is common to both the Split and Merge Method and 

the

 

 

 

he segmentation method described in this chapter, initially identifies connecting 

components of constant colour inside a given image, and subsequently merges 

them aiming at the creation of regions (larger co

T
bedded in the im

attribute to decide on colour similarity. Colour discrimination in the Fuzzy 

Segmentation Method, is approached in a distinctly different way, not focusing on 

separate colour components, but on one single metric for colour similarity. The 

underlying as

 Fuzzy Segmentation method. 

The HLS colour system lacks a straightforward measurement method for 

perceived colour difference. This is due to the fact that colours having equal 
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(Euclidean) distances in the HLS colour space may not necessarily be perceived by 

humans as being equally dissimilar. A more suitable colour system would be one that 

exhibits perceptual uniformity.1 The CIE (Commission Internationale de l’Eclairage) 
*v* (sometimes also referred to as 

 should be used in 

conjunction with colour information to achieve a correct segmentation. That extra 

step, of incorporating topological relationship information between components into 

the merging process is taken here. Towards this, a Propinquity measure based on both 

the colour distance and the topological relationship between components is defined by 

means of a fuzzy inference system. 

5.2. Description of method 

T

process. Since the image is not bi-level (therefore, the components cannot be easily 

defined in terms of black and white), colour similarity between pixels is used for 

com

step are 

sub

has standardized two colour systems: L*a*b* and L*u

CIELAB and CIELUV) based upon the CIE XYZ colour system [30, 116]. These 

colour systems offer a significant improvement over the perceptual non-uniformity of 

CIE XYZ [152, 211] and are a more appropriate choice to use in that aspect than HLS. 

Therefore, the Euclidean distance in the L*a*b* colour space is used here as indicative 

of colour similarity. 

Colour is a very important attribute in identifying objects in colour images, 

nevertheless, is not always adequate, especially when dealing with complex colour 

combinations. Shape plays an equally important role, and it

he method starts by performing an one-pass connected component identification 

ponent identification. 

The rationale behind this pre-processing step (expressing the image in terms of 

components) is that if some neighbouring pixels have colours that humans cannot 

differentiate, it is beneficial to treat those pixels as a single component. By doing so, 

the processing time of the method is substantially reduced.  

The components resulted from the initial component identification 

sequently aggregated into larger regions. Using a fuzzy inference system defined, 

                                                 
1 For example, assume that two colours have HLS (Euclidean) distance δ. Humans find it more 

difficult to differentiate between the two colours if they both lie in the green band than if the two 

colours lie in the red-orange band (with the distance remaining δ in both cases). This is because 

humans are more sensitive to the red-orange wavelengths than they are to the green ones. 
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the ropinquity between all possible pairs of components is calculated and a sorted (in 

terms of Propinquity) list of pairs of com produced. As long as a pair of 

The above steps of pre-processing and merging, as well as the fuzzy inference 

system used to define the propinquity measure, are detailed next. 

 classes exist, defined a-priori, and the pixels are already labelled. Connected 

com

P

ponents is 

components exists for which the propinquity value is above a pre-defined threshold, a 

merger takes place, and the list is updated accordingly to reflect the changes and 

accommodate the new component. The process finishes when no pair of components 

exists with propinquity above the pre-defined threshold. 

5.3. Initial Connected Components Analysis 

Identifying connecting components in bi-level images is a relatively trivial task, since 

only two

ponent identification is merely the process of checking each black (foreground 

colour) pixel, and if it neighbours a connected component, assign the pixel to the 

connected component. If a pixel neighbours more than one component, all the 

components are merged into one (Figure 5-1a). 

 

  

(a) )  (b

Figure 5-1 – (a) If a pixe  n ing more tha om he components are always 

merged in bi-level images. (b) In ma  p i e than one component, it is 

not trivial to decide wheth he component be  a omponent the pixel should 

be assigned to. 

l is eighbour n one c ponent, t

colour i ges, if a ixel is sim lar to mor

er t s should  merged nd which c

 

ages, identifying connected components involves checking the 

sim

In colour im

ilarity of the colour of a pixel to the colour of neighbouring components and 

deciding which one, if any, is similar enough for the pixel to be assigned to. A pixel 
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during this process can be similar to more than one components, in which case it is 

not straightforward to decide whether it should be assigned to just one of them, or if 

the components should be merged (Figure 5-1b). 

Connected Component Identification Algorithm 

The connected component identification process used here, is a one-pass algorithm, 

which checks each pixel’s similarity with four of its neighbours and decides whether 

the pixel should be assigned to an existing component, or not. The process starts from 

the top left corner of the image and works its way in a top to bottom, left to right 

cheme. For each pixel, the colour distance is computed between the pixel and the 

components to which four of its neighbouring pixels belong as shown in Figure 5-2. 

Only those four checks are performed at this point, because the rest of the 

neighbouring pixels have not been assigned to a component yet. 

 

s

Processed Pixels
(assigned to components)

Unprocessed Pixels
(not assigned to components)

 

Figure 5-2 – For each pixel, the components to w ch their four processed neighbouring 

belong are checked. 

 

The smallest colour distance is identified, and if below a pre-defined threshold, 

the pixel is assigned to the associated component. If the pixel presents a colour 

distance below the pre-defined threshold with one or more of the other neighb

components, then the colour distance between the average colours of those 

components and the component to which the pixel was assigned is checked. If this 

colour distance is also below the threshold, the two components are merged. 

his process is illustrated in Figure 5-3. In the situation depicted, the pixel being 

nent #3, since the associated colour 

distance is the smallest computed. Then the colour distance between component #3 

(that was assigned the pixel) and component #2 is computed, and if it is belo

pre-defined threshold, the two components are merged. 

hi pixels 

ouring 

T

processed is similar to both component #3 (blue outline) and component #2 (green 

outline). The pixel is initially merged with compo

w the 
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Component #1

Processed Pixel

Unprocessed Pixel

Component #2
Component #3

Pixel being
processed

 

Figure 5-3 – A partially processed image. The unprocessed pixels are shown in dim colours. The next 

pixel to be processed is similar to both the blue and the green outlined component. The pixel will be 

assigned to the component with which it has the smallest colour distance, for this case the blue outlined 

one. Subsequently the second component (green outlined) will be compared to the one the pixel was 

assigned to, and if similar, they will be merged. 

 

Colour Distance 

The most important part of the above process is the definition of the colour distance 

metric and, subsequently, of the threshold under which two colours are considered 

similar. 

In order for the colour distance to be related to the perceived colour difference, a 

col

b  and L u v  which greatly improve the 

perceptual non-uniformity of CIE XYZ. In both those systems, the Euclidean distance 

bet w  colour similarity. In the current 
* * *

our system, which is perceptually uniform, should be used. A system is 

perceptually uniform if a small perturbation to a component value is approximately 

equally perceptible across the range of that value. Both the RGB and the CIE XYZ 

systems are far from exhibiting perceptual uniformity. As mentioned before, the CIE 

has standardised two colour systems L*a* * * * *

ween t o points can be used as a metric of

implementation of the algorithm we use the Euclidean distance in L a b  

(CIE specification of 1976) as a perceptually uniform colour distance metric. Other 

colour systems, such as L*u*v* (CIE specification of 1976) and LaLbL (Hunter 

specification of 1948 and 1958) [211] have also been tried and give similar results. 
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 R G B White 

x 0.640 0.300 0.150 0.3127 

y 0.330 0.600 0.060 0.3290 

z 0.030 0.100 0.790 0.3582 

Table 5-1 - Primaries and D65 white point of Rec. 709 

 

The image data is coded in the RGB colour system

from RGB to L*a*b*. A direct conversion exists between CIE 

, so a way is needed to convert 

XYZ and L*a*b*. Still, 

similar nversion is needed between the RGB and 

evice-dependant, however between monitors that conform to the 

stan

⎤
⎢
⎡

⎥
⎤
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⎡ − X498535.0537150.1240479.3

* * *

ly to the Split and Merge method, a co

the CIE XYZ colour systems. It is not feasible to convert from a device-dependant 

colour system to a device-independent one without any extra knowledge about the 

hardware used both for the creation and for displaying of the RGB data. The RGB 

colour system is d

dard Rec. 709 [84], RGB colours can be considered to be unvarying. The 

primaries and the D65 white point of Rec. 709 are displayed in Table 5-1. To convert 

from RGB709 to CIE XYZ and vice-versa we use the transforms:  
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Eq. 5-1 
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Then the conversion of the CIE XYZ values to L a b  is given by: 
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 Eq. 5-5 

 

where (Xn, Yn, Zn) are the coordinates of the white point [116, 211]. The colour 

difference formula for L*a*b* is given in Eq. 5-6. 

 

( ) ( ) ( )[ ] 2
12*2*2** baLE ∆+∆+∆=∆  Eq. 5-6 

 

Similarity Threshold 

The setting of the threshold for the colour difference below which two colours can be 

considered similar, is dependant on the purpose of this first step of connected 

com ing this initial grouping of pixels 

 components, 

fewer comparisons will take place, as the number of components will be substantially 

xels. Generally, the larger the components 

the background occurs. After 

experimenting with different thresholds, a value of ∆E*=20 was chosen. This value 

permits very similar colours to be merged but at the same time, adheres to the 

 between parts of the text and 

the background. 

ponent analysis. The rationale behind perform

into connected components is that having larger structural units instead of individual 

pixels relieves the subsequent merging algorithm from a significant computational 

load. The reason for that is that if the pixels are grouped into connected

smaller than the number of the initial pi

participating to the merging process are, the fewer comparisons will be necessary. 

Following this syllogism, it would be advantageous to come up with large 

components. On the other hand, the desirable outcome of the method is a correct 

separation of characters from the background, so any false merging at this stage 

would hinder the segmentation process. 

Based on that, the ideal threshold should permit as many mergers as possible as 

long as no merger between any part of the text and 

aforementioned requirement that no false mergers occur

At this point it should be mentioned that the initial connected component 

identification could  (in theory) be totally avoided, effectively allowing the merging 
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algorithm to work with the smallest base units available: individual pixels. 

Nevertheless, even the smallest amount of initial grouping proves to be significantly 

ben

troid calculation of 

the

mentation of the system, ensures that no 

incompatibilities exist between the two phases. 

 therefore should not be merged. Nevertheless, it is not as 

helpful as a metric indicating when two components are similar enough to be merged, 

 on the colour content of their immediate 

eficial in terms of computational time. 

5.4. The Fuzzy Inference System 

In this section, the fuzzy inference system used to define Propinquity will be 

described. This fuzzy inference system takes two inputs and exports one output. The 

two inputs, namely Colour Distance and Connections Ratio and the Propinquity 

output are analysed and their representation in the fuzzy inference system is given 

next. Basic definitions for fuzzy logic can be found in Appendix B. 

For the design of the fuzzy inference system, MATLAB 5.3 was used. The fuzzy 

inference system described here is a Mamdani-type one where the implication method 

employed is truncation, and the defuzzyfication method is the cen

 final output curve. The above processes are described in more detail in 

Appendix B. Subsequently, for the implementation of the fuzzy inference system the 

C libraries for fuzzy logic provided by MATLAB were employed. The use of 

MATLAB both for the design and imple

5.4.1. Colour Distance 

The colour distance between two components is a factor that strongly influences the 

decision of whether the components should be merged or not. As such, colour 

distance participates in the definition of Propinquity as the first input of the fuzzy 

inference system. 

Colour distance can be used as a metric indicating when two components are 

certainly different and

since this depends most of the cases

neighbourhood. 

One can possibly define levels of similarity between components, from absolutely 

identical up to definitely different, based on the colour distance between components. 

It is not trivial to define crisp thresholds for different levels of similarity. “Absolutely 

Identical” or “Definitely Different” are rather vague concepts, which can be easier 
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described as fuzzy sets. This makes Colour Distance an excellent candidate for 

inclusion in a fuzzy inference system. 

The colour of each component is computed as the average colour of the pixels 

belonging to the component. The colour difference between components is then 

defined as the Euclidean distance between their average colours in the L*a*b* space. 

This metric is the first input of the fuzzy inference system. 

It should be mentioned at this point that computing the average of a number of 

different colours in the RGB colour system and subsequently converting the result in 

L*a*b* does not necessarily give the same value as computing the average of the 

colours directly in the L*a*b* system (there is a non-linear transformation between 

them). Although the difference between the two values is never practically significant, 

since the pixels belonging to the same component should have by definition very 

similar colours, there is an important reason why averaging in the RGB should be 

preferred. RGB is defined to be linear. This effectively means that if one mixes 

different amounts of two colours defined in the RGB colour space, the resulting colour 

would lie on the line connecting the initial two. As a result, the average colour of a 

number of colours given in RGB is the colour one sees if they combine the initial 

colours, which is not the case with the L*a*b* colour space. Therefore, due to the 

linearity of the colour space the average colour of components is computed in the 

RGB colour system. 

If two components a and b are merged to a new component (a+b), then the 

average colour of the resulting component can be easily calculated by the following 

equation: 

 

ba

bbaa CSCS
ba SS

C
+

⋅+⋅
=+ )(  Eq. 5-7 

ber of fuzzy sets and the corresponding membership 

 

where Sa and Sb are the sizes (in terms of number of pixels), and Ca and Cb are the 

average colours of components a and b respectively. This is a very important feature 

in terms of computational efficiency as will be seen later in Section 5.5. 

Fuzzy Sets and Membership Functions 

The Colour Distance needs to be incorporated into the fuzzy inference system. This 

involves the definition of a num
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functions. A membership function is a curve that defines how each point in the input 

space is mapped to a membership value (or a degree of membership of the associated 

fuzzy set) between 0 and 1. A more detailed description of these terms is given in 

Appendix B. The fuzzy sets and the corresponding membership functions defined for 

the Colour Distance input are illustrated in Figure 5-4. 
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Figure 5-4 – Membership functions for the Colour Distance input. 

 

The fuzzy set expressing the range of colour distances for which two colours 

would be certainly different, is defined with the “Large” membership function in 

Figure 5-4. The cut-off point for this membership function, was set after 

experim

4. The rationale behind defining two fuzzy 

entation to ∆E*≈43. 

At the other end, colours with distances less than ∆E*=20 should be considered 

similar. This conforms to the threshold used for the initial component identification 

process described in the previous section. Two fuzzy sets were defined for colour 

distances under this threshold, named “Small” and “Insignificant”, the membership 

functions of which are shown in Figure 5-

sets for this range of colour distances, instead of one, is to provide for more flexibility 

in designing the system. Although both “Small” and “Insignificant” colour distances 

are considered small enough for two components to be merged, having two fuzzy sets 

in this range allows for better control over the order mergers are performed. Mergers 
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are performed hierarchically (based on the Propinquity value) as will be seen in 

Section 5.5. The “Small” membership function peaks at ∆E*=20. 

For the middle range of colour distances, no decision can be made with certainty 

bas

ps between Components 

The way components are arranged in the image is another factor influencing the 

aggregation process. The topological relationships between components can be 

expressed by simple metrics such as the spatial distance between them, or more 

complex features involving the boundaries or the shapes of the components. Two of 

the metrics examined as candidates for an input of the fuzzy inference system, are 

described below, followed by the definition of the “Connections Ratio”, which is the 

attribute finally used. 

Euclidean Distance based Attributes 

The Euclidean distance between two components is the simplest topological metric 

that can be used. There is a number o stances one can measure between two 

components: the distance between their centres of gravity, the minimum distance 

 two components should be merged or 

not. The main reason for this, is that Euclidean distance-based features fail to capture 

the shape of the components or the way components are placed relatively to each 

other, rather such features provide a spatial distance between components. 

erge 

component a with component b (if the colour distance allows so) resulting to an “o” 

ponent a with component c as indicated by the Euclidean 

ed solely on the Colour Distance input. Instead, the fuzzy inference system relies 

strongly on the second input as well. This middle range is represented by a “Medium” 

fuzzy set, defined as shown in Figure 5-4. 

5.4.2. Topological Relationshi

f di

between their borders etc. Unfortunately, Euclidean distance-based features prove 

unreliable when it comes to deciding whether

An example to highlight this problem for the Euclidean distance between the 

centres of gravity of components is shown in Figure 5-5. In this case the “c” shaped 

component (component a) presents a small Euclidean distance with the component 

representing the inside area (component b), but not with the small component on the 

right (blue). In the context of character extraction, it would make more sense to m

shaped component, than com

distance. 
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Figure 5-5 – Example of Euclidean distance between centres of gravity of components. The 

com

blem with using the Euclidean distance between the 

centres of gravity of components, is that it cannot give any indication about whether 

the two components actually share part of their boundaries of not. For that reason the 

although it shows whether two components touch or not, it does not indicate the 

extent of this boundary sharing. 

haring 

Subsequently, a different feature was examined, which expresses the extent to which a 

component’s boundary is shared with another component. We define as the 

Directional Boundary Sharing (BSa→b) of component a to component b, the 

of boundary pixels of a neighbouring with b, divided by the total number of pixels 

ponents with the smallest distance are not always the best to merge. 

 

Another fundamental pro

Euclidean distance between points of the boundaries of two components could be 

used. This is much more difficult to compute, and the main problem would be that, 

Boundary S

number 

constituting the boundary of a: 

 

a

ba
ba BP

BP
BS →

→ =  Eq. 5-8 
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wh

 having the larger one, that is: 

 

ab BPBP =→ ,)

Th ges as a feature indicative 

of the topological relation of two components. First, it directly indicates whet

components are neighbours or not, since a value of zero would mean that the 

com

value of the degree of connectivity betw

components are not touching at all, to one, when one component is completely 

included in the other. 

Since a large number of comparisons are made during the component aggr

phase, it is beneficial to select a feature that is easy to compute for the components 

image

is necessary to count again the number of Boundary Pixels for the new component, 

which (for the number of comparisons performed) can take a substantially large 

amoun ted in Figure 5-6. 

In certain cases, the number of Boundary Pixels of the component resulting from a 

merger can be computed from known information. In most of the cases though, when 

a boundary pixel is neighbouring more than one component this cannot be done. 

Usi

e practicable. 

ere BPa→b is the number of boundary pixels of a located adjacent to the boundary 

of b and BPa is the total of boundary pixels of component a. As such, Directional 

Boundary Sharing takes a value in the range [0, 1]. As can be seen by the definition, 

the Directional Boundary Sharing of component a to b is not necessarily equal to the 

Directional Boundary Sharing of component b to a, that is BSa→b ≠ BSb→a. For this 

reason, we define as Boundary Sharing between the two components a and b the 

Directional Boundary Sharing from the component having the smaller boundary to the 

component

ba
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ba

ba

ab

ba

ba BPBP
BPBP

BSBS
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BS >
<

⎪
⎩

⎪
⎨

⎧
=

→

→

→

,
,

,max(
,  Eq. 5-9 

 

e Boundary Sharing feature has some strong advanta

her two 

ponents in question are not touching at all. Furthermore, it provides a descriptive 

een two components, from zero when the 

egation 

produced after each merger, if possible without the need to read again data from the 

. Unfortunately, in order to compute the Boundary Sharing after each merger, it 

t of time. This problem is illustra

ng Boundary Sharing as an input of the fuzzy inference system, made the merging 

algorithm too time consuming to b
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abbababa BPBPBPBP →→+ −−+=)( abbababa BPBPBPBPBP →→+
 BP −−+≠)( abbababa BPBPBPBPBP →→+ −−+  ≠)(

(a) (b) (c) 

Figure 5-6 – Different cases where the number of Boundary Pixels (BP) of the component resulting 

from a merger can (a) or cannot (b, c) be computed from known information. Boundary pixels are 

illustrated here with a triangle in the upper left corner. 

 

5.4.3. The Connections Ratio 

Another attribute was therefore sought, which also expresses the degree of 

connectivity between components, but at the same time is easier to calculate and use. 

The attribute finally used as an input in the fuzzy inference system is the Connections 

Ratio. This is defined in a way that it overcomes the problems of Boundary Sharing, 

by using Connections instead of pixels to define the boundaries of components. 

Definitions 

A Connection is defined here as a link between a pixel and any one of its 

8-neighbours, each pixel thus having 8 connections. A connection can be either 

internal or external. A connection is called internal when both the pixel in question 

and the neighbouring one belong to the same component and external when the 

neighbouring pixel belongs to another component. Connections to pixels outside the 

image, are also considered external. Figure 5-7 illustrates the external and internal 

connections of a given component to its neighbouring components. 

If Cx is the total number of connections of component x, Cix and Cex are the 

number of internal and external connections of component x respectively and Sx is the 

size of component x, where size equals the number of pixels of the component, then 

the following equations apply: 

 

 160



Chapter 5 – Fuzzy Segmentation Method 

xx SC ⋅= 8  Eq. 5-10 

xxx CeCiC +=  Eq. 5-11 

 

Note that Eq. 5-10 applies to all components, even the ones located at the edges of 

the image (see Figure 5-7). By doing so, we avoid computing a smaller boundary 

length for those components. 

 

 

Figure 5-7 – A connected component (blue) and its internal and external connections to its 

neighbouring components (shown in green and red). Yellow lines indicate the external connections and 

black lines the internal connections. 

 

Given any two components a and b, the Connections Ratio, denoted as CRa,b is 

defined as: 

 

),min(
,

,
ba

ba
ba CeCe

Ce
CR =  Eq. 5-12 

 

where Cea,b is the number of (external) connections of component a to pixels of 

compo d al connections (to all nent b, an Cea and Ceb refer to the total number of extern

neighbouring components) of each of the components a and b, respectively. The 

Connections Ratio is therefore the number of connections between the two 
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com

all Connections Ratio indicates loosely 

link

ain advantage of the Connections Ratio over to Boundary Sharing is that it 

is s

ponents, divided by the total number of external connections of the component 

with the smaller boundary. The Connections Ratio ranges from 0 to 1. 

In terms of practical significance, the Connections Ratio is far more descriptive of 

the topological relationship between two components than other spatial distance 

measures. Similarly to Boundary Sharing, a sm

ed components while a large value indicates that one component is almost 

included in the other. In addition, in a manner similar to Boundary Sharing, the 

Connections Ratio provides a direct indication of whether two components are 

neighbouring or not in the first place, since it will equal zero if the components are 

disjoined. 

The m

ignificantly easier to compute for new components resulting from mergers between 

components. If we choose to merge two components a and b, then for the new 

component the following will hold: 

(i) The total number of connections for the new component will be the sum of the 

total number of connections of the two components: 

baba CCC +=+  Eq. 5-13 

 

(ii) The total number of internal connections for the new component will be the 

sum of the number of internal connections of the two components plus twice 

the number of connections between the two components: 

bababa CeCiCiCi ,2 ⋅++=+  Eq. 5-14 

 

(iii) The total number of external connections for the new component will be the 

total number of connections of the new component minus the total number of 

internal connections: 

bababa CiCCe +++ −=  Eq. 5-15 

which gives based on Eq. 5-11: 

CeCeCeCe 2 bababa ,⋅−+=  + Eq. 5-16 

 

Given any neighbouring component c of the initial components a or b, for the new 

component a+b we can compute: 
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cbcacba CCC ,,, +=+  Eq. 5-17 

 

So based on Eq. 5-16 and Eq. 5-17, Eq. 5-12 becomes: 

 

( ) ( )cbaba

cbca

cba

cba
cba CeCeCeCe

CeCe
CeCe

Ce
CR

,2min,min ,

,,,
, ⋅−+

+
==

+

+
+   Eq. 5-18 

 

As shown above, the calculation of the value of the Connection Ratio feature for 

the component resulting from a merger requires knowledge of the individual feature 

values of the components involved only. Therefore, the feature values for each 

component need to be calculated for the components themselves only once at the 

alculations after every merger. 

Fuz y Sets and Membership Functions 

Characters consist of continuous strokes, ther

ponents that partially neighbour, will have a 

Connections Ratio value in the middle range. After experimentation it was found that 

n Ratio values indicative of components likely to be 

stro

 for more flexibility in 

des

beginning of the process, minimising the number of c

z

efore, if a character is split in two or 

more components, those components, being parts of strokes, will neighbour only 

partially. This is because strokes are continuous shapes of small thickness, so if a 

stroke is split in two components, those components will neighbour to an extent 

comparable to the thickness of the stroke. 

The Connections Ratio input is indicative of the extent to which components 

neighbour each other; as a result, it can be used to indicate when components are 

more likely to be parts of a stroke. Com

this middle range of Connectio

ke parts, is between 0.05 and 0.65. Two fuzzy sets were defined for this middle 

range called “Medium Low” and “Medium High”, the membership functions of which 

are shown in Figure 5-8. The reason for defining two fuzzy sets instead of one for the 

middle range of Connections Ratio values is to provide

igning the system, in a manner similar to the fuzzy sets defined for small Colour 

Distance values. Specifically, although pairs of components presenting Connections 

Ratio in the range of either the “Medium Low” or “Medium High” fuzzy sets will be 

favoured at the time of component aggregation, having two fuzzy sets in this range 

allows for better control over the order mergers are performed. Between the two 
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“Medium” sets, “Medium High” is more preferable and is defined to give slightly 

higher Propinquity values as will be seen next. In this way, pairs of components 

having Connections Ratio in either the “Medium Low” or “Medium High” ranges will 

be 

ggregated first. 

onnections Ratio values above 0.65 indicate pairs of components extensively 

irs of c ponents most of the times are not parts of the same 

 not be  s of 

ing a ch ea (e d its 

rs of com ection range 

h  0 5-8. 

in vour lly 

t  Propi

merged (if the Colour Distance permits it), but those in the “Medium High” range 

will be a

C

neighbouring. Such pa om

character and should merged. Cases that fall in this range, are pair

components represent aracter and its inside ar .g. character “o” an

inside area). Such pai ponents present Conn Ratio values in the 

of the “High” fuzzy set, whic  is defined for values above .65 as seen in Figure 

Connections Ratio values  this range are not fa ed much and genera

(depending on the Colour Dis ance input) give smaller nquity values. 
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Figure 5-8 – Membership functions for the Connections Ratio input. 

 

In a manner similar to the “High” fuzzy set, a fuzzy set called “Low” is defined 

for Connections Ratio values less than 0.05. Two of components with a Connections 

Ratio value in that range, are generally very loosely neighbouring, and are not 

favoured much during the aggregation process. An important point here, is that the 

membership function for the “Low” fuzzy set is defined so that it steeply drops to zero 
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when Connections Ratio values reach zero. As explained before, a Connections Ratio 

value of zero indicates that two components are not neighbouring, and should not be 

con

 the opposite end, the “Definite” fuzzy set is defined to give high degrees of 

membership to Propinquity values above 0.9. In a manner similar to the “Zero” fuzzy 

Colour Distance and medium Connections Ratio) be awarded a 

high Propinquity value, therefore be placed high in the hierarchy of mergers to 

hap

 set 

is d

eshold of 0.5 will 

effe

sidered for merging in any case. For zero values of Connections Ratio, another 

fuzzy set is defined called “Zero” in order to facilitate the different handling of 

components that do not neighbour at all. If a pair of components presents a 

Connections Ratio in the “Zero” fuzzy set, it is never considered for merging, instead 

a Propinquity value of zero is returned independently of the Colour Distance value. 

5.4.4. Combining the Inputs: Propinquity 

The single output of the fuzzy inference system, the Propinquity, is defined with the 

help of seven fuzzy sets. Three of the fuzzy sets defined carry a special meaning. 

Those are the “Zero”, the “Medium” and the “Definite” fuzzy sets. 

The “Zero” fuzzy set is defined in such a way that a Propinquity of zero has a 

membership value of 1 to the set, while any other Propinquity has a membership value 

of 0. This is a very crisply defined fuzzy set, which is necessary to facilitate the 

rejection of certain cases where components should not be merged (e.g. very large 

Colour Distance, or zero Connections Ratio). 

On

set, the “Definite” fuzzy set ensures that cases where components should definitely be 

merged (e.g. small 

pen. 

The Propinquity output is defined so that a value of 0.5 will be the threshold 

above which two components should be considered for a merger, while values less 

than 0.5 indicate that two components should not be merged. The “Medium” fuzzy

efined to cover the middle range of Propinquity values (0.4 to 0.6) while it gives a 

membership value of 1 to Propinquity equal to 0.5. This fuzzy set is used to indicate 

cases where it is not certain whether two components should be merged or not. 

A pair of components awarded a Propinquity value above the thr

ctively be merged in the subsequent component aggregation phase. Contrary, a 

pair of components awarded a value below that threshold, should not be considered 

for a merger. The range of Propinquity values between the “Medium” and the 

“Definite” fuzzy sets are described by two fuzzy sets: “High I” and “High II”. Initially 
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one fuzzy set was used for this range of Propinquity values, but it proved inadequate 

to effectively cover the full range of possible input combinations. Because 4 fuzzy 

sets were defined for the Colour Distance, and 5 fuzzy sets were defined for 

Connections Ratio, using just a single “High” fuzzy set for Propinquity did not allow 

for a high degree of flexibility when designing the rules of the system. The 

membe i

in Figure 5

“High II” covers the range of values from 0.75 to 0.9. 

 

rsh p functions of the finally used fuzzy sets “High I” and “High II” are shown 

-9. “High I” is defined to cover the range of values from 0.5 to 0.8, while 
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Figure 5-9 - Membership functions for the Propinquity output. 

 

In a similar manner, the range of values between the “Zero” and “Medium” were 

expressed using two fuzzy sets “Low I” and “Low II”. Pairs of components with a 

Propinquity value below 0.5 will not be considered for a merger anyway, so it is not 

that important (it terms of the hierarchy of mergers) to describe the range of values 

between 0 and 0.5 with two fuzzy sets instead of one. Nevertheless, using two fuzzy 

sets for this range of values, made it easier to define the rules of the fuzzy inference 

system. “Low I” covers the range of values between 0 and 0.3, while “Low II” covers 

the range of values between 0.2 and 0.5. 
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The Fuzzy Inference System 

 inference system are responsible for establishing the 

 Distance and Connections Ratio) and the 

 rules are simple statements, where the fuzzy sets 

d verbs respectively. 

 the antecedent, while the then-part of the rule is 

rts: first 

ship, then the consequent is also true to 

ssigned to 

le of the system are then aggregated into a 

 output set, which is finally defuzzyfied, or resolved to a single number. The 

The set of rules used to define the fuzzy inference system is shown in Figure 5-10 

below. 

If Connections Ratio then Propinquity is Zero 

The rules of the fuzzy

relations between the two inputs (Colour

output (Propinquity). These if-then

and fuzzy operators are the subjects an

The if-part of a rule is called

called the consequent. Interpreting an if-then rule involves two distinct pa

evaluating the antecedent and second applying that result to the consequent. If the 

antecedent is true to some degree of member

the same degree. The consequent of each rule specifies a fuzzy set to be a

the output. The output fuzzy sets for each ru

single

above process is described in more detail in Appendix B. 

 
 is Zero  

If Connections Ratio is Low and Colour Distance is Insignificant then Propinquity is High I 

If Connections Ratio is Low and Colour Distance is Small then Propinquity is Medium 

If Connections Ratio is Low and Colour Distance is Medium then Propinquity is Low II 

If Connections Ratio is Low and Colour Distance is Large then Propinquity is Zero 

If Connections Ratio is Medium Low and Colour Distance is Insignificant then Propinquity is High II 

If Connections Ratio is Medium Low and Colour Distance is Small then Propinquity is High I 

If Connections Ratio is Medium Low and Colour Distance is Medium then Propinquity is Medium 

If Connections Ratio is Medium Low and Colour Distance is Large then Propinquity is Low I 

If Connections Ratio is Medium High and Colour Distance is Insignificant then Propinquity is Definite 

If Connections Ratio is Medium High and Colour Distance is Small then Propinquity is High II 

If Connections Ratio is Medium High and Colour Distance is Medium then Propinquity is High I 

If Connections Ratio is Medium High and Colour Distance is Large then Propinquity is Low II 

If Connections Ratio is High and Colour Distance is Insignificant then Propinquity is High I 

If Connections Ratio is High and Colour Distance is Small then Propinquity is Medium 

If Connections Ratio is High and Colour Distance is Medium then Propinquity is Low II 

If Connections Ratio is High and Colour Distance is Large then Propinquity is Zero 

Figure 5-10 – The fuzzy inference system rules. 

 

As mentioned before, a small Colour Distance indicates that the components 

involved are sufficiently similar (in colour) to be merged, while a large Colour 
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Distance informs that the components should not be considered for merging. For 

Colour Distance values falling at the middle range, no decision can be made with 

certainty. These observations manifest themselves in the rules in a specific way. If the 

colour distance is Small or Insignificant, the Propinquity is always set to be above 

medium (Medium, High I, High II or Definite). How much above medium is specified 

by the Connections Ratio input. For Connections Ratio values in the range of Medium

Low or Medium High fuzzy sets, the Propinquity is set higher than for Connections 

Ratio values in the range of S zzy sets. the 

ts of character 

strokes (partially neighbour) should be favoured during the component aggregation 

pro

rocess, since it dictates the order by which mergers should take place, as 

will be seen next. A rapid fall to zero can also be observed when Connections Ratio 

reaches zero, since disjoint components must not be considered for merging in any 

case. 

 

mall or High fu This conforms to 

observations made before: pairs of components that correspond to par

cess. 

In a similar manner, if Colour Distance is Medium of Large, the Propinquity is 

generally set to be below Medium (Zero, Low I, Low II, Medium) based again on the 

value of the second input: the Connections Ratio. Finally, an extra rule is added to 

handle the special case when two components are not neighbouring and should not be 

considered for a merger. This is the first rule shown in Figure 5-10 checking for a 

Connections Ratio value of zero. 

The surface of Figure 5-11 represents the relationship defined by the rules of the 

system between the two inputs and the output. The fuzzy inference system is defined 

in such a way, that a propinquity of 0.5 can be used as a threshold in deciding whether 

two components should be considered for merging or not. We should note here that 

although all pairs of components with a Propinquity value above the threshold will 

eventually be merged, the exact value of Propinquity plays an important role during 

the merging p
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Figure 5-11 – A surface showing the mapping from Colour Distance and Connections Ratio inputs to 

the Propinquity output. 

5.5. Aggregation of Connected Components 

The components resulting from the initial connected component analysis are the base 

units participating in the component aggregation process, which performs mergers 

between pairs of components based on the Propinquity value calculated for them. 

lly, the Propinquity value for every possible pair of components is calculated. 

is calculation, the average colour and the number of connections between the 

need to be calculated. Those calculations are performed over the pixels of

nents themselves, so they are somewhat time-consuming. 

on the Propinquity val e computed for every possible pair of components, a

sorted list of possible mergers is created. As long as the Propinquity value associated 

with the first merger in the list is highe

ed after each merger takes place, so that the 

Initia

For th

components  

the compo

Based u  

r than a specified threshold (in this case 0.5 as 

derived from the definition of Propinquity), the merger in question is performed. It is 

essential that the sorted list is updat
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replacement of the components involved by a new one is reflected in the sorted list of 

possible mergers. More specifically, if a merger is performed between components a 

resulting in a new component (a+b), then the following operations are 

performed: 

• All mergers in the sorted list that refer to either component a or b, are 

puted) to refer to the new 

component (a+b). 

If both components a and b have a common neighbouring component c, 

then in rgers there would be two entries, one 

between a and c, and a second between b and c. After changing those 

identical possible mergers in the list, between (a+b) and c. Double 

occurrences like these are identified and eliminated. 

re is no need to 

com

and b, 

changed (and the appropriate attributes recom

• 

 the list of possible me

mergers to refer to the newly created component, there will be two 

• The list is sorted again, to reflect the recent changes. Actually, not the 

whole list is sorted every time, rather the new entries are inserted in the 

appropriate positions, and the entries for which the propinquity value has 

changed, are moved so that the list remains sorted at all times. 

The importance of using features that are easily recomputed after each merger, is 

now evident. The fact that the average colour of the new component as well as the 

connections feature can be calculated from the original values of the features of the 

components involved in the merger pays off at this stage, since the

pute anything from the image data. This results in a substantial time saving. 

The aggregation process continues as long as the first entry in the sorted list has a 

Propinquity value above the specified threshold. The pseudo code for the above 

process is shown in Figure 5-12. 
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AggregateComponents() 
{ 
  For Each Component in the Image 
  { 
    Calculate AverageColour 
    Find External Connections 
  } 
  For Each possible Merger 
  { 
    Compute ConnectionsRatio between participating Components 
    Compute ColourDistace between participating Components 
    Compute Propinquity 
    Insert Merger in the SortedList 
  } 
  While (Propinquity of 1st Merger in the SortedList > 0.5) 
  { 
    Merge Participating Components 
    Update SortedList 
  } 

Figure 5-12 – Pseudo code for the connected component aggregation process. Commands and 

reserved words are typed in Bold. 

 

5.6. Results and Short Discussion 

A small sample of representative results will be shown in this section. A more 

complete set of results, as well as a comparison between this method and the 

Split-and-Merge m

”) as well as characters merged in the original (characters “Ex” in 

“Ex

similarity to the surrounding background. 

ethod described in Chapter 4, are given in Chapter 7. 

For the cases shown here, the original image is shown, along with an image of the 

final segmentation (with each component painted in different colour) and an image of 

the segmented characters. In the image of the segmented characters, correctly 

identified characters are shown in black, broken characters are shown in red, and 

merged characters are shown in blue. 

The image shown in Figure 5-13 contains split characters (character “E” and “A” 

in “BLASTER

tigy”). The segmentation method correctly separates those characters from the 

surrounding background. If a character is split in the original and the segmentation 

method is able to identify all its parts as different components, the character is 

considered correctly identified. Similarly, if two or more characters are merged in the 

original and are segmented as a single component by the method, they are considered 

correctly identified. The word “Sound” was completely missed here due to its high 
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Original Final Segmentation Segmented Characters 

Figure 5-13 – Image with multi-coloured characters over photographic background. 

 

In Figure 5-14 an example of an image containing a logo (Netscape’s “N” 

character), as well as one-pixel wide characters (“CLICK HERE” at the bottom-right 

corner) is given. Although the one-pixel wide characters are correctly separated from 

the background, the segmentation method fails to segment the logo character. What 

appears here to be an over-merging problem (parts of the characters merged with the 

background), originates from the sequence in which mergers occur (as directed by 

Propinquity). Parts of the gradient background of the Netscape logo (light coloured 

ones) are first merged with parts of the “N” character. The components resulting from 

these first mergers are subsequently merged with other parts of the background of 

similar colour, producing the result shown here. The dependence of the Fuzzy 

Segmentation method results on the sequence of mergers is an important aspect of this 

method. Using the Propinquity between components to define the order of the mergers 

in most of the cases ensures a correct separation of the characters from the 

background. 
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Original Final Segmentation Segmented Characters 

Figu

wer

re 5-14 – Image with single-coloured text over multi-coloured background. Most of the characters 

e identified correctly. 

 

Similarly to the Split-and-Merge Method described in Chapter 4, the method 

presented here is configured so that reasonable results can be obtained for a range of 

fun

Orig

damentally different images. The rules and membership functions of the fuzzy 

inference system can be changed to reflect stricter or more relaxed decision 

thresholds. Two examples illustrating this can be seen in Figure 5-15 and Figure 5-16. 

 

inal 
 

Final 

Segmentation   

Seg

Cha

mented 

racters   

 Normal fuzzy inference system More relaxed fuzzy inference system 

Figure 5-15 – Image with multi-coloured characters. More relaxed membership functions for the 

Colour Distance input achieve better results. 
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Original 
 

Final 

Segmentation   

Segmented 

Characters   

 Normal fuzzy inference system More relaxed fuzzy inference system 

Figure 5-16 – Image with textured text over sinlge-coloured background. Strict decision thresholds 

achieve far better results in this case. 

 

A different definition of the fuzzy inference system was used here to illustrate this 

point. In this second definition of the fuzzy inference system, the membership 

functions for the Small and Medium fuzzy sets of the Colour Distance input were 

slightly altered. The threshold for which two components are considered similar was 

inc

since slightly less similar (in colour) components are now allowed to 

me  

(consequently of the Propinquity metric) affect segmentation results. 

In the case illustrated in Figure 5-15 a slightly better segmentation is achieved 

with the more relaxed version of the fuzzy inference system. Here more characters are 

correctly identified (as one component) with the second version, while fewer 

characters are split. The opposite can be observed in Figure 5-16, where with the use 

of t

reased from ∆E*=20 to ∆E*=~25. This results in a more relaxed definition of 

Propinquity, 

rge. It is evident that different definitions of the fuzzy inference system

he relaxed version of the fuzzy inference system, some of the characters originally 

identified are now merged with the background. 

5.7. Discussion 

In this chapter, a new method was presented to segment text in Web images. 

Components of uniform colour are first identified in the image, based on the colour 

difference between pixels (as perceived by humans). Subsequently, the method 

performs mergers between the identified components towards a correct segmentation 

of characters (in terms of identifying individual characters as single components). 
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A key feature of the method, is the use of a perceptually uniform colour system 

(CIE L*a*b*) to assess the colour difference between pixels and between connected 

components. An underlying assumption of the segmentation method is that the colour 

differences between the two classes (text and background) in the image, are such that 

human beings are able to read the text. Us g a perceptually uniform colour system, 

he method described here, uses a metric called Propinquity, defined with the 

hel

er of possibilities exist for the further development the fuzzy inference 

system. More inputs can be introduced to the system, such as the variance of colours 

within a merged component. Such a measure would allow the method to eliminate 

mergers that result in components containing too many dissimilar colours (albeit the 

average colours are similar). Other inputs that could be considered are the orientation 

of the candidate components (if they are parts of the same stroke, the components 

should have similar orientation), some measure of character likeness before and after 

a merger etc. 

Finally, techniques exist in the literature for automatic optimisation of fuzzy 

inference systems (by optimising the membership functions used). Such methods are 

based on evaluating the result (in this case the final segmentation of the image) based 

on some optimum solution (an optimum segmentation of the image, as suggested by 

ground truth data). Ground truth data for Web Images is not currently available. 

Automatic optimisation of the fuzzy inference system used is definitely possible in the 

in

allows the method to evaluate colour differences from an anthropocentric point of 

view, since the colour distances measured by the method are directly related to the 

colour dissimilarities perceived by humans. 

T

p of a fuzzy inference system. Propinquity combines Colour Distance and 

Connections Ratio (a measure of topological relation) between components to form as 

single closeness metric. In contrast to other methods (Lopresti and Zhou [106], 

Moghaddamzadeh and Bourbakis [119], Zhou et al. [220]) that employ combined 

colour distance and spatial distance measures, the main innovations of the approach 

presented here are as follows. First, the Connections Ratio is used as an indication of 

the topological relationship between components, in contrast to simple spatial distance 

metrics used by previous approaches. Second, a fuzzy inference system is used to 

combine the two inputs, which allows for more flexibility in contrast to other 

approaches (e.g. simple multiplication of colour distance and spatial distance [119]). 

A numb
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future, on condition that ground truth data is created for a representative data set of 

Web Images. 
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Chapter   

6. Connected Component Classification 
 

 

 

aving segmented an image into regions, the next step towards text 

extraction is to characterize each component in terms of its probability to be 

either a character or part of the background. This chapter describes two different 

approaches taken towards identifying character-like components and compares the 

two in terms of their efficiency in dealing with real data. 

The difference between the two approaches lies in the scale at which they work. 

The first approach works at the character scale, trying to classify the components 

according to certain features they exhibit. The second approach, works at the scale of 

a text line, examining similarities and differences between components aiming to 

identify components that could consist a line of text. 

As will be seen next, the number and the variety in shape and size of the 

components resulting from the segmentation process does not allow any feature-based 

classification of individual components to be used. 

fication 

One way to decide whether a given component represents a character or not, is by 

che

H

6.1. Feature Based Classi

cking certain features of the component that would qualify it as such. Such 

features can be the component’s width and height, its aspect ratio, its size etc. We will 

examine a number of character features, and evaluate their applicability in separating 
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character-like components from components representing parts of the background in 

the particular case of Web images. 

6.1.1. Features of Characters 

The first features to consider would be the width and the height of characters. Width 

and height are typically defined as the width and the height of the bounding box of a 

given character. Text might appear in any size in a Web image, therefore, a decision 

about whether a component represents a character or not cannot be based solely on its 

width and height. Another issue associated with width and height measurements is 

that they depend on the orientation of characters; for example, the width of a character 

would become its height if the character was rendered at an angle of 90º. Since the 

orientation of text is not known a priori, no direct relation can be assumed between 

the me id xpected values for a asured w th and height of a component and the e

character, even if the character size was known beforehand. A feature that is slightly 

less dependent on the rotation of the character is its diagonal (the diagonal of its 

bounding box). Still, the diagonal depends on the size of the character, so it suffers 

from the same disadvantages as the width and the height. 

A character feature, which can be derived from the width and the height, is the 

aspect ratio: 

 

⎪
⎪

⎪⎪
⎨

>
=

Height

WidthHeightif
HeightoAspectRati

,

,
 Eq. 6-1 

⎩

⎧

≥ HeightWidthif
Width

Width

 

The aspect ratio is defined as the ratio of a character’s width to its height or vice 

versa, and is a measure of the eccentricity of the character. Generally, with the 

exception of characters like “i” or “l”, characters are rather square, with an aspect 

ratio near 1. A component with such an aspect ratio would have a higher probability 

to be a character. Aspect ratio is independent of scaling, meaning that irrespective of 

the size of text, a given character is expected to have constant aspect ratio. The aspect 

ratio of each of the 26 letters of the English alphabet was measured using various 

fonts, and sizes ranging from 6pt to 22pt. The results for the Arial typeface, normal 

weight, non-italic characters are shown in Figure 6-1. The results for other fonts give 
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similar results. Although the majority of characters appear to have an aspect ratio 

between the values of 0.5 and 0.9, a significant number of characters appear outside 

this range. 
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Figure 6-1 – Histogram and scatter plot of  aspect ratio for the 26 letter of the English alphabet. The 

font used for the measurements is normal weight, non-italics Arial. Aspect ratio was measured for six 

sizes, ranging from 6 to 22pt. As can be seen most characters have an aspect ratio between 0.5 and 0.9. 

 

This is only one side of the problem, since in order to decide whether a feature has 

any

s have aspect ratios outside the range of 0.5-0.9, a significant 

number of background components (in comparison to the number of character-like 

ones) fall inside this range. No decision boundary can be positively identified in the 

scatter plot that separates successfully the two classes. This renders the feature of 

aspect ratio ineffective in terms of identifying character-like components, at least if 

used alone. 

 

 discrimination capability, we have to measure real data, and check whether the 

background components have adequately different distribution of aspect ratios. Such a 

measurement of components, obtained from real segmentation data over a number of 

Web images is shown in Figure 6-2. As can be seen here, although most of the 

background component
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s.  The Y-scale for the Figure 6-2 – Histogram and scatter plot of aspect ratio for real component

ground components is shown on the r . 

 

A prominent feature of characters is their size. One way to define character size is 

as the area of its Bounding Box, that is the product of the width and the height of the 

character. Measuring the area of the bounding box of a character is computationally 

inexpensive; nevertheless, it is strongly dependent on the orientation of the character. 

A better definition for the size of a character would be its pixel size. This refers to the 

al number of pixels of the character. Computing the pixel size can be a 

computationally expensive process comparing to computing the area of the bounding 

box, still the pixel size is independent of the orientation of a character (although it can 

change slightly due to differences in digitisation in various rotations). Unless certain 

information about the size of text in the images is available beforehand or can 

somehow be derived, character size on its own is inadequate. Nevertheless, size can 

prove quite useful when used in conjunction with other attributes, that depend on it, 

for example different ranges of aspect ratio might be expected for characters of 

 pixel size 

to the bounding box size of a component: 

 

back ight

actu

different size. 

A feature directly derived from the above definitions, is the compactness of a 

character. The compactness of a character can be defined as the ratio of the
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xSizeBoundingBo
PixelSizesCompactnes =  Eq. 6-2 

 

and is a measure of how full is a specific area by pixels of the character. In general, 

characters have a compactness value in the middle range, since they consist of a 

number of strokes, and therefore infreque ly occupy much of the area defined by 

their bounding box. Certain characters, such as “l” or “i” present a much higher 

compactness, but these can be  o  by 

seen next. 

The compactness of a number of ideal characters was measured, and the results 

are shown in Figure 6-3. As expected, m st of the characters present a compactness 

value in the middle range.  A number of characters such as “i” and “l” have a 

compactness value equal to one, which results to a peak on the right side of the 

nt

filtered ut the use of their aspect ratio as will be 

o

histogram. 
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Figure 6-3 - Histogram and scatter plot of compactness for the 26 letter of the English alphabet. The 

font used for the measurements is normal weight, non-italics Arial. Compactness was measured for six 

sizes, ranging from 6 to 22pt. As can be seen most characters have an compactness value between 0.2 

and 0.7. 

 

Real data for compactness are illustrated in Figure 6-4. Components resulted by 

the segmentation methods discussed in this thesis were manually classified as 
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character or background, and their compactness was measured for a number of 

images. The distribution of both character and background components is very similar 

to the distribution of Figure 6-3 for ideal characters. Most of the background 

components though, seem to have a compactness value near 1. 
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Figure 6-4 - Histogram and scatter plot of compactness for real components.  The Y-scale for the 

background components is shown on the right. 

 

Generally, the background components are many more than the character ones 

(roughly their ratio is 25:1). Because of that, even if all the character-like components 

fall in a small range of values, for example between 0.2 and 0.7 regarding their 

com

h scan-line of the digitised character and count the transitions from character 

poi

pactness, the number of background components in that range is usually 

comparable, even bigger than the character-like ones. 

Another feature that can be defined for characters (and components) is the number 

of the Black-to-White (or White-to-Black) transitions. If a character is digitised, and 

each point receives a value: 1 if it belongs to the character and 0 if not, then we can 

trace eac

nts to background points. This number is defined as the number of transitions for 

the character, and is a measure of the complication of a character. Since characters 

consist of strokes, their number of transitions will be higher than of solid background 
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com

on s  h e 

due to the considerable variety of background components as explained before. 

Combinations of two and three features were tried in an attempt to see if a decision 

boundary could be defined in a 2D or  feature space. It is important that the 

features combined are as little correlated as possible, so that the best separation

two classes is obtained. 

 

ponents. Generally, the number of transitions roughly correlates with 

compactness, and most characters present a number of transitions at the middle range. 

6.1.2. Multi-Dimensional Feature Spaces 

Using just one feature to separate the two classes of comp ents i  not an option er
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Figure 6-5 – Scatter plot of Ideal Character data in the 2D feature space of Aspect Ratio and 

Com

 expected, most data are concentrated in the centre (yellow) marked area. 

Elo

i” and “j”, which are both compact and rectangular. 

pactness. Areas of interest are marked. 

 

The feature space of Aspect Ratio and Compactness was one of the 2D spaces 

evaluated. A scatter plot of ideal character data in the feature space is shown in Figure 

6-5. As

ngated characters such as “l” and “i” present significant compactness and low 

aspect ratio, so they are concentrated in the area (red) at the top left of the scatter plot. 

The third area, marked with green, at the right top of the scatter plot might appear at 

first mysterious, since there are no characters that are both rectangular (aspect ratio 

near 1) and filled (compactness near 1). This third set of points actually comes from 

the dots over characters such as “
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The

ts produced. 

Consequently, characters such as “i” and “j” were split in two connected components. 

This small cluster can be safely ignored for this process, since the dot over certain 

characters can be identified at a later stage, provided that the main part of the 

character is found. 

Although a good separation is difficult to achieve, K-means clustering was 

performed with the ideal character data in order to help define the main two clusters 

of interest, namely the one containing the points in the yellow area and the ones in the 

red area as marked in the original plot (Figure 6-5). Clustering with K=2, 3 and 4 was 

tried and the areas of interest were better defined for K=3 as shown Figure 6-6(b). 

The next step is to test whether real data fit into this model and can be separated 

using the clusters found. A scatter plot of real data collected from a number of images 

is shown in Figure 6-7 (page 186). As can be seen here, the vast majority of 

character-like components follow the expected distribution, that is they are 

concentrated in a middle area (aspect ratio around 0.8 and compactness around 0.5) 

and also at the left top part of the scatter plot (aspect ratio near 0.1 and compactness 

near 1). Unfortunately, these exact areas are also dense in background components, 

therefore a good separation can not be obtained. For illustrative purposes, the Voronoi 

diagram based on the centres of the three clusters identified before for ideal characters 

is also shown in the figure. 

The feature space of Aspect Ratio and Compactness is one of a number of 

combinations of features tried. Unfortunately, no combination of features was able to 

give a good separation of the two classes. 3D feature spaces were also examined, for 

example the space defined by Aspect Ratio, Compactness and Diagonal is shown in 

Figure 6-8 (page 186). 

 way data for this plot was obtained, was to create connected components from 

characters and measure the features of all the connected componen
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(c) 

Figure 6-6 – Results of 

K-means clustering fo

4. 

The best results were 

obtained in (b) for 

K=3. 

 

r 

K=2, K=3 and K=

0

0.1

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Aspect Ratio

0.3

0.4

0.5

0.6

0.8

1

C
om

pa
ct

ne
ss

0.7

0.9

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster Centres

 

 

 185



Text Segmentation in Web Images Using Colour Perception and Topological Features 

0.4

0.5

0.6

0.7

0.8

0.9

1

C
om

pa
ct

ne
ss

Character-Like
Background

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Aspect Ratio

 

Figure 6-7 – Scatter plot of data of real components obtained by the segmentation methods. Although 

the distribution of character-like components follows the expected pattern, the vast amount and 

variability of background components hinders any effort to separate the two classes. The Voronoi 

diagram based on the centres of the clusters identified before is also shown (yellow lines). 
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Figure 6-8 – 3D scatter plot of real data in the feature space defined by Aspect Ratio, Compactness 

and Diagonal. 

 186



Chapter 6 – Connected Component Classification 

In conclusion, due to the vast amount and the great variety of background 

components produced by the segmentation methods, it was decided that 

characterization of the components based on their distinctive features only, couldn’t 

produce satisfactory results. Therefore, the problem of component characterization is 

addressed at a different level, as will be described next. 

6.2. Text Line Identification 

At a more macroscopic scale, when looking at the whole set of characters in an image, 

we usually expect them to share some common characteristics. The size of characters 

 characteristic. Indeed, in the majority of cases, we expect the 

ilar size. In the case of 

graphs of text, still the assumption 

 

e word are of different 

 shapes for the sake of 

 components from background ones 

ld share 

statement undertakes a certain 

Web Image are placed on a straight line, 

h is not always the case. As will be explained in the next sections, there is a 

ers required for the method to 

positively identify a line, and the degree of curvature a line can have. 

The

is probably the first such

characters in a paragraph, or at least in a text line to have sim

Web images, we do not expect to find whole para

that characters of the same line of text have similar size stands true in the majority of

cases. There are limited cases where even characters of the sam

size, or certain characters of a word have been replaced by other

beautification, but such cases can be considered as rare. 

This second attempt to separate character-like

exploits exactly the fact that characters belonging to the same line of text shou

some common characteristics. Implicitly, this 

assumption that the characters in a given 

whic

certain trade-off between the number of charact

The method starts by grouping components based on their size and tries to identify 

straight lines of connected components in each group. For each line identified, an 

assessment process follows, which indicates whether the given line is a valid text line 

or not. The steps of the method are detailed next. 

6.2.1. Grouping of Characters 

 first step towards identifying lines of characters is to group the connected 

components resulting from a segmentation method according to their size. Two are 

the prominent issues here: First, decide which metric of size we should use for the 

size grouping and then, given an average size value, what range of sizes should be 

considered acceptable for a component to have to belong in this size group. 
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If the characters were placed on a straight horizontal line, then the most 

appropriate size metric to use would be their height. This is because the height of 

characters of the same font varies much less than their width. Essentially, the variation 

in height would be from as short as the height of a typical lower case character (a 

metric sometimes called “mean height” or “x height”), to as long as the height of a 

capital letter, a descending or an ascending character. The variation of width on the 

other hand is much higher, from narrow letters like “i” to wide ones like “w”. 

In reality though, characters are not always placed on a horizontal line, so 

selecting the height attribute as representative of their font size is a rather unfounded 

decision. As mentioned before, a metric of size that is much less dependent on 

rotation is the diagonal of the bounding box of components. The diagonal is used here 

as representative of the size of components, in order to assign them to different size 

groups. 

The second problem associated with the size-grouping of connected components 

is defining the range of sizes that defines each size-group. In other words, given an 

average size for a group, what are the size thresholds for a component to be said to 

have similar size to the group. 

The minimum and maximum diagonals were measured for different fonts (Arial 

and Times typefaces, normal, bold and italics) and various sizes (from 6 to 36pt). For 

each case the following equations were solved, where Dmax and Dmin is the maximum 

and minimum diagonal values, Dav is the average diagonal value for the size group 

and ƒ is a factor defining the maximum allowed ratio of Dmax to Dav and Dav to Dmin. 

 

fDD av ⋅=max  

f
D

D av=min  

Eq. 6-3 

 

The average value obtained for ƒ is 1.46, subsequently for any given diagonal 

(Dav) the maximum and minimum diagonal values allowed are given by Eq. 6-3. 

The grouping process creates a number of size-groups. The first group (smallest 

diagonal sizes) has an average diagonal size of 5.5, meaning that components with 

diagonals from ~4 (=5.5/ƒ) to ~7.7 (=5.5⋅ƒ) pixels will be assigned to this group. The 
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minimum diagonal size of around 4 pixels agrees to our requirement of a dimension 

(either width or height) greater than 4 pixels for a character to be classified as 

readable. Readable and non-readable characters are defined in Chapter 7, to facilitate 

the eva f agonal size of 4 ensures that even the 

e-group, all the connected components of the final segmentation are 

diagonal in the range of the size-group, they are 

luation o the method. A minimum di

non-readable characters will be considered. Anything with diagonal size smaller than 

4 pixels is not considered as a candidate for a character-like component. 

The average diagonal size for each size-group after the first one is defined as the 

maximum diagonal size of the previous group. For example, the second size-group 

would have an average diagonal of 7.7. The maximum size-group allowed cannot 

have a maximum diagonal greater than the smaller dimension (width or height) of the 

image. 

For each siz

considered, and if they have a 

assigned to it. If a group is assigned less than three components at the end of the 

process, it is discarded. It should be made clear at this point, that since the ranges of 

consequent size-groups overlap, it is expected that each component can be assigned to 

up to two size-groups. 

An example of an image and the components assigned to each size-group are 

shown in Figure 6-9. As can be seen, a good separation is obtained here. 
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(a) Original Image (b) Range [3.93-7.70] (c) Range [5.50-10.78] 

   

(d) Range [7.70-15.09] (e) Range [10.78-21.13] (f) Range [15.09-21.13] 

   

(g) Range [21.13-41.41] (h) Range [41.41-81.17] (i) Range [57.98-113.64] 

F gi ure 6-9 – Original image (a) and the components of the size groups obtained (b-i). 

 

6.2.2. Identification of Collinear Components 

The process following size classification examines the co-linearity of components in 

each size-group and identifies lines of components. The way this is done is by 

performing a Hough transform of the centres of gravity of the components in each 

size-group. Certain aspects of this process will be discussed next. 
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A prominent issue preceding the Hough transform is to express each connected 

component with a single point in the (image) Cartesian space. If the text was written 

in a

any orientation. 

tisation step was set to 3 degrees. Similarly, the parameter ρ is restricted to 

the interval [-D, D] where D is the diagonal of the image and the quantization step 

was set to half of the maximum component diagonal allowed for the given size-group. 

 known orientation, it would make sense to try to identify the baseline of the text, 

so for each component an appropriate point would be chosen. Since the orientation of 

text is not known a-priori, the centre of gravity of each component is used instead. 

The use of the centre of gravity ensures that within certain tolerances a straight line 

between character components would be identifiable in 

A Hough transform is performed at this point. The parameter space used for the 

Hough transform is the θ-ρ space. The normal parameterisation is used to describe a 

line, where θ is the angle of the line’s normal and ρ is the algebraic distance of the 

line from the origin. The points participating in the transform are defined in the 

coordinate space of the image, so lines will be described by their parameters θ and ρ 

as can be seen in Figure 6-10. The parameter θ is restricted to the interval [0, π] and 

the quan

For example, the quantization step for ρ for a size-group containing components with 

a diagonal in the range [3.93, 7.70] would be 7.70/2. 
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(a) (b) 

Figure 6-10 – (a) Image space. The origin is positioned at the top left corner. A line can be defined (θ’, 

ρ’) that crosses any two given points. (b) Parametric space. The point (θ’, ρ’) that defines the line is 

the crossing point curves defined by the original two points. 
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The accumulator array is examined after the Hough transform has taken place, and 

the cell (or cells) with the maximum count is identified. A possible text line is 

identified, having the parameters of the cell, and the associated components are 

recorded as part of the line. The components associated with the exported line are 

removed from the array of the components of this size-group, and the same process is 

repeated with the rest of the points each time identifying the cell (and corresponding 

ops when no cell exists with a count of 

   

   
      { 

line) with the maximum count. The process st

more than three. The pseudo-code for the above process is given in Figure 6-11. 

 
For Each SizeGroup 
{ 
  While (Number of Components in SizeGroup >= 3) 
  { 
    For Each Component in the SizeGroup 
    { 

    Find the Centre of Gravity and add it to the ListOfPoints 
    } 
    Perform Hough Transform at the ListOfPoints 
    Find the MaximumCount in the accumulator Cells 
    If MaximumCount < 3 Then Continue with next SizeGroup 
    For Each Cell 
    { 

   If Count equals MaximumCount Then 

        Identify the components falling in the Cell as a line 
        Remove components from SizeGroup 
      } 
    } 
  } 
} 

Figure 6-11 – Pseudo-code for the line identification process. 

 

A point worth mentioning is that if more than one cells present a count equal to 

vering all possibilities. By choosing the appropriate accumulator cell 

dim nsions (quantization) for the Hough transforms, such a situation can be limited. 

Thi

eded to be able to assess the co-linearity 

between them. The main argument against using only three points, would be that 

statistically three points would be just enough to give an indication, but not to define 

the maximum count, no special selection occurs. Instead, all candidate lines are 

identified, co

e

s is because most of these cases occur as the same components identified as 

slightly rotated or parallel moved lines (neighbouring accumulator cells). 

As mentioned before, three is the minimum number of components requested for a 

line to be identified. The rationale behind this decision is manyfold. First, 

geometrically at least three points are ne
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wit

mall word were there alone in a text line 

(which happens very often), we would miss it if a higher threshold were chosen. The 

second reason for selecting a low threshold is that we need to be able to address cases 

where text is not actually written on straight baselines. By setting a low threshold, 

even if a word is written along a curve, straight lines of three characters would be 

relatively easy to identify, whereas larger chunks of characters would not be collinear 

any

h certainty that there is a line there. A main reason why three is considered enough 

is because the points represent components comprising words, and words can have 

three or even less letters. Subsequently, if a s

more. An example of this situation is shown in Figure 6-12. 

 

 

Figure 6-12 – Straight lines fitted on circularly written text. The centres of gravity of the character 

fitted in dark grey. As can be seen, many of the lines 

comprise a small number of components because of the way text is written. 

f components, any statistical operation such as 

components are shown in red and the lines 

 

Two facts should be kept in mind. First, the lines actually exported usually 

comprise more than three components; for example, if a long straight text line actually 

exists in an image, its components will probably be extracted in one straight line by 

the Hough transform, rather than broken in smaller chunks. Second, it is a fact that for 

lines comprising of a small number o
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the

ted by the previous 

 examines the distances between successive 

Dis

he 

com

ces can take place and lines are solely assessed by 

the

 assessment process discussed in the next section, will be rather ambiguous and 

should be treated as such. 

6.2.3. Assessment of Lines 

Two mechanisms were devised for assessing the lines extrac

operations. The first mechanism

components in the line, and produces a higher confidence value if the components 

have equal distances between them. The second mechanism uses the parameter 

information of the line to calculate the projection of the components on the direction 

of the line, and examines whether the histogram produced has similarities to the 

histogram expected by characters. These two assessment mechanisms will be 

discussed next. 

tance between Components 

Given the parameters of a line produced by the Hough transform and a set of 

associated points, we can easily find the projections of the points on the line (Figure 

6-13). For each of the lines identified, the projections of the centres of gravity of t

ponents participating are computed. For each pair of successive components the 

distance between their projections is calculated. For n+1 components, we would have 

n distances computed. For n+1 equal to three (only two distances can be computed), 

no statistical analysis of the distan

 second assessment mechanism, described in the next section. 

 

 

Figure 6-13 – The projection of the centre of gravity of each component is obtained and the distances 

are computed between successive projection points. 

 

Successive characters in a text line are arranged in relatively equal distances. 

Subsequently, if the variance of the distances computed between components is 

comparatively small, then the line has a higher probability to be a text line. 
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There are many statistical distribution moments defined characterizing the 

variability of the distribution around its mean value. The most common is probably 

the variance2, which is defined in Eq. 6-4 and the standard deviation defined in Eq. 

6-5. There is also a computationally inexpensive estimator called the average 

deviation or mean absolute deviation defined in Eq. 6-6. For our purpose, the 

computational advantage of using the average deviation is minimal. The standard 

deviation is used here, as it gives a metric that can be directly compared to the actual 

units of the image. 
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The Standard D

values of the distribution. The value of Standard Deviation is given in image units, 

since the values xi are expressed in image units. In order to associate this information 

to the specific size range of the components of the line, the ratio of the Standard 

Deviation to the Mean of the values (Eq. 6-7) was used. 

 

x
xx nm )...( 1

xx n )...( 1σ
σ =  Eq. 6-7 

 

                                                 
2 There is a lot of discussion about whether the denominator of Eq. 6-4 should be n or n-1. Briefly, 

the denominator should be n if the mean value of the distribution is known beforehand (it is unbiased), 

but it should be changed to n-1 if the mean value is computed from the data (thus it is biased). In 

reality, if the difference between n and n-1 actually matters, then the data set is not big enough, and we 

pro bly trying to substantiate a questionable hypothesis with marginal data. Unfortunately, this is 

frequently true for our case where lines contain only a few characters each. 

are ba
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After experimenting with real data, it was derived that text lines usually have an 

σm value below 1.00 and lines of background components have a value above 1.35. 

Lines presenting a value in the intermediate range usually comprise components of 

both classes. Based on the above, a line passes this first test if it has a value of σm less 

than 1.00. 

A scoring scheme was devised for the lines, according to which, a line is awarded 

3 points if it has a value of σm less than 1.00 and 1 point if it falls in the intermediate 

range. The score of a line can be interpreted as a confidence value for it to be a text 

alue for the typical deviation relative to the mean value 

of the distribution. Nevertheless, there is no association yet to the size of the 

com

line, and it is also used to characterize individual components at the end of the 

assessment process as will be explained in Section 6.3. 

The above metric gives a v

ponents that participate in the line. The components of the line might be placed in 

equal intervals (successive components would have equal distances), but if the mean 

distance between successive components is not comparable to the size of the 

components themselves, it’s probably not a text line. This is illustrated in Figure 6-14 

below. 

 

d1 d2 d3 d4

 

Figure 6-14 – Two lines of components, each comprising components of a different size-group. 

Although the distances between the components are the same in both cases, the components in yellow 

are more probable to be text because the mean distance is comparable to the size of the components 

is is a text line. 

, 

themselves. The other line comprises of smaller components, and the same mean distance is in this case 

rather large to assess that th

 

Each size-group is defined by a minimum and maximum allowed value for the 

sizes of diagonals of the components it contains. Given this range for the diagonals of 
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components, a line is said to present a mean distance between components 

comparable to the size of components if: 

 

50.175.0 ⋅≤≤⋅ gonalMaximumDiaxgonalMinimumDia  Eq. 6-8 

 

The values 0.75 and 1.50 were experimentally determined. The line passes this 

second test if the distance mean is comparable to the size of the components. 

Sim e, the line is awarded 3 points if the distance 

mean is comparable to the size of the components. 

Based on the scoring scheme introduced, if a line produces a score above 5, it is 

rac rized as a text line and the assessment process finishes here. If it produces a 

score below 2, it is characterized as a non-text line. Finally, if the line produces a 

score between 2 and 4, then it is uncertain at this point whether the line comprises text 

or background components, so the second assessment mechanism, described next, is 

invoked. 

Directional Projection 

It is common in document segmentation thods, where black text is typed over 

white background, to obtain the horizontal and vertical projections of the image, in 

ojection is nothing more than a histogram of the count of 

black pixels in each row or column of the image respectively. 

text for each one, it is possible to calcu

com

ponents. 

ilarly to the previous scoring schem

cha te

 me

order to separate first lines of text, and then individual characters in the lines. The 

horizontal or vertical pr

The above technique can give quite good results if the orientation of the text is 

known (vertical and horizontal directions are defined according to the orientation of 

the text) and a statistically adequate number of characters exist in each line, enough to 

produce a meaningful histogram. 

Having identified a number of possible text lines, thus knowing the orientation of 

late the horizontal projection of the 

ponents. Horizontal in this case, would be the direction of the line as shown in 

Figure 6-15. Vertical projections would not be of any use in this case, since the 

characters are already expressed as individual com
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Sample Text
 

Figure 6-15 – Horizontal projection of a text line. Certain characteristics of text line projections such 

as higher peaks at the base line, mid-line and top-line, and trailing caused by descending characters 

are illustrated. 

 

Assessing the similarity of the projections to the projection expected from ideal 

cision can be made as to whether the given line resembles a text line or 

t and the line is given by Eq. 6-9. The sign of the distance indicates 

wh

characters, a de

not. Such an assessment involves a number of operations, such as obtaining the 

projections, normalizing the values and performing some kind of similarity check. 

These steps will be briefly described next. 

Given the parameters of a line (ρ, θ), and a point (x, y), the vertical distance d 

between the poin

ether the point is above of below the line. 
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x
yyxd arctancos22 θρ  Eq. 6-9 

 

In terms of the identified lines of components, the distance of each pixel of the 

components assigned to the line can be computed. The maximum distance a pixel may 

have from the line can be calculated from known information about the quantisation 

of the accumulator array of the Hough transform (related to the size-group the line 

belongs to). The distance of each pixel of the components assigned to the line is 

calculated and the histogram of distances is obtained. This is the projection of the 

line’s components on the direction of the line. 

Ideal Character Projections 

The projections of ideal images of long sentences were obtained and sampled. Various 

fonts were used (Arial and Times typefaces, various sizes). Furthermore, projections 

of all the small and all the capital letters of the English alphabet were separately 

obtained. Although this second type of projections would not be very relevant for 
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paper documents, lines with solely capital and solely small letters frequently appear in 

Web images, therefore it was considered vital to examine the differences in their 

projections. A small sample of the projections obtained is shown in Figure 6-16. 

 

“The quick brown fox jumps over the lazy dog”

8pt 9pt 10pt 11pt 12pt 14pt 16pt 18pt 20pt 28pt 36pt

“The quick brown fox jumps over the lazy dog”

8pt 9pt 10pt 11pt 12pt 14pt 16pt 18pt 20pt 28pt 36pt

“ABCDEFGHIJKLMNOPQRSTUVWXYZ”

“abcdefghijklmopqrstuvwxyz”

8pt 9pt 10pt 11pt 12pt 14pt 16pt 18pt 20pt 28pt 36pt

8pt 9pt 10pt 11pt 12pt 14pt 16pt 18pt 20pt 28pt 36pt

 

Figure 6-16 –Projections of ideal characters. 

 

As can be seen in the figure, the projections have a well-defined distribution, with 

two peaks of almost equal strength one at the height of the baseline, and the other at 

the height of the top of the small characters. Trails are also visible on the left and right 

on the main body of each projection, which occur from the descending, ascending and 

capital characters. A visible peak also exists at the height of the strike-through line 

(the middle of lowercase characters). 

When only capital letters are present in the text line, the left and right trails do not 

exist anymore. The two prominent peaks in this histogram are at the height of the 

baseline and the height of the top of the capital characters. The characteristics of this 

histogram, as well as the shifted positions of the dominant peaks indicate that a 

different approach should be taken if such a line is encountered. 
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Comparison of Histograms 

A straightforward way to compare two histograms is to subtract one from the other 

and measure the differences. This method is only meaningful if the histograms are 

very well-defined in terms of their ranges so that a correct matching between values 

can be obtained. Any slight shifting or scaling can produce misleading results. Due to 

its high sensitivity, this comparison method is not used here. Instead, a very basic 

rank-order comparison is employed. 

The main characteristics of the ideal projections (both in the normal projections 

and the capital characters ones) are the two prominent peaks of almost equal strengths 

and a well-defined smaller peak between them. If a measured projection possesses 

these characteristic peaks, at the right positions, then it is considered a true match.  

Before any comparison can be made, the histogram of the projection must be 

normalized in both axes. The normalization in the vertical axis is trivial: each value is 

divided by the maximum count in the histogram. The normalization in the horizontal 

axis is slightly more complicated. 

The histogram initially obtained is centred at the given component line as shown 

in Figure 6-17. It is generally preferable to cut the left and right trails of zeros (red 

range in figure) otherwise the range of the measured histogram will not match the 

range of the ideal one. Although this is frequently good practice, in some cases it 

produces a shifted histogram. This can happen because text lines in Web images 

usually contain just a few characters. It is therefore possible that there will be no 

descending or no ascending characters in a line, causing the elimination of the left or 

right low count areas in the projection. Another approach examined is to keep the 

histogram centred at the given line and check the left and right distance from that 

point until the first zero count is reached. Then define the range of the histogram 

based on the larger of the two (green range in the histogram). After experimentation 

with real data, the first method was selected as it gives better results in most cases. 
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a text line
 

Figure 6-17 – Different ranges for normalizing in the horizontal axis of the projection. The sample text 

used ng ters. In order to account for their effect in the histogram 

range, the range illustrated in green should preferably be used. 

 here contains no descendi  charac

 

nowing the horizontal range, the normalization in the horizontal direction is now 

possible. If the centre is assigned a value of zero, and the range of values is 

ormalized in [-1, 1], then the expected peaks should occur as follows. The two 

prominent peaks are expected in the intervals of [-0.75, -0.25] and [0.3, 0.75] while 

their values should be above 0.8. The smaller peak should occur in the interval of 

[-0.

from

 (diagonal less than 7-9 pixels) are 

exa s to be too small for fine details to 

appear, and the characteristic peaks (if there) are not easily recognized. Statistically, 

K

n

25, 0.3] and have a value in the range [0.5, 0.8]. These values were determined 

 the projections of the ideal characters. 

Real Projections 

Well-defined lines of big and clear components, indeed produce projections very 

similar to the ones expected, and do not pose any problem in their identification. 

Unfortunately, a number of lines identified prove to produce significantly different 

projections than the ideal ones. There are many reasons why this happens, but mainly 

three factors play an important role: the size of the participating components, the 

presence of some background components in the line and the slightly curved lines. 

When lines of small-sized components

mined, the resolution of the histogram turn

both the number of bins of the histogram (horizontal axis) and the average count of 

pixels for each value (vertical axis) are very small to allow for a safe comparison. An 

example of such a line is shown in Figure 6-18. As can be seen the projection is only 

five pixels wide, therefore there is no way for the three prominent peaks to appear. 
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(a) 

 

(b) 
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(c)  

Figure 6-18 – (a) Original image. (b) Identified line of components (belonging to a small size-group). 

(c) Projection of the line. As can be seen, the projection is only five pixels wide, which does not allow 

the main characteristics to appear. 

 

A second factor that plays an important role is the existence of curved lines. The 

projection of a curved line may be slightly shifted and/or horizontally stretched or 

shrunk. The positions of the characteristic peaks, if visible, are effectively shifted, 

while the peaks themselves do not have ted str n exa such a 

case, where the characteristic peaks do not have the expected strengths, is illustrated 

in

(a

the expec engths. A mple of 

 Figure 6-19. 

 

) 

 

(b) 
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Figure 6-19 – (a) Original image. (b) Identified line of components, (components follow a curved line). 

(c) Projection of the line. 
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Finally, the presence of non-character components can introduce more peaks and 

change completely the expected profile of a projection. Although most of the 

non-character components should have b inated by this point (by 

size-grouping), there are still some components of similar size of the text that also fall 

on the same line with it, and are therefore accounted for in the calculation of the 

projection. Usually, such non-character components would be the inside areas of 

closed ch ters (such as the inside of an

same sizes with their associated characters). Nevertheless, the most difficult case is 

line. An example is illustrated in Figure 6-20. 

n Figure 6-19 and Figure 6-20 above, the three higher peaks 

are indeed in the positions expected, but they do not follow the identified pattern of 

two high peaks at the sides and a lower one between them. 

To cover such cases, the “rank” of the peaks is not checked during this assessment 

mechanism, but only their position. The three higher peaks are identified and, if they 

have a maximum at the correct positions, an indication is given that the projection 

came from a text line. 

een elim

arac  “o”), or shadows (that tend to have the 

when irrelevant components of similar size just happen to fall on the direction of the 

 

 

Although the three characteristic peaks are present in most of the cases (even if 

one or more of the above situations occur), they rarely appear to have the strengths 

expected. For example i

(a) 

 

(b) 

 

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

(c) 

Figure 6-20 – (a) Original image. (b) Identified line of components (containing some non-character 

ones at the left end). (c) Projection of the line. As can be seen, there are a number of irrelevant peaks 

introduced in the histogram. 
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To summarize, given a line projection, there are a number of different cases 

encountered. If the resolution of the histogram is very small (less than 7 bins), then 

nothing can be said for the line by examining its projection, and the score of the line 

remains unchanged. If the resolution of the histogram is adequate, and fewer than 

three peaks are present, it is considered an indication that the line does not contain 

characters. It is still uncertain whether this is caused by non-character components or 

by some other factor that would smooth the projection (a curved line for example), 

therefore, only 1 point is deduced by the score of the line. If adequate peaks can be 

identified and they are positioned in the expected places, then the line is considered to 

consist of character components, and is awarded 3 points. In every other case, the line 

is probably not a text line, and 2 points are deduced from its score

Final Verdict 

mponents or not. The scoring scheme is devised in such a way so that 

a line with a score greater or equal to 5 is considered a text line, and a line with a 

sco

ts. The second 

me

in which a given component was 

assigned, divided by the number of lines it was assigned to. Reporting the individual 

lines is generally better, since it also gives information about the orientation of the 

line. 

. 

The final score of a line serves as a confidence value for whether the line consists of 

character-like co

re less or equal to 1 is not. For a line with a score between 2 and 4 a decision 

cannot be made. 

The main assessment mechanism used is the one described in the beginning of this 

section, which examined the distances between subsequent componen

chanism, based on the projections of the lines identified, is only employed when 

the first assessment gives an uncertain verdict. The reason for restricting the use of 

this second mechanism is that it is sensitive to various factors as detailed before, 

whereas the first mechanism, even if simplistic, is not. 

The output of this method can be either a list of the lines identified, along with the 

corresponding confidence values, or a list of the components themselves along with a 

confidence value for being characters. The confidence value of individual components 

is defined as the sum of the scores of the lines 
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6.3. Conclusion 

In this chapter, two methods were examined to classify the connected components 

resulting from a segmentation process into two classes: text or background. The 

difference of the two methods is the scale at which the problem was addressed. 

Specifically, the first attempt tries to classify components looking into features of 

individual components, whereas the second attempt, works at a different scale, trying 

to identify lines of components that share some common features. 

It proves that for the specific problem of Web Images, a classification method 

 results. The second 

approach, based on identifying lines of text, works better in a variety of situations, and 

is therefore the one used here for classifying components after segmentation. 

It should be mentioned at this point, that any character-like component 

identification process, is strongly dependent on a correct segmentation. Slightly 

inaccurately segmented characters, which is a rather frequent situation for Web 

images, may result in wrong assessments. 

An evaluation of the connected component classification method based on text 

line identification will be presented in Chapter 7. 

 

based on individual components is unable to provide good
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Chapter  7 

7. Overall Results and Discussion 
 

 

 

n this chapter, the results for the two segmentation methods (Split-and-Merge, 

Chapter 4 and Fuzzy, Chapter 5) and the character component classification 

method (see Chapter 6) are presented and critically appraised. The evaluation of the 

methods was based on a dataset of images collected from numerous Web pages. A 

description of the dataset used, is given in Section 7.1. The two segmentation methods 

presented in Chapters 4 and 5 are evaluated on the same dataset and statistical results 

are given for each one, as well as characteristic examples (Sections 7.2.1 and 7.2.2). 

Then a comparison between the two segm

I

entation methods is made in Section 7.2.3. 

The text line identification m

ability of the text extraction method to decide whether an 

image contains text or not, is a desired property, but considered to be out of the scope 

ethod is subsequently evaluated in Section 7.3. Finally, 

an overall discussion is given in Section 7.4. 

7.1. Description of the Dataset 

In order to evaluate the methods described in this thesis, a dataset of images collected 

from a variety of Web pages was used. To achieve a representative sampling of the 

images, the images of the dataset, originate from Web pages that the average user 

would be interested to browse. Sites of newspapers, companies, academic sites, e-

commerce sites, search engines etc were included in the sample. All the images in the 

data set contain text. The 
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 208

of t

he data set, 

and describe the way those images were categorized. 

The data set comprises 115 images, 33 of which are JPEGs and 82 GIFs. 

Although JPEG is the most commonly used format for images in Web as mentioned 

previously, when it comes to images containing text, GIF seems to be the default 

choice. This is partly because GIF does not distort characters as much as JPEG. As 

aller images and less complex 

colour schemes, such as company logos. A summary of the basic properties of the 

ima

his research, so images that do not contain text were not included in the data set. 

The function of the images in the Web page (header, menu item, logo, equation etc.) 

was also considered when creating the data set, so that the resulting collection reflects 

well the use of images in Web pages. The images contained in the dataset can be seen 

in Appendix C. This section will summarize the details of the images in t

will be seen later, JPEG is used for larger images and when more complex colour 

schemes are used, whereas GIF is preferred for sm

ges in the dataset is given in Table 7-1. 

 

 Minimum Maximum Average

Width 23 770 190

Height 15 354 77

Spatial Resolution (Dots Per Inch) 72 300 75

Colour Resolution (Bits Per Pixel) 8 24 12

Number of Colours Used 2 29,440 2,341

Number of Characters in Image 2 83 20

Number of Readable Characters 0 79 16

Number of Non-readable Characters 0 46 4

Table 7-1 – Summary of image properties for the images in the dataset. 

 

The resolution of 110 out of the 115 images of the data set is 72dpi, as expected 

for images created to be viewed on computer monitors. Only one image had a 

resolut ages had a resolution in the middle ion of 300dpi, while the remaining four im

range. The width of the images ranges from 23 to 770 pixels and the height from 15 to 

354 pixels. The average size of the images in the data set is 190x77 pixels. The 

number of colours used in the images range from 2 up to 29,440, with an average of 

2,341 colours. The average number of colours of GIF images only is 218, whereas the 

average number of colours for JPEG images is 7,850.  
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Not all of the text present in a Web s re y hu her s 

ra ist an e either y small to be read (Figure 7-1a), badly 
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 cases, there are 

som  exceptions, mainly due to the extent of use of antialiasing. In a few cases, 

cha

arger than the thresholds set, yet due to extensive 

ant

 image i adable b mans. T e are case

where cha cters ex d ar  ver

s of the selection of colour

ound (Figure 7-1c). For this reason, text in the 

images of e dataset ract s eith

consider

abl

eadable

-rea

terms of

 mi

width a

 minimum w th w en t

recognizing characters sm

 he

threshold. Although the above rule works quite well in most of the

e

racters were smaller than the thresholds decided still no antialiasing was used. In 

such cases, as long as the viewer was able to read the characters, they were 

characterized as readable (e.g. Figure 7-2a). In a similar manner, there were cases 

were the characters were l

ialiasing, they were difficult to read (e.g. Figure 7-2b); thus, they were 

characterized as non-readable. The ultimate decision was made by a human operator, 

on a case by case basis. 
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(a) (b) 

Figure 7-2 – (a) Image containing small, but readable text. (b) Image containing large but 

non-readable text. 

 

The number of characters in the images of the data set ranges from 2 to 83. An 

average image was found to have around 20 characters, out of which around 16 are 

readable. In total, the images in the dataset contain 2,404 characters, out of which 

1,852 are classified as readable and 552 are classified as non-readable. 

The images in the data set were grouped into four categories according to the 

colour combinations used. Category A holds images that contain multicolour 

characters over multicolour background. Category B contains images that have 

multicolour characters over single-colour background. Category C has images with 

single-colour characters over multicolour background. Finally, Category D holds 

images with single-colour characters rendered over single-colour background. The 

grouping of images into the four categories is shown in Figure 7-3, while the number 

of characters per category is shown in Figure 7-4. 
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Figure 7-3 – Grouping of the images of the dataset into the four categories. 
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Figure 7-4 – Number of characters per category 

 

Whether the text (or background) is single-coloured or multi-coloured is assessed 

by visual inspection. If the text (or the background) appears single-coloured, it is 

classified as such, even if it consists (in reality) of pixels of slightly different colours. 

This is in accordance to the methods being anthropocentric: if a human cannot 

discriminate between two colours, the methods shouldn’t. Furthermore, antialiasing is 

not taken into account for the grouping of images. For example, if single-coloured text 

is antialiased over single-coloured background (thus producing a multi-coloured edge: 

a smooth transition between the foreground and background colour), the image is still 

considered to be of single-colour text and single-colour background. 

Images of category A are the most difficult to deal with since they have the most 

complex combination of colours. There are 14 images in this category, 8 of which are 

in JPEG format. JPEG is widely used for images of this class because of their 
 211
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complex colour composition. Gradient or textured characters and backgrounds are 

common in this category, as well as photographic backgrounds. 

Images of category B are equally difficult to segment. Category B contains 15 

images. Characters are usually rendered in gradient colours or textures, and their 

edges are typically antialiased. 

Categories C and D contain images that are relatively easier to analyse. The colour 

of the characters in the images of both categories is either constant or slightly variable 

(perceived as constant). Category C contains 37 images with multicolour background. 

Category D holds 49 images, the most of any category. Most logos and equations fall 

in this category. Only 9 images in this class are in the JPEG format due to the 

(usually) small size of the images and the simple colour (combinations) used. The 

almost constant colour of characters and background gives well-defined edges in the 

majority of the cases, although in some images antialiasing is evident. 

The distribution of images in the four categories reflects the occurrence of images 

of those types on Web Pages. 

A text extraction method should ideally be able to cope with images of every 

category. It would be beneficial if an automatic decision could be made about the 

class of a given image, as this would allow different segmentation approaches (fine 

tuned for the specific class of images) to be used. Nevertheless, such a decision 

proves rather difficult since there are no distinctive features for each category. For 

example, the number of colours cannot be used as a distinctive feature since category 

D (single-colour characters over single-colour background) contains images with up 

ges with as little as 31 colours (e.g. Figure 7-5). 

to 22,000 colours, while at the same time category A (multicolour characters over 

multicolour background) holds ima

 

 
 

(a) (b) 

Figure 7-5 – (a) An image belonging to category A (multicoloured text and background). The number 

of colours used in this image is only 64. (b) An image belonging to category D (single-colour text and 

background). The number of colours in this image is 1,973, mainly due to antialiasing. 
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7.2. Segmentation Results 

Both segmentation methods described in Chapters 4 and 5 were evaluated based on all 

the images contained in the dataset. The aim of the segmentation process is to 

partition the image into disjoined regions, in such a way that the text is separated from 

the background, and characters are not split in sub-regions or merged together. 

The evaluation of the segmentation methods was performed by visual inspection. 

This assessment can be subjective since the borders of the characters are not precisely 

defined in most cases (due to anti-aliasing or other artefacts caused by compression). 

Nevertheless, since no other information is available about which pixel belongs to a 

character and which to the background (no ground truth information is available for 

web images), visual inspection is the only method of assessment that can be used. 

This method of assessment is in agreement with previous research on web image text 

extraction. Lopresti and Zhou [106], for instance, evaluate their segmentation results 

es where it is 

not clear whether a character-like component contains any pixel of the background or 

not

nents exists that describes them completely without containing 

pixels of the background. 

in the same way. Since visual assessment is inherently subjective, in cas

, the evaluator decides on the outcome based on whether by seeing the component 

on its own they can recognize the character or not. The foundation for this is that even 

if a few pixels have been misclassified, as long as the overall shape can still be 

recognized, the character will be recognisable by OCR software. Even though in 

many cases a human could still read the text in question, even if some pixels are 

missed (or added), OCR processes tend to be much more sensitive; hence, we err on 

the side of being conservative. 

The following rules apply regarding the categorization of the results. Each 

character contained in the image is characterised as identified, merged, broken or 

missed. Identified characters are those that are described by a single component. 

Broken ones, are the characters described by more than one component, as long as 

each of those components contain only pixels of the character in question (not any 

background pixels). If two or more characters are described by only one component, 

yet no part of the background is merged in the same component, then they are 

characterised as merged. Finally, missed are the characters for which no component or 

combination of compo
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 should be made clear at this point, that in cases where characters are merged or 

broken in the original image, the segmentation method is expected to segment them as 

a single (if merged) oken hose cters 

are considered identified if they are segmented as single or multiple nts since 

they appear as such in the original. An exam e seen in Figur

It

or multiple (if br ) components. In t cases, the chara

compone

ple can b e 7-6. 

 

   

(a) (b) (c) 

Figure 7-6 – (a) An image containing broken characters. (b) An image containing merged characters. 

(c) An image containing both split and merged characters. 

 

In terms of importance, separation of the text from the background comes first. 

Given that separation has been achieved, in terms of successful segmentation, 

identified characters come first, merged characters come second, and broken 

characters come last. Identified characters are ready for further processing 

(binarization, resolution enhancement, recognition). If two or more characters are 

merged, despite it being a dif

ented characters, 

correctly identified characters are shown in black, broken characters in red, and 

erged characters are shown in blue. 

7.2.1. Split and Merge Method 

ethod was able to correctly identify 1,290 (69.65%) out of 1,852 readable 

characters, while 151 (8.15%) characters were merged, 271 (14.63%) were broken 

ficult situation, they can still be processed as a word 

(possibly separated with the use of projection profiles). Broken characters, on the 

other hand, are very difficult to recombine, especially when the text (and/or 

background) is multi-coloured. 

In the results presented here, the original image is shown in each case, along with 

an image of the final segmentation (with each component painted in different colour) 

and an image of the segmented characters. In the image of the segm

m

The overall results for the Split and Merged method can be seen in Table 7-2. In total, 

the m
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and 140 (7.56%) characters were missed. In addition, out of the 552 non-readable 

characters, the method was able to identify 184 (33.33%). 

 

  Number of 

Characters

Identified Merged Broken Missed

Readable 1,852 1,290 

(69.65%)

151 

(8.15%)

271 

14.63%)

140 

(7.56%)

All 

Categories

Non-readable 552 184 

(33.33%)

22 

(3.99%)

160 

(28.99)

186 

(33.70%)

Readable 206 115 

(55.83%)

0 

(0.00%)

60 

(29.13%)

31 

(15.05%)

Category A

Non-readable 58 12 

(20.69%)

2 

(3.45%)

15 

(25.86%)

29 

(50.00%)

Readable 260 135 

(51.92%)

48 

(18.46%)

67 

(25.77%)

10 

(3.85%)

Cat ory Beg

Non-readable 42 6 

(14.29%)

3 

(7.14%)

3 

(7.14%)

30 

(71.43%)

Readable 699 530 

(75.82%)

48 

(6.87%)

64 

(9.16%)

57 

(8.15%)

Category C

Non-readable 150 55 

(36.67%)

11 

(7.33%)

45 

(30.00%)

39 

(26.00%)

Readable 687 510 

(74.24%)

55 

(8.01%)

80 

(11.64%)

42 

(6.11%)

Category D

Non-readable 302 111 

(36.75%)

6 

(1.99%)

97 

(32.12%)

88 

(29.14%)

Table 7-2 – Results of the Split and Merge method over the images of the dataset. 

 

Generally, the Split and Merge method was able to identify characters in more 

than 50% of the cases for categories A and B, containing multi-coloured characters. 

At the less difficult categories C and D, the method is able to identify characters in 

more than 70% of the cases. 

For the images of category A (multi-colour characters over multi-coloured 

background), the method was able to correctly identify 115 (55.83%) of the 206 

readabl ers. No characters re, while 60  

were broken and 

multi-coloured in this category is reflected in the results, as characters tend to be 

e charact  were merged he (29.13%) characters

31 (10.05%) were missed. The fact that characters are 
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bro

5 (51.92%) out of 260 readable characters are identified, 48 (18.46%) 

are merged, 67 (25.77%) are broken and 10 (3.85%) are missed. As far as it concerns 

non-readable characters, 6 (14.29%) out of 42 are identified and 30 (70.43%) are 

missed. 

A number of observations can be made for this category. First, with 51.92%, 

category B is the one with the sm

p oth categories A and B is under 

60% ying the higher difficulty multi-coloured characters pose to the Split and 

Me

the background is single-coloured, it is 

mo

ry C (single-coloured characters over multi-coloured 

background), 530 out of 699 (75.82%) characters are identified, 48 (6.87%) are 

ken than merged. The high difficulty associated with the images of this category is 

also suggested by the high ratio of missed characters. With 15.05%, category A has 

the highest percentage of missed characters of all four. As far as it concerns the 

non-readable characters, 12 (20.69%) out of 58 characters were identified and 29 

(50.00%) are missed. Given the special characteristics of those characters (small size, 

strong antialiasing etc.) this can be considered an encouraging result. It should be kept 

in mind that non-readable characters in most of the cases are not meant to be read 

(e.g. copyright and registered symbols, trademark symbols etc.). 

Category B (multi-coloured characters over single-coloured background) presents 

similar results as far as it concerns the percentage of correctly identified characters. In 

this category, 13

allest percentage of identified characters. The 

ercentage of correctly identified characters for b

, verif

rge method. A second point worth noticing is that category B yields a much 

smaller percentage of missed characters than category A, while at the same time, it 

presents the highest percentage of merged characters of all four categories. This can 

be awarded to the fact that the background in this case is single-coloured. Due to the 

way the Split and Merge method works, if 

re probable to get it as a single component during the merging phase at an early 

stage, before mergers between the background and the characters (or parts of them) 

are considered. If the background is correctly segmented early in the process (and if 

single-coloured, it will be a larger component than the characters), it becomes more 

difficult to merge smaller components (like parts of character) with it. As a result, 

fewer components are merged with the background (small percentage of missed 

components) and more probabilities exist for character parts to be merged between 

them. 

For the images of Catego
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merged and 64 (9.16%) are broken. The number of missed characters is 57 (8.15%). 

As can be easily observed, the percentage of identified characters is much higher than 

before, while merged, broken and missed characters only account for less than 10% of 

the chara h. The higher i  was expe  in 

on-readable characters, 55 

(36.67%) are identified, 11 (7.33%) are merged and 45 (30.00%) are broken, while 

only 39 (26.00%) are missed. 

Finally, for the images in Category D (single-coloured characters over 

single-coloured background), out of 687 readable characters, 510 (74.24%) were 

identified, 55 (8.01%) were merged and 80 (11.64%) were broken, while 42 (6.11%) 

were missed. Similarly to category C, we obtain quite high percentages of identified 

characters, due to the characters being single-coloured. As far as it regards the 

background being single-coloured, the same pattern can be observed like between 

categories A and B. 

pecifically, in category D we get a smaller percentage of missed characters than 

cate

xt give substantially higher 

identification rates, around 75%. The background plays a secondary role here, as it 

affects more the percentages of missed characters. As can be observed, categories B 

and D (images with single-coloured background) yield lower percentages of missed 

characters than categories A and B (images with multi-coloured background) 

respectively. Figure 7-7 is a comparative chart between the categories.  

cters eac dentification rate cted, since the text

images of this category is single-coloured. Equally interesting results are obtained for 

the non-readable characters of this category. Out of 150 n

S

gory C, while at the same time the percentage of merged ones is slightly higher. 

Although the magnitude of this effect is not the same as between categories A and B, 

it is possibly caused by the same reason: the background being single-coloured in 

categories B and D. 

The results mentioned above reflect the increasing difficulty in categories where 

the text and/or the background are multi-coloured. Categories A and B, which contain 

multi-coloured text yield lower percentages of identified characters (less than 60%), 

while categories C and D, which contain single-coloured te
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Figure 7-7 – Comparative charts between the categories. Percentages of identified, merged, broken 

and missed characters for all categories. 

 

A different visualisation of the results can be seen in Figure 7-8. In 38 (33%) of 

the images, the Split and Merge segmentation method was able to identify 100% of 

the characters. 
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Figure 7-8 – Split and Merge Segmentation me ma ativthod perfor nce. Cumul e Results. 

 

In terms of execution time, the Split and Merge method performs rather poorly as 

can

 stage can take 

from

is d

 be seen in Table 7-3. All the results reported here are based on a Pentium IV 

computer running at 1.8GHz. The Splitting stage is fast; there are only three cases 

where it takes slightly more than 1 second to run. Most of the time spent for the 

splitting stage (around 80%) is actually consumed by the user interface in order to 

visualise the tree of the layers produced. The most time of a run of the method is 

consumed to the Merging stage. Depending on the image, the Merging

 less than a second, up to 15 – 20 minutes, producing an overall average of 

around 5 minutes. The most time consuming part of the method is the computation of 

the overlapping between components, and the actual merging of them. The main 

reason for that is the internal representation used for the connected components: a list 

of runs of pixels. This representation proves to be quite robust for a number of other 

processes (e.g. the Fuzzy method, user interface actions), but not good for the Split 

and Merge method. It should be made clear at this point that the code used for these 

measurements is un-optimised in many aspects, and further improvement of run times 

efinitely possible. 
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 Time to Split (sec) Time to Merge (sec) Total Time (sec) 

Category A 0.445 414.701 415.146 

Category B 0.313 558.649 558.962 

Category C 0.366 609.529 609.895 

Category D 0.182 33.774 33.956 

All Categories 0.286 320.396 320.683 

Table 7-3 – Average execution times for the Split and Merge segmentation method per category. 

 

Two factors play an important role in terms of execution time: the size of the 

image in question, and the complexity of its colour scheme. The first factor is 

self-explanatory, the bigger an image is, the more time is required for each operation. 

The second factor, namely the colour content of the image, or else the total number of 

colours it contains, affects the method in a different way. First, the more colours an 

image has, the more peaks will be identified in the histograms and the more layers 

will be produced. This affects both the splitting and the merging process. The number 

of components produced also increases as the number of colours (and layers) of the 

image grows. Based on those observations, the role of those two factors was studied. 

The images of the dataset were broken into different size groups and colour 

content groups, depending on the total number of pixels (width x height) and the total 

number of colours they have. The time required for the splitting and the merging 

phase for each image in the dataset was recorded and the results can be seen in the 

figures below. Two remarks can be made here: the execution time increases roughly 

exponential as the size and colour complexity of the images rise, and the splitting 

stage takes negligible time comparing to the merging stage. 
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Figure 7-9 – Time performance of the Split and Merge segmentation method, for images of increasing 

size. 
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Figure 7-10 – Time performance of the Split and Merge segmentation method, for images of increasing 

colour content. 

 

In figures 1.2-6 to 1.2-11, a number of special cases representative of the 

difficulties encountered can be seen along with the corresponding results. For every 

image, the original is given along with an image of the final segmentation, and an 

image of the segmented characters. 

A typical problem with multi-coloured characters is that in many cases they are 

painted in some gradient colour. In the case of Figure 7-11 the characters are green 

with a gradient intensity. To correctly segment those characters, more relaxed 

thresholds have to be used for the colour similarity measurements. Nevertheless, as 

mentioned in Chapter 4, this can cause a problem to numerous images of complex 
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colour schemes that the text is of similar colour to the surrounding background. 

Figure 7-11 illustrates one of the difficult cases that the currently used thresholds 

cannot cope with. Most of the characters here are split in two components. 

 

   

Original Final Segmentation Segmented Characters 

Figure 7-11 – An image containing characters of gradient colour. 

 

A different problem appears when characters are overlapping. In the case of 

Figure 7-12 the colours of the characters are also mixed. As can be seen in the final 

segmentation image, the three characters are well separated into three connected 

components, each complete enough to recognize. In this case, parts of “U” and “C” 

have been assigned to “P”. In order to get all three characters right those common 

areas should belong to more than one character, which is not allowed with the current 

segmentation requirements for disjoined, non-overlapping areas. Nevertheless, 

although not visible in Figure 7-12, the vexed areas (possible extensions) of the 

components representing “U” and “C” actually consist of exactly the missing parts of 

the characters. This could be used as an extra feature for recognition, as will be 

discussed next. 

 

   

Original Final Segmentation Segmented Characters 

Figure 7-12 – An image containing overlapping characters. 

 

Antialiased characters can be a significant problem during segmentation. If the 

characters are thick enough, antialiasing will create a soft edge, but will leave enough 
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part of the character unaffected, which the segmentation process can identify. Smaller 

characters though, tend to present problems with antialiasing, since the main part of 

the character is now affected. 

In Figure 7-13, the big characters on top are not really affected, although they are 

antialiased. The shape of the smaller characters though is slightly altered as can be 

seen in the magnified region of Figure 7-13 (shown in Figure 7-14). A close 

inspection reveals that the upper parts of the “E” and “T” characters are blended 

strongly with the background. This hinders the segmentation process, which is able to 

correctly identify only some of the characters (like “E”) but misses a number of 

others. It should be made clear at this point, that the characters shown here are 

comparably large, still affected by strong antialiasing. The problem is even larger with 

smaller or thinner characters. 

 

   

Original Final Segmentation Segmented Characters 

Figure 7-13 – An image of single-coloured characters over multi-coloured background. Strong 

antialiasing results in slightly changing the colour of thin characters. 

 

 

Fig agnified  of Figure 7-13. 

remely small 

characters in an image. Figure 7-15 is an example of such an image. Small characters 

suc

The problems with correctly segmenting such characters can be easily identified. 

ure 7-14 – M  region

 

Another situation worth commenting on, is the existence of ext

h as the ones of the word “usa” in the image are usually considered non-readable. 

A magnification of the area with the characters in question is shown in Figure 7-16. 
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Merge method can identify such characters in 

num

 

Small characters are the ones affected most by antialiasing, compression, low contrast 

colour schemes etc. Still, the Split and 

erous cases. One such case is the one presented here. 

   

Original Final Segmentation Segmented Characters 

Figure 7-15 – An image containing small (non-readable) characters. 

 

 

verall, the Split and Merge method proved to be versatile when evaluated with 

the

lly easier. 

Gen

Figure 7-16 – Magnified region of Figure 7-15 

 

O

 images of the dataset. As expected, the images of categories A and B (containing 

multi-coloured characters) proved to be more difficult to segment, while the images of 

categories C and D (containing single-coloured text) were substantia

erally, a trade-off must be made so that the method works efficiently in a range of 

fundamentally different images. This trade-off lies exactly at the selection of the 

similarity thresholds used. The average correct identification rate of around 70% is a 

promising result for the Split and Merge method. 

7.2.2. Fuzzy Method 

Table 7-4 shows the overall results for the fuzzy segmentation method. Out of 1,852 

readable characters, 1,288 (69.55%) were identified, 150 (8.10%) were merged, 169 

(9.13%) were broken and 245 (13.23%) were missed. As far as it concerns 

non-readable characters, 223 (40.40%) out of 552 were identified, 71 (12.86%) were 
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merged, 92 (16.67%) were broken and 166 (30.07%) were missed. Although based on 

these results the Fuzzy method performs at the same levels like the Split and Merge 

method, it will be seen next, that they perform significantly different at the level of 

individual categories. 

 

  Number of 

Characters 

Identified Merged Broken Missed 

Readable 1,852 1,288 

(69.55%) 

150 

(8.10%) 

169 

(9.13%) 

245 

(13.23%) 

All 

Categories 

Non-readable 552 223 

(40.40%) 

71 

(12.86%) 

92 

(16.67) 

166 

(30.07%) 

Readable 206 122 

(59.22%) 

8 

(3.88%) 

24 

(11.65%) 

52 

(25.24%) 

Category A 

Non-readable 58 15 

(25.86%) 

5 

(8.62%) 

8 

(13.79%) 

30 

(51.72%) 

Readable 260 180 

(69.23%) 

16 

(6.15%) 

36 

(13.85%) 

28 

(10.77%) 

Category B 

Non-readable 42 9 

(21.43%) 

5 

(11.90%) 

1 

(2.38%) 

27 

(64.29%) 

Readable 699 494 

(70.67%) 

66 

(9.44%) 

40 

(5.72%) 

99 

(14.16%) 

Category C 

Non-readable 150 66 

(44.00%) 

30 

(20.00%) 

26 

(17.33%) 

28 

(18.67%) 
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Readable 687 492 

(71.62%) 

60 

(8.73%) 

69 

(10.04%) 

66 

(9.61%) 

Category D 

Non-readable 302 133 

(44.04%) 

31 

(10.26%) 

57 

(18.87%) 

81 

(26.82%) 

Table 7-4 – Results of the Split and Merge method over the images of the dataset. 

 

Generally, the method performs better (around 70% characters identified) in the 

easier categories C and D and a bit poorer in the more difficult ones A and B. 

Nevertheless, the gap in performance between the categories containing multi-colour 

characters and the ones containing single-coloured characters is much smaller than in 

the Split and Merge method. Here the performance in category A (the most difficult 

one) reaches 60%, while the performance in category B touches 70%. 
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For the images of category A (multi-coloured characters over multi-coloured 

background) out of 206 readable characters, 122 (59.22%) were identified, 8 (3.88%) 

were merged and 24 (11.65%) were broken, while 52 (25.24%) were missed. As 

expected, the pe ce of the method on this category is the poorer of all. Still 

with an identification rate of nearly 60% the method performs reasonably well taking 

in mind the complication of those images. As far as it regards the non-readable 

characters, the Fuzzy method was able to identify 15 (25.86%) out of 58 characters, 

while 5 (8.6 , 8 (13.79%) were broken a e missed. 

2

ance in categories A and B is similar, here a vast 

improvement of the identification ratio can be observed. At the same time, the 

per

of category C (single-coloured 

characters over multi-coloured background), 494 (70.67%) were identified, 66 

(9.44%) were merged, 40 (5.72%) were broken and 99 (14.16%) were missed. With 

an identification rate around 70% the Fuzzy method does not perform much better in 

this category comparing to category B. Although the identification rate is here slightly 

higher, the differ % does not allow for any safe e made. On 

the other hand, the method performs much better on non-readable characters in this 

category. Comparing to categories A and B where the identification rate of 

non-readable characters range around 25%, the rate for category C is up to 44%, while 

at the same time the rate for missed non-readable characters drops from above 50% 

for categorie 7%. This is an indication that the type of the characters 

the Fuzzy method as far as it concerns 

rforman

2%) were merged nd 30 (51.72%) wer

In category B (multi-colour characters over single-colour background), out of 260 

readable characters 180 (69.23%) were identified, 16 (6.15%) were merged, 36 

(13.85%) were broken and 8 (10.77%) were missed. In contrast to the Split and 

Merge method, where the perform

centage of missed characters drops to 10%. This is a strong indication that the 

Fuzzy method is affected more by the type of the background. Specifically, 

single-coloured background allows for better identification rates as well as less missed 

characters in the Fuzzy method, while for the Split and Merge method it effectively 

affected only the rate of missed characters and not the rate of the identified ones. 

Concerning the non-readable characters, 9 (21.43%) out of 42 characters were 

identified and 27 (64.29%) were missed. For this type of characters, the Fuzzy method 

performs roughly at the same levels for categories A and B. 

Of the 699 readable characters of the images 

ence of 1  assumptions to b

s A and B to 18.6

(single-coloured vs. multi-coloured) affects 
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small characters (which are the main representatives of non-readable ones), while it 

doe

ere is not a large 

difference between this category and categories B and C as far as it concerns 

identifi te ble to 

 yields a slightly lower 

ide

these categories present. At the much easier categories C and D though, 

the

h (Category D). At the same 

tim  the fact that at the easier categories C and D the identification rates stay around 

70% (the same like category B) indicates that the type of the characters specifically 

does not play an important role here: as long as either the characters or the 

background is single-coloured, the method benefits without any preference between 

the two. 

Where the type of the characters plays an important role is at the segmentation of 

the non-readable characters. For this special group of characters (consisting mainly of 

very small ones), the identification rates for Categories A and B, where characters are 

multi-coloured, is ~25% while the rates of missed characters are well above 50%. As 

long as the characters become single-coloured, in categories C and D, the 

identification rates double to around 44% while the rates of the missed non-readable 

s not make a big difference for the rest (readable) characters. 

Similarly to category C, the performance for category D (single-coloured 

characters over single-coloured background) is around 70%. Specifically, out of 687 

readable characters, 492 (71.62%) were identified, 60 (8.73%) were merged, 69 

(10.04%) were broken and 66 (9.61%) were missed. Again, th

cation ra s. Concerning the non-readable characters, the method was a

identify 133 (44.04%) out of 302 and missed 81 (26.82%). Similarly to category C, a 

significant percentage of non-readable characters was identified.  

As can be seen, the Fuzzy segmentation method

ntification rate for the images of category A, around 60%, while the identification 

rates for the other three categories are around 70%. The identification rates of ~60% 

for category A and ~70% for category B are quite high taking into account the 

difficulty that 

 identification rate of around 70% is acceptable but not much higher than the other 

categories. 

The fact that all categories having either single-coloured text or single-coloured 

background yielded identification rates around 70% is an indication that the Fuzzy 

method actually benefits from having single-coloured areas, no matter whether that is 

the text (Category C) the background (Category B) or bot

e,
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characters halve to around 25%. A comparative chart between the performances of the 

categories can be seen in Figure 7-17. 
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Figure 7-17 – Percentages of identified, merged, broken and missed characters for all categories. 

 

A different visualisation of the results can be seen in Figure 7-18. In 30 (26%) of 

the images, the Fuzzy segmentation method was able to identify 100% of the readable 

characters. 
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Figure 7-18 – Fuzzy Segmentation method performance. Cumulative Results. 

 

In terms of the execution times of the Fuzzy segmentation method, two stages 

were measured: the initial connected component analysis stage, and the component 

aggregation stage. The measurements for each category of images in the dataset can 

be seen in Table 7-5. The Fuzzy segmentation method is quite fast. The initial 

connected component analysis stage never takes more than a second to complete, 

while the component aggregation phase takes on average around 15 seconds. 

 

 Time of Initial CC 

Analysis (sec) 

Time of Component 

Aggregation (sec) 

Total Time (sec) 

Category A 0.326 10.817 11.143 

Category B 0.377 25.270 25.648 

Category C 0.524 17.463 17.986 

Category D 0.271 13.106 13.378 

All Categories 0.373 15.816 16.189 

Table 7-5 – Average execution times for the Fuzzy segmentation method per category. 

 

Similarly to the Split and Merge method, an analysis was performed to establish 

the way different sizes and colour contents affect the Fuzzy segmentation method’s 
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run time. The same size and colour content groups were used, and the results are 

shown in Figure 7-19 and Figure 7-20. 
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Figure 7-19 – Time performance of the Fuzzy segmentation method, for images of varying size and 

varying colour content. 
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Figure 7-20 – Time performance of the Fuzzy segmentation method, for images of varying size and 

varying colour content. 

 

Some characteristic examples of the difficulties encountered will be discussed 

next. This time, an image of the initial components identified during the pre-

processing step (prior to the component aggregation process) is also given. 
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As far as in concerns multi-coloured characters, the method performs well in most 

ple can be seen in Figure 7-21. The characters of this image 

range in colour from yellow to white, giving a highlighting effect to the text. The 

able to identify all of the characters correctly, mainly due to the fact that 

s, which were first identified as smaller regions, were 

combined in the right way resulting in whole characters to be taken as single 

com

of the cases. An exam

method was 

the surrounding background is of uniform colour. Still it is supporting to the method 

that the parts of the character

ponents. As far as it concerns the extremely complicated small characters in the 

image (characterized as non-readable), the method was able to identify the only one 

that is somewhat clearly rendered. For the rest of the small characters, one could 

claim that the method merged groups of them in single components. Nevertheless, 

since ground truth information is non-existent, it is extremely difficult for the person 

assessing the final segmentation to decide whether the rest of the components contain 

character pixels only. As stated before, in such cases we err on the side of being 

conservative, and classify such characters as missed. 

 

  

Original Initial Components 

  

Final Segmentation Segmented Characters 

Figure 7-21 – An image containing multi-colour characters over uniform coloured background. 
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One more example of multi-coloured characters can be seen in Figure 7-22. 

Similarly to the previous example, the originally split (after the initial connected 

component analysis) characters are finally correctly identified, leaving the 

d the shadow out of the inal character components. The only exception 

here is character “G”, which is finally broken in two components. This is because the 

letter gets too thin at its lower right side, and subsequently the two parts of the 

character do not touch adequately for the algorithm to combine them. The small 

characters on the right present high contrast to the background and are thus identified 

correctly to a great extend. Of the non-readable characters, only one is correctly 

identified. 

background an  f

 

  

Original Initial Components 

  

Final Segmentation Segmented Characters 

Figure 7-22 – An image c

nu  

cl  

no

ontaining multi-coloured characters (each “Google” character contains a 

mber of different shades of its main colour) with shadows. The small characters on the right are

assified as readable, while the “TM” characters at the upper-right side of “Google” are classified as

n-readable ones. 

 

An image with overlapping characters can be seen in Figure 7-23. The fuzzy 

me ent half of the characters in this method. It finds the common 

parts of the characters equally different in colour from both characters they belong to, 

thus it does not assign them to any character specifically. In numerous cases, the 

resulting characters maintain their overall shape (e.g. character “e” above), and are 

thus considered identified for recognition purposes. In contrast, characters like “b” 

and “a” above, whose overall shape is not maintained in a single component, are not 

considered identified. As for the non-readable characters “TM” at the upper right side 

of the logo, one out of the two is correctly identified. 

thod is able to segm
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Original Initial Components 

  

Final Segmentation Segmented Characters 

Figure 7-23 – An image with overlapping characters. 

 

difficult categories A and B, while its performance in the easier categories C and D is 

not substantially higher. The distinction between difficult and easy to segment images 

is n hree of the 

categories, while category A does not fall much behind with 60%. 

 the Fuzzy segmentation method maintains a 

rath

Overall, the Fuzzy segmentation method, proves to perform very well in the 

ot very clear here, where the method performs around 70% for t

7.2.3. Comparison of the two Segmentation Methods 

In this section, a comparison between the two segmentation methods will be 

attempted. The results of both methods will be compared, while specific examples 

will be given in terms of individual images of the data set. 

Two key differences exist in terms of the performance of the two segmentation 

methods. The first difference lies to the types of images (categories) each method 

seems to be strong at, while the second major difference is the time of execution of 

the methods. 

Specifically, while the Split and Merge segmentation method performs poorly in 

the difficult categories A and B, the Fuzzy method performs much better. On the other 

hand, the Split and Merge method’s performance rises substantially when it comes to 

the easier categories C and D, while

er stable performance. In Figure 7-24, an immediate comparison is made between 

the identification rates of the methods for each category. 
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Figure 7-24 – Comparison between the identification rates of the two segmentation methods. The Split 

and Merge method performs poorly at the first two categories, while its performance rises at the other 

two. The Fuzzy method presents the opposite behaviour. 

 

Time wise, the Fuzzy segmentation method is far more efficient with average 

execution time ~15 seconds, in comparison to ~5 minutes for the Split and Merge 

method. Both methods perform quite fast (less than 10 seconds) with small images 

(less than 5000 pixels), which represent a great percentage of the images found in the 

We . A comparison between the execution times of the two segmentation methods is 

shown in Figure 7-25. 

b
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Figure 7-25 – Comparison between the execution times of the two segmentation methods. The effect of 

different image sizes and different colour contents is demonstrated. 

 

Concerning other characteristics of the methods, we can say that overall, the Split 

and Merge method shows a tendency to over-merge medium sized components, 

comparably to the Fuzzy method which is more preservative. An example can be seen 

in Figure 7-26. 
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Original Image 

Split and Merge 

Fuzzy Method 

Figure 7-26 – An example of an image where the merging tendency of the Split and Merge method is evident. 

In this case, this results  better final segmentation.  in a

 

In many cases like in Figure 7-26, the over-merging tendency of the Split and 

Merge method results to a better final segmentation. Nevertheless, there are cases 

such as the one presented in Figure 7-27 where unwanted mergers between characters 

take place. Even worse, in cases like the one depicted in Figure 7-28, parts of the 

background can be merged with the characters. In most of those cases, the Fuzzy 

segmentation method gives far better final segmentations. 

 

Original Image 

Split and Merge 

Fuzzy Method 

Figure 7-27 – Another example of an image where the merging tendency of the Split and Merge method is 

evident. In this case, the Split and Merge method erroneously merges characters together. 
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Original Image 
 

Split and Merge 
  

Fuz
 

zy Method 
 

Figure 7-28 – An example of an image with gradient text. The Split and Merge method merges parts of 

the character with the background. 

 

Generally, the Fuzzy segmentation method produces much “cleaner” 

segmentations. The reason for that is that the Fuzzy segmentation method appears to 

deal much better with the small components of the image. While the Split and Merge 

method shows a tendency to merge medium sized components, the Fuzzy method has 

a tendency to merge the small ones. By doing so, two aspects of the final 

segmentation are affected. First, the small components surrounding characters (like 

parts of the outlines, the antialiasing areas or the shadows) are merged with either the 

character or the background, leaving in many cases thinner characters (e.g. Figure 

7-26 and Figure 7-29), but also producing a much cleaner output. The fact that the 

final segmentations produced by the Fuzzy method are much cleaner is reflected at the 

resu

le characters of the images. As 

can be seen in Figure 7-30 (page 239), the rates for the correct identification of 

non-readable components are always higher for the Fuzzy segmentation method, 

rather than the Split and Merge one. 

 

lts of the Character Component Classification process as will be discussed next. 

The second, and most important effect of this tendency of the Fuzzy method, is 

that in most of the cases the non-readable (extremely small) characters of the images 

are much better segmented by the Fuzzy method, than the Split and Merge one. An 

example of this can be seen in Figure 7-29. Further proof for this comes by comparing 

the performance of the two methods for the non-readab
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Original Image 

 

Split and Merge 

  

Fuzzy Method 

  

Figure 7-29 – An example of an image with multi-coloured text and background (The results are 

presented magnified). The Split and Merge method better identified the number “6”, whereas the Fuzzy 

method is more effective in identifying the small components. 

 

Overall, both methods are able to correctly identify around 70% of the readable 

characters in the images of the dataset. The main advantage of the Split and Merge 

segmentation method is its performance with the images containing single-coloured 

text. The Fuzzy segmentation method on the other hand is better with images 

containing multi-coloured text. If one method had to be singled out as the best of the 

two, that has to be the Fuzzy segmentation method mainly due to its much better 

execution time. 
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Figure 7-30 – Comparison between the identification rates for the non-readable components of the two 

segmentation methods. 

 

7.3. Character Component Classification Results 

The Character Component Classification (CCC) process, automatically classifies 

components as character or non-character ones. As described in Chapter 6, the CCC 

process analyses the image components by first separating them into size groups, and 

then identifying lines of components that resemble lines of text in each size group. It 

is evident, that due to the way the CCC process works, it is essential that it starts with 

a good segmentation of an image. If during the segmentation a character is split or 

merged with neighbouring ones, the CCC process will have difficulties identifying it 

for a number of reasons. First, the size of the components associated with the 

character will be either smaller (if a character is broken) or larger (if it is merged with 

other characters) than the size of the rest of the characters on the same line. A second 

issue is that even if all the components associated with characters were exported in the 

same size group, the distances between them will vary too much to be considered 

parts of a text line (see Section 6.2.3). 

For these reasons, in order to assess the CCC process on its own without reporting 

accumulated errors from the segmentation process, only a subset of the images was 

used. The images used are the ones for which the segmentation process was able to 
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ethod. All four categories are represented in 

this

o 

characters and I is the set of connected components classified as characters by the 

CC process. 

 

correctly identify 100% of the readable characters. Furthermore, an extra restriction 

was set: that the images contain at least 3 characters. This lower limit of 3 characters 

is a restriction set by the CCC process itself. The total number of images that conform 

to these specifications is 58 out of which 31 were segmented using the Split and 

Merge method and 27 using the Fuzzy m

 set of images. 

For this set of images, the CCC process was run, and a number of lines were 

exported. Each exported line was assessed as either a text or non-text one. The total 

number of components classified as characters were counted, as well as the number of 

them that actually represented characters. The CCC process can identify a single 

component as part of more than one text line. Special attention was paid so that each 

component is counted only once, no matter how many lines it participates in. 

Measures for recall and precision for the CCC method were calculated based on Eq. 

7-1 and Eq. 7-2, where C is the set of connected components that correspond t

C

I
IC

P
∩

=  Eq. 7-1 

C
IC

R
∩

=  Eq. 7-2 

 

The overall precision and recall was measured, as well as separate measures for 

the segmentations produced with the Split and Merge method, and for the 

segmentations produced with the Fuzzy method. The results are shown in Table 7-6. 

 

Segmentations produced with Precision Recall 

Split and Merge method 53.37% 87.94% 

Fuzzy method 82.66% 84.36% 

All methods 62.84% 86.38% 

Table 7-6 – Precision / Recall results for segmentations produced by the two segmentation methods. 
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s can be seen, the recall is above 80% for segmentations produced by either 

segmentation method. The precision on the other hand, is quite affected by the method 

used for segmentation. Specifically very low precision measures are obtained for 

segmentations produced with the Split and Merge method, while precision above 80% 

is obtained for segmentations produced by the Fuzzy method. The main reason for 

that is that the Fuzzy segmentation method gives much cleaner results than the Split 

and tation meth

ure ates that a great percentage of the components 

classified as character-like, are actually parts of the bac

background components that were falsely classified as charac

the shadows of the characters, the outlines of the characters, or finally internal parts of 

losed characters (the holes of letters such as “o” or “B”). As far as it concerns the 

latter, they appear at the same degree in both segmentations produced by the Split and 

Merge method, and the Fuzzy method. The components representing parts of the 

shadows or outlines of characters on the other hand, tend to be suppressed by the 

Fuzzy segm

(discussed in Section 7.2.3). An exam

A

 Merge segmen od. 

A low precision meas  indic

kground. Most of such 

ters are actually parts of 

c

entation method, but not by the Split and Merge segmentation method 

ple of a line where such components have been 

falsely classified as characters is shown in Figure 7-31. 

 

  

(a) (b) 

Figure 7-31 – (a) A segmentation produced with the Split and Merge method. A number of components 

asso

non-character component is err

ciated with the outlines of the characters can be seen. (b) One of the text lines extracted. A 

oneously classified as text. 

 

A second less important problem of the CCC method is the handling of characters 

having much smaller (or larger) diagonal size than the average size of the rest of the 

characters on the same line. Such characters, would not be considered in the same size 

group as the rest of the characters on the text line, and therefore would be missed 
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when the text line is identified. The character missed most of the times is 

character “i”, as illustrated in Figure 7-32. Although the size ranges for the diagonals 

were selected so that all characters of the same font would be grouped together, there 

are some cases where very small (or very large) characters are not grouped correctly. 

 

  

(a) (b) 

Figure 7-32 – (a) A segmentation produced by the Fuzzy method. (b) One of the extracted  lines 

identified as text. Character “i” is missing here because it was not considered as part of the same size 

group as the rest of the characters on the line. 

 

It should be mentioned at this point, that two-part characters (like “i” and “j”) are 

spli ods. The CCC method, aims to 

cation method were presented and critically appraised. The dataset 

of im

easier images containing single-coloured characters, while the Fuzzy method 

t in two components by the segmentation meth

classify the bigger part of such characters, without any special consideration for the 

dots above them. The dots of such characters can be retrieved at a later 

post-processing stage of the CCC method. Such a post-processing stage is not 

currently implemented. 

Concerning the time performance of the CCC method, it never takes above 0.007 

seconds on a Pentium IV running at 1.8GHz. 

7.4. Discussion 

In this chapter, the results of both segmentation methods and the Connected 

Component Classifi

ages used for the assessment was also described and the categorization used for 

the images was explained. Finally, possible applications of the methods to domains 

other than Web Text Extraction were studied. 

Overall, the segmentation methods yield character identification rates around 

70%, which is a very promising result. The Split and Merge method works better for 
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 low precision rate 

of a

iven in the work of Lopresti and Zhou [106, 220]. Nevertheless, their 

me

ained in a number of fundamentally different images, in 

contrast to the specific type of images tested in [106]. However, for completeness, a 

com sti and Zhou, and the results 

performs better in the most difficult categories containing multi-colour characters. 

The main advantage of the Fuzzy method is the low execution time it takes. 

The connected component classification method gives a rather

round 60%, mainly caused by the existence of too many background components 

in segmentations produced by the Split and Merge segmentation method. The recall 

on the other hand was quite high, with an average above 80%. 

A comparison of the results presented here with other text extraction methods is 

rather difficult. Most methods existent for extracting text from colour images, are not 

specifically designed for Web Images, but for other types of colour documents: real 

life scenes, video frames etc. As a consequence, there are but limited reported results 

concerning the application of such methods to web images specifically. 

Of the very few methods dedicated in Text Extraction from Web Images, concrete 

results are g

thod is focused (and consequently optimised) to GIF images, containing a 

maximum of 256 colours. Moreover, they limit the assessment of their method to a 

subgroup of Web Images which meet the assumptions set for their method: they 

contain homogeneously coloured text and have horizontal text layouts. Finally, they 

only report cumulative results obtained after both segmentation and component 

classification stages are completed. The average character detection rate reported in 

[106] is 78.8%, which (taking into account the restricted type of images they used), is 

not much higher than the results of the methods presented here. 

It is rather ungrounded to perform a direct comparison between the two methods, 

since the segmentation methods presented here are optimised in such a way so that 

reasonable results are obt

parative graph between the results reported by Lopre

of our segmentation methods is shown in Figure 7-33. 
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Figure 7-33 – Comparison chart between the two segmentation methods presented and the Text 

Extraction method of Lopresti and Zhou. 

 

In terms of future possibilities and possible extensions to the segmentation and 

component classification methods, there are a number of points that can be addressed

The Split and Merge method is susceptible of a number of optimisations that can 

improve vastly the execution time of the method. Most optimisations are related to the 

connected component internal representation, and the calculations of the new 

components and associated vexed areas after merging. Apart from that, further 

ination thresholds for a number of colour 

com

An example of such a case 

was

. 

research can be done in colour discrim

ponents and subsequently better thresholds can be defined. Moreover, other 

colour systems except HLS can be tried for the implementation of the method. 

An idea introduced for the Split and Merge method, that could prove useful to a 

variety of other applications is the concept of vexed areas. Vexed areas are defined as 

possible extensions of connected components based on colour similarity. The 

existence of such possible extensions can be useful during the recognition phase, as 

they can provide extra information for a given component. 

 discussed previously (Section 7.2.1), when the common part of two characters 

was identified as a vexed area for both the corresponding components. In addition, for 

complicated images (e.g. where the borders of the characters are not precise), vexed 

areas could be used for the definition of ground truth information. The vexed area of a 
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com

resenting the background, indicating that this area 

(the

s before and after a 

merger etc. Furthermore, the fuzzy inference system can be optimised by evaluating it 

wit r  for each of the input features 

 [17]. Of course, for such automatic optimisation methods to be used, ground 

truth in r

produce th

are availab segmentations, most based on bounding box 

represe t

open probl

As far 

of optimis

component

variety of

components. Due to that, features used in a number of other methods failed to give 

good r l

produces q

direction o

post-proce nts 

to each e

established

of features

ponent would be a possible part of it, but it should not be considered wrong if a 

method did not identify it as such. For example, the outline of a character can be part 

of the vexed area of the component representing the character, as well as the part of 

the vexed area of the component rep

 outline) can be assigned to either. 

As far as it concerns the Fuzzy segmentation method, the majority of possible 

extensions and optimisations are focused to the fuzzy inference system used, and the 

definition of propinquity. A number of connected component features other that 

connections ratio and colour distance can be incorporated to the definition of 

propinquity. Given two components, features indicative of the validity of a merger 

between them are sought. Such features would be the colour variance of the resulting 

component, their orientation, some measure of character likenes

h diffe ent combinations of membership functions

used. An example of such an optimisation procedure based on genetic algorithms is 

given in

fo mation and a method of assessing the result are necessary in order to 

e necessary feedback for the optimisation process. A number of methods 

le for assessing document 

nta ions [6]; nevertheless, the construction of ground truth information is an 

em. 

as it concerns the Connected Component Classification method, a number 

ations can be identified. The main problem in using most connected 

 features for classification in the case of Web Images, is the plethora and 

 components associated to the background, that resemble character 

esu ts in this case. However, in combination to the existent approach (which 

uite a high recall rate), and given the existing information about the 

f each identified text line, connected component features can be used at a 

ssing stage to further eliminate components, or to include more compone

 t xt line. The need for further evaluation of the components exported is 

 by the low precision rate and the high recall rate of the method. Examples 

 that could be used are the number of black-to-white or white-to-black 
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transitions

maximum 

line), the n nent etc. Furthermore, vertical profiling of the 

text lin

erroneousl

An ove , reveals that 

mo

nnected component 

agg

 

, the number of strokes per line (given the direction of the text line, a 

of 4 strokes should be found -characters “M” and “W”- in any component 

umber of holes in a compo

e could provide an extra method of checking for non-character components 

y exported. 

rall view of the problem of text extraction form Web Images

st of the cases that present a problem to the current implementations are associated 

with complicated colour schemes and text renderings (small characters, 

antialiasing etc). Better handling of complicated colour schemes can be achieved by 

employing non colour oriented information. This was attempted here by the use of 

topological properties between components to further facilitate co

regation. Problems associated with small or antialiased text, can be possibly 

addressed by improving the resolution of certain parts of the image (effectively 

enlarging the characters). Some methods for doing this were described in Chapter 3. 

 



 

 

 

Chapter  8
 

 

 

8. Conclusion 

 

 

his thesis examined the problem of text extraction from Web Images. A 

mary of the contents of this thesis will be given next, followed by a 

dis

con

s research in Chapter 1, the theoretical background for this research 

was given in Chapters 2 and 3. Chapter 2 gave a literature review of segmentation 

 

sum

cussion based on the aims and objectives set at the beginning. The main 

tributions and limitations of this research are detailed in the last section along with 

a summary of future possibilities suggested and new directions identified. Finally, the 

applicability of the methods presented to other domains, except Web Image text 

segmentation, is investigated. 

T

8.1. Summary 

This thesis was divided in three parts. First, the theoretical background of the problem 

was presented. The description of the new methods developed followed, and the thesis 

closed with an evaluation of the methods presented. 

After a brief introduction to the problem, and the establishment of the aims and 

objectives of thi

methods, focused mostly on methods created for colour images. Chapter 3 specialised 

in text image segmentation and classification of the results. Previous work on web 

text extraction was also presented in Chapter 3. 
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hapter 5 the second 

segmentation method developed was described. This segmentation method is based 

on a fuzzy defined propinquity value, which is a metric of closeness between 

ormation 

between them. Chapter 6 addressed the problem of classifying the connected 

com

Finally, an evaluation of the two segmentation methods and the connected 

compon  performed in Chapter 7. A dataset of images 

method was subsequently tested on segmentations resulted from both 

one classification 

me

 able to correctly segment the characters 

con

the background, should be higher than the contrast 

between pixels of the same class. The anthropocentric character of both segmentation 

The segmentation and classification methods were described in Chapters 4 to 6. 

Chapter 4 detailed the first segmentation method, which works in a split and merge 

fashion, based on human colour discrimination information. In C

components that takes into account both colour distance and topological inf

ponents produced by the segmentation method as character or non-character ones. 

The classification method developed assesses lines of similar sized components, and 

decides whether they resemble lines of text or not.  

ent classification method was

collected from the numerous web pages was introduced, and the segmentation 

methods were tested against the images in the dataset. The connected component 

classification 

the split and merge and the fuzzy segmentation methods. 

8.2. Aims and objectives revisited 

This research aimed in identifying novel ways to extract text from images used in the 

World Wide Web. Towards this, two segmentation methods and 

thod were developed. The methods developed were built on observations made 

over a number of web images. 

The segmentation methods presented are generally able to cope with complicated 

colour schemes, including gradient text and background, and various instances of 

antialiasing. Both segmentation methods are

tained in the images at around 70% of the cases. At the same time, the 

classification method, presents a high recall (around 80%) and an average precision 

rate (around 60%). 

The assumptions of the method were kept to an absolute minimum. The only 

assumption made for the segmentation method was that the text in every image is 

written in such a way that a human being is able to read it. This mainly entails that the 

contrast between the text and 
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methods ensures that human based colour discrimination information is employed at 

all times (either explicitly by the use of appropriate colour spaces, or implicitly by the 

use of experimentally derived colour discrimination information). 

The assumptions made for the connected component classification method are 

also kept to a minimum. The only assumptions made here, is that characters are 

placed on a straight line and that characters on a line are of similar size. Nevertheless, 

the minimum number of characters required for a line to be identified is set to three. 

By being able to identify lines of that few characters, the classification method can 

long as they can be split in sub-lines of at least three characters each. Most curved 

line

mall images (less than 5000 

pixels), which represent a great percentage of the images in the Web. Furthermore, the 

code us optimisations have been described 

n method on the other hand is quite fast, with execution times that never 

rise above 0.007 seconds. 

8.3. Applicati  Different in

In addition to the evaluation of the described segmentation me ds to Web Images, a 

number of tests were performed in order to obtain a view of the strengths and 

difficulties ent when appl

variety of im f book covers, photographs containing text (real 

life scenes) and video frames containing tions. A nu er of images were 

segmented with the use of the Fuzzy segmentation method. 

effectively identify curved lines and lines containing characters of varying size, as 

s can be identified in this way, as well as most characters of varying character 

size, making the classification method effectively unaffected to size and co-linearity 

constraints. 

The main negative point of the segmentation methods developed is the execution 

times they yield. The Fuzzy segmentation method is the faster of the two, with an 

average time of around 15 seconds per image, while the Split and Merge method 

performs poorly with an average of 5 minutes per image (Pentium IV at 1.8GHz). 

Generally, both methods take less than 10 seconds for s

ed here is not optimised, and a number of 

that could improve vastly the execution times of both methods. In any case, execution 

time is the biggest disadvantage of the segmentation methods developed. The 

classificatio

on to Doma s 

tho

those methods pres ying in other fields. For this purpose, a 

ages was used: images o

cap mb
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The ma ethod presents when used to segment coloured 

scanned bo gazine covers is the handling of dithered areas. Due to the way 

coloured publications are printed, dithering is extensively used to produce colours. 

The segme  handle corr ctly dithered s, because the dots 

used to crea imilar colour as can be seen in Figure 8-1. In such 

vast number of 

components, of inadequately similar colour for the aggregation stage to combine, and 

the segmentation fails. A solution to that problem would be to downscale the image 

by averaging over neighbours of pixels. That would produce areas of similar colour, 

in problem that the m

ok and ma

ntation method cannot e area

te the dither are of diss

cases, the initial connected component analysis produces a 

but also smaller characters. 

 

  

(a) (b) 

Figure 8-1 – (a) Part of a scanned magazine cover. (b) Magnified region, where dithering is visible. 

 

Instead of scanning and downscaling a number of book covers, we opted at testing 

the segmentation method with already downscaled images of book covers obtained 

from “amazon.com”. This online business displays small-sized (~350 x 475 pixels) 

versions of the scanned covers for each book offered, so a huge dataset of downscaled 

book covers is readily available. The segmentation method was able to correctly 

segment an average of around 80% of the characters in those images, while the 

execution time was on average 40 seconds for each image. 

Another test performed was with video frames containing superimposed text. 

Video frames are very similar to web text in many aspects. The segmentation method 
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age 5 minutes. 

he most significant problem of segmenting photos and scanned documents is the 

size of the document. In its current state the plementation of the method is rather 

slow for documents o iz e 50 ls from that, the method 

seems able to cope w  a y ge er es similar to the ones 

obtained for web ima s. T ly ca le tified were associated 

entioned that the results 

presented in this section are by no means precise, since only 5 to 10 images of each 

category were tested, and the statistical errors are therefore high. 

f this Research 

The main contributions of this research to the document analysis field are listed 

bel

entric segmentation methods were proposed, specifically 

developed for text extraction from Web Images. Both segmentation 

methods developed are able to cope with complicated colour schemes: an 

improvement over a number of existing colour text extraction metho

was able to correctly identify an average of 70% of the characters in such images. The 

average execution time for video frames (352 x 240) was 8 seconds. 

Finally, a few real scene photos were segmented, which contained signs and car 

plates. The photos tested were of size 800 x 600 or larger. On average, the method 

was able to identify around 60% of the characters, while the execution time for the 

method was on aver

T

im

f s es abov  500 x 0 pixe . Apart 

ith  variet of ima s, at p formanc

ge he on  signifi nt prob ms iden

with the use of dithering in scanned images. It has to be m

8.4. Contributions o

ow. 

• The problem of excessive amount of text being embedded in images in the 

context of the World Wide Web was analysed. This thesis offers a detailed 

description of the problem. 

• The special characteristics of Web Images were detailed, and a 

comprehensive dataset of Web Images was created for the evaluation of 

the method. This dataset can prove useful as a first step towards creating 

ground truth information for Web Image analysis. The statistical 

information obtained from the dataset is representative of the current state 

of the World Wide Web, as far as it concerns the use of images in Web 

Pages. 

• Two anthropoc

ds. 
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• A connected component classification method was also developed, which 

is optimised to the problem of Web Image analysis. A vast number of 

connected components are generally produced for Web Images as a

of the complicated colour schemes used. The classification method is 

designed to cope with this situation by assessing lines of components, 

instead of individual ones. 

ies and new directions for research were identified. 

e methods. 

his thesis presented novel methods for extracting text from Web Images. A 

number of key issues were successfully addressed, although some problems still exist. 

eb 

Document Analysis, by suggesting new ways for making the text embedded in Web 

Images accessible for further analysis. 

 result 

• Future possibilit

Possible optimisations for the existing methods were suggested, and the 

main requirements for similar research were clearly laid out. 

To summarize, the text extraction (segmentation and classification) methods 

presented in this thesis address a number of problems associated with Web Images. 

Nevertheless, there are certain cases which the methods developed cannot cope with. 

Most of these cases are associated with complicated colour schemes and text 

renderings. Future work should focus on those extreme situations. 

Equally important for future text extraction methods developed, is the 

enlargement of the dataset used and the creation of associated ground truth 

information. This will prove an important tool for improving and optimising existing 

and futur

T

The methods discussed here make a significant contribution to the field of W

 

 



 

 

 

 

 

Appendix  A 

A.  Human Vision and Colorimetry, 
A discussion on Colour Systems 

 

 

 

his appendix gives an overview of Human Vision and Colour Perception and 

presents a number of colour systems widely used. Basic definitions and 

concepts of colorimetry are also given here. Finally, a detailed description of the 

experiments conducted to determine the discrimination thresholds for Lightness, Hue 

and Colour Purity (Saturation) is described and results are presented. 

A.1. Human Vision and Colorimetry 

olour is the perceptual result of light having wavelength from 400 to 700nm that is 

incident upon the retina. To be more precise, when referring to the perceptual result, 

the le when referring to the characteristic 

of the radiant energy causing this perceptual result the term Psychophysical Colour 

should be used. 

A.1.1. Human Vision 

The human retina has two types of photoreceptor cells: the cones and the rods. The 

cones are effective in daylight conditions (photopic vision), whereas the rods are 

effe light intensities (scotopic vision). There are three 

types of colour photoreceptor cone cells, which respond to incident radiation with 

T

C

 term Perceived Colour should be used, whi

ctive only at extremely low 
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different spectral response curves. Because there are exactly three types of colour 

photoreceptors, three components are necessary and sufficient to describe a colour, 

providing that appropriate spectral weighting function

 

s are used. 

 

Figure A-1 – The two types of photoreceptor cells found in the human eye: rods and cones. 

 

 only one ty  of rod cell chromatic) 

colour is not perceived during “night vision”. The number of rods in the human eye is 

app 6, while the number of cones is approximately 4 – 6.8·106.  

.2. Colorimetry 

Colorimetry is the branch of colour science concerned, in the first instance, with 

specifying numerically the colour of a physically defined visual stimulus in such a 

ma

i with the same specification look alike, 

Stimuli that look alike have the same specification and 

w many reference lights 

As far as it concerns the rods, as there is pe , (

roximately 110 – 125·10

A.1

nner that: 

When viewed by an observer with normal colour vision, under the same observing 

conditions, stimul

The numbers comprising the specification are continuous functions of the physical 

parameters defining the spectral power distribution of the stimulus. 

Colour matching is the process of finding the amounts of n reference lights 

required to give by additive mixture a match with the colour considered. There are 

three central questions introduced by the above sentence: ho
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are needed, which exactly reference lights should be used, and what amounts of them 

 colour. 

he answer to the first question is straightforward: colour vision is inherently 

tric

s of the reference lights needed to be 

mixed to produce the colours). 

 

need to be mixed to produce a given

T

hromatic; therefore, a set of three appropriate spectral weighting functions is 

sufficient for colour matching. The reference lights mentioned before are directly 

defined upon the spectral weighting functions. The objective here is to choose the 

spectral weighting functions in such a way so that different colours are represented by 

different sets of values (denoting the amount

0
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Figure A-2 – The CIE’s colour matching functions f he standard observer. or t

 

The CIE (Commission Internationale de l’Eclairage or International Commission 

on Illumination) standardized a set of spectral weighting functions that models the 

perception of colour. These curves, defined numerically, are referred to as the x , y , 

and z  colour matching functions for the CIE standard Observer. Given a continuous 

spectral power distribution, CIE’s X, Y and Z tristimulus values are computed by 

integrating the spectral power distribution using the x , y , and z weighting functions. 

The CIE designed their system so that the Y value has a spectral sensitivity that 

corresponds to the lightness sensitivity of human vision. 

A.1.3. Colour Discrimination 

The

g colour discrimination are summarized in Table 

A-1 [181]. 

 ability to distinguish between colours is affected by numerous factors. The 

principal factors influencin
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Factor Change 
Ability to  

Discriminate Colours 

Wavelength Separation ▲ ▲ 

Colour Purity ▲ ▲ 

Brightness ▲ ▲ 

Colour Stimulus Size ▲ ▲ 

Brightness Adaptation Level ▲ ▲ 

Number of Colours ▲ ▼ 

Display Background   

    Light  ▲ 

    Dark  ▼ 

Colour Stimulus Location   

    Central  ▲ 

    Peripheral  ▼ 

Type of Discrimination Required   

    Relative (comparative)  ▲ 

    Absolute (identification)  ▼ 

Table A-1 – Principal factors affecting the ability to distinguish between colours. 

 

A.2. Colour Systems  

Throughout history, different ways to systematically order colours were sought by 

scientists, artists and philosophers in various contexts. Aristotle was probably the first 

to investigate colour mixtures. Aristotle’s linear sequence of colours is the first 

attempt to construct a system of colours. It can be observed during the course of day: 

the white light of noon becomes tinged with yellow, and changes gradually to

and red. After sunset, it becomes purple, then dark blue, and finally black. 

Other attempts to organize colours in a colour system were made by numerous 

scientists, artists and philosophers, including Plato, Pythagoras, Leonardo da Vinci, 

Ne

he vast majority of colour reproductions do not attempt to reconstruct the 

spectral composition of the original colours, but only to elicit in the retina’s three 

different types of cones the same or similar responses. 

 orange 

wton, Goethe, Maxwell and more recently by Munsel, the CIE (Rösch, MacAdam, 

Stiles) etc. The main function of a colour system is to code a given colour in such a 

way that it can be accurately reproduced at a later time. 

T
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 thorough presentation and comparison of colour systems is out of the scope of 

this  the ones used in this thesis 

and limited information is given: the transformations used, and main characteristics. 

A.2.1. RGB 

The RGB colour system (Figure A-3) is used for colour reproduction in Cathode Ray 

Tube (CRT) displays. Colours in CRTs are produced by mixing three lights of 

different colours (red, green and blue), produced by the phosphors of the screen. The 

three components of the RGB colour system enote the amount of light of each colour 

that needs to be mixed. Depending on the technical and physical characteristics of the 

CRT display, only a certain gamut of colours can be produced. The largest range of 

col

N e ss i ard primaries and no standard white 

point RGB information alone is not adequate to reproduce the original colours if the 

hardware changes. 

 

 R G B White 

A

 appendix. The colour systems presented here are only

 d

ours will be produced with primaries that appear red, green and blue, and that is 

the reason why phosphors producing colour stimulus with exactly those primaries are 

employed. ev rthele , s nce there are no stand

x 0.640 0.300 0.150 0.3127 

y 0.330 0.600 0.060 0.3290 

z 0.030 0.100 0.790 0.3582 

Table A-2 - Primaries and D65 white point of Rec. 709 
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Figure A-3 – The RGB Colour Space. 

 

Although contemporary CRT displays have slightly different standards around the 

world, international agreement has been obtained on primaries for high definition 

television (HDTV), and these primaries are closely representative of contemporary 

display  The standard is noted ITU-R Recommendation BT.709 (Table 

A-2). The sRGB colour  defined as pa  this standard, as a colour 

indepen ent extension of RGB colour system hardware information 

ensures the accurate reproduction of colours across different hardware configurations. 

If hardware information is not available, one can use the  ones, 

based on the assumption that the hardware used conforms to Rec. 709 within some 

tolerance (which is usually the case). This provides us with a standard way to 

transform between RGB values and CIE XYZ, by using the transformations defined for 

sRGB (Eq. A-1, Eq. A-2). 
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 is hardware oriented. Numerous other colour systems exist 

which are user-oriented, meaning that they are based on more human oriented 

concepts. Colour systems like HSV, HLS, HSI etc fall in this category. Such systems 

usually em

A.2.2. HLS 

The RGB colour system

ploy three components, namely Hue, Saturation and Lightness (or Value, 

or Intensity, or Brightness), corresponding to the notions of tint, shade and tone. 

Specifically Hue represents the “redness”, “greenness”, “blueness” etc of the colour 

and corresponds to the colorimetric term Dominant Wavelength. Lightness denotes 

the perceived Luminance (as a matter of fact, for self-luminous objects the correct 

term is Brightness). Saturation denotes the purity of the colour, corresponding to the 

colorimetric term Excitation Purity. The lower the Saturation, the closer the colour is 

to grey. 

 

 

Figure A-4 – The HLS double hexcone colour space.. 
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The HLS colour system (Figure A-4) is one such system used in this thesis. It is 

defined in the double-hexcone subset of a cylindrical space. Hue is the angle around 

the vertical axis of double hexcone, with red at 0º and colours occurring counter 

clockwise in the order: red, yellow, green, cyan, blue and magenta. The complement 

of any Hue in this system is located 180º farther around the double hexcone. 

Saturation is measured radially from the vertical axis (value of 0) to the surface (value 

of 1). Lightness is 0 for black, which occurs at the lower tip of the double hexcone, 

and 1 for white, at the upper tip. 

All greys in the HLS system have Saturation equal to zero, while the maximum 

saturated colours occur for Saturation equal to 1 and Lightness equal to 0.5. The Hue 

component of the HLS colour system is expressed as an angle, so it presents a circular 

repetition. The 2π-modulus nature of the Hue component can be an advantage or a 

disadvantage in different properties. The principle problems appear during 

o HLS are given below: 

computations with the Hue components. Any type of clustering or histogram analysis 

has to take this circular repetition in account to correctly process HLS data. 

The transformations from RGB t
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The inverse transformations are as follows: 
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o transform between the HLS and CIE XYZ systems, an intermediate 

transformation to RGB (sRGB) is needed, then we use the matrix transformation given 

A.2.3. CIE XYZ 

The CIE XYZ system has already been described in the previous section. The three 

components of this system are the tristimulus values computed to match any given 

colour based of the 

T

in section A.2.1. 

x , y , and z  colour matching functions for the CIE standard 

Observer. CIE XYZ colour space is illustrated in Figure A-5. 

 

 

Figure A-5 – The CIE XYZ Colour Space. 

 

It is convenient for both conceptual understanding and computation, to have a 

representation of “pure” colour in the absence of luminance. The CIE standardized a 

procedure for normalizing XYZ tristimulus values to obtain two chromaticity values x 

and y (Eq. A-7). A third chromaticity value, z, can be computed similarly, however it 

is redundant due to the identity x + y + z = 1. 
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ZYX
Yy
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ZYX
Zz

++
=  Eq. A-7 

 

Essentially the chromaticity diagram is the slice produced by the intersection of 

the CIE XYZ colour space and the plane: x + y + z = 1. The chromaticity diagram can 

be seen in Figure A-6. 

 

 

Figure A-6 – The Chromaticity Diagram (CIE 1931) 

 

A.2.4. CIE LAB and CIE LUV 

The CIE XYZ presents a problem: it is not perceptually uniform. Consider the distance 

of colour C1 (X1, Y1, Z1) to colour C1 + ∆C, and the distance from colour 

C2 (X2, Y2, Z2) to C2 + ∆C, where ∆C is the same in both cases and equal to 

(∆X, ∆Y, ∆Z). Although the distance is the same in both cases, the perceived distance 

between the colours of each pair will not generally be the same. To address this 

problem, the CIE introduced in 1976 two perceptually uniform colour systems: 

CIE LAB (or CIE 1976 L*a*b*) and CIE LUV (or CIE 1976 L*u*v*). 

The CIE LAB colour system is defined by Eq. A-8 with the constraint that 

X/Xn, Y/Yn, Z/Zn > 0.008856. 
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Eq. A-8 

 

If any of X/Xn, Y/Yn, Z/Zn are smaller than 0.008856, Eq. A-9 - Eq. A-11 can be 

used: 
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The tristimulus values Xn, Yn and Zn are those of the nominally white object-colour 

stimulus. (Rec. 709 defines as standard white CIE’s D65 standard illuminant, see Table 

A-2). The colour difference between two colour stimuli is calculated from: 

 

( ) ( ) ( )[ ] 2
12*2*2** baLab ∆+∆+∆=∆Ε  Eq. A-13 
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The CIE LUV colour system is defined by Eq. A-14. 
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Eq. A-14 

 

As can be seen the definition of L* is the same here as in Eq. A-8 and the same 

constraint applies, namely if Y/Yn is less than 0.008856 Eq. A-9 should be used. The 

quantities u′ , v′ and  are calculated from: nu′ , nv′
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Eq. A-15 

 

The tristimulus values Xn, Yn and Zn are similarly to CIE LAB those of the 

nominally white object-colour stimulus. The colour difference between two colour 

stimuli is calculated from: 

 

( ) ( ) ( )[ ] 2
12*2*2** vuLuv ∆+∆+∆=∆Ε  Eq. A-16 

 

If two coloured lights C1 and C2 are mixed additively to produce a third colour, 

C3, and the three of them are plotted on a chromaticity diagram, then C3 should 

ideally lie on the straight line joining C1 and C2 at a position that can be calculated 

from the relative amounts of C1 and C2 in the mixture. The CIE 1932 (x, y) 

Chromaticity diagram (Figure A-6) and the CIE LUV derived (CIE 1976 UCS) 

chromaticity diagram (if u* is plotted against v* for constant L*) exhibit this property, 
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, in applications concerned with small colour differences between 

object colours CIE LAB has been used more than CIE LUV. Furthermore, studies 

indicate that the degree to which the lum ormation is separated from the 

A.3. Colour Discrimination Experiments 

Thi

but not the CIE LAB based one. If L* is constant, straight lines in the CIE 1931 (x, y) 

chromaticity diagram or in the CIE 1976 UCS diagram become, in general, curved 

lines in the (a*, b*) diagram. 

In applications concerned with self-luminous objects, CIE LUV is more often 

used. However

inance inf

colour information in CIE LAB is greater than in other colour systems, such as 

CIE LUV, YIQ, YUV, YCC, XYZ [91]. 

s section details the experiments conducted to measure the least noticeable 

difference between colours based on the three components of the HLS colour system. 

The results presented here were used as the basis to select the appropriate thresholds 

for the aforementioned components in the Split and Merge segmentation method 

described in Chapter 4 of this thesis. 

 

 Property Value 

Monitor   

 Temperature 9300K 

 Phosphors P22 

 Make HP D2846 

 Gamma 2.4 

 Diagonal 492mm (~19.4” viewable)  

Graphics Card   

 Gamma 1.0 

Apparatus   

 Field of View 2º 

 Pattern Used Concentric Disks 

 Viewing Distance 500 mm 

Tab  A-3 – Technical Specification of the Hardware Used 

 

These experiments aim to measure discrimination thresholds for those 

components in realistic computing situations, and are always compared and assessed 

with corresponding biological information when available. Details on the hardware 

le
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used (considered to be typical to the vast majority of computer systems used 

nowadays) are given in Table A-3. The Lightness discrimination experiments were 

repeated for a monitor temperature of 6500 ºK as well as 9300 ºK. 

 

 

Figure A-7 – The configuration dialog for the discrimination experiments. The user has to select the 

type of test, set up the geometry and positioning of the computer/observer, and decide on the type of the 

field of view to be used. 

 

Colour discrimination has been studied in various special investigations by 

presenting to the observer a bipartite visual field, the two parts of which are adjusted 

to be just perceptibly different in some special quantity such as Hue or Brightness. 

icircles), or two concentric 

circular disks. The latter pattern is used for these experiments. The size of the outer 

dis

This practice is adopted here. The typical visual fields used are either a circular 

bipartite field with a vertical dividing line (two sem

k is set to 2 degrees, while the size of the inner disk is set to 1 degree. It is noted 

that decreasing the field size generally results in poorer discrimination. Sizes close to 

2 degrees have been used to obtain the biological data to which the measured 

thresholds are compared, so the selection of this size is also necessary to enable 

comparison. 

Three observers participated in each of the experiments described here. The 

number of observers is not large, but is enough to give results that correlate to the 
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existing biological data. Having mentioned that, in some of the experiments in the 

literature (e.g. wavelength separation [13]) less than three observers were involved. 

A.3.1. Colour Purity (Saturation) Discrimination 

This experiment aims to measure the threshold above which a purely achromatic 

colour becomes chromatic. Starting with black, white or a mid-grey achromatic colour 

and a fully saturated chromatic colour, the observer is requested to slide a bar 

representing the amount of the fully saturated colour mixed with the achromatic one, 

until a perceivable tint appears (Figure A-8).  

 

 

Figure A-8 – The colour purity test dialog. A 2-degree field is presented to the observer. The inside 

colour changes with the positioning of the sliders on the right, while the outside colour is either black, 

white or mid-grey (depending on the test). 

 

The threshold where a tint appears depends both on the achromatic colour and on 

the Hue of the fully saturated colour used. For this experiment, the three achromatic 

colours mentioned before were tested: black, white and grey (Lightness = 128, 

Saturation = 0). Each of those colours was mixed with all (256 values of Hue) 

possible fully saturated colours, and the threshold where the Hue became detectable 

was measured every time. The initial achromatic colour is presented to the observer as 
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a two-degree field, while the new colour (created by sliding a bar) occupies the inner 

ne-degree of the field. In other words, the observer is presented with two circles, the 

outer one maintaining the initial achromatic colour and the inner one showing each 

tim the colour created by the movement of the bar. Since the change here is 

logarithmic, a second bar is also included for fine adjustment of the amount added. 

o

e 

 

 

Figure A-9 – A vertical slice of the HLS colour system. The three directions on which measurements 

were taken namely White to Pure Colour (WC), Mid-grey to Pure Colour (GC) and Black to Pure 

Colour (BC) are illustrated in the figure. The green area signifies the area of achromatic colours as 

defined by experimental data. 

 

Three sets of values are therefore obtained, which enable us to define the border 

sur t  pure Hue added to 

nd three points indicated by experimental results. These three points are along 

the lines that connect white to pure colour (WC), mid-grey to pure colour (GC) and 

black to pure colour (BC). 

 

face be ween chromatic and achromatic pixels. The amount of

black and white for that Hue to become detectable, give information about colours at 

the edges of the Lightness component, while the amount added to grey, give 

information about the Saturation component. For illustrative purposes, a vertical slice 

of the HLS colour space is presented in Figure 4-5. The line that separates chromatic 

from achromatic colours for each Hue consists of four segments, connecting white, 

black a
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Figure A-10 – Amount of pure hue added to neutral colour before the hue becomes detectable. 

 

Existing biological data describes the amount of pure Hue needed to be added to 

white before the Hue becomes detectable [126, 210]. This data is shown in Figure 4-2 

and later on is compared to the measured thresholds. As explained in Chapter 4, these 

data only cover part of the range of Hues available. Furthermore, the experiments 

described here measure the amount of pure Hue needed to be added to black and to 

mid-grey before the Hue becomes detectable. 
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Figure A-11 – Amount of pure hue (fully saturated colour) added to white, mid-grey and black, before 

that hue becomes detectable. 
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(a) (b) 

Figure A-12 – A comparison of the measured data (amount of pure hue added to white colour before that hue 

becomes detectable) to the biological data available. (a) X-axis is expressed wavelengths (only a portion of the 

measured data is visible). (b) X-axis is expressed in Hue values (biological data is not available for the 

range 194-240). Good correlation with the biological data can be seen for the range of wavelengths 525 to 650, 

while for wavelengths smaller than ~525nm biological data suggest stricter thresholds. 

 

hown here have been smoothed by use of 

the moving average. Figure A-11 shows the amount of pure Hue needed to be added 

to each of the achromatic colours tested before the Hue becomes detectable. In Figure 

A-1 ween the biological data available and the thresholds 

Three observers participated in the experiments. The average of the thresholds 

measured are presented here. The graphs s

2, a comparison is made bet

measured here (the amount of pure Hue added to white for the Hue to become 

detectable). Finally, Figure A-13 shows a horizontal slice of the HLS system, for 

L = 128 (at the level of the mid-grey colour tested), showing the thresholds measured. 
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(a) (b) 

Figure A-13 – (a) A horizontal slice of the HLS colour space at L = 128. The centre area marks the 

colours considered achromatic based on the measurements made. A magnification of the centre area is 

shown in (b). The slices appear cyclical instead of hexagonal here for illustrative purposes. 

A.3.2. Hue Discrimination 

In a similar manner to the colour purity discrimination experiment, we measured the 

minimum change of Hue required for a detectable difference in Hue to appear. For 

each of the 256 possible fully saturated colours, the observer is presented with 2 

two-degree concentric disk fields (Figure A-14). The outer disc of both shows the 

 pattern is used to judge when a detectable change occurs by 

reducing the Hue value, while the other by increasing the Hue value. Therefore, for 

each Hue value, two thresholds are measured: the positive and the negative change 

needed for a detectable change to occur. In the figures below, the average values for 

the thresholds are reported. 

 

initial colour, while the inner discs show the colours created by the moving two 

sliding bars. The left

 272
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Figure A-14 – The Hue discrimination test dialog. Two 2-degree fields are presented to the observer. 

The colours change with the positioning of the sliders below the patterns, while the outside 

colo

 

 inside 

ur is the fully saturated colour for the Hue value selected from the colour bar. 
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Figure A-15 – The average difference required for a detectable difference in Hue to appear. 

 

The biological data available for wavelength discrimination in comparison to the 

measured Hue discrimination thresholds appear in Figure A-15 and Figure A-16. The 

strong correlation to the existing data is evident. 
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Figure A-16 – The positive and negative changes required for each Hue for a detectable difference in 

Hue to appear. Biological data do not exist for Hues in the range ~ 194-240. 

 

A.3.3. Lightness Discrimination 

The last experiment conducted aims to measure the increase in Lightness required for 

a detectable difference in Lightness to occur. For every shade of grey, the observer is 

presented with a 2-degree field similarly to the previous experiments. The outer disk 

appears in the shade of grey currently being tested, while the inner disk presents the 

colour selected by moving a slider (Figure A-17). The observer is asked to move the 

slider to the point that a detectable difference between the two disks first appears. 

Before presenting the results of this experiment, it is useful to provide some 

definitions for Luminance, Brightness and Lightness. Luminance is a quantity used to 

describe the luminous power (flux) in a specified direction and at a specified point on 

a surface element of the source, or on a surface element of a detector placed in the 

specified direction at some distance away from the source. Luminance is a physical 

quantity measured in cd·m-2. 

According to Wyszecki and Stiles [211] “Brightness is defined as the attribute of a 

visual sensation according to which a given visual stimulus appears to be more or less 

intense, or according to which, the area in which the visual stimulus is presented 

appears to emit more or less light”. The magnitude of Brightness can be estimated for 

 274
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unrelated visual stimuli, as well as for related visual stimuli. Unrelated visual stimuli 

are

presented in a simple or complex display of other visual stimuli. The relation between 

brightness and luminance is described by a power law in the form

The values a and B0 depend on the observing conditions (filed size, luminance of 

surround etc.). 

 

 stimuli presented individually in isolation (darkness). Related visual stimuli are 

 0
31.0 BLaB −⋅= . 

 

Figure A-17 - The Lightness discrimination test dialog. A 2-degree field is presented to the observer. 

The inside colour change with the positioning of the slider below the pattern, while the outside colour 

is the grey scale (Saturation=0) for the Lightness value selected from the grey-scale bar. 

 

is defined tt bute of a al sensat whic

area in which the visual stimulus is presented appears to emit more or less light in 

proportion to that emitted by a similarly illuminated area perceived as a “white” 

stimulus. Lightness is thus an attribute of visual sensation that has a meaning only for 

rela ed visual  As Lightness is j ference to th  

“white” stimulus, it may be considered a special form of Brightness measure that 

could be referred to as relative Brightness. If a uniform Lightness scale is created 

Lightness  as the a ri  visu ion according to h the 

t stimuli. udged with re e Brightness of a
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(where the perceived difference between consecutive Lightness steps is the same), 

then the relationship between V (the ordinal value of the step, starting form zero for 

black) and luminance can be expressed by means of an empirical formula in the form 

of a power law

On top of that, the luminance generated by a physical device is generally not a 

linear function of the applied signal. A conventional CRT has a power law response to 

voltage: luminance produced at the face of the display is approximately proportional 

to the applied voltage raised to the 2.4 2.5 are typical values for CRT 

monitors). The numerical value of the exponent of this power function is colloquially 

known as gamma. 
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Figure A-18 – Discrimination of luminance differences. 

 

The biological information available on discrimination is based on Luminance. 

Specifically, for each luminance level, the least change in Luminance was measured 

for which a detectable change occurred. Those biological results are presented in 

Figure A-18. The curve shown exhibits a sharp bend at a Luminance of roughly 

5·10-3 cd·m-2. This break signifies that at Luminance levels below that value, 

judgements of luminance differences were effectively made by using parafoveal 

vision, strongly introducing the rod mechanism (“night vision” photoreceptor cells). 

Above this level, foveal vision is dominant, while for levels higher than ~100 cd·m-2 

the ratio tends to be constant and equal to 0.01. 
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Figure A-19 – Lightness discrimination thresholds for two temperatures of the CRT monitor used. As 

can be seen power functions fit well on the measured data. 

 

The expe performed here, are actually measuring Lightness least 

noticeable differences and not Luminance ones. The conversion between the two is 

not straightforward, since it depends on a number of factors, related not only to the 

hardware used, but also to the environment the experiments took place. The curve of 

the thresholds obtained is expected to follow a power law, with larger least-noticeable 

steps at low levels of Lightness, and smaller ones for higher levels. The results 

obtained are illustrated in Figure A-19. A power function can be fitted well on the 

curve as shown in the figure. 
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B. Fuzzy Inference Systems 

 

s all abo e relat mportance of precision. You are approaching 

t and must advise a student when to apply the brakes, would you say: 

“begin braking 65 feet from the crosswalk”?  would our adv be m like 

“apply the brakes pretty soon”? The latter, is not a precise statem

the necessary information in a way human beings understand and is much closer to 

everyday statements. Fuzzy logic provides an easy way to describe such situations. 

e ersh Funct ns 

The point of fuzzy logic is to map a ary 

m  for doing this is a list of -then statements called rules. All rules are 

e ted in parallel, and  order he rules is unimpo ant. Th es them lves 

are useful because they refer to variables and the adjectives that describe those 

variables. All those structural elements of the rules have to be defined prior to using 

t

F
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Figure B-1 – (a) The definition of “weekend days” using a classical set. (b) The definition of “weekend 

days” using a fuzzy set. Although technically Friday should be excluded from the set, it feels like part 

of the weekend, so in the latter case it is assigned a partial membership to the set. 

 

The concept of the Fuzzy Set is of great importance to fuzzy logic. A Fuzzy Set is 

a set without a clearly defined boundary. In a classical definition, a set is a container 

that wholly includes or wholly excludes any given element. There is not such a thing 

as an element being both part of the set and not part of the set, consequently, of any 

subject, one thing must be either asserted or denied, must be either true or false. A 

fuzzy set on the other hand, allows elements to be partially members of it. For 

example, trying to define a set of days comprising the weekend one would agree that 

Saturday and Sunday belong to the set, but what about Friday. Although it should be 

technically excluded, it “feels” like part of the weekend (Figure B-1). Fuzzy sets are 

used to describe vague concepts (weekend days, hot weather, tall people). 

In fuzzy logic, the truth of any statement becomes a matter of degree. Friday can 

be part of the weekend to a certain degree. So, instead of assigning true (1) or false (0) 

membership values to each element, fuzzy logic allows for in-between degrees of 

membership to be defined (Friday is sort of a weekend day, the weather is rather hot). 

Everyday life suggests that this second approach is much closer to the way people 

think. For the above example, one could give a value representing the degree of 

membership of each day of the week to the fuzzy set called “weekend”. A 

Membership Function is a curve that defines how each point in the input space is 

mapped to a membership value (or degree of membership) between 0 and 1. The input 

space is sometimes referred to as the Universe of Discourse. 
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B.2. Logical Operations 

Since we allowed for partial memberships to fuzzy sets (degrees of membership 

between true and false), the logical reasoning has to slightly change, to accommodate 

this. Fuzzy logical reasoning is a superset of standard Boolean Logic. If we keep the 

fuzzy values at their extremes (1 and 0) standard logic operations should hold. 

Consequently, the AND, OR and NOT operators of standard Boolean Logic have to be 

replaced by operations that behave in the same way if the fuzzy values are at their 

extremes. One widely used set of operations used is illustrated in Figure B-2. A AND 

B becomes min(A, B), A OR B becomes max(A, B) and NOT(A) becomes 1-A. 

 

A B
0 0
0 1
1 0
1 1

A and B
0
0
0
1

min(A,B)
0
0
0
1

AND

A B
0 0
0 1
1 0
1 1

A or B
0
1
1
1

max(A,B)
0
1
1
1

OR

not A
1
0

NOT

A
0
1

1 - A
1
0

 

Figure B-2 – Boolean Logic and Fuzzy Logic operations. If we keep the fuzzy values at their extremes 

(1 and 0) standard Boolean Logic operations hold. 

 

B.3. If-Then Rules 

Fuzzy sets and fuzzy operators are the verbs and subjects of fuzzy logic. A set of 

if-then statements called rules is used to formulate the conditional statements that 

comprise fuzzy logic. A single fuzzy rule assumes the form: “if x is A then y is B”, 

where A and B are linguistic values defined by fuzzy sets. The if-part of the rule is 

called the antecedent, while the then-part of the rule is called the consequent. An 

example of a fuzzy rule might be “if distance from crosswalk is short, then braking is 

hard”. Here “short” is represented as a number between 0 and 1, therefore the 

antecedent is an interpretation that returns a single number between 0 and 1. On the 

other hand, “hard” is represented as a fuzzy set, so the consequent is an assignment 

that assigns the entire fuzzy set “hard” to the output variable “braking”. 

The use of the word “is” here is twofold, depending on whether it appears in the 

antecedent or the consequent. In the antecedent “is” has the meaning of a relational 
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test (similar to “= =” of C++), while in the consequent is used as an assignment 

operator (like “=” of C++). 

Interpreting a fuzzy rule involves different parts. First, the antecedent has to be 

evaluated, that is the input must be fuzzyfied and any fuzzy operators must be applied. 

Then the result must be applied to the consequent (a process known as implication).  

If the antecedent is true to some degree of membership, then the consequent is also 

true to the same degree. The most common ways to modify the output fuzzy set are 

truncation, or scaling. 

In general, more than one rules are used, each one outputting a fuzzy set. The 

output fuzzy sets are the aggregated into a single output fuzzy set, which is ultimately 

defuzzyfied, or resolved to a single number. 

Fuzzy Inference is the process of formulating the mapping from a given input to 

an output using fuzzy logic (Figure B-3). The mapping then provides a basis from 

which decisions can be made, or patterns discerned. The process of fuzzy inference 

involves all of the pieces described here. There are two main types of fuzzy inference 

systems: Mamdani-type and Sugeno-type, mainly differing in the way the outputs are 

determined. The fuzzy inference system used in this thesis is a Mamdani-type one, 

where the implication method employed is truncation, and the defuzzyfication method 

is the centroid calculation of the final output curve. 
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If Speed is Low and Road is Dry then Distance to stop is Small

If Speed is Average then Distance to stop is Average

If Speed is High or Road is Wet then Distance to stop is Large

Speed = 3

Input 1

Road = 5

Input 1

1. Fuzzy Inputs
2. Apply Fuzzy

Operation
3. Apply Implication 

Method
4. A

pply A
ggregation M

ethod

5. Defuzzify the Output (Centroid)

Distance to Stop = 6

Output

 

Figure B-3 – A complete Fuzzy Inference System. The five steps of mapping the input values to the 

output are depicted here. 
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Appendix  C 

C. The Data Set 
 

 

 

n this appendix, the images of the data set are presented, along with statistical 

data for the data set, and per image results for the two segmentation methods. 

The Images are presented by category. 

 

C.1. Multi-Coloured Text over Multi-Coloured Background 

 

ArtWizard EasyNews Extigy Minority eport NikonPreview R

 
 

LucasTheatre SearchNASA Shw ies Sp

  

MakeADifference ThePow fMyth WorlSciNet erO

  

PaperBanner PlanesOfPower SixSigma 

I
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C.2. Multi-Coloured Text over Single-Coloured Background 
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C.3. Single-Coloured Text over Multi-Coloured Background 

  
 

123 AdvertisedSpecials BarnesNoble Dixons HomeGrey 

 

 
 

Faultline High CruisesAdvertisment 

  

Littlewoods Forum DotNet 

 
HPAdvert1 Lycos 

 
  

 

MZ Salem RedRover InformationWorks MSWindows 

 

Openwave 

   

 

HPAdvert2 Puzzles TBS WindowsOperating SelectedSite 

 
  

Reuters SoapCityRadio SavingTheAmazon 
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C.4. Single-Coloured Text over Single-Coloured Background 

 
 

 
  

3ComApplications ApacheDigital Apache BICLogo BuyItOnLine 

 
 

3ComServices Cisco Bizrate 

  
 

AltaVista Comet BritishAirways 

  

FirstGov Observatory 

  

HeraldTribune Frogs 
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C.5. Additional Information on the Data Set 

Image Name Width Height DPI BPP File Type Num of 
Colours 

ArtWizard 125 80 73 8 GIF 128 
EasyNews 283 163 72 24 JPEG 11860 
Extigy 150 108 72 8 GIF 128 
LucasArtsTheatre 322 47 72 24 JPEG 10267 
MakeADifference 480 60 72 24 JPEG 19689 
MinorityReport 156 85 100 24 JPEG 6216 
NikonPreview 127 76 73 8 GIF 128 
PaperBanner 200 38 72 8 GIF 64 
PlanesOfPower 120 60 72 24 JPEG 5020 
SearchNASA 120 73 73 8 GIF 108 
SheSpies 153 117 72 8 JPEG 10417 
SixSigma 75 67 72 24 JPEG 2386 
ThePowerOfMyth 226 83 72 8 GIF 31 
WordSciNet 132 50 72 24 JPEG 1510 
24bit 142 98 72 24 JPEG 2630 
DisneyLogo 162 25 73 8 GIF 60 
Eax 138 35 72 8 GIF 32 
eBayLogo_Large 170 59 73 8 GIF 32 
Google 600 130 72 8 GIF 128 
Homestead 158 50 72 8 GIF 64 
InformationSolutions 132 37 72 8 GIF 16 
Micrografx 250 198 72 24 JPEG 8738 
PreviousConnect 118 27 72 8 GIF 255 
ResearchIndex 370 44 73 8 GIF 256 
Samsonite 212 163 72 8 GIF 208 
SmallSetiLogo 76 37 72 8 GIF 63 
UPCLogo 80 30 73 8 GIF 37 
VerizonLogo 147 141 73 8 GIF 32 
WhatDoIDo 450 30 73 8 GIF 22 
123 154 70 73 8 GIF 128 
AdvertisedSpecials 150 93 72 8 GIF 128 
BarnesNoble 244 62 72 8 GIF 20 
CruisesAdvertisment 244 77 72 8 GIF 256 
Dixons 185 87 73 8 GIF 64 
dotNet 250 60 73 8 GIF 128 
Faultline 200 38 72 24 JPEG 3225 
Forum 104 52 72 8 GIF 56 
HelpWhales 216 62 72 24 JPEG 11170 
High 111 27 72 24 JPEG 2591 
HomeGray 112 64 300 24 JPEG 1274 
HPAdvert1 602 116 72 24 JPEG 9656 
HPAdvert2 120 201 72 24 JPEG 18029 
InformationWorks 545 354 150 24 JPEG 29440 
InternetBanking 400 40 73 8 GIF 57 
Littlewoods 142 30 72 8 GIF 32 
Lycos 319 50 72 8 GIF 31 
MSWindows 273 120 72 8 GIF 94 
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Image Name Width Height DPI BPP File Type Num of 
Colours 

MZ 120 60 72 24 JPEG 4682 
Openwave 124 30 73 8 GIF 205 
Puzzles 120 240 73 8 GIF 111 
RedRover 93 68 72 8 GIF 233 
Reuters 171 20 72 8 GIF 32 
Salem 310 190 72 24 JPEG 15146 
SavingTheAmazon 202 62 72 24 JPEG 10277 
SelectedSite 77 77 72 8 GIF 214 
SetiLogo 196 66 72 24 JPEG 5236 
SoapCityRadio 120 60 72 24 JPEG 4484 
SoftwareAssurance 75 65 72 24 JPEG 3112 
SportScience 200 38 72 8 GIF 64 
TBS 120 240 72 8 GIF 128 
VaioAdvert 270 89 72 24 JPEG 8292 
Warner 310 111 73 8 GIF 127 
Windows2000 250 60 72 8 GIF 128 
WindowsLogo 250 60 72 8 GIF 256 
WindowsOperatingSystem 181 225 72 8 GIF 216 
WinVacation 140 141 72 8 GIF 126 
3ComApplications 244 167 72 24 JPEG 14509 
3ComServices 297 77 72 8 GIF 62 
AltaVista 211 45 72 8 GIF 16 
Apache 120 15 73 8 GIF 223 
ApacheDigital 150 80 72 24 JPEG 1973 
BICLogo 149 60 72 8 GIF 41 
BizRate 193 54 72 8 GIF 64 
BritishAirways 189 48 73 8 GIF 124 
BuyItOnLine 131 61 72 8 GIF 15 
Cisco 100 35 73 8 GIF 62 
Comet 160 58 72 8 GIF 16 
Corsa 142 130 73 8 GIF 89 
Creative 141 45 72 8 GIF 32 
Currys 148 80 73 8 GIF 16 
FedEx 75 24 72 8 GIF 16 
FirstGov 770 63 72 24 JPEG 21998 
Foundry 120 61 73 8 GIF 116 
Frogs 200 38 72 8 GIF 64 
Fujitsu 95 64 72 8 GIF 17 
FullHeightCharacter 131 77 72 24 JPEG 1164 
Games 156 86 73 8 GIF 249 
GapLogo 61 74 72 24 JPEG 1053 
Go_Button 23 23 73 8 GIF 64 
HarrysNest 160 174 72 24 JPEG 3883 
HeraldTribune 413 60 72 24 JPEG 2198 
HPInvent 66 55 72 8 GIF 12 
HungerSite_Button1 120 60 73 8 GIF 121 
IARP 240 96 72 8 GIF 2 
IntelLogo 98 54 72 8 GIF 16 
MicrosoftHome 250 60 72 8 GIF 253 
MicrosoftLogo 250 60 72 8 GIF 248 
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Image Name Width Height DPI BPP File Type Num of 
Colours 

Nokia5510 156 85 92 24 JPEG 6225 
NokiaLogo 135 50 73 8 GIF 12 
Observatory 200 38 72 24 JPEG 3272 
PartyPlanner 125 80 73 8 GIF 127 
php 120 64 73 8 GIF 158 
PinkPanther 385 101 72 8 GIF 32 
RainForest_Button1 122 61 73 8 GIF 49 
Search_Button 50 18 72 8 GIF 28 
Siemens_Logo 128 18 72 8 GIF 16 
Solaris 57 44 73 8 GIF 185 
SonyStyle 211 54 72 8 GIF 24 
Sun 112 62 73 8 GIF 73 
TheFeature 156 75 83 8 GIF 128 
TomorrowNetworld 164 60 72 8 GIF 78 
Truste 116 31 73 8 GIF 9 
VeriSign 113 60 73 8 GIF 53 
WhatYouCanDo 215 103 72 8 GIF 10 
WindowsXP 166 111 72 8 GIF 128 
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C.6. Per Image Results for the Split and Merge 
Segmentation Method 

Image Name 
Number of 
Characters 

In Image 

Number of 
Readable 

Characters

Number of 
Non-Readable 

Characters 

Readable 
Characters 
Correctly 
Identified 

Readable 
Characters 

Merged 

Readable 
Characters 

Split 

Readable 
Characters 

Missed 

ArtWizard 9 9 0 3 0 6 0 
EasyNews 22 22 0 16 0 6 0 
Extigy 18 6 12 1 0 5 0 
LucasArtsTheatre 16 16 0 9 0 6 1 
MakeADifference 28 28 0 13 0 12 3 
MinorityReport 24 14 10 4 0 2 8 
NikonPreview 12 12 0 11 0 1 0 
PaperBanner 32 32 0 14 0 8 10 
PlanesOfPower 28 17 11 6 0 11 0 
SearchNASA 16 16 0 14 0 1 1 
SheSpies 8 8 0 3 0 1 4 
SixSigma 9 1 8 1 0 0 0 
ThePowerOfMyth 14 14 0 12 0 1 1 
WordSciNet 28 11 17 8 0 0 3 
24bit 18 5 13 3 0 2 0 
DisneyLogo 9 9 0 0 0 9 0 
Eax 3 3 0 3 0 0 0 
eBayLogo_Large 8 8 0 6 0 2 0 
Google 30 28 2 9 0 19 0 
Homestead 27 27 0 18 9 0 0 
InformationSolutions 28 28 0 19 0 8 1 
Micrografx 53 26 27 3 0 22 1 
PreviousConnect 8 8 0 6 2 0 0 
ResearchIndex 54 54 0 28 21 2 3 
Samsonite 19 19 0 15 0 3 1 
SmallSetiLogo 4 4 0 0 0 0 4 
UPCLogo 3 3 0 3 0 0 0 
VerizonLogo 7 7 0 7 0 0 0 
WhatDoIDo 31 31 0 15 16 0 0 
123 3 3 0 3 0 0 0 
AdvertisedSpecials 19 19 0 16 2 0 1 
BarnesNoble 23 23 0 23 0 0 0 
CruisesAdvertisment 33 33 0 33 0 0 0 
Dixons 6 6 0 6 0 0 0 
dotNet 12 12 0 8 0 4 0 
Faultline 21 21 0 19 0 0 2 
Forum 29 29 0 15 0 10 4 
HelpWhales 35 35 0 31 0 4 0 
High 4 4 0 0 0 4 0 
HomeGray 4 4 0 4 0 0 0 
HPAdvert1 47 31 16 28 2 1 0 
HPAdvert2 44 19 25 11 0 8 0 
InformationWorks 16 16 0 7 1 5 3 
InternetBanking 15 15 0 15 0 0 0 
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Image Name 
Number of 
Characters 

In Image 

Number of 
Readable 

Characters

Number of 
Non-Readable 

Characters 

Readable 
Characters 
Correctly 
Identified 

Readable 
Characters 

Merged 

Readable 
Characters 

Split 

Readable 
Characters 

Missed 

Littlewoods 11 11 0 0 11 0 0 
Lycos 4 4 0 4 0 0 0 
MSWindows 24 24 0 6 4 5 9 
MZ 7 7 0 6 0 1 0 
Openwave 8 8 0 4 0 4 0 
Puzzles 35 18 17 14 4 0 0 
RedRover 16 16 0 13 3 0 0 
Reuters 16 16 0 14 0 0 2 
Salem 58 24 34 19 0 2 3 
SavingTheAmazon 15 15 0 11 2 0 2 
SelectedSite 14 14 0 12 0 0 2 
SetiLogo 9 9 0 8 0 1 0 
SoapCityRadio 21 21 0 11 3 4 3 
SoftwareAssurance 17 0 17 0 0 0 0 
SportScience 13 13 0 12 0 0 1 
TBS 70 64 6 46 0 4 14 
VaioAdvert 72 55 17 45 6 2 2 
Warner 21 21 0 11 0 1 9 
Windows2000 20 11 9 1 10 0 0 
WindowsLogo 16 7 9 7 0 0 0 
WindowsOperatingSystem 9 9 0 9 0 0 0 
WinVacation 62 62 0 58 0 4 0 
3ComApplications 83 37 46 31 0 6 0 
3ComServices 79 79 0 55 0 19 5 
AltaVista 25 25 0 21 0 4 0 
Apache 15 6 9 4 0 1 1 
ApacheDigital 13 13 0 13 0 0 0 
BICLogo 4 3 1 3 0 0 0 
BizRate 42 10 32 10 0 0 0 
BritishAirways 14 14 0 14 0 0 0 
BuyItOnLine 15 15 0 10 0 5 0 
Cisco 19 19 0 11 5 0 3 
Comet 14 14 0 14 0 0 0 
Corsa 49 49 0 37 4 8 0 
Creative 8 8 0 8 0 0 0 
Currys 15 6 9 6 0 0 0 
FedEx 5 5 0 0 3 0 2 
FirstGov 39 8 31 8 0 0 0 
Foundry 15 15 0 15 0 0 0 
Frogs 5 5 0 5 0 0 0 
Fujitsu 7 7 0 7 0 0 0 
FullHeightCharacter 42 2 40 2 0 0 0 
Games 5 5 0 5 0 0 0 
GapLogo 9 9 0 0 5 4 0 
Go_Button 2 0 2 0 0 0 0 
HarrysNest 10 10 0 10 0 0 0 
HeraldTribune 55 19 36 11 3 5 0 
HPInvent 8 2 6 0 0 0 2 
HungerSite_Button1 34 13 21 10 0 3 0 
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Image Name 
Number of 
Characters 

In Image 

Number of 
Readable 

Characters

Number of 
Non-Readable 

Characters 

Readable 
Characters 
Correctly 
Identified 

Readable 
Characters 

Merged 

Readable 
Characters 

Split 

Readable 
Characters 

Missed 

IARP 4 4 0 4 0 0 0 
IntelLogo 5 5 0 5 0 0 0 
MicrosoftHome 16 16 0 8 2 0 6 
MicrosoftLogo 9 9 0 4 5 0 0 
Nokia5510 9 9 0 7 0 0 2 
NokiaLogo 21 21 0 9 11 1 0 
Observatory 11 11 0 11 0 0 0 
PartyPlanner 12 12 0 8 4 0 0 
php 3 3 0 3 0 0 0 
PinkPanther 6 6 0 6 0 0 0 
RainForest_Button1 38 17 21 0 0 0 17 
Search_Button 6 0 6 0 0 0 0 
Siemens_Logo 7 7 0 7 0 0 0 
Solaris 7 7 0 2 2 2 1 
SonyStyle 12 9 3 9 0 0 0 
Sun 25 25 0 22 2 0 1 
TheFeature 44 44 0 26 7 9 2 
TomorrowNetworld 15 15 0 15 0 0 0 
Truste 36 6 30 6 0 0 0 
VeriSign 21 21 0 6 2 13 0 
WhatYouCanDo 33 33 0 33 0 0 0 
WindowsXP 18 9 9 9 0 0 0 
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C.7. Per Image Results for the Fuzzy Segmentation Method 

Image Name 
Number of 
Characters 

In Image 

Number of 
Readable 

Characters

Number of 
Non-Readable 

Characters 

Readable 
Characters 
Correctly 
Identified 

Readable 
Characters 

Merged 

Number of 
Readable 

Characters 
Split 

Number of 
Readable 

Characters 
Missed 

ArtWizard 9 9 0 2 0 6 1 
EasyNews 22 22 0 15 2 5 0 
Extigy 18 6 12 6 0 0 0 
LucasArtsTheatre 16 16 0 12 0 2 2 
MakeADifference 28 28 0 14 0 8 6 
MinorityReport 24 14 10 2 2 0 10 
NikonPreview 12 12 0 10 2 0 0 
PaperBanner 32 32 0 25 0 0 7 
PlanesOfPower 28 17 11 7 0 2 8 
SearchNASA 16 16 0 10 2 1 3 
SheSpies 8 8 0 1 0 0 7 
SixSigma 9 1 8 0 0 0 1 
ThePowerOfMyth 14 14 0 10 0 0 4 
WordSciNet 28 11 17 8 0 0 3 
24bit 18 5 13 5 0 0 0 
DisneyLogo 9 9 0 3 0 6 0 
Eax 3 3 0 3 0 0 0 
eBayLogo_Large 8 8 0 7 0 1 0 
Google 30 28 2 24 0 1 3 
Homestead 27 27 0 27 0 0 0 
InformationSolutions 28 28 0 20 0 8 0 
Micrografx 53 26 27 3 0 9 14 
PreviousConnect 8 8 0 5 0 3 0 
ResearchIndex 54 54 0 49 4 1 0 
Samsonite 19 19 0 13 0 1 5 
SmallSetiLogo 4 4 0 1 0 1 2 
UPCLogo 3 3 0 2 0 0 1 
VerizonLogo 7 7 0 1 6 0 0 
WhatDoIDo 31 31 0 17 6 5 3 
123 3 3 0 2 0 0 1 
AdvertisedSpecials 19 19 0 16 0 0 3 
BarnesNoble 23 23 0 17 5 1 0 
CruisesAdvertisment 33 33 0 28 0 0 5 
Dixons 6 6 0 6 0 0 0 
dotNet 12 12 0 8 0 4 0 
Faultline 21 21 0 11 0 0 10 
Forum 29 29 0 17 0 8 4 
HelpWhales 35 35 0 27 0 8 0 
High 4 4 0 4 0 0 0 
HomeGray 4 4 0 4 0 0 0 
HPAdvert1 47 31 16 25 0 0 6 
HPAdvert2 44 19 25 8 11 0 0 
InformationWorks 16 16 0 3 0 0 13 
InternetBanking 15 15 0 12 0 0 3 
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Image Name 
Number of 
Characters 

In Image 

Number of 
Readable 

Characters

Number of 
Non-Readable 

Characters 

Readable 
Characters 
Correctly 
Identified 

Readable 
Characters 

Merged 

Number of 
Readable 

Characters 
Split 

Number of 
Readable 

Characters 
Missed 

Littlewoods 11 11 0 0 11 0 0 
Lycos 4 4 0 4 0 0 0 
MSWindows 24 24 0 8 0 7 9 
MZ 7 7 0 7 0 0 0 
Openwave 8 8 0 6 0 0 2 
Puzzles 35 18 17 18 0 0 0 
RedRover 16 16 0 12 4 0 0 
Reuters 16 16 0 16 0 0 0 
Salem 58 24 34 13 0 7 4 
SavingTheAmazon 15 15 0 12 3 0 0 
SelectedSite 14 14 0 12 0 0 2 
SetiLogo 9 9 0 9 0 0 0 
SoapCityRadio 21 21 0 13 6 2 0 
SoftwareAssurance 17 0 17 0 0 0 0 
SportScience 13 13 0 5 0 0 8 
TBS 70 64 6 40 6 1 17 
VaioAdvert 72 55 17 50 3 1 1 
Warner 21 21 0 12 0 0 9 
Windows2000 20 11 9 1 10 0 0 
WindowsLogo 16 7 9 5 0 0 2 
WindowsOperatingSystem 9 9 0 9 0 0 0 
WinVacation 62 62 0 54 7 1 0 
3ComApplications 83 37 46 21 0 16 0 
3ComServices 79 79 0 53 4 0 22 
AltaVista 25 25 0 21 0 2 2 
Apache 15 6 9 5 0 1 0 
ApacheDigital 13 13 0 11 0 2 0 
BICLogo 4 3 1 3 0 0 0 
BizRate 42 10 32 5 5 0 0 
BritishAirways 14 14 0 12 0 2 0 
BuyItOnLine 15 15 0 4 0 10 1 
Cisco 19 19 0 14 4 1 0 
Comet 14 14 0 14 0 0 0 
Corsa 49 49 0 38 10 1 0 
Creative 8 8 0 8 0 0 0 
Currys 15 6 9 6 0 0 0 
FedEx 5 5 0 0 5 0 0 
FirstGov 39 8 31 6 0 2 0 
Foundry 15 15 0 13 0 0 2 
Frogs 5 5 0 5 0 0 0 
Fujitsu 7 7 0 7 0 0 0 
FullHeightCharacter 42 2 40 0 0 0 2 
Games 5 5 0 5 0 0 0 
GapLogo 9 9 0 1 2 3 3 
Go_Button 2 0 2 0 0 0 0 
HarrysNest 10 10 0 9 0 0 1 
HeraldTribune 55 19 36 9 7 0 3 
HPInvent 8 2 6 2 0 0 0 
HungerSite_Button1 34 13 21 12 0 1 0 
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Image Name 
Number of 
Characters 

In Image 

Number of 
Readable 

Characters

Number of 
Non-Readable 

Characters 

Readable 
Characters 
Correctly 
Identified 

Readable 
Characters 

Merged 

Number of 
Readable 

Characters 
Split 

Number of 
Readable 

Characters 
Missed 

IARP 4 4 0 4 0 0 0 
IntelLogo 5 5 0 5 0 0 0 
MicrosoftHome 16 16 0 9 4 0 3 
MicrosoftLogo 9 9 0 0 9 0 0 
Nokia5510 9 9 0 7 0 1 1 
NokiaLogo 21 21 0 8 4 8 1 
Observatory 11 11 0 9 0 2 0 
PartyPlanner 12 12 0 5 0 0 7 
php 3 3 0 3 0 0 0 
PinkPanther 6 6 0 6 0 0 0 
RainForest_Button1 38 17 21 15 2 0 0 
Search_Button 6 0 6 0 0 0 0 
Siemens_Logo 7 7 0 7 0 0 0 
Solaris 7 7 0 3 0 4 0 
SonyStyle 12 9 3 6 0 0 3 
Sun 25 25 0 22 0 0 3 
TheFeature 44 44 0 32 2 1 9 
TomorrowNetworld 15 15 0 15 0 0 0 
Truste 36 6 30 6 0 0 0 
VeriSign 21 21 0 4 2 12 3 
WhatYouCanDo 33 33 0 33 0 0 0 
WindowsXP 18 9 9 9 0 0 0 
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