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Abstract— In this article we present the design of an analog 

detector for Multiple-Input Multiple-Output (MIMO) wireless 

systems, based on the well known Belief Propagation (BP) 

algorithm. BP has been shown to obtain excellent results when 

solving inference problems in sparsely connected factor 

graphs. Unfortunately, MIMO detection is an example of 

inference in a densely connected graph, so other techniques 

need to be applied. We show that BP in conjunction with 

simulated annealing can offer near optimal performance when 

there is enough diversity in the receiver. Interestingly, this 

algorithm can be easily mapped into analog circuitry, thus 

leading to potentially low-power area-efficient MIMO 

detectors. A small analog detector based on this work has been 

designed and laid out in a 0.25µm BiCMOS process. 

I. INTRODUCTION 

Analog signal processing is an emerging topic with 
applications in an increasing number of fields. In the field of 
communications, the lower power consumption that can be 
achieved with analog circuits makes them an attractive 
alternative to their digital counterparts for signal processing 
tasks in portable devices.  

Analog decoding of channel codes is a good example of 
this new philosophy of receiver design. The natural way in 
which decoding algorithms are mapped into analog circuits 
[1,2] resulted in the fabrication of analog channel decoders 
reporting an improvement of several orders of magnitude in 
power consumption, silicon area or processing speed 
compared to digital designs.  

Many of these circuits implement the sum-product or 
Belief Propagation (BP) algorithm [3]. This algorithm can be 
used to decode the most powerful channel codes such as 
LDPC [4] and turbo codes [5]. In these schemes the 
decoding process takes place on a factor graph where 
messages are propagated between different nodes of a 
network. However, these algorithms cannot be directly 
applied to other communication problems such as MIMO or 
CDMA multiuser detection due to the fully connected nature 

of their factor graphs. In these scenarios, BP-related 
algorithms typically fail to converge, or if they do, the 
quality of the estimations provided is far from optimal. 

It is the aim of this paper to present a first practical 
method of MIMO detection based on BP, which can 
therefore be easily implemented by using well known analog 
decoding structures. This work brings us closer to the design 
of turbo-MIMO receivers in which MIMO detection and 
channel decoding take place in continuous time in an analog 
network. 

The rest of the paper is organized as follows: section II 
introduces spatial multiplexing systems and detection 
algorithm, section III deals with its analog implementation, 
and section IV presents the first implemented analog MIMO 
detector and provides some initial results. Conclusions are 
drawn in section V. 

II. SYSTEM DESCRIPTION AND DETECTION ALGORITHM 

A. System Description. 

Let us consider a coded MIMO system with NT transmit 
antennas and NR receive antennas, as the one depicted 
in Fig. 1. At the transmitter side, K information bits b1:K are 
first encoded to N coded bits c1:N , randomly interleaved, 
modulated and mapped onto all NT  transmit antennas. The 
transmission of the resulting vector x1:NT takes place over a 
narrowband channel represented by a matrix H of size 

NR×NT, where each entry hi,j defines a channel connecting 
transmit antenna j and receive antenna i. This scheme is 
usually referred to as V-BLAST or Spatial Multiplexing [9]. 
The system is typically modelled as: 

 nHxy += a  (1) 

where y is the received vector of length NR, a is a 

normalization constant that makes the total energy per 

symbol equal to unity, and the vector n accounts for the 

Gaussian noise: n ∼ N ( I0
2

,
n

σ ). 
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The receiver will try to retrieve the information bits  
from the received values. Assuming knowledge of the 
channel matrix H, its specific task will be to obtain the full 
set of marginal posterior probabilities (MPPs) given by: 
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The high complexity of this task is usually overcome by 
using so-called turbo detection, a sub-optimal iterative 
method in which a MIMO detector computes 
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and a channel decoder obtains 
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and both independent decoders exchange their extrinsic 
information in an iterative process that usually converges to 
an improved estimation. 

Since analog implementation of the channel decoder 
block has been extensively studied, in the rest of the paper 
we will focus on the implementation of the MIMO detector 
part of the receiver. 

B. Optimal detection. 

The optimal Maximum a Posteriori (MAP) detector 
enumerates all the elements of the joint posterior distribution 
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and then marginalizes out each variable: 
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where x-i stands for “all entries of x except xi”.

 

Given the 
Gaussian likelihood and considering BPSK modulation  

(i.e. xi ∈ [-1,1]) the joint posterior distribution can be 
expressed as
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The values of R and z are given by the channel’s cross-
correlation matrix and the output of the matched filter H

H
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MAP detection has a complexity that grows 
exponentially with the number of transmit antennas, so it 
becomes intractable even for configurations of moderate 
size. Although analog implementation of this optimal 
detector has been proposed [11], its applicability is reduced 
to simple MIMO configurations, so in this paper we opt for a 
sub-optimal algorithm described in the following subsection. 

C. Proposed detection algorihm. 

In order to reduce the complexity of the decoder, 

approximate algorithms can be applied. The values of φ and 

ϕ given by equations (5) and (6) define respectively the 
variable and edge potentials of an undirected graphical 
model to which we can apply message-passing algorithms, 
such as belief propagation, in order to lower the 
computational cost of detection.  

As aforementioned, the main problem we face is that 
these algorithms tend to perform poorly in highly connected 
graphs, such as the one depicted in Fig. 2(a), which 
represents a 4-antenna MIMO system with QPSK 
modulation. In this particular graph, every variable xi is 
connected to the rest of variables except for xmod(i+NT-1,2NT)+1 
due to the orthogonality of the in-phase and quadrature 
components of symbols transmitted from the same antenna. 

Belief propagation tries to estimate the marginal 
probabilities for all variables by means of passing messages 
between local nodes. The local belief at every node is 
calculated as the product of the local evidence and all 
incoming messages [3]: 

 ∏∝

j
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where the message from node j to node i, mji(xi), represents 

the state in which xi should be according to node j.  

 
Figure 1.  Diagram of a coded MIMO system. 



 

 

 

 

 

 

 

 

 

The messages in belief propagation are obtained as: 
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This message update rule results in optimal inference in 

graphs without loops, but also can provide excellent 

results for sparse loopy graphs. The mechanism is best 

represented in a factor graph [6] such as the one of  

Fig. 2(b).  The factor graph contains two types of nodes: 

variable (circles) and function (squares) nodes, and 

messages are passed along the edges. In our particular 

binary case and according to (10), the expressions for the 
messages are: 
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where the constant c (different in both expressions) makes 
the sum of the elements of the messages equal to unity, 
since they represent binary probability distributions. 

Unfortunately, and as previously explained, belief 
propagation does not perform well in the MIMO graphs 
due to the high density of connections. To tackle this 
problem we can resort to simulated annealing [7], a 
generic algorithm for global optimization problems. 

The annealing or ‘temperature’ parameter will be the 

noise variance σn

2
, which will be set to a high value any 

time a new symbol is to be detected, and will be allowed to 
gradually decrease. When the ‘cooling down’ process is 
finished, the variables will hopefully have settled to a 
minimum energy state that will give a good approximation 
to the true marginal probabilities. This method has been 
also used in conjunction with variational techniques such 
as Mean Field to solve multi-user detection problems in 
CDMA [8]. 

Annealing can be applied directly to the inputs of BP 
algorithm, so we can rewrite equations (7) and (8) as: 
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where T(t) is a time-varying temperature parameter. 
Alternatively, it can be applied to the messages in the 
factor graph, although the benefit is minimal and the 
complexity is increased. 

One of the main drawbacks of simulated annealing is 
its slow convergence. We can expect that more iterations 
will be needed than with simple Belief Propagation. In the 
analog circuit this will translate into a longer transient 
response before the output currents have settled to the 
correct probabilities. Fig. 3 shows the bit-error-rate (BER) 
curves for our 4-antenna QPSK system using MAP, BP, 
and Annealing BP algorithms. The results are presented 
for three different configurations using 4, 6 and 8 receive 
antennas respectively. It can be seen how the approximate 
algorithms perform poorly when there is no spatial 
diversity, but the system becomes more orthogonal and the 
performance is improved when the number of receive 
antennas increases.  

  

         

 (a) (b) 

Figure 2. (a) Undirected graphical model for a QPSK MIMO system with NT=4, (b) Factor graph representation. 

 
Figure 3. Simulation results for the uncoded system. 



 

 

 

 

 

 

 

 

 

 
 

 

 

However, near optimal performance can be achieved 
not only with spatial diversity, but also with temporal 
diversity such as the one provided by a fast fading channel, 
or frequency diversity as in a MIMO-OFDM system. 
Fig. 4 shows BER simulations for the whole system of 
Fig.1 with NT = NR = 4, in a fast-fading environment, after 
one single turbo iteration and employing a rate ½ 
convolutional encoder and random interleaver. The high 
degree of temporal diversity makes our algorithm perform 
closely to MAP detection. 

III. ANALOG IMPLEMENTATION 

Analog implementation of BP and related algorithms 
was first proposed in [1], leading to the design of analog 
channel decoders based on the perfect match between 
probability computations and translinear circuits. The most 
common topology is based on a generalized Gilbert 
multiplier circuit depicted in Fig. 5(a), able to obtain the 
product of two probability mass functions, by exploiting 
the exponential voltage-current characteristic of bipolar 
and subthreshold MOS transistors. After analysis of the 
circuit, the following expression for the top currents is 
obtained: 
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If each set of input currents represents a probability 
mass function (i.e. the sums of all elements is equal to a 
reference current equivalent to probability one), the output 
currents can be interpreted as the different elements of the 
product distribution. From this generic circuit, analog cells 
for BP operations have been successfully developed [1]. 
By looking at equations (11) and (12), it is clear that only 
two different probability operations are needed in order to 
implement BP algorithm in our case: 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 









⋅

⋅
=









)1()1(

)0()0(

)1(

)0(

YX

YX

Z

Z

pp

pp

p

p  (16)  

 









⋅+⋅

⋅+⋅
=









)0()1()1()0(

)1()1()0()0(

)1(

)0(

YXYX

YXYX

Z

Z

pppp

pppp

p

p . (17) 

These two operations are respectively known as soft-
equal and soft-XOR and their circuit implementation, 
shown in Fig. 5(b), has been widely used by the analog 
decoding community. The fact that our MIMO detector is 
constructed with the same circuits opens the door to future 
turbo receivers where channel decoding and MIMO 
detection are implemented on a single analog chip. 

The remaining part of the design is to take care of the 
simulated annealing by just adding multiplier circuits 
between the inputs and the belief propagation core, as 
depicted in Fig. 6. We used a common single-ended 
annealing line for all the inputs, which is converted to 
differential and applied to Gilbert multiplier circuits. The 
voltage input will vary in time in order to simulate 
annealing in the belief propagation core. It is worth noting 
that different multiplier topologies may be needed 
depending on the particular design, especially if the inputs 
require a wide dynamic range.  

 

Figure 4. Simulation results for a coded turbo system. 
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Figure 5. (a) Generic probability multiplier, (b) Analog probability gates: 

soft-equal and soft-XOR. 



 

 

 

 

 

 
 

 

IV. EXAMPLE DETECTOR 

A simple proof-of-concept analog MIMO detector has 

been implemented in 0.25µm BiCMOS technology. The 
factor graph of this decoder is shown in Fig. 7, and 
corresponds to a 2-antenna QPSK spatial-multiplexing 
system, although it can also decode some particular  
Space-Time Block Code (STBC) arrangements (e.g. two 
parallel BPSK Alamouti [10] transmitters). 

A bias current of 100µA per block was used. Although 
particular effort was made to obtain good device matching 
in detriment of decoding speed and silicon area, it is 
expected that the circuit can work at up to 30Mbps with an 
estimated power consumption of a few tens of milliwatts. 
The resulting layout is depicted in Fig. 8. 

An example of the function of the circuit is presented 
in Fig. 9 with a short transient simulation, in which 4 
different symbols are mixed by random channel values and 
then decoded by the analog circuit.  

 

 
 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

The top graph represents the output marginal 
probabilities of all four bits in log-likelihood ratio (LLR) 
representation. The annealing voltage is represented in the 
bottom graph. Once the chip is fabricated, effects of 
transistor mismatch and different annealing schedules will 
be analyzed on real silicon. 

V. CONCLUSIONS 

A reduced complexity method for detection in MIMO 
systems has been presented. Analog implementation has 
been proposed based on the analog circuits previously 
applied to channel decoding. This work is aimed to 
represent a first step towards a multi-antenna wireless 
receiver where the signal processing tasks are carried out 
in continuous time by low-power analog circuitry. 
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Figure 9. Transient simulation example. 

        
         

 
Figure 6. Simulated annealing set-up. Figure 7. Implemented factor graph. Figure 8. Layout of the analog MIMO detector. 


