
OPTIMIZED LOW-POWER SYNCHRONIZER DESIGN FOR THE IEEE
802.11a STANDARD

Miloš .UVWLü��$OIRQVR�Troya, Koushik Maharatna, Eckhard Grass

IHP
Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
E-mail: {krstic, troya, maharatna, grass}@ihp-microelectronics.com

ABSTRACT

In this paper the authors propose a low-power
synchronizer design for the IEEE 802.11a standard
capable to estimate frequency offsets in the range ±468
kHz (80 ppm @ 5.8GHz) with very simple and effective
frame detection and timing synchronization. The core area
of the design after layout is 13 mm2, including the
CORDIC and FFT processors, with a total estimated
power consumption of 140 mW.

1. INTRODUCTION

OFDM signals are very sensitive to the synchronizer
performance, mainly because the different sub-carriers
overlap their respective spectra. The synchronizer is the
block responsible for detecting the incoming frame and to
estimate and correct for the possible frequency offsets. It
also decides the starting point from which on the different
OFDM symbols will be fed into the FFT block. To carry
out all of these operations, the IEEE 802.11a standard
defines a specific periodic symbol structure known as
preamble symbols, that are appended at the very beginning
of each transmitted frame [1].

During synchronization the following operations have
to be carried out: frame detection, carrier frequency offset
estimation, symbol timing estimation, extraction of the
reference channel and data reordering. The theory of
synchronization algorithms for this particular application
is well known and will not be described in detail in this
paper. Some theoretical background on the different
operations involved in the synchronization procedure was
presented in [2]. Nevertheless, the structure described
there was primarily a simulation model. To realize an
implementation friendly hardware architecture, several
blocks needed to be optimized. Furthermore, the solution
proposed in [2] introduced a latency of more than 4 µs into
the design, thus making necessary the use of temporary
data storage, which increased the core area of the final

design. In the present work we focus on the critical
hardware issues and accordingly, an optimized design for
the synchronizer is presented. The paper is structured as
follows: in Section 2, the synchronizer data path structure
is described in detail. In Section 3, the optimization of the
most power consuming blocks in this implementation is
investigated and innovative solutions are proposed.
Finally, in Section 4 some conclusions are derived.

2. SYNCHRONIZER DATA PATH STRUCTURE

The general structure of the synchronizer is shown in
Figure 1. Two mutually exclusive operations are present in
the system: tracking for the training sequences and
processing of the observed symbols. This fact can be used
to obtain a power efficient synchronizer design by
applying clock gating. Thus the whole structure was split
into three clock domains and two mutually exclusive
paths: tracking data path and processing data path.

2.1. Tracking data path

The main function of the tracking data path is to detect an
incoming frame by searching for the periodic structure of
the preamble symbols and to estimate the carrier frequency
offset. The constituent blocks are (see Figure 1):

Autocorrelators. In our design two autocorrelators,
having lengths of 64 and 16 samples, respectively, are
used. The autocorrelator with length 64 is used for the
frame detection and to get a fine estimation of the carrier
frequency offset (parameter α). The latter (length 16) is
used to provide a coarse estimation of the carrier
frequency offset (parameter β). The length of the
autocorrelator determines the range of frequency offsets,
which can be estimated. Thus, in the present case α will be
in the range [-0.5, +0.5), and β in the range [-2.0, +2.0), α
and β being normalized values with respect to the sub-
carrier spacing ∆f (∆f = 312.5 kHz in the IEEE 802.11a).
The final estimated value of the frequency offset, ε, is a
non-linear combination of α and β [3]. Figure 2 shows the
output |JF(k)|2 of the long autocorrelator. Two plateaus of

II - 3330-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

Figure 1. General scheme of the Synchronizer.

Figure 2. Signals involved in the plateau detection algorithm.

Figure 3. Scheme of the plateau detector.

Figure 4. Implementation of the peak detector.

length 32 samples each can be distinguished. The frame
detection algorithm is based on the detection of the
starting point of the first plateau.

Plateau detector. This block is built with a
differentiator and a peak detector. Using the differentiator
shown in Figure 3 it is possible to obtain a signal with an
absolute maximum at the point where the first plateau
starts. This signal is labeled Jdiff(k) in Figure 2. The next
step is the detection of the absolute maximum in Jdiff(k),
making use of the peak detector shown in Figure 3. This
peak detector itself is divided into two blocks, namely
group peak detector and instantaneous peak detector.

The instantaneous peak detector is composed of a
comparator and a counter (see Figure 4). The present
sample Jdiff(k) coming from the differentiator is compared
with the last recorded maximum Jmax. As long as the
sample Jdiff(k) is bigger than Jmax, the register storing Jmax

will be updated with the new sample Jdiff(k) as the latest
maximum and the counter will be reset. If Jdiff(k) is smaller
than or equal to Jmax, the counter will be incremented. If
this situation remains until the counter counts through its
full range, the instantaneous peak detector will generate a
signal stating that a relative peak was found inside the
counting scope of the counter.

The group peak detector is used to detect the falling
edges in Jdiff(k), and its main component is also a
comparison block. There, the input signal is accumulated
in groups of six samples (6-tuples) and the present group
is compared with the previous one. If it is smaller, it
means that the falling slope has started. If the group peak
detector finds a falling edge at the same time as the

instantaneous peak detector finds a relative peak, then the
detected peak is actually an absolute peak.

Due to the selected implementation of the plateau
detector, the first plateau is detected 16 samples after its
actual starting point, i.e. the detection will occur in the
middle of the plateau. Furthermore, in order to avoid the
problem of false frame detections resulting from noise, a
threshold is applied to the signal |JF(k)|2 prior to the
plateau detection block.

Arctangent. The values of α and β will be obtained
after calculating the phase of the complex samples JF(k)
and JC(k) respectively, at that time k where the peak
detector established the beginning of the frame (depicted
in Figure 1). The arctangent calculation (tg-1(.)) can be
efficiently realized by using the CORDIC algorithm
working in the vectoring mode.

2.2. Processing data path

The activity of the processing data path starts when the
frame is detected and the estimated value for ε is available.
This part of the synchronizer performs the carrier
frequency error correction, estimates the symbol timing
and obtains the reference channel estimation. This consists
of the following blocks:

Numerically Controlled Oscillator (NCO): The
correction of the frequency offset is carried out by an
NCO, which is implemented using the CORDIC algorithm
again, this time operating in the rotational mode. The
NCO is activated once the estimation of the frequency
offset ε is available and operates until the end of the frame

II - 334

➡ ➡

Figure 5. XNOR-based complex multiplier.

Figure 6. Timing scheduling at the synchronizer.

is detected.
Crosscorrelator: After the frequency offset

correction, the next processing task is the symbol timing
estimation. The symbol timing is obtained by exploiting
the direct knowledge of the long preamble symbols, and is
based on a crosscorrelation. The main purpose of the
crosscorrelator is to compare the input frame with a
reference signal, which is directly obtained from the long
preamble symbol. This reference is the sequence cREF(n)
(fields AB in Figure 6.a) and is only 32 samples long, as
this is the shortest length necessary in order to get
meaningful results at the output of the crosscorrelator.
This output is represented in Figure 6.b showing two clear
peaks (marked as 3 and 4). Both peaks will occur when the
portions of the long preamble symbols, which are identical
to cREF(0…31), are inside the crosscorrelator. For our
purpose it is enough to detect the first peak by setting a
certain threshold at the output of the crosscorrelator. Once
this peak is detected, the crosscorrelator is deactivated.

As the position of the peaks 3 and 4 relative to the
preamble symbols is known beforehand (Figure 6.a), the
symbol timing is resolved directly. In addition, the time
instant 1 shown in Figure 6.a would be the ideal instant at
which the synchronizer has the estimation of ε available
for the NCO. Furthermore, the time from 1 to 2, i.e. 14
samples @ 20MHz, is the latency introduced by the NCO.

Note that the crosscorrelator can only be applied once the
input frame is free of any frequency offset.

FFT processor. Immediately after the symbol timing
is found, the next 64 samples (CDAB field in Figure 6.a)
are fed into the 64-point FFT in order to get the reference
channel estimation. In the IEEE 802.11a standard the long
preamble symbol is defined as the sequence ABCD, i.e. in
our case a cyclic delay of 32 samples is introduced into a
sequence of 64 samples. Therefore, the resulting sequence
after FFT calculation has to be multiplied by (-1)k, k being
the frequency variable, in order to correct for the
remaining linear phase.

It is to be noted that the standard defines two long
preamble symbols ABCD in order to obtain initially two
raw channel estimations and calculate the final reference
channel estimation by averaging them and thus, a 3 dB
improvement in the SNR would be possible. However, in
practice this is difficult to implement, considering the
overall latency constraints imposed by the MAC layer.

For the data symbols coming after the preamble, two
further operations have to be performed inside the FFT
block. Prior to the FFT calculation, the data symbols will
go through a cyclic prefix extraction block, since for each
data symbol 80 samples are expected but only the last 64
are fed into the FFT. The last operation is the channel
reordering, i.e. after FFT calculation the output samples
are delivered in serial form according to the natural order.
For further processing this order has to be changed. Note
that the phase correction by the sequence (-1)k after FFT is
no longer necessary in the data symbols. The FFT will
then operate until the end of the frame, thus being part of
the same clock domain as the NCO.

3. BLOCK OPTIMIZATION AND RESULTS

In the previous Section it was pointed out that a first
mechanism for power saving was the division of the whole
architecture into different clock domains. A second level
of power reduction is achieved by optimizing the different
modules of the synchronizer.

In our architecture we separated the NCO and the
arctangent blocks since the control mechanism is much
simpler compared to the use of a single full CORDIC.
Here, the silicon area is 33% more, but the power is
reduced by 54% owing to the clock gating. The CORDIC
processors designed for these purposes have been
optimized to reach the final angle in an adaptive way and
thereby executing a minimum number of iteration steps.
The implementation is based on the virtually scaling-free
adaptive CORDIC proposed in [4].

The complex crosscorrelator is a challenging design
problem because of its computation complexity (it requires
a large number of complex multipliers) and subsequent
large silicon area. In our proposal, a simplified complex
multiplier architecture based on XNOR 1-bit multipliers is

II - 335

➡ ➡

Figure 7. Core layout of the Synchronizer.

Component Cell area
(mm2)

Power
(mW)

FFT 3.37 140*
NCO 0.78 6.6
Arctangent 0.8 7.2
64-tap Delay line 0.49 110
Moving Average (16 & 64) 0.49 115
Square magnitude 0.12 3.8
Plateau detector 0.23 8
α and β combining 0.06 0.8
Crosscorrelator 0.1 1

* Measured power consumption after fabrication as a discrete
component is 84 mW @ 2.5 V, 20 MHz.
Table 1. List of components of the Synchronizer.

used (Figure 5). Instead of multiplying N-bit complex
numbers, the XNOR multiplier performs the multiplication
of the sign bits of the complex input values only. In
addition, the XNOR gates are replaced by NOT gates
since one of the inputs is fixed and known beforehand.

The design of the FFT processor is based on the
radix-8 FFT, which we found optimal for the
implementation of the 64-point FFT. The processor
requires 49 non-trivial complex multiplications to perform
the transformation with a latency of 23 cycles parallel-to-
parallel. More details on the implementation may be found
in [5].

The described synchronizer has been synthesized in
our in-house 0.25µm BiCMOS technology. After
synthesis, the power analysis made by Synopsys resulted
in power figures of 140 and 175 mW, with and without
clock gating, respectively. From our experience we expect
even a greater difference between those two architectures.
The core layout area is 13 mm2 (Figure 7). The whole
structure introduces a latency of 3.9 µs counted from the
instant when the frame is detected. This value is less than
one OFDM symbol period (4 µs), meaning that no
additional storage for the input samples is necessary inside
the synchronizer.

In our design, a wide range of frequency offsets can
be estimated (±80ppm) using only two autocorrelators,

and the output of one of those is used in the frame
detection mechanism. This provides a big core area
reduction in comparison with other proposed solutions, as
in [6], where the range of estimated frequency offsets is
±40ppm and three autocorrelators are used for the frame
detection, but only two of them for the frequency offset
estimation.

In Table 1, a list of the main components used in the
synchronizer is provided, together with their respective
cell area and estimated power consumption.

4. CONCLUSIONS

The hardware implementation of a novel low-power
synchronizer for the IEEE 802.11a standard has been
described in this paper. The selected integration strategy
along with a distributed control enables the division of the
full structure into different clock domains and simplifies
the power management. Furthermore, this design reduces
the overall latency avoiding any additional data buffering.

The proposed architecture has been synthesized using
our in-house 0.25µm BiCMOS technology. The layout
was done with some extra routing channels in-between the
standard cell rows, resulting in a core area of 13 mm2 and
an estimated power consumption of 140 mW when clock
gating was used.

To our knowledge, this is the least power consuming
synchronizer architecture for the IEEE 802.11a standard
reported so far.

5. REFERENCES

[1] IEEE P802.11a/D7.0, Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications: High
Speed Physical Layer in the 5 GHz Band, Piscataway, NJ, 1999.

[2] A. Troya, K. Maharatna, M. Krstic, E. Grass, R. Kraemer,
“OFDM Synchronizer Implementation for an IEEE802.11a
Compliant Modem”, Proc. IASTED International Conference on
Wireless and Optical Communications, Banff, Canada, pp. 152-
157, July 2002.

[3] Yun Chiu et al., OFDM Receiver Design, Final Report
12/12/2000. Downloaded from http://bwrc.eecs.berkeley.edu.

[4] K. Maharatna, CORDIC based signal processors for
biomedical applications, Ph.D. Dissertation, Jadavpur
University, India, 2002.

[5] E. Grass et al., “On the Single-Chip Implementation of a
Hiperlan/2 and IEEE 802.11a Capable Modem”, IEEE Personal
Communications, vol. 8, no. 6, pp. 48-57, Dec. 2001.

[6] L. Schwoerer, H. Wirz, “VLSI Implementation of IEEE
802.11a Physical Layer”, Proc. 6th Int’l. OFDM Workshop,
Hamburg, Germany, pp. 28.1 – 28.4, Sept. 2001.

II - 336

➡ ➠

