
SYNCHRONIZER IMPLEMENTATION FOR AN IEEE 802.11a COMPLIANT
ASIC

$/)2162�752<$��.286+,.�0$+$5$71$��0,/2â�.567,û��(&.+$5'�*5$66�DQG�52/)�.5$(0(5
Wireless Communication Systems Department, IHP
Im Technologiepark 25, D-15236 Frankfurt (Oder)

Germany

ABSTRACT

In OFDM transmissions, synchronization arises to be one
of the most critical operations. The reason for that is the
preservation of orthogonality: timing offsets and
frequency offsets destroy easily this orthogonality,
leading to Inter-Symbol Interference (ISI) as well as Inter-
Carrier Interference (ICI).
This paper is focused on the implementation of a
synchronizer for the IEEE 802.11a standard [1], which is
based on the OFDM transmission scheme. Furthermore,
during this year the first chips compliant with the standard
are to be deployed, for that reason we also present a
comparison of our solution, which is based on the one
presented in [2] with two other ones proposed in [4] and
[5].

KEY WORDS: OFDM, Synchronization, IEEE
802.11a, ASIC design.

1. INTRODUCTION

The standard IEEE 802.11a [1] has been devoted devoted
to be used in LAN networks, where a burst transmission
takes place. At the beginning of each frame a number of
preamble symbols are transmitted in order to estimate the
synchronization parameters (time and frequency offsets),
which are going to be used throughout the reception of
that frame (Figure 1). Such estimators are commonly
referred as Data-Aided (DA) estimators, and their final
implementation is obviously very dependent on the
preamble structure, which normally shows some kind of
periodic pattern. Nevertheless, a number of different
architectures could be found if some restrictions in terms
of core area or power consumption are to be attained.

Fig.1. IEEE 802.11a preamble structure.

In the present work core area and power consumption are
the main concerns and their minimization is going to be
the main goal. The paper is divided into 6 sections. After
the introduction is section 1, we present the basic ideas
behind frequency and timing estimation in the in the case
of the IEEE 802.11a standard and general solutions are
derived in sections 2 and 3. Section 4 is devoted to give a
detailed explanation of the proposed solution as well as its
hardware implementation. Furthermore, a comparison
with two other solutions is given in section 5. Finally
section 6 addresses some interesting conclusions.

2. FREQUENCY OFFSET ESTIMATION

The structure of the preamble symbols has typically a
periodic pattern, leading to a solution for the
synchronization based on autocorrelations and
crosscorrelations of the received signal. To show this, we
initially consider the frequency offset problem. The main
reason for this offset is a mismatch in the frequency
during RF down-conversion. After sampling, the signal
has the following form

n
f

f
j

nTtOFF
S

Ch

S
enyty

πα2

)()(⋅=
=

 (1)

where y(n) is the original signal and TS is the sampling
time. In this expression we have also included α, which is
the normalized frequency offset and is defined as α = fOFF

/ fCh; where fOFF is the frequency offset and fCh is the
frequency spacing between two adjacent subcarriers in the
OFDM symbol.
The input signal yOFF(n) is applied to the autocorrelator,
whose structure is sketched in Figure 2. Mathematically,
the function J(k) is expressed as

∑
−

=

∗ =−−⋅−=
1

0

)()()(
avgN

l
dOFFOFF NklyklykJ

∑
−

=

∗
−

−−⋅−⋅
1

0

2

)()(
avg

d
S

Ch N

l
d

N
f

f
j

Nklyklye
πα

 (2)

If y(n) is a periodic signal with a period of Nd samples
(i.e. y(n) = y(n-Nd)), then (2) can be simplified to finally
get

∑
−

=

−
−⋅=

1

0

22

)()(
avg

d
S

Ch N

l

N
f

f
j

klyekJ
πα

 (3)

In (3) it is straightforward to see that the phase of J(k) is
only due to α, and so α could be found as follows

())(tan
2

*1 kJ
fN

f

Chd

S −

⋅
=

π
α (4)

Nonetheless, there are several factors which destroy the
periodicity, making y(n) ≠ y(n-Nd). The most important
ones are the AGC settling time and the channel impulse
response. The noise also contributes, but its effect can be
greatly compensated by the averaging Navg. In addition,
when the periodicity is preserved, |J(k)|² shows a plateau
that is also helpful during timing estimation (Figure 3).

We may want for α a symmetric range of possible values,
say [-αmax, αmax). This range depends on the parameter Nd

as follows

ππαπ <≤− d
S

Ch N
f

f
2 (5)

For the special case of the IEEE 802.11a standard, we
find that fS = 20 MHz and fCh = 312.5 kHz, giving for α
the different ranges listed in Table 1 depending on the
selected value for Nd.

Fig.2. General autocorrelator scheme.

Fig.3. Autocorrelation applied to the IEEE 802.11a
preambles: (A) Nd=16, Navg=16; (B) Nd=64, Navg=64.

Nd [-αmax, αmax)

16 [-2, 2)
32 [-1, 1)
64 [-0.5, 0.5)

Table 1. Range of α vs. Nd.

3. TIMING OFFSET ESTIMATION

The timing synchronization is solved by performing a
crosscorrelation between the input signal and a known
reference signal. This operation is going to be greatly
affected by the frequency offset if the length of the
crosscorrelation is excessively long, for that reason it
should be decided whether the timing offset will be
estimated before or after the signal has been corrected for
the frequency offset.

From Figure 1, two possible reference signals could be
taken for the crosscorrelation: t1 or T1. The results for
these crosscorrelations are shown in Figure 4, where it
can also be seen the dependence of the crosscorrelation
with respect to α. When using t1 as reference (Figure 4.a)
ten peaks are obtained, with a distance between peaks of
16 samples. In Figure 4.c, where the reference is T1, only
two peaks separated by 64 samples are obtained, but they
are much sharper. Nevertheless, these two peaks are
undistinguishable in Figure 4.d, where a value for α = 0.7
is considered.

4. IMPLEMENTATION

The solution we propose is sketched in Figure 4, and is
mainly based on the one proposed in [2]. The value of the
frequency offset is in the range ±1.5 (80 ppm @ 5.8 GHz)
and is separated into integer and fractional parts, being α
the fractional part, i.e. α≡±0.5. The integer part (β) is
calculated in the frequency domain, once the input stream
has been corrected for α, and could take one of the
following discrete values: +1, 0, –1. As an example, if the
overall normalized frequency offset is 0.85, then the
frequency estimator should ideally estimate α to be 0.15
and β to be +1; if it were 1.23, α would be –0.23 and β
again +1.

The determination of α comes out naturally considering
the scheme in Figure 2 and the selected value for Nd in
Figure 5. The determination of β is achieved through a
crosscorrelator in the frequency domain. The input signal
yOFF(n) is firstly corrected for its fractional frequency
offset (α) using a Numerically Controlled Oscillator
(NCO), whose actual implementation is based on the
CORDIC algorithm. Then we perform the FFT with 64
samples of the signal sLONG(n) (Figure 6), which is a 32-
sample shifted version of the original signal T1(n). This
shift is compensated at the output of the FFT by a simple
phase correction of (-1)k.

As T1(n) is to be known, a timing estimation should be
available. Any error in this estimation will be seen as a
linear phase in the frequency domain. To avoid this effect
during estimation of β, we do not perform directly the
crosscorrelation of the FFT output signal and the
reference signal, but we first differentially decode this

Fig.4. Crosscorrelation results: (A) with t1 and α=0.0; (B) with t1 and α=0.7; (C) with T1 and α=0.0; (D) with T1 and α=0.7.

Fig.5. Proposed scheme for the synchronizer: fine
frequency offset estimation and timing estimation.

Fig.6. Timing estimation using a differenciator.

output. Because of the restricted values for β, the input
data stream is corrected for its integer frequency offset in
the frequency domain using a shift register.

For the timing estimation we make no use of
crosscorrelators, but we try to determine the beginning of
the second plateau in Figure 3.b. This plateau detector is
mainly composed of two blocks: differentiator and peak

detector (Figure 5). The peak detector is implemented as a
relatively “smart” circuit, that is able to find absolute
peaks in the differentiated data stream, and also is capable
to avoid instantaneous peaks caused by the presence of
noise in the system.

Under an implementation point of view, the synchronizer
needs to perform several computation intensive tasks. The
primary computation tasks involved are complex
autocorrelation, FIR filtering, absolute magnitude
computation for the incoming complex vectors, plateau
detection, arctangent calculation, NCO correction, 64-
point FFT and complex crosscorrelation. Thus, the overall
hardware organization of the synchronizer is extremely
complex. However, from the computational perspective,
three of the above listed functionalities are mainly time as
well as power consuming. These are the arctangent
calculation for generation of fractional frequency offset,
the NCO correction of the data belonging to the same
frame in continuous manner using this fractional
frequency offset and the 64-point FFT. The first two of
them can be performed by using a single CoOrdinate
Rotation DIgital Computer (CORDIC) processor by
operating it in vectoring and rotation mode respectively.
The design of the 64-point FFT is much more complex
and has tighter time constraints. Thus, these two blocks
require utmost care during the hardware design phase.

The overall hardware organization of the synchronizer is
shown in Figure 7. For better controllability over the
design, we partitioned the entire design in several blocks
shown by the dotted boundary in Figure 7. In the next few
subsections we discuss the architectural organizations of
the different blocks.

Control strategy: It is clear from Figure 7 that
controlling such a huge complicated structure using a

central controller is not a trivial job. Thus, in this case, we
adopted distributed control system and “token flow”
approach. Each of the partitioned blocks are controlled by
a separate controller which also sends a signal (token) to
the next controller about its status. Depending on this
token signal, the next controller controls the block it is
responsible for. In addition to this, the modules belonging
to the same block generate another token signal for its
immediately next module on completion of its work.
Depending on this signal the module accepts the data
from the previous one and processes it. This distributed
control strategy enables us to control the complete system
in much elegant and effective fashion.

Autocorrelator: The autocorrelator consists of a FIFO of
length 64, a complex conjugation circuitry and a complex
multiplier. The complex conjugation circuitry is nothing
but simple sign reversal arrangement for the imaginary
part. The autocorrelator accepts 10-bit input data and after
the complex multiplication retains the most significant
16-bits for the real and imaginary part.

The FIR filter: The FIR filter (Moving Average block is
Figure 5) is 64 stages long and accepts 16-bit complex
inputs. For our purpose, the filter coefficients are 1 and
thus, in effect it gets reduced to an accumulator that
makes addition of the most recent 64 samples. We
realized this circuit using only one adder and one
subtractor. In every cycle the oldest sample is subtracted
and the most recent sample is added to the current result.
The real and imaginary parts of these data are 16-bit wide
and are used for calculating the square of absolute
magnitude of the particular vector as well as the
arctangent.

Plateau detector: After the squaring operation,
synchronization data is fed into the plateau detector. The
goal of this detection is to provide the information of the
symbol frame timing and to signal the start of the
fractional frequency offset (α) calculation. Input stream of
32-bit squared magnitude data is shown in Figure 6 for
the case of Eb/N0=50dB and α=0.235. In order to find the
beginning of the second plateau in the input data stream
we perform the differentiation of the input data. With this
operation, the plateau detection is substituted with much
simpler peak detection, which is performed by the peak
detector. The peak detector is implemented as a relatively
“smart” circuit that is able to find absolute peaks in the
differentiated data stream, and it is also capable to avoid
instantaneous peaks caused by the present noise in the
system. Structure of the plateau detector is shown in
Figure 5.

CORDIC processor: The CORDIC processor accepts 16-
bit inputs and generates 16-bit outputs. The processor is
used in two modes viz. vectoring and rotation. In the
vectoring mode the CORDIC takes the real and imaginary
parts the FIR filter output and evaluates arctangent of that.
The result of this operation is the generation of the term

−2πα where α is the fractional frequency offset. The
second job for the CORDIC processor is to make the
correction of the incoming data (both for long preamble
symbol as well as data symbols) by the phasor
exp{−j2πnα/N}, where N = 64. The rotation mode of
CORDIC elegantly performs this operation.

The CORDIC processor we use here is a novel adaptive
CORDIC processor that eliminates the requirement of
post processing scale factor and is adaptive in nature.
Thus, choosing appropriate iteration steps adaptively it
converges to the final result at faster rate. Using a
technique which we term as “domain folding”, the
convergence range of the processor is spanned over the
entire co-ordinate space. The processor is implemented in
simple pipeline fashion where each section of the pipeline
transfers the control data token to the next stage.
Accordingly the successive stages operate either in
vectoring or in rotation mode. Additionally, an input data
valid and an output data valid signal are provided to
indicate valid data at the input and output. Detailed
discussion about the algorithm and implementation of the
CORDIC processor is currently out of scope of this paper
because of space restriction.

α-Accumulator: This circuit is intended for generating
the term −2πnα/64. The α-accumulator accepts the term
−2πα generated by the vectoring operation of the
CORDIC and divides it by 64. This operation is nothing
but 6-bit right shift of the binary result coming out from
the CORDIC. After that, at successive cycles it
accumulates the term −2πα/64 to itself in order to provide
appropriate correction value to the data symbol. In
practice, the accumulator transfers these results to the
CORDIC processor (now in rotation mode) in every cycle
and the nth data undergoes a rotation operation by
−2πnα/64 angle in the CORDIC processor. Since the
CORDIC processor has a convergence range over the
entire co-ordinate space no questions of angle overflow
arise here.

64-point FFT: The 64-point FFT processor is the most
time critical block in the synchronizer. The timing
constraint says that the 64-point FFT should be performed
in 4 µsec for every data symbol which can be met using
some specialized structure for 64-point FFT. Excessive
parallelism or serial construction for this module has their
demerits in terms of area, power and computation time
respectively. Thus, it is necessary to design the FFT
processor in a specialized way to satisfy all the
constraints.

We reformulated the 64-point FFT in terms of 2D 8-point
FFT. The computation of 8-point FFT can be
implemented using only addition, subtraction and shift-
and-add principle. This enables us to implement the basic
8-point FFT in parallel manner using only combinatorial
logic. In the real implementation, we used two such

Fig.7. Main hardware components for the proposed synchronizer.

8-point FFT modules. The overall 64-point FFT processor
works in the following way: the serial incoming data are
first stored in a register from where they are directed in
appropriate manner to the first 8-point FFT module. The
result of the 8-point FFT on every data set is stored in
another internal register from where they are shuffled in
appropriate manner to the second 8-point FFT. The result
of the second 8-point FFT is once again reshuffled in
appropriate manner to generate a serial output data. A
simple binary counter is provided for controlling all the
operations of the different modules. In addition, an input
and output data valid signals are provided for the
complete processor which indicate the arrival of valid
input data and output results, respectively. In our design,
the input data valid signal of the FFT is tied with the
output data valid signal of the CORDIC whereas, the
output data valid signal of the FFT is tied to the input data
valid signal of the crosscorelator. Detail discussion of the
FFT architecture is beyond the scope of this paper
because of page restriction. However, interested readers
are referred to [3].

Crosscorrelator: The crosscorrelator implemented in the
synchronizer is a simplified version of the standard
complex crosscorrelator. Complex crosscorrelator is
usually “weak” point in modern communication designs
because of its computation complexity and need for large
silicon area. Having this in mind, in this implementation
we are using a simplified scheme for the crosscorrelator,
with simple XNOR 1-bit multipliers, which substitute the
commonly used complex multipliers. Instead of
multiplication of 16-bit complex numbers, a XNOR
multiplier performs only multiplication of sign bits of the
input complex values. The result of a XNOR
multiplication is a 2-bit complex value, so the rest of the
crosscorrelator is significantly simplified. Later
calculation is based on the 2-bit input values, instead of

32-bit values, which are the results of complex
multiplication. The designed simple crosscorrelator has
the complexity more than 3-times less than standard
crosscorrelator. It is important to notice that functionality
remains the same, as it will be with standard complex
crosscorrelator.

In addition to the above modules, we also incorporated
one data-path controller that takes care of switching the
data corresponding to the data-path symbol to a separate
FIFO. After the correction of α for the Long Preamble
Symbol, the CORDIC applies the same correction on the
data-path symbols stored in this FIFO. In this case the
data-path controller module generates the relevant enable
signals for the CORDIC.

The entire synchronizer is coded in VHDL. To design the
entire system in VHDL, we adopted a hierarchical
approach. We first coded every single block and finally
instantiated them in the final design. For testing of the
design we used the ModelsimTM simulator from Mentor
Graphics. The VHDL simulation of the complete
synchronizer is then cross-checked with the results from
the original SPWTM simulation that shows correct
functional behavior of the VHDL coded system.

5. BRIEF COMPARISON

There are other solutions for the synchronization in the
IEEE 802.11a standard present in the literature. The
solution presented in [3] (Berkeley) considers frequency
offsets in the range ±100 ppm @ 5.8 GHz (580 kHz;
α≡±1.856), while the timing estimation is obtained using
the short preamble symbols (t1 in Figure 1). The scheme
also makes use of two autocorrelation operations with
different delays (Nd1=64, Nd2=16). Each of them provides

an estimation for α (αFINE and αCOURSE) which should be
“combined” afterwards. As the expected value for α is
bigger than the value we can estimate through αFINE, the
combination of αFINE and αCOURSE is not just an addition.
The result of the crosscorrelation with t1 was already
shown in Figure 4.a. In [4] this crosscorrelation is
calculated and furthermore multiplied by the output of the
autocorrelator with Nd=16. This output will give the result
shown in Figure 4.a, where the plateau of 160 samples is
exactly centered at the positions of these first ten peaks,
thus enhancing them to simplify the timing estimation.

The second solution to be mentioned is the one presented
in [5] (Nokia). In this case the frequency offsets are in the
range ±40 ppm @ 5.8 GHz (232 kHz; α≡±0.7424). The
way to estimate α is fairly similar to the previous one:
two different estimations for α are also calculated (named
α1 and α2), but in this case their respective ranges are ±2
and ±1. As the actual value for α is supposed to be below
these two values, its estimation is directly their average.
Nokia’s architecture is especially interesting for the
solution they propose for the frame detection, although it
is quite hardware consuming. The timing estimation itself
is done after correcting for α the input data stream, and is
based on a crosscorrelator with the signal T1 in Figure 1
as reference signal. The output of this crosscorrelator is
the one already shown in Figure 4.c. A very simple peak
detector is then needed.

6. CONCLUSION

Clearly indicate advantages, limitations and possible
applications.

REFERENCES

Proceedings Papers:
[1] IEEE P802.11a/D7.0, Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
specifications: High Speed Physical Layer in the 5 GHz
Band (Piscataway, NJ, July 1999).

[2] B. Stantchev, G. Fettweis, Burst Synchronization for
OFDM-Based Cellular Systems with Separate Signaling
Channels, Proc. 48th Annual Vehicular Technology
Conference (VTC’98), Ottawa, Canada, 1998, 758-762.

[3] K. Maharatna, E. Grass, U. Jagdhold, A Low-Power
64-point FFT/IFFT Architecture for Wireless Broadband
Communication, Proc. 7th Int’l. Conference on Mobile
Multimedia Communication (MoMuC 2000), Tokyo,
Japan, 2000, 2A-2-1 – 2A-2-4.

[4] Yun Chiu et al., OFDM Receiver Design, Final
Report 12/12/2000. Downloaded from
http://bwrc.eecs.berkeley.edu.

[5] L. Schwoerer, H. Wirz, VLSI Implementation of
IEEE 802.11a Physical Layer, Proc. 6th Int’l. OFDM
Workshop (InOWo 2001), Hamburg, Germany, 2001, 28.1
– 28.4.

