
BMC 2006

Interpolant Learning and Reuse
in SAT-Based Model Checking

Joao Marques-Silva 1

School of Electronics and Computer Science

University of Southampton, Southampton, UK

Abstract

Bounded Model Checking (BMC) is one of the most paradigmatic practical appli-
cations of Boolean Satisfiability (SAT). The utilization of SAT in model checking
has allowed significant performance gains and, as a consequence, a large number of
commercial verification tools now include SAT-based model checkers. Recent work
has provided SAT-based BMC with completeness conditions, and this is generally
referred to as unbounded model checking (UMC). Among the existing approaches
for SAT-based UMC, the utilization of interpolants is among the most effective.
Despite their success, interpolants have only been used for identifying a fixed point
of the set of reachable states. This paper extends the utilization of interpolants
in SAT-based model checking. This is achieved by observing that, under reason-
able assumptions, interpolants can be reused, i.e. computed interpolants can be
reused at later stages of the model checking process. The paper develops condi-
tions for validity of interpolant reuse. In addition, the paper outlines a new fixed
point condition, alternative to the existing interpolant-based fixed point condition.
Preliminary practical experience on interpolant learning and reuse is reported.

Key words: Boolean Satisfiability, Bounded Model Checking,
Interpolants.

1 Introduction

The utilization of Boolean Satisfiability (SAT) in Model Checking has been
the subject of extensive research in recent years. The main result of this effort
has been a number of fairly competitive incomplete and complete SAT-based
model checking algorithms [3,4,5,20,21,26,27]. Moreover, SAT-based model
checking has also been rapidly adopted by industry, and a number of vendors
have included SAT-based Model Checking in their tools.

1 Email:jpms@ecs.soton.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

The utilization of SAT in model checking was first proposed in the form of
Bounded Model Checking (BMC) [3], where a counterexample is searched for
increasing unfoldings of a finite state automaton. The original BMC work has
been shown to be extremely useful for finding counter-examples but, unless
the recurrence (or the reachability) diameter of the automaton is known [2],
the BMC procedure is incomplete.

Different solutions have been proposed for ensuring the completeness of
BMC [26,5,17,16,21], the most promising of which is arguably based on the
utilization of interpolants [21].

This paper reviews the utilization of interpolants in SAT-based unbounded
model checking and proposes the learning and reuse of computed interpolants
with the purpose of allowing increased search pruning for subsequent calls to
the SAT solver during the model checking process. The paper shows that
different interpolants can be computed and used in different contexts. More-
over, the paper outlines a fixed point condition alternative to the one proposed
in‘[21].

We note that the main objectives of the paper are to investigate the con-
ditions for interpolant reuse, and to propose an alternative interpolant-based
fixed point condition. However, our experimental results suggest that inter-
polant reuse may not yield improvements on industrial examples. A more
effective implementation, as well as a more careful selection of which inter-
polants to reuse, may yield more effective interpolant reuse.

The paper is organized as follows. The next section provides a necessarily
brief perspective on SAT solvers and related concepts. Afterwards, Section 3
reviews SAT-based model checking, including bounded and unbounded model
checking. Section 4 develops conditions for reusing learnt interpolants. Initial
practical experience is summarized in Section 5 and Section 6 concludes the
paper.

2 Preliminaries

Propositional formulas are defined over finite sets of Boolean variables X =
{x1, x2, . . .}, W = {w1, w2, . . .}, X1, X2, etc., where each variable can be as-
signed value 1 (True) or 0 (False). In what follows propositional formulas
are represented by ψ1, ψ2, When relevant other subscripts can be used,
e.g. ψa, ψb, etc. For specific cases, letters and names representing predicates
are also used for denoting the associated propositional formulas, examples
include I, T , F , P , Q and Bmc. When referring to propositional formulas
in conjunctive normal form (CNF), we associate with each propositional for-
mula ψa(Xa) a CNF formula ϕa(Xa, Ua), where Ua denotes a set of auxiliary
Boolean variables. Formulas in CNF consist of a conjunction of clauses (each
clause represented by ωi), where each clause consists of a disjunction of literals
(represented by lj). When used in an expression, a propositional formula ψ is
interpreted as a predicate, and so corresponds to ψ = 1. Similarly, when the

propositional formula ¬ψ is used in an expression, it corresponds to ψ = 0.

We consider model checking of LTL safety properties G ψS . A finite state
automaton M = (I, T, F) is assumed, where I is a predicate defined on state
variables, T is the state transition relation, and F represents the failing prop-
erty (i.e. F = ¬ψS), defined on state variables. Moreover, the utilization of
predicates I, T or F assumes an underlying automaton M = (I, T, F). As
mentioned above, for simplicity the propositional formulas associated with
these predicates are represented with the same letters, I, T and F .

It will also be necessary to map propositional formulas from one set of vari-
ables to another set of variables. The notation ψ(Y/Yk) is used to denote that
the propositional formula ψ, defined over the set of variables Y , is mapped into
the set of variables Yk. Moreover, state variables are preferably represented as
set Y , Yk when referring to the state variables in time step k. Boolean circuit
variables are preferably represented as sets X or W , respectively Xk and Wk

for variables in time step k, and finally auxiliary variables used in the CNF
representation are preferably represented as sets W or Z.

2.1 Boolean Satisfiability Solvers

The remarkable evolution of Boolean Satisfiability (SAT) solvers over the last
decade [19,23,14] has motivated the application of SAT in model checking.
The most effective SAT solvers are based on backtrack search [9] and share a
number of key techniques, including:

• Unit clause rule, also referred as Boolean constraint propagation, that con-
sists of the identification of implied variable assignments [10].

• Clause learning, consisting of learning new clauses in presence of conflicts
during the execution of backtrack search. A few techniques related with
clause learning are the utilization of unique implication points (UIPs) [19],
and non-chronological backtracking [19].

• Memory efficient lazy data structures [23].

• Adaptive branching heuristic, usually derived from the VSIDS heuristic [23].

• Utilization of search restarts [15], by using some completeness criterion.

Because modern backtrack search SAT solvers learn clauses, it is straightfor-
ward to track all the learned clauses, and use these clauses for constructing a
resolution refutation (or unsatisfiability proof) of the original formula [29].

2.2 SAT-Related Concepts

This subsection addresses a number of byproducts of modern SAT solvers,
which are required for the utilization of interpolants in SAT-based model
checking. For this purpose, we review proof traces, unsatisfiable cores and
unsatisfiability proofs.

As mentioned above, modern SAT solvers learn clauses. For unsatisfiable

instances, the original clauses and the learned clauses can be used for gener-
ating a resolution-based unsatisfiability proof [29]. Modern SAT solvers can
be instructed for generating a proof trace, which associates with each learned
clause ω, all the clauses that explain the creation of ω [29].

Given a proof trace Γ, where the final traced clause is the empty clause ⊥,
we can identify, in linear time on the size of the proof trace, a subset of the
original set of clauses which is itself unsatisfiable [29]. This subset is referred
to as an unsatisfiable core.

Moreover, and given a proof trace Γ, generated by a SAT solver, it is
possible to create a resolution-based unsatisfiability proof in time and size
linear on the size of the proof trace.

Definition 2.1 [Unsatisfiability Proof [21]] A proof of unsatisfiability Π for
a set of clauses ϕ is a directed acyclic graph (VΠ, EΠ), where VΠ is a set of
clauses, such that:

• For every ω ∈ VΠ, either
· ω ∈ ϕ, and ω is a root, or
· ω has two predecessors, ω1 and ω2, such that ω is the resolvent of ω1 and
ω2 (the variable v used for resolving ω1 with ω2 is referred to as the pivot
variable of the resolution step), and

• the empty clause ⊥ is the unique leaf.

2.3 Craig Interpolants

Assume a propositional formula ψA(Y,X), defined over the sets of variables
Y and X, and a propositional formula ψB(Y,W), defined over the sets of
variables Y and W . If ψA(Y,X)∧ψB(Y,W) is unsatisfiable, then there exists
a propositional formula ψP (Y), defined over the set of variables Y , such that
ψA(Y,X)→ ψP (Y) is a tautology and ψB(Y,W)∧ψP (Y) is unsatisfiable. The
propositional formula ψP (Y) is referred to as an interpolant for ψA(Y,X) and
ψB(Y,W) [8]. Recent work has shown that an interpolant can be constructed
in linear time on the size of a resolution refutation of ψA(Y,X)∧ψB(Y,W) [25].

In what follows we outline McMillan’s interpolant construction [21], even
though Pudlák’s construction [25] could also be considered. Regarding the
propositional formulas ψA(Y,X) and ψB(Y,W), and associated CNF formulas,
respectively ϕA(Y,X, U) and ϕB(Y,W, V), variables in set Y are referred to
as global variables, whereas variables in sets X and U are local to ϕA(Y,X, U),
and the variables in sets W and V are local to ϕB(Y,W, V). Further, let g(ω)
denote the literals corresponding to global variables in clause ω.

Definition 2.2 [Interpolant [21]] Let (ϕA, ϕB) be a pair of clause sets and let
Π be a proof of unsatisfiability of ϕA∪ϕB, with leaf vertex ⊥. For each vertex
ω ∈ VΠ, let ψω be a Boolean formula, such that:

• If ω is a root then
· if ω ∈ ϕA then ψω = g(ω),

Algorithm 1 Organization of BMC

BMC(M = (I, T, F), λ, ι, µ)

1 j ← 0
2 k ← λ
3 while k ≤ µ
4 do ϕ← Cnf(Bmc

k
j (M),W)

5 if Sat(ϕ)
6 then return false � Found counterexample
7 k ← k + ι
8 return true

· else ψω = True

• else, let ω1, ω2 be the predecessors of ω and let v be their pivot variable
· if v is local to ϕA, then ψω = ψω1

∨ ψω2
,

· else ψω = ψω1
∧ ψω2

The Π-interpolant of (ϕA, ϕB), denoted Itp(Π, ϕA, ϕB) is ψ⊥.

The interpolant Itp(Π, ϕA, ϕB) has size linear on the size of the unsatisfi-
ability proof [25,21].

3 SAT-Based Model Checking

This section overviews the work on using SAT in model checking, emphasizing
the initial work on Bounded Model Checking (BMC) and the more recent work
on Unbounded Model Checking (UMC).

3.1 Bounded Model Checking

The generic Boolean formula associated with SAT-based BMC is the follow-
ing [2,3,27]:

Bmc
k
j (M) = I(Y0) ∧

(

∧

0≤i<k

T (Yi, Yi+1)

)

∧

(

∨

j≤i≤k

F (Yi)

)

(1)

This formula represents the unfolding of the state machine for k time steps,
where I(Y0) represents the initial state, T (Yi, Yi+1) represents the transition
relation between states Yi and Yi+1, and F (Yi) represents the failing property
in time step i. Given the Boolean formula Bmc

k
j (M), it is straightforward

to generate a CNF formula ϕ, by applying Tseitin’s [28] or the structure
preserving [24] transformations, and by using additional auxiliary Boolean
variables. This formula can then be evaluated by a SAT solver.

The typical organization of BMC for safety properties is illustrated in Algo-
rithm 1. The details regarding the sets of variables associated with each propo-
sitional formula are omitted, but are clear from the context. Experimental

evidence has confirmed SAT-based BMC to be an extremely competitive tech-
nique, that has been widely applied in industrial settings [2,7,12].

In order to describe the work on UMC and the reusing of interpolants, the
following predicates are extensively used:

Unfold
s
r(M) = I(Y−r) ∧

(

∧

−r≤i<s

T (Yi, Yi+1)

)

(2)

Tran
t
s(M) =

∧

s≤i<t

T (Yi, Yi+1)(3)

Prop
u
v(M) =

(

∧

u≤i<u+v

T (Yi, Yi+1)

)

∧

(

∨

u≤i≤u+v

F (Yi)

)

(4)

Hence, we can express the BMC formula in terms of these predicates:

BMC
k
j (M) = Unfold

j
0(M) ∧ Prop

j
k−j(M)

= Unfold
0
0(M) ∧Tran

j
0(M) ∧ Prop

j
k−j(M)

(5)

3.2 Unbounded Model Checking

A key difficulty with BMC is its inability for proving that there is no coun-
terexample for a given safety property G ψS. Unless the recurrence (or the
reachability) diameter [2] of an automaton is known, it is not possible to es-
tablish the value of the upper bound (UB) used in Algorithm 1; in the case the
recurrence diameter is known, BMC becomes complete. In general the recur-
rence diameter of an automaton is not known, and so BMC is incomplete. As
a result, in recent years different approaches have been proposed for ensuring
the completeness of SAT-based model checking. We refer to these approaches
as Unbounded Model Checking (UMC) [20,21]. The first UMC SAT-based
approach was proposed by Sheeran et al. in [26] and extended in [4]. Addi-
tional techniques include [5,20,13,22,21,16]. The induction-based approach of
Sheeran et al. [26] requires unfolding the state machine for the largest sim-
ple path between any two reachable states in the worst case. However, the
largest simple path between any two reachable states can be exponentially
larger than the reachability diameter. Alternatively, Chauhan et al. [5] and
Glusman et al. [13] propose refinement techniques based on elimination of false
counterexamples. Another approach based on iterative abstraction is proposed
by Gupta et al. in [16]. More recently, McMillan and Amla [22] propose the
utilization of proof-based abstraction, even though the proposed approach is
not fully SAT-based. According to experimental data from [21], the utilization
of interpolants in SAT-based model checking is the most effective approach.
We detail the utilization of interpolants in the next section.

Algorithm 2 UMC Algorithm

UMC(M = (I, T, F))

1 k ← 0
2 if Sat(I ∧ F)
3 then return false � Counterexample found
4 while true

5 do status = CheckFixpoint(M, k)
6 if status = false

7 then return false � Counterexample found
8 else if status = true

9 then return true � Property proved
10 k ← k + 1 � Unfold further

3.3 Interpolant-Based Unbounded Model Checking

Recent work on SAT-based Unbounded Model Checking has addressed the
utilization of interpolants [21], with quite promising experimental results. This
section reviews McMillan’s interpolant-based UMC algorithm [21].

The definition of the BMC proposition formula is modified slightly with
respect to (1):

Prefl(M) = I(Y−l) ∧
(
∧

−l≤i<0
T (Yi, Yi+1)

)

= Unfold
0
l (M)

(6)

Suff
k
j (M) =

(
∧

0≤i<k T (Yi, Yi+1)
)

∧
(

∨

j≤i≤k F (Yi)
)

= Tran
j
0(M) ∧Prop

j
k−j(M)

(7)

Hence, the BMC formula becomes:

Bmc
k
j (M) = Pref1(M) ∧ Suff

k
j (M)(8)

The above equation corresponds to the one proposed by McMillan [21], where
the separation between prefix and suffix identifies the set of variables with
respect to which interpolants are to be computed.

The SAT-based model checking algorithm can be organized into two main
phases: a BMC loop, where the circuit is unfolded, and a fixed point check-
ing step, that checks for the existence of a counterexample and where the
existence of a fixed-point is tested. Observe that the second phase requires
the iterative computation of interpolants until a fixed-point is reached or a
true or (possibly) false counterexample is identified. The organization of the
BMC loop is outlined in Algorithm 2, whereas the organization of fixed point
checking step is outlined in Algorithm 3.

For the BMC loop there is no upper bound on the number of unfoldings,
since the algorithm is now complete. The increment of k is not required to be
1. In fact, feedback from the fixed point checking procedure can be used for

Algorithm 3 Fixed point identification in SAT-based UMC

CheckFixpoint(M = (I, T.F), k)

1 R← I
2 while true

3 do M ′ ← (R, T, F)
4 A← Cnf(Pref1(M

′),W1)
5 B ← Cnf(Suff

k
0(M

′),W2)
6 (isSat,Γ)← Sat(A ∪ B)
7 if isSAT
8 then if R = I
9 then return false

10 else return abort

11 � A ∪ B is unsat
12 Π← UnsatProof(Γ)
13 P ← Itp(Π, A,B)
14 R′ ← P (Y/Y0)
15 C ← Cnf(¬R,W3)
16 D ← Cnf(R′,W4)
17 (isSat,Γ)← Sat(C ∪D)
18 if not isSAT
19 then return true

20 R← R ∨ R′

increasing k by values larger than 1 [18]. In addition, observe that the fixed
point checking procedure consists of iterative computation of interpolants,
where for iteration m the interpolant represents an abstraction of the reach-
able states in m time steps [21]. At each iteration of the UMC fixed point
checking procedure, the existence of a fixed-point is tested. The fixed-point is
reached when the abstraction of the reachable states in m time steps contains
only states already included in the abstractions of the reachable states in less
than m time steps. Finally, observe that the algorithm sets j = 0, because
interpolants are computed with respect to Y0.

4 Interpolant Learning and Reuse

This section develops conditions for reusing computed interpolants, and con-
sists of two main parts. Conditions for interpolants representing over-approxi-
mations of the set of reachable states, and conditions for interpolants repre-
senting over-approximations of the set of states satisfying the failing property.
We should note that the work on interpolant reuse is largely motivated by
previous (and successful) work on clause reuse [27]. Clause reuse has been
used extensively in BMC and is widely regarded as a key technique [27,12].

The main motivation is to develop conditions which enable computed in-

terpolants to be reused. Hence, the following definition is used extensively.

Definition 4.1 A Boolean formula ψN is said to be usable for Boolean formula
ψB iff ψB → ψN .

Hence, ψN preserves satisfiability of the original formula and so we get the
following straightforward result:

Proposition 4.2 Let ψN be usable for ψB. Then ψB is satisfiable iff ψB∧ψN

is satisfiable.

In order to generalize the computation of interpolants, equation (5) is
modified as follows:

Bmc
k
j (M) = Unfold

k
0(M) ∧Prop

k
j (M)(9)

Observe that the new equation differs from (5) and (8). In equation (9) the
failing property is checked for only in the last j time steps for an unfolding of
k+ j time steps 2 . (This approach is also used for example in [7,26,12].) For
simplicity we assume j = 0; generalization for j > 0 is simple.

The standard interpolants used in [21] are referred to as direct interpolants.
It is also possible to compute reverse interpolants by exchanging the sets A
and B in the definition of interpolant. Direct interpolants are computed as
described in McMillan’s work [21] (see also the previous section), but relaxing
the 1 time step unfolding for A. For computing an interpolant after r time
steps from I and t = k − r time steps from F , the propositional formulas for
A and B become:

A = Cnf(Unfold
r
0(M),W1)(10)

B = Cnf(Tran
k
k−t(M) ∧Prop

k
0(M),W2)(11)

The interpolant computed with A and B above will be denoted P r
t . It is also

possible to compute an interpolant by replacing I with another interpolant
P u

v :

A = Cnf(P u
v (Y0) ∧Tran

r
0(M),W1)(12)

B = Cnf(Tran
k
k−t(M) ∧Prop

k
0(M),W2)(13)

And the new interpolant is denoted P u+r
t .

Consequently, P r
t , with r, t ≥ 0, denotes the direct interpolant computed

with a (possibly virtual) unfolding of r time steps from the initial state, and
t time steps until the failing property is checked for. Hence, P r

t represents an
over-approximation of the set of states reachable in r time steps and an under-
approximation of the set of states which do not satisfy the failing property in
t time steps.

Reverse interpolants are computed by interchanging the definitions of A
and B in (10) and (11), and will be denoted by Qr

t . Hence, Qr
t , r, t ≥ 0, denotes

2 The automaton is assumed to be stuttering closed [6,21].

the reverse interpolant computed with an unfolding of r time steps from the
initial state, and (possibly virtual) t time steps until the failing property is
checked for. Hence, Qr

t represents an under-approximation of the set of states
that are not reachable in r time steps and an over-approximation of the set of
states which satisfy the failing property in t time steps. From (10) and (11)
we obtain:

A = Cnf(Tran
k
k−t(M) ∧Prop

k
0(M),W3)(14)

B = Cnf(Unfold
r
0(M),W4)(15)

The interpolant computed with A and B above will be denoted Qr
t . It is also

possible to compute an interpolant by replacing F with another interpolant
Qu

v :

A = Cnf(Tran
k
k−t(M) ∧Qu

v (Yk))(16)

B = Cnf(Unfold
r
0(M),W4)(17)

And the new interpolant is denoted Qr
t+v.

Given the definitions of direct and reverse interpolants, we can now estab-
lish conditions for interpolant reuse in SAT-based model checking.

Theorem 4.3 Let Bmc
k
j (M) be given by (9), and direct interpolants P r

t be
computed with (10) and (11). Then the following holds:

(i) P r
t (Yr) is usable for Bmc

k
j (M), with t ≥ 0 and 0 ≤ r ≤ k.

(ii) ¬P r
t (Yk−t) is usable for Bmc

k
j (M), with r ≥ 0 and 0 ≤ t ≤ k.

Proof.

(i) If Bmc
k
j (M) is satisfiable, then Unfold

r
0(M), with r ≤ k is also satis-

fiable and Yr represents a state reachable in r time steps. By definition,
P r

t (Yr) represents an over-approximation of the states reachable in r time
steps. Hence, P r

t (Yr) holds for any assignment to the variables in Yr rep-
resenting a state reachable in r time steps. Thus, Bmc

k
j (M) → P r

t (Yr),

with r ≤ k. By definition, P r
t (Yr) is usable for Bmc

k
j (M), with r ≤ k.

Observe that there is no upper bound on the value of t.

(ii) Observe that P r
t (Yk−t) represents an under-approximation of the states

which do not satisfy the failing property in t time steps. Hence, P r
t (Yk−t)→

¬Bmc
k
j (M) with t ≤ k. Consequently, Bmc

k
j (M)→ ¬P r

t (Yk−t). By def-

inition, P r
t (Yk−t) is usable for Bmc

k
j (M), with t ≤ k. Observe that there

is no upper bound on the value of r.

2

Theorem 4.4 Let Bmc
k
j (M) be given by (9), and reverse interpolants Qr

t be
computed with (14) and (15). Then the following holds:

(i) Qr
t (Yk−t) is usable for Bmc

k
j (M), with r ≥ 0 and 0 ≤ t ≤ k.

(ii) ¬Qr
t (Yr) is usable for Bmc

k
j (M), with t ≥ 0 and 0 ≤ r ≤ k.

Proof. The proof is similar to the proof for Theorem 4.3.

(i) If Bmc
k
j (M) is satisfiable, then Tran

k
k−t(M) ∧ Prop

k
k(M), with t ≤ k

is also satisfiable and Yk−t represents a state that satisfies the failing
property in t time steps. By definition, Qr

t (Yk−t) represents an over-
approximation of the states that satisfy the failing property in t time
steps. Thus, Bmc

k
j (M)→ Qr

t (Yk−t), with t ≤ k. By definition, Qr
t (Yk−t)

is usable for Bmc
k
j (M), with t ≤ k. Observe that there is no upper bound

on the value of r.

(ii) Observe that Qr
t (Yr) represents an under-approximation of the states that

are unreachable r in time steps. Hence, Qr
t (Yr) → ¬Bmc

k
j (M), with

r ≤ k. Consequently, Bmc
k
j (M) → ¬Qr

t (Yr). By definition, Qr
t (Yr) is

usable for Bmc
k
j (M), with r ≤ k. Observe that there is no upper bound

on the value of t.

2

Remark 4.5 Even though we describe the most general setting for learning
and reusing interpolants, the specific interpolants computed in the standard
interpolant-based fixed point condition [21] are also usable according to the
conditions of Theorems 4.3 and 4.4. Hence, interpolant reuse can be readily
integrated in a standard interpolant-based UMC flow.

Remark 4.6 The conditions of Theorems 4.3 and 4.4 can be used in any
BMC/UMC setting, independently of whether a fixed point is used and whether
it is based on interpolants.

Remark 4.7 It is straightforward to conclude that reverse interpolants can
be used for developing a fixed point condition alternative to the one of [21].
Algorithm 3 can easily be adapted for using reverse interpolants, computed one
time step from the time step at which the property is checked for. Similarly to
image computation approaches in BDD-based symbolic model checking, the
advantages of this alternative fixed point condition are expected to depend on
the actual automaton.

5 Experimental Results

The practical experience reported in this section respects a preliminary SAT-
based model checking prototype. The prototype represents interpolants as Re-
duced Boolean Circuits (RBCs) [1]. The backend SAT solver is MiniSAT [11].
The implementation of interpolant computation is still preliminary and, cur-
rently, different interpolants do not share structure. Even though each inter-
polant is generated with the rules of [1], each different interpolant is main-
tained with a separate RBC manager, and so common nodes among different
interpolants are not shared. Moreover, the utilization of interpolants was eval-
uated in a standard BMC loop, and so interpolants were solely computed for
search pruning purposes. Iinterpolants were computed with respect to the last

Instance w/o interpolants w/ interpolants

6-bit counter 1.51 5.29

7-bit counter 16.38 61.03

8-bit counter 236.90 784.81

I1 7.08 7.11

I2 31.36 36.96

I3 38.36 60.60

I4 52.45 58.25

I5 150.54 157.81

Table 1
Results with and without interpolant reuse

time step and reused in the last time step. As a result, reused interpolants
serve for preventing sets of unwanted states to be reached.

Table 1 shows preliminary results from interpolant reuse. The first set of
instances represent standard counters, for which counterexample exists. The
second set of instances represent industrial problem instances, for which a
counterexample also exists. As can be concluded, the utilization of inter-
polants does not yield improvements to the run times. For the first set of (ar-
tificial) examples the results are worse than for the second set of (industrial)
examples. As mentioned above, the setup for the utilization of interpolants is
certainly not the most adequate. We considered a simple BMC loop, where
interpolants are solely used for search pruning purposes. The reuse of in-
terpolants in a UMC setting is expected to provide more competitive results,
since the interpolants have be computed for checking the fixed point condition.

6 Conclusions and Future Work

This paper develops conditions for learning and reusing of interpolants in
SAT-based model checking. Computed interpolants can be used for requiring
states from a set of states or for preventing states from a set of states. Besides
interpolant reuse, an alternative fixed-point condition is also proposed, based
on reverse (as opposed to direct) interpolants.

The preliminary results are not positive, albeit the implementation is still
very preliminary. Moreover, the experimental setup chosen was not beneficial
for the reuse of interpolants. Instead of an interpolant-based UMC algorithm,
where interpolants need to be computed, our experiments consisted of a stan-
dard BMC loop, where computed interpolants were solely used for search
pruning purposes.

A few drawbacks of the current implementation have been identified. Ex-
amples include the lack of structure sharing between different interpolants, and
the fact that interpolants were computed solely for interpolant reuse and not
for checking the existence of a fixed point. Integration of these improvements
is expected to yield more promising results for interpolant reuse.

Acknowledgments

This work has been partially supported by European project IST-033709 VER-
TIGO.

References

[1] P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based
on SAT solvers. In International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, 2000.

[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Advances in

Computers, chapter Bounded Model Checking. Academic Press, 2003.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, pages 193–207, March 1999.

[4] P. Bjesse and K. Claesen. SAT-based verification without state space traversal.
In International Conference on Formal Methods in Computer-Aided Design,
2000.

[5] P. Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith, and D. Wang. Automated
abstraction refinement for model checking large state spaces using SAT based
conflict analysis. In International Conference on Formal Methods in Computer-

Aided Design, 2002.

[6] E. M. Clarke, O. Grumberg, and A. Peled. Model Checking. MIT Press, 1999.

[7] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and
M. Y. Vardi. Benefits of bounded model checking at an industrial setting.
In International Conference on Computer-Aided Verification, 2001.

[8] W. Craig. Linear reasoning: A new form of the Herbrand-Gentzen theorem.
Journal of Symbolic Logic, 22(3):250–268, 1957.

[9] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the Association for Computing Machinery, 5:394–
397, July 1962.

[10] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the Association for Computing Machinery, 7:201–215, July 1960.

[11] N. Een and N. Sorensson. An extensible SAT solver. In Sixth International

Conference on Theory and Applications of Satisfiability Testing, May 2003.

[12] N. Een and N. Sorensson. Temporal induction by incremental SAT solving. In
Workshop on Bounded Model Checking, volume 89 of ENTCS, 2003.

[13] M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer, and M. Vardi. Multiple-
counterexample guided iterative abstraction refinement. In International

Conference on Tools and Algorithms for the Construction and Analysis of

Systems, April 2003.

[14] E. Goldberg and Y. Novikov. BerkMin: a fast and robust SAT-solver. In Design,

Automation and Test in Europe Conference, pages 142–149, March 2002.

[15] C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through
randomization. In National Conference on Artificial Intelligence, pages 431–
437, July 1998.

[16] A. Gupta, M. Ganai, Z. Yang, and P. Ashar. Iterative abstraction using SAT-
based BMC with proof analysis. In International Conference on Computer-

Aided Design, November 2003.

[17] H.-J. Kang and I.-C. Park. SAT-based unbounded symbolic model checking.
In Design Automation Conference, pages 840–843, June 2003.

[18] J. P. Marques-Silva. Improvements to the implementation of interpolant-
based model checking. In Advanced Research Working Conference on Correct

Hardware Design and Verification Methods, October 2005.

[19] J. P. Marques-Silva and K. A. Sakallah. GRASP: A new search algorithm for
satisfiability. In International Conference on Computer-Aided Design, pages
220–227, November 1996.

[20] K. L. McMillan. Applying SAT methods in unbounded symbolic model
checking. In International Conference on Computer-Aided Verification, July
2002.

[21] K. L. McMillan. Interpolation and SAT-based model checking. In International

Conference on Computer-Aided Verification, 2003.

[22] K. L. McMillan and N. Amla. Automatic abstraction without counterexamples.
In International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, April 2003.

[23] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Engineering an
efficient SAT solver. In Design Automation Conference, pages 530–535, June
2001.

[24] D. A. Plaisted and S. Greenbaum. A structure-preserving clause form
translation. Journal of Symbolic Computation, 2(3):293–304, September 1986.

[25] P. Pudlák. Lower bounds for resolution and cutting planes proofs and monotone
circuit computations. Journal of Symbolic Logic, 62(3):981–998, 1997.

[26] M. Sheeran, S. Singh, and G. Stalmarck. Checking safety properties using
induction and a SAT solver. In International Conference on Formal Methods

in Computer-Aided Design, 2000.

[27] O. Strichman. Tuning SAT checkers for bounded model checking. In
International Conference on Computer-Aided Verification, July 2000.

[28] G. S. Tseitin. On the complexity of derivation in propositional calculus. Studies

in Constructive Mathematics and Mathematical Logic, Part II, pages 115–125,
1968.

[29] L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In Design,

Automation and Test in Europe Conference, pages 10880–10885, March 2003.

	Introduction
	Preliminaries
	Boolean Satisfiability Solvers
	SAT-Related Concepts
	Craig Interpolants

	SAT-Based Model Checking
	Bounded Model Checking
	Unbounded Model Checking
	Interpolant-Based Unbounded Model Checking

	Interpolant Learning and Reuse
	Experimental Results
	Conclusions and Future Work
	References

