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Abstract

Semantic Web Services, one of the most significant re-
search areas within the Semantic Web vision, has attracted
increasing attention from both the research community and
industry. The Web Service Modelling Ontology (WSMO)
has recently been proposed as an enabling framework for
the total/partial automation of the tasks (e.g., discovery,
selection, composition, mediation, execution, monitoring,
etc.) involved in both intra- and inter-enterprise integra-
tion of Web Services. To support the standardization and
tool support of WSMO, a formal semantics of the language
is highly desirable. As there are a few variants of WSMO
and it is still under development, the semantics of WSMO
needs to be formally defined to facilitate easy reuse and fu-
ture development. In this paper, we present a formal Object-
Z semantics of WSMO. Different aspects of the language
have been precisely defined within one unified framework.
This model not only provides a formal unambiguous model
which can be used to develop tools and facilitate future de-
velopment, but as demonstrated in this paper, can be used
to identify and eliminate errors presented in existing docu-
mentation.

1 Introduction

The next generation of the Web, the Semantic Web
(SW) [2] provides computer-interpretable markup of both
content and services on the Web, thus enabling automa-
tion of many tasks currently performed by humans. Among
the most important Web resources are those that provide
services. Web services are Web-accessible programs that
proliferate the Web by providing user access to applica-
tions supporting tasks such as e-commerce, entertainment,
etc. Semantic Web Service research [14] has attracted more
and more attention from both research communities and in-
dustries, and several different approaches have been stud-
ied to achieve the vision of Semantic Web service [1, 17].
The Web Service Modelling Ontology (WSMO), one of
the most significant Semantic Web Service framework pro-

posed to date [17], complements the existing syntactic Web
service standards by providing a conceptual model and lan-
guage for the semantic markup of all relevant aspects of
general services, which are accessible through a Web ser-
vice interface. The ultimate goal of such markup is to en-
able the total/partial automation of the tasks (e.g., discovery,
selection, composition, mediation, execution, monitoring,
etc.) involved in both intra- and inter-enterprise integration
of Web Services.

The syntax and semantics of WSMO are defined in terms
of its metamodel. The language has been described from
three different aspects: syntax, static semantics and dy-
namic semantics. One of the major problems with the cur-
rent WSMO definition is that the three aspects of WSMO
have been separately described in various formats (mainly
in natural language, i.e., English, complemented with some
XML schemas and simple axioms). These different descrip-
tions contain redundancy and sometimes contradiction in
the information provided. Furthermore, with the continuous
evolution of WSMO it has been very difficult to consistently
extend and revise these descriptions. More importantly, the
use of natural language is ambiguous and can be interpreted
in different ways. This lack of precision in defining the se-
mantics of WSMO can result in different users, Web service
providers and tool developers having different understand-
ings of the same WSMO model. To support common un-
derstanding and facilitate standardization1 and tool devel-
opment for WSMO, a formal semantics of its language is
highly desirable. Also, being a relatively young field, re-
search into Semantic Web services and WSMO is still on-
going, and therefore a semantic representation of WSMO
needs to be reusable and extendable in a way that can ac-
commodate this evolutionary process.

The aim of our work is to define a complete formal deno-
tational semantics of the WSMO language using Object-Z
(OZ) [10] . A denotational approach has been proved to
be one of the most effective ways to define the semantics
of a language, and has been used to give formal semantics
for many programming and modeling languages [13, 20].
Object-Z has been used to provide one single formal model

1http://www.w3.org/Submission/WSMO



for the syntax, the static semantics and the dynamic seman-
tics of WSMO. Also, because these different aspects have
been described within a single framework, the consistency
between these aspects can be easily maintained. In this pa-
per, we focus on the formal model for the syntax and static
semantics of WSMO. The dynamic semantics of WSMO
will be discussed in a future paper.

Object-Z (OZ) [10] is an extension of the Z formal spec-
ification language to accommodate object orientation. The
main reason for this extension is to improve the clarity
of large specifications through enhanced structuring. We
chose Object-Z over other formalisms to specify WSMO
because:

• The object-oriented modelling style adopted by
Object-Z has good support for modularity and
reusability.

• The semantics of Object-Z itself is well studied. The
denotational semantics [12] and axiomatic seman-
tics [18] of Object-Z are closely related to Z standard
work [21]. Object-Z also has a fully abstract seman-
tics [19].

• Object-Z provides some handy constructs, such as
Class-union[5] etc., to define the polymorphic and re-
cursive nature of language constructs effectively. Z
has previously been used to specify the Web Service
Definition Language (WSDL) [4]; however, as Z lacks
the object-oriented constructs found in OZ, a signifi-
cant portion of the resulting model focused on solv-
ing several low level modeling issues, such as the us-
age of free types, rather than the WSDL language it-
self. Thus, using OZ can greatly simplify the model,
and hence avoid users from being distracted by the
formalisms itself rather than focusing on the resulting
model.

The paper is organized as follows. Section 2 briefly in-
troduces the notion of WSMO and Object-Z. Section 3 is
devoted to a formal Object-Z model of WSMO syntax and
static semantics. Section 4 discusses some of the benefits
of this formal model. Section 5 concludes the paper and
discusses possible future work.

2 Overview

2.1 WSMO

The Web Service Modelling Ontology (WSMO) [17] is
one of the major approaches for modeling services semanti-
cally, based on the earlier work on Unified Problem Solving
Method, which was part of a “...framework for developing
knowledge-intensive reasoning systems based on libraries
of generic problem-solving components...”[11]. WSMO

provides a framework for semantic descriptions of Web Ser-
vices and acts as a meta-model for such Services based on
the Meta Object Facility (MOF) [15]. Semantic service de-
scriptions, according to the WSMO meta model, can be
defined using one of several formal languages defined by
WSML (Web Service Modelling Language) [3], and con-
sists of four core elements deemed necessary to support Se-
mantic Web services:Ontologies, Goals, Web Servicesand
Mediators. Ontologiesare described in WSMO at a meta-
level. A meta-ontology supports the description of all the
aspects of the ontologies that provide the terminology for
the other WSMO elements.Goalsare defined in WSMO
as the objectives that a client may have when consulting a
Web service.Web Servicesprovide a semantic description
of services on the web, including their functional and non-
functional properties, as well as other aspects relevant to
their interoperation.Mediatorsin WSMO are special ele-
ments used to link heterogeneous components involved in
the modelling of a Web service. They define the necessary
mappings, transformations and reductions between linked
elements.

2.2 Object-Z (OZ)

Object-Z [10] is an extension of the Z formal specifi-
cation language to accommodate object orientation. The
essential extension to Z in Object-Z is theclassconstruct,
which groups the definition of a state schema with the defi-
nitions of its associated operations. A class is a template for
objectsof that class: the states of each object are instances
of the state schema of the class, and its individual state tran-
sitions conform to individual operations of the class. An
object is said to be an instance of a class and to evolve ac-
cording to the definitions of its class.

Operation schemas have a∆-list of those attributes
whose values may change. By convention, no∆-list means
that no attribute changes value. The standard behavioral
interpretation of Object-Z objects is as a transition sys-
tem [19]. A behavior of a transition system consists of a
series of state transitions each effected by one of the class
operations.

3 Formal Object Model of WSMO

3.1 OZ Approach to WSMO Semantics

The existing specification of WSMO informally or semi-
formally describes the language from three different aspects
– syntax (a WSMO model is well-formed), static seman-
tics (a WSMO model is meaningful) and dynamic seman-
tics (how is a WSMO model interpreted and executed). We
propose the use of Object-Z to provide a formal specifica-
tion of all aspects of WSMO in one single unified frame-
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Class attribute: models WSMO syntax

Class Invariant: models WSMO 
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Class operation: models WSMO 

dynamic semantics  

Figure 1. The framework

work, so that the semantics of the language can be more
consistently defined and revised as the language evolves.
Figure 1 shows the general approach of the framework. The
WSMO elements are modeled as different Object-Z classes.
The syntax of the language is captured by the attributes of
an Object-Z class. The predicates are defined asclass in-
variantused to capture the static semantics of the language.
The class operations are used to define WSMO’s dynamic
semantics, which describe how the state of a Web service
changes. This paper focuses on the first two aspects of
WSMO, i.e. the formal model of syntax and static seman-
tics2. Because of the limited space, we only present a par-
tial model here3. Our model is based on the latest version
of WSMO (D2v1.3).

3.2 Modeling identifiers, WSMO elements
and annotations

ID AID, URIID, VID : P ID

VID ∩ AID = ∅

VID ∩ URIID = ∅

URIID ∩ AID = ∅

VID ∪ AID ∪ URIID = ID

Every WSMO element is identified by an identifier that
can either be classified as URI reference or anonymous ID.
Furthermore, WSMO can also identify variables. We use
the Object-Z classID to denote all possible identifiers. Note
that rather than modeling the identifiers as a Z given type
([ID]) (similar to the Z specification of WSDL[4]), model-
ing them as a class allows us to further extend it and ap-
ply various Object-Z class modifiers.URIID, AID andVID
are disjoint subsets ofID representing the URI reference,
anonymous ID and variable ID. Due to the limited space,
we only provide an abstract view of the classID without
any attributes. These concepts can be modeled in more de-
tails, e.g., aURIID reference can be expressed by a qualified
name, etc.

2The dynamic semantics will be addressed in a separate paper.
3A more complete model can be found athttp://www.ecs.

soton.ac.uk/ ˜ hw/WSMO-OZ.pdf .

WSMO refers to the concepts it defines as “elements”,
which are modeled asWSMOElement.

WSMOElement

id : ID
hasAnnotation:
Annotation

Annotation

hasContributor:
P DC Contributor

hasDate: P DC Date; ...

EachWSMOElementhas one ID and optionally a set of
annotations. Annotation, being modeled as an Object-Z
class, is used in the definition of WSMO elements. It con-
tains different annotation values which can be applied to
any WSMO element, such asDC Contributor4, DC Date,
etc. These values are also defined as Object-Z classes, but
they are not shown in this paper. The WSMO specification
does not define any cardinality constraints on the number
of annotation values an element can have. For example, a
WSMO element can have more than one creation date. We
model this by specifying that the value of attributehasDate
is a set ofDC Date values. The tool developers have the
freedom to extend the model and add extra constraints, e.g.,
by adding the predicate ‘#hasDate≤ 1’ to ensure that a
WSMO element can only have at most one creation date.

The elements defined within WSMO models
can be divided into two groups – top level ele-
ments (TopLevelComponent) and nested element
(NestedComponent). WSMO has four kinds of top
level elements as the main concepts to describe Semantic
Web services. They areOntology, Serivce, Goal and
Mediator. Each of which is modeled as a subclass of
WSMOElement. They will be described in detail in
following subsections.

TopLevelComponent̂= Ontology∪ Goal∪ Service∪ Mediator

Essentially, nested elements are attached to some other
WSMO elements. In our model,NestedComponentdenotes
all possible nested elements. A nested component has at-
tributeparentID that refers to the WSMO element it is at-
tached to. A WSMO element can not be attached to vari-
ables or to itself.

NestedComponent
WSMOElement

parentID : ID

parentID 6∈ VID ∧ id 6= parentID

4DC stands for the Dublin Core.
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3.3 Top level element – Ontologies

An ontology is a formal specification of a conceptual-
ization. In WSMO, Ontologies are one of the key elements
and they provide the terminology used by other WSMO el-
ements to describe the relevant aspects of the domains of
discourse. Ontologies conceptualize a problem domain by
defining a set ofconcepts, relations, instancesand some
axioms. Ontologywill be formally defined later in this sub-
section.

3.3.1 Ontology elements

OntologyElement
NestedComponent[inOntologyID/parentID]

∆

inOntology: Ontology

∃
1

o : Ontology• inOntologyID= o.id
∧ inOntology= o

The classOntologyElementdenotes all the possible
WSMO elements defined within Ontologies. It is defined
as a subclass ofNestedComponent. We rename the at-
tribute parentID to inOntologyID for clarity reasons and
also define a secondary attribute [8]inOntologyto denote
the Ontology whichinOntologyIDrefers to. The invariant
shows that there exists one and only one Ontology given an
inOntologyID.

3.3.2 Concepts

Conceptsconstitute the basic elements of the agreed ter-
minology for some problem domains.Conceptis derived
from OntologyElement. In it, hasSuperConceptattribute
denotes the super-concepts of a concept.hasAttribute
and hasInstancedenote theattributes and instancesex-
plicitly defined for a concept, while the secondary at-
tributetotalSuperConceptdenotes all the ancestor concepts,
totalAttr denotes the total attributes – explicitly declared in
a concept and implicitly inherited, andtotalInsdenotes the
instances of a concept and its super-concepts.hasDefinition
denotes the logical expression used to define the semantics
of a concept (the logical expression used by WSMO is for-
mally defined in Section 3.7).

The class invariant ofConceptalso specifies that:

• all the super concepts must be defined (directly or in-
directly) withinOntology;

• the concept belongs to theOntologyit is attached to;
• all instances and attributes contained by a concept

must belong to the concept;

• the definition of a concept must be one of the forms of
⇒, ⇐ or ⇔ implication. The left hand side of the
implication must be an expression with the form of
‘memberOf C’ whereC must be the defined concept.
The terms used in the definition must be well defined.
The left-hand side and right-hand side of the expres-
sion has only one common free variable. The terms
used in the expression must be defined inOntology;

• a concept inherits the attributes of this superconcepts.

The paper only shows part of the model.

Concept
OntologyElement

hasSuperConcept: P Concept; hasAttribute: P Attribute
hasInstance: P Instance; hasDefinition: Expression
∆

totalAttr : P Attribute; totalIns : P Instance
totalSuperConcept: P Concept

hasSuperConcept⊆ inOntology.totalConcept
self ∈ inOntology.hasConcept
∀ i : hasInstance• self ∈ i.type
∀a : hasAttribute• self = a.inConcept
hasDefinition∈ LeftImpExp∪ RightImpExp

∪DualmpExp
hasDefinition.left ∈ MemberOfExp
hasDefinition.left.con= self
hasDefinition.left.hasVariable

= hasDefinition.right.hasVariable
#hasDefinition.right.hasVariable= 1

hasDefinition.usedTerm⊆ inOntology.totalterm
totalAttr = hasAttribute∪

∪{s : hasSuperConcept• s.totalAttr}

totalSuperConcept= ...

Attribute
ConceptElement

typeModel ::= ofType| impliesType

hasType: Concept; hasTypeModel: typeModel

hasType∈ inConcept.inOntology.totalConcept

The elements defined withinConceptare defined as
ConceptElement. It is derived fromNestedComponentand
the attributeparentIDis renamed toInConceptIDand a sec-
ondary attributeinConcept(The definition is omitted here).
Attribute, defined for each concept, represents a named slot
for data values for instances, whereashasTypedenotes the
possible values of that slot. The class invariant specifies that
all the value types must be defined withinOntology.
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3.3.3 Instances

WSMO instances are modeled asInstance. hasTypedenotes
the explicitly asserted concepts of which the instance is an
instance, whiletotalTypedenotes all asserted and inferred
type concepts. The complete definition ofInstanceis omit-
ted due to the space limitation.

Instance
OntologyElement

hasType: P Concept
hasAttributeValues: P AtttribueValue
∆

totalType: P Concept

...

The RelationandRelationInstanceof Ontologycan be
similarly defined.

3.3.4 Ontologies

Ontology
WSMOElement

importsOntology: P Ontology
usesMediator: P OOMediator
hasConcept: P Concept; ......

∆

totalOntologies: P Ontology; totalConcept: P Concept
...

totalTerm: P(Concept∪ Relation∪ Function
∪Instance∪ RelationInstance)

totalOntologies= (importsOntology− {o : Ontology|
∃m : usesMediator• m.sourceOntology= o})

∪{o : Ontology
| ∃m : usesMediator• m.targetOntology= o}

totalConcept= hasConcep∪

∪{o : totalOntologies• o.totalConcept}

∀ c : hasConcept• c.inOntology= self
...

totalTerm= totalConcept∪ totalRelation∪ ...

It is not a trivial task to develop and use an ontology for
some particular problem domains. One standard way of
dealing with the complexity is modularization. The ad-
vantage of modularizing ontologies has been well stud-
ied [16]. WSMO uses two different mechanisms –import
andmediator, to design ontologies in a modular way. Im-
porting can be used as long as no conflicts need to be re-
solved, otherwise anOOMediatoris necessary. Mediators
are described in more detail in Section 3.6.

The basic blocks of an ontology areconcepts, relations,
functions, concept instances, relation instancesandaxioms.
They are modeled as the attributes ofOntology. The
secondary attributetotalOntologiesdenotes the set of on-
tologies whose terms can be used by within the de-
fined ontology.totalConcept, totalRelation, totalFunction,
totalInstanceand totalRelationInstancedenote all the ele-
ments defined within an ontology and imported from other
ontologies or OOMediators.

The invariant denotes that:

• an ontology can use the terms defined by the target on-
tologies of used OOMediators and those imported on-
tologies which are not sources of any used OOMedia-
tors;

• the totalConcept, Relation, Functionand other ontol-
ogy elements in an ontology include those elements
defined directly in this ontology and all the elements
defined in those ontologies intotalOntologies.

Only partial model has been presented here.

3.4 Top level element – Web Services

A Web service description in WSMO consists of five
sub-components: not-functional properties, imported on-
tologies, used mediators, a capability and interfaces. The
details of these elements will be discussed later in this
section. The secondary attributetotalOntologiesdenotes
the ontologies whose terms may be used by a Web ser-
vice, which include the target ontologies of used OOMedi-
ators and those imported ontologies which are not sources
of any used OOMediators.ServiceElementdenotes all
the Web Service components. It is defined as a subclass
of NestedComponentwith a rename and a secondary at-
tribute inService. NonFunctionalPropertyis a set of prop-
erties which strictly belong to a service other than func-
tional and behavioral, e.g. the security level a service
must comply. We omit the definition ofServiceElement
andNonFunctionalPropertyclasses here and present part of
WebSerivcemodel.

WebService
WSMOElement

importsOntology: P Ontology
usesMediator: P(OOMediator∪ WWMediator)
hasNonFunctionProperty: P NonFunctionalProperty
hasCapability: Capability
hasInterface: P Interface
∆

totalOntologies: P Ontology

totalOntologies= ...
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3.4.1 Capability

A Web service hasexactly onecapability, which defines
the functionality of the service. A Web service capabil-
ity is defined by specifying theprecondition, postcondition,
assumption, andeffect, each of which is a set ofexpressions.
A Web service capability also declares a set of variables
shared between expressions. The terms used in these ex-
pressions must be formally defined in some ontologies
which must be imported either directly or via OOMedia-
tors. A capability, and therefore a Web service, may be
linked to certain goals that are resolved by the Web ser-
vice via special types of mediators, namedWGMediators
(WGMediatorswill be explained in a later section). The
last two predicates inCapability invariant ensure that the
shared variables have appeared in some used expressions,
and the expressions must have used well-defined terms.

Capability
ServiceElement

importsOntology: P Ontology
usesMediator: P(OOMediator∪ WGMediator)
hasNonFunctionProperty: P NonFunctionalProperty
hasSharedVariable: P Variable
hasPrecondition, hasPostcondition: P Expression
hasAssumption, hasEffect: P Expression
∆

totalOntologies: P Ontology

......

∀oo : useMediator• oo∈ OOMediator⇒
oo.sourceOntology∈ importsOntology

totalOntologies= ...

hasSharedVariable⊆

∪{e : hasPrecondition• e.hasVariables} ∪ ...∪

∪{e : hasAssumption• e.hasVariables}

∀e : hasPrecondition∪ hasPostcondition∪
hasEffect∪ hasAssumption

• ∀ t : e.usedTerm•
∃o : totalOntologies∪ inService.totalOntologies
• t ∈ o.totalTerm

3.4.2 Interfaces

An interface describes how the functionality of the Web ser-
vice can be achieved from two different views:

• Choreographydescribes the communication pattern
that allows one to consume the functionality of the
Web service.

• Orchestrationdescribes how different Web service
providers can operate to achieve the overall function-
ality of the Web service.

BesidesChoreographyand Orchestration, an interface
also declares a set of imported ontologies and OOMedia-
tors. InterfaceElementdenotes all the components defined
within anInterface.

Interface
ServiceElement

importsOntology: P Ontology
usesMediator: P OOMediator
hasNonFunctionProperty: P NonFunctionalProperty
hasChoreography: P Choreography
hasOrchestration: P Orchestration
∆

totalOntologies: P Ontology

......

In this paper we only show the specification of
Choreography. WSMO Choreographyshows how a client
deals with the Web service.Choreographyhas three main
components.StateSignaturedefines the static part of the
state descriptions.State(or ground facts) models the dy-
namic part of the state descriptions, andtransitionRule
models the state changes by changing the values of the
ground facts as defined in the set of the imported ontolo-
gies.

Choreography
InterfaceElement

hasNonFunctionProperty: P NonFunctionalProperty
hasStateSignature: StateSignature
hasState: State
hasTransitionRules: P TransitionRule

StateSignaturedefines the state ontology used by the ser-
vice. importsOntologydenotes a non-empty set of ontolo-
gies which defines the state signature over which the tran-
sition rules are executed andusesMediatordenotes a set of
OOMediators to solve possible heterogeneity issues among
imported state ontologies.

operation ::= READ| WRITE

mode
ConceptAndRelation

hasGrounding: P operation

6



StateSignaturealso defines themodes(or rules) for
each concept and relation in the state ontology. We
model modeas a subclass of the union class ofConcept
and Relation (named asConceptAndRelation) with some
grounding mechanisms defined. Focusing on the WSMO
model itself, we ignore the details of grounding mecha-
nisms and abstract them as eitherreador write operations.
There are five different types of roles for theconceptsand
relations. Static, is the default type for all concepts and re-
lations imported by the signature of the choreography, un-
less defined otherwise in the state signature header. It de-
notes that the extension of the concept cannot be changed.
in means that the extension of the concept or relation can
only be changed by the environment and read by the chore-
ography execution. A grounding mechanism for this item
that implements write access for the environment, must be
provided.outmeans that the extension of the concept or re-
lation can only be changed by the choreography execution,
and read by the environment. A grounding mechanism for
this item, that implements read access for the environment,
must be provided.sharedmeans that the extension of the
concept or relation can be changed and read by the choreog-
raphy execution and the environment. A grounding mecha-
nism for this item, that implements read/write access for the
environment and the service, may be provided.controlled
means that the extension of the concept is changed and read
only by the choreography execution. The partial invariant
of StateSignatureis presented to capture some of these con-
straints.

StateSignature
ChoreographyElement

importsOntology: P Ontology
usesMediator: P OOMediator
hasNonFunctionProperty: P NonFunctionalProperty
hasStatic, hasIn, hasOut, hasShared, hasControlled

: P mode
∆

totalOntologies: P Ontology
totalConcept: P Concept
totalRelation: P Relation

...

∀ c : totalConcept∪ totalRelation•
c 6∈ hasIn∪ hasOut∪ hasShared∪ hasControlled

⇒ c ∈ hasStatic
∀m : hasIn• WRITE∈ m.hasGrounding
∀m : hasOut• READ∈ m.hasGrounding
∀m : hasShared• {WRITE, READ} = m.hasGrounding
...

Stateshows the status of a service at a certain point of
time and it is defined as a set of ground facts.

State
ChoreographyElement

groundInstance: P Instance
groundRelationInstance: P RelationInstance

∀ i : groundInstance• ∃ t : i.hasType•
t ∈ inChoreography.hasStateSignature.totalConcept

∀ i : groundRelationInstance• ∃ t : i.hasType•
t ∈ inChoreography.hasStateSignature.totalRelation

Thetransition rulesare used to represent how the service
states change. They are triggered when the current state ful-
fils certain conditions (we omit the formal definition here).

Note that in this paper we only focus on the syntax
and static semantic of WSMO. The dynamic semantics of
WSMO, which can be formally modeled as a set of Object-
Z operations, will be addressed in another paper.

3.5 Top level element – Goals

Goals in WSMO are representations of an objective for
which fulfillment is sought through the execution of a Web
service. The WSMOGOAL can be similarly modeled as
WSMO Service, but due to the limited space, we will not
show the details of its formal specification.

3.6 Top level element – Mediators

Mediator is also a kind of top-level element of WSMO
and it is concerned with handling heterogeneity by re-
solving possibly occurring mismatches between resources.
WSMO has four mediators types which connect different
WSMO elements (hasSourceandhasTarget) and resolve the
mismatches between them using different mediating serives
(hasMediationService).

Mediator
WSMOElement

importsOntology: P Ontology
hasSource, hasTarget: WSMOElement
hasMediationService: WSMOElement

3.6.1 OO Mediators

OO Mediators (OOMediator) are mainly used to resolve
terminological mismatch; and they represent bridging en-
tities between different ontologies.OOMediator is mod-
eled as a sub class ofMediatorwith two extra secondary at-
tributessourceOntologyandtargetOntologywhich denotes

7



the ontologies used as the input and result of a mediation
process.

OOMediator
Mediator

MediatingOO: Ontology×
(Service∪ Goal∪ WWMediator) 7→ Ontology

∆

sourceOntology, targetOntology: Ontology

hasSource∈ Ontology∪ OOMediator
hasSource∈ Ontology⇒ sourceOntolgy= hasSource
hasSource∈ OOMediator⇒

sourceOntolgy= hasSource.targetOntology
hasTarget∈

Ontology∪ Goal∪ Service∪ OOMediator
hasTarget∈ Ontology⇒ targetOntology= hasTarget
hasTarget∈ OOMediator⇒

targetOntology.id = hasTarget.id
hasTarget∈ Service∪ Goad⇒

sourceOntolgy∈ hasTarget.importsOntolgy
hasMediationService∈ Service∪ Goal∪ WWMediator
(sourceOntology, hasMediationService, targetOntology)

∈ MediatingOO

The class invariant denotes that:

• the source of an OOMediator can be either anOntology
or anOOMediator.

• if the source is an ontology, the mediation process will
be to this ontology.

• if the source is an OOMediator, the role of the source
ontology for the defined OOMediator will be played
by the target of its source OOMediator.

• the target of an OOMediator can be either anOntology,
aGoal, aServiceor anOOMediator.

• if the target is an ontology, the result of mediation pro-
cess will be this ontology as well.

• if the target is an OOMediator, the result of mediation
contains terms made available in the name space of the
target OOMediator itself.

• an OOMediator with a Goal or a Service as a target
component, resolves the heterogeneity problems be-
tween its source ontology and the ontologies imported
by the Goal. Therefore, the sourceOntology must be
in the imported ontologies of the OOMediator’s target
Goal or Service.

• aService, WWMediatoror Goalcan be declared as the
hasMediationServicerepresenting the link which real-
ize the meditating process.

• as we are not interested in any concrete mediation tech-
niques, the relationMediatingOOis used to abstract

the relations between a source ontology, mediationSer-
vice and targetOntology.

Due to limited space, we omit the formal representation
of other mediator types from this section.

3.7 Logic Expression

In this section we show the formal model for the logical
language used for defining formal statements in WSMO.
Due to the limited space, we only shows the logical lan-
guage defined for the WSMO core language.

In WSMO, the value space includes WSMO element
value and literal values. We also define a special kind of
value called thenil value. This is used when variables have
not been bound to any concrete values. The WSMO values
in general are modeled as a class union:

Value=̂ WSMOElement∪ LiteralValue∪ NilValue

NilValue

v : Value

v = self

LiteralValue Variable

id : VID
v : Value

Variable has two attributes,id which denotes the name
of a variable; andv which denotes the value a variable
bounded.Expressiondenotes the general WSMO expres-
sion. ThehasVariablesandusedTermsdenotes the set of
variables and WSMO elements used in an expression.

Expression

hasVariables: P Variable; usedTerms: P WSMOElement

MemberOfExp
Expression

con : Concept∪ Variable; ins : Instance∪ Variable

hasVariables= ({con} ∪ {ins}) ∩ Variable
usedTerms= ({con} ∪ {ins}) ∩ WSMOElement

Logic expressions may be simple or complex. There
are two basic types of simple logical expressions –
molecules expression and relation expressions (RelExp).
WSMO molecules expressions can have serval forms.
MemberOfExpdenotes the instance molecule with the form
of I memeberOf C, where I is an instance andC is a
concept. Other forms of molecules expressions, such as
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AttListExp, SubConceptExp, ConAttributeDefExpand rela-
tion expressions (RelExp), can be defined as well.

WSMO has two kinds of complex logical expressions.
The compound logical expression, modeled by the class
CompoundExp, consists of a number of simple logical ex-
pressions connected with the keywordand. The Formula
consists of two (simple or compound) logical expression,
separated by an implication symbols (⇐, ⇒ and⇔ ). They
are modeled asLeftImpExp, RightImpExpandDualmpExp.
Due to the space limitation, we only shows the model for
LeftImpExp.

LeftImpExp
Expression

left : Expression; right : Expression

usedTerms= left.usedTerms∪ right.usedTerms
hasVariables= left.hasVariables∪ right.hasVariables

4 Discussion

The formal specification of WSMO can be beneficial to
the Semantic Web service communities in many different
ways, as discussed in the following Subsections.

4.1 Checking the consistency of WSMO
language

WSMO is currently a relatively new technology, and thus
may still contain errors. As our formal model provides a rig-
orous foundation of the language, by using existing formal
verification tools, it may be possible to find those errors and
improve the quality of the WSMO standard. For example,
suppose that we define a concepthelpRequestwhich has
an attributeResponseGroup. The range ofResponseGroup
is strings5. This WSMO definition can be translated into
Object-Z as:

ResponseGroup: Attribute; helpRequest: Concept

ResponseGroup.hasType= String
helpRequest.hasAttribute= {ResponseGroup, ....}......

Note that the translation from WSMO to Object-Z can be
automatically realized by a tool. However, when we load
our formal WSMO model and the above Object-Z definition
into an Object-Z type checker, the tool complains that there
is a type error. After studying this problem, we realized
that the problem is that according to the WSMO documents
(Section 3.3.2), thehasTypeattribute defined for an con-
cept attribute can only have a WSMO concept as its values.

5A full version of this example accompanies the WSMO release,and
can be found fromhttp://www.wsmo.org/TR/d3/d3.4/v0.1/

On the other hand,String is a subclass of literal datatype
Value. LiteralValue and Concept are considered disjointed
in many Semantic Web languages. Thus, the WSMO stan-
dard should be revised as illustrated in Figure 2.

Current WSMO specification:
Classattributesub-Class wsmoElement

hasTypetypeconcept... ....
Revised WSMO specification:
Classattributesub-Class wsmoElement

hasTypetypeconcept or dataType... ....

Figure 2. WSMO specification revision.

4.2 Making the WSMO language precise
and removing ambiguity

Large sections of the WSMO document are in normative
text, which could result in several divergent interpretations
of the language by different users and tool developers. Fur-
thermore, the documentation makes many assumptions and
implications, which are implicitly defined. This could lead
to inconsistent conclusion being drawn. Our formal model
of WSMO can be used to improve the quality of the norma-
tive text that defines the WSMO language, and to help en-
sure that: the users understand and used the language cor-
rectly; the test suite covers all important rules implied by
the language; and the tools developed work correctly and
consistently.

4.3 Reasoning the WSMO by using exit-
ing formal tools directly

Since Semantic Web Service research in general, and
WSMO in particular are still evolving, current verification
and reasoning tools (though rudimentary) are also improv-
ing. In contrast, there have been decades of development
into mature formal reasoning tools that are used to verify
the validity of software and systems. By presenting a for-
mal semantic model of WSMO, many Object-Z and Z tools
can be possibly used for checking, validating and verifying
WSMO model. For example, in our previous work, we have
applied Z/EVES [7, 6] and AA [9] separately to reasoning
over Web ontologies. In the previous section, we also ap-
plied an Object-Z type checker to validate a WSMO model.
Instead of developing new techniques and tools, reusing ex-
isting tools provides a cheap, but efficient way to provide
support and validation for standards driven languages, such
as WSMO.

4.4 The ease of extendibility

As WSMO is still evolving, an advantage of using
an object-oriented approach in the language model is to
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achieve the extendibility of the language model. Sup-
pose that we want to add a new kind of logic expressions,
NotExp, to WSMO core. Then in our model it is necessary
to add only the following class:

NotExp
Expression

operand: Expression

usedTerms= operand.usedTerms
hasVariables= operand.hasVariables

The introduction of this extension does not involve any
changes to the classes defined in the previous section. Val-
idation tools can then be used to confirm the validity of the
extended model as can be observed in this example.

5 Conclusion

WSMO is one of the most important technologies for
Semantic Web service. It complements the existing syn-
tactic Web service standards, by providing a conceptual
model and language for the semantic markup describing
all relevant aspects of general services which are accessible
through a Web service interface. This paper has presented
an Object-Z semantics for WSMO, whereby the WSMO
constructs are modeled as objects. The advantage of this
approach is that the abstract syntax and static and dynamic
semantics for each the WSMO construct are grouped to-
gether and captured in an Object-Z class; hence the lan-
guage model is structural, concise and easily extendible.
Subsequent work will address and complete the dynamic
semantics of WSMO. We believe this OZ specification can
provide a useful document for developing support tools for
WSMO.
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