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Abstract posed to date [17], complements the existing syntactic Web

service standards by providing a conceptual model and lan-

Semantic Web Services, one of the most significant re-guage for the semantic markup of all relevant aspects of
search areas within the Semantic Web vision, has attractedgeneral services, which are accessible through a Web ser-
increasing attention from both the research community and vice interface. The ultimate goal of such markup is to en-
industry. The Web Service Modelling Ontology (WSMOQ) able the total/partial automation of the tasks (e.g., diecg
has recently been proposed as an enabling framework forselection, composition, mediation, execution, monitgyin
the total/partial automation of the tasks (e.g., discoyery etc.) involved in both intra- and inter-enterprise inteigna
selection, composition, mediation, execution, monitprin  of Web Services.
etc.) involved in both intra- and inter-enterprise integra The syntax and semantics of WSMO are defined in terms
tion of Web Services. To support the standardization andof its metamodel. The language has been described from
tool support of WSMO, a formal semantics of the languagethree different aspects: syntax, static semantics and dy-
is highly desirable. As there are a few variants of WSMO namic semantics. One of the major problems with the cur-
and it is still under development, the semantics of WSMOrent WSMO definition is that the three aspects of WSMO
needs to be formally defined to facilitate easy reuse and fu-have been separately described in various formats (mainly
ture development. In this paper, we present a formal Object-in natural language, i.e., English, complemented with some
Z semantics of WSMO. Different aspects of the languageXML schemas and simple axioms). These different descrip-
have been precisely defined within one unified framework.tions contain redundancy and sometimes contradiction in
This model not only provides a formal unambiguous model the information provided. Furthermore, with the continsiou
which can be used to develop tools and facilitate future de- evolution of WSMO it has been very difficult to consistently
velopment, but as demonstrated in this paper, can be usedxtend and revise these descriptions. More importangy, th
to identify and eliminate errors presented in existing docu use of natural language is ambiguous and can be interpreted
mentation. in different ways. This lack of precision in defining the se-
mantics of WSMO can result in different users, Web service
providers and tool developers having different understand
ings of the same WSMO model. To support common un-
derstanding and facilitate standardizati@nd tool devel-
. . opment for WSMO, a formal semantics of its language is

The next generation of the Web, the Semantic Web oy desirable. Also, being a relatively young field, re-
(SW) [2] provides computer-interpretable markup of both ggareh intg Semantic Web services and WSMO is still on-
content and services on the Web, thus enabling automayqing and therefore a semantic representation of WSMO
tion of many tasks currently performed by humans. Among pee s to be reusable and extendable in a way that can ac-
the most important Web resources are those that provide.; mmodate this evolutionary process.
services. Web services are Web-accessible programs that The aim of our work is to define a complete formal deno-

proliferate thg Web Dby providing user access to applica- tational semantics of the WSMO language using Object-Z
tions supporting tasks sgch as e-commerce, entertammem(,oz) [10] . A denotational approach has been proved to
etc. Semantic Web Service research [14] has attracted MOrSa one of the most effective ways to define the semantics
and more attention from both research communities and in-of a language, and has been used to give formal semantics
dustries, and several different approaches have been studf-Or many programming and modeling languages [13, 20].

led to achieve t,he vision 9f Semantic Web service [1, 17]. Object-Z has been used to provide one single formal model
The Web Service Modelling Ontology (WSMO), one of

the most significant Semantic Web Service framework pro-  thttp:/iwww.w3.org/Submission/WSMO

1 Introduction




for the syntax, the static semantics and the dynamic semangprovides a framework for semantic descriptions of Web Ser-
tics of WSMO. Also, because these different aspects havevices and acts as a meta-model for such Services based on
been described within a single framework, the consistencythe Meta Object Facility (MOF) [15]. Semantic service de-
between these aspects can be easily maintained. In this pascriptions, according to the WSMO meta model, can be
per, we focus on the formal model for the syntax and static defined using one of several formal languages defined by
semantics of WSMO. The dynamic semantics of WSMO WSML (Web Service Modelling Language) [3], and con-
will be discussed in a future paper. sists of four core elements deemed necessary to support Se-
Object-Z (0Z) [10] is an extension of the Z formal spec- mantic Web serviceOntologies Goals Web Serviceand
ification language to accommodate object orientation. The Mediators Ontologiesare described in WSMO at a meta-
main reason for this extension is to improve the clarity level. A meta-ontology supports the description of all the
of large specifications through enhanced structuring. Weaspects of the ontologies that provide the terminology for
chose Object-Z over other formalisms to specify WSMO the other WSMO elementsGoalsare defined in WSMO
because: as the objectives that a client may have when consulting a
Web service.Web Serviceprovide a semantic description
e The object-oriented modelling style adopted by of services on the web, including their functional and non-
Object-Z has good support for modularity and functional properties, as well as other aspects relevant to
reusability. their interoperation Mediatorsin WSMO are special ele-
e The semantics of Object-Z itself is well studied. The ments used to link heterogeneous components involved in
denotational semantics [12] and axiomatic seman-the modelling of a Web service. They define the necessary

tics [18] of Object-Z are closely related to Z standard mappings, transformations and reductions between linked
work [21]. Object-Z also has a fully abstract seman- elements.

tics [19].
e Object-Z provides some handy constructs, such as2,2 QObject-Z (0Z)
Class-unior{5] etc., to define the polymorphic and re-

cursive n_ature of language constr_ucts effectively. _Z Object-Z [10] is an extension of the Z formal specifi-
has previously been used to specify the Web Service cation language to accommodate object orientation. The
Definition Language (WSDL) [4]; however, as Z lacks  ggsential extension to Z in Object-Z is thiassconstruct,

the object-oriented constructs found in OZ, a signifi- \yhich groups the definition of a state schema with the defi-
cant portion of the resulting model focused on solv- pitions of its associated operations. A class is a temptate f
ing several low level modeling issues, such as the us-gpjectsof that class: the states of each object are instances
age of free types, rather than the WSDL language it- of the state schema of the class, and its individual state tra
self. Thus, using OZ can greatly simplify the model, sjtions conform to individual operations of the class. An

and hence avoid users from being distracted by the gpject is said to be an instance of a class and to evolve ac-
formalisms itself rather than focusing on the resulting ¢o(ding to the definitions of its class.

mode. Operation schemas have A-list of those attributes

whose values may change. By convention/xutist means

troduces the notion of WSMO and Object-Z. Section 3 is _that no att_nbute cha_tnges valge. T_he standard _b_ehaworal
interpretation of Object-Z objects is as a transition sys-

devoted to a formal Object-Z model of WSMO syntax and tem [19]. A behavior of a transition system consists of a

static semantics. Section 4 discusses some of the benefits_ . "
: . Series of state transitions each effected by one of the class
of this formal model. Section 5 concludes the paper and

. : operations.
discusses possible future work. P

The paper is organized as follows. Section 2 briefly in-

. 3 Formal Object Model of WSMO
2 Overview

3.1 OZ Approach to WSMO Semantics
2.1 WSMO
The existing specification of WSMO informally or semi-
The Web Service Modelling Ontology (WSMO) [17] is formally describes the language from three different atspec
one of the major approaches for modeling services semanti— syntax (a WSMO model is well-formed), static seman-
cally, based on the earlier work on Unified Problem Solving tics (a WSMO model is meaningful) and dynamic seman-
Method, which was part of a “...framework for developing tics (how is a WSMO model interpreted and executed). We
knowledge-intensive reasoning systems based on librariegpropose the use of Object-Z to provide a formal specifica-
of generic problem-solving components...”[11]. WSMO tion of all aspects of WSMO in one single unified frame-



WSMO refers to the concepts it defines as “elements”,

A which are modeled a8/ SMOElement
itz S } Class attribute: models WSMO syntax WSMOElement Annotation
predicate Class Invariant: models WSMO . : .
} static semantics id : ID . hasContrlbutqr.
. hasAnnotation P DC_Contributor
["p" r “"""} Class operation: models WSMO Annotation hasDate: PDC_Date ...
dynamic semantics

EachWSMOElementas one ID and optionally a set of
Figure 1. The framework annotations Annotation being modeled as an Object-Z
class, is used in the definition of WSMO elements. It con-
tains different annotation values which can be applied to
work, so that the semantics of the language can be moreany WSMO element, such &C_Contributor*, DC_Date,
consistently defined and revised as the language evolvesetc. These values are also defined as Object-Z classes, but
Figure 1 shows the general approach of the framework. Thethey are not shown in this paper. The WSMO specification
WSMO elements are modeled as different Object-Z classesdoes not define any cardinality constraints on the number
The syntax of the language is captured by the attributes ofof annotation values an element can have. For example, a
an Object-Z class. The predicates are definedlass in-  \WSMO element can have more than one creation date. We
variantused to capture the static semantics of the languagemodel this by specifying that the value of attribhi@sDate
The class operations are used to define WSMO’s dynamicis a set ofDC_Date values. The tool developers have the
semantics, which describe how the state of a Web servicefreedom to extend the model and add extra constraints, e.g.,
changes. This paper focuses on the first two aspects oby adding the predicate/thasDate< 1’ to ensure that a
WSMO, i.e. the formal model of syntax and static seman- WSMO element can only have at most one creation date.
tics’. Because of the limited space, we only presenta par- The elements defined within  WSMO models

tial model heré. Our model is based on the latest version can be divided into two groups — top level ele-
of WSMO (D2v1.3). ments {opLevelComponent and nested element
(NestedComponent WSMO has four kinds of top
3.2 Modeling identifiers, WSMO elements level elements as the main concepts to describe Semantic
and annotations Web services. They ar©ntology Serivce Goal and
o AID, URIID,VID : PID Mediator. Each of which is modeled as a subclass of
WSMOEIlement They will be described in detail in
’] VIDNAID =2 following subsections.
VIDNURIID = @

URIIDNAID = @
VIDUAIDUURIID = ID

Every WSMO element is identified by an identifier that Essentially, nested elements are attached to some other
can either be classified as URI reference or anonymous ID.WSMO elements. In our modeMestedComponexenotes
Futhenore, WSO can sl denly varabls. We s SLUCSSLS TeS S, | Lol sonbonn e
the Object-Z clastD to denote all possible identifiers. Note ~
that rather than modeling the identifiers as a Z given type ;atg:lggirt?é i'?SZ:I{SMO element can not be attached to vari-
([ID]) (similar to the Z specification of WSDL[4]), model- '
ing them as a class allows us to further extend it and ap-

TopLevelComponerit Ontologyu Goal U ServiceJ Mediator

ply various Object-Z class modifier8lRIID, AID andVID _vT/ZT\;%j;gnnlgﬁ?em
are disjoint subsets dD representing the URI reference,
anonymous ID and variable ID. Due to the limited space,
we only provide an abstract view of the cla&s without parentlD: 1D
any attributes. These concepts can be modeled in more de- parentlD ¢ VID A id # parentID
tails, e.g., &JRIID reference can be expressed by a qualified
name, etc.
2The dynamic semantics will be addressed in a separate paper.
SA more complete model can be found http://www.ecs.
soton.ac.uk/  ~hw/WSMO-OZ.pdf . 4DC_ stands for the Dublin Core.



3.3 Top level element — Ontologies

An ontology is a formal specification of a conceptual-
ization. In WSMO, Ontologies are one of the key elements
and they provide the terminology used by other WSMO el-
ements to describe the relevant aspects of the domains of
discourse. Ontologies conceptualize a problem domain by
defining a set oftonceptsrelations instancesand some
axioms Ontologywill be formally defined later in this sub-
section.

3.3.1 Ontology elements

___OntologyElement
NestedComponéimOntology!D/parentlD}

A
inOntology: Ontology

3, 0: Ontologye inOntologylD= o.id
A inOntology= o

The classOntologyElementdenotes all the possible
WSMO elements defined within Ontologies. It is defined
as a subclass dflestedComponent We rename the at-
tribute parentID to inOntologyID for clarity reasons and
also define a secondary attribute jBDntologyto denote
the Ontology whichinOntologylDrefers to. The invariant
shows that there exists one and only one Ontology given an
inOntologylD

3.3.2 Concepts

Conceptsconstitute the basic elements of the agreed ter-
minology for some problem domain€onceptis derived
from OntologyElement In it, hasSuperConceptttribute
denotes the super-concepts of a conceptasAttribute
and haslnstancedenote theattributes and instancesex-
plicitly defined for a concept, while the secondary at-
tributetotalSuperConceptenotes all the ancestor concepts,
totalAttr denotes the total attributes — explicitly declared in
a concept and implicitly inherited, aridtalinsdenotes the
instances of a concept and its super-concéyatsDefinition

o the definition of a concept must be one of the forms of

=, < or & implication. The left hand side of the
implication must be an expression with the form of
‘memberOf CwhereC must be the defined concept.
The terms used in the definition must be well defined.
The left-hand side and right-hand side of the expres-
sion has only one common free variable. The terms
used in the expression must be define@®imtology

e a conceptinherits the attributes of this superconcepts.
The paper only shows part of the model.

—Concept
OntologyElement

hasSuperConceptP Concept hasAttribute: P Attribute
haslInstance P Instance hasDefinition: Expression

A

totalAttr : P Attribute totallns: P Instance
totalSuperConceptP Concept

hasSuperConcept inOntologytotalConcept
self € inOntologyhasConcept
Vi : haslnstance self € i.type
Va : hasAttributee self = a.inConcept
hasDefinitione LeftimpExpJ RightimpExp
UDualmpExp

hasDefinitionleft € MemberOfExp
hasDefinitionleft.con = self
hasDefinitionleft.hasVariable

= hasDefinitionright.hasVariable
#hasDefinitionright.hasVariable= 1
hasDefinitionusedTernC inOntologytotalterm
totalAttr = hasAttributes

(U{s: hasSuperConcept s.totalAttr}

totalSuperConcept ...

__Attribute
ConceptElement
typeModel ::= onype\ impliesType

hasType Concept hasTypeMode! typeModel

hasTypec inConceptinOntologytotalConcept

denotes the logical expression used to define the semantics
of a concept (the logical expression used by WSMO is for-
mally defined in Section 3.7).

The class invariant d€onceptalso specifies that:

The elements defined withi€onceptare defined as
ConceptElementlt is derived fromNestedComponesaind
the attributeparentIDis renamed téthConceptiDand a sec-
e all the super concepts must be defined (directly or in- ondary attributenConcepfThe definition is omitted here).
directly) within Ontology Attribute, defined for each concept, represents a named slot
e the concept belongs to ti@ntologyit is attached to; for data values for instances, wherd@sTypedenotes the
e all instances and attributes contained by a conceptpossible values of that slot. The class invariant spectfiats t
must belong to the concept; all the value types must be defined witlimtology



3.3.3 Instances

WSMO instances are modeledlastance hasTypalenotes

the explicitly asserted concepts of which the instance is an

instance, whilgotalTypedenotes all asserted and inferred

type concepts. The complete definitionlngtanceis omit-

ted due to the space limitation.

—_Instance
OntologyElement

hasType P Concept
hasAttributeValues P AtttribueValue
A

totalType: P Concept

The Relationand Relationinstancef Ontologycan be
similarly defined.
3.3.4 Ontologies

___Ontology.
WSMOElement

importsOntology: P Ontology
usesMediator P OOMediator
hasConcept P Concepi
A

totalOntologies P Ontology totalConcept P Concept

totalTerm: IP(ConceptJ Relationu Function
UlnstanceU Relationinstance

totalOntologies= (importsOntology- {0 : Ontology|
I m: usesMediatoe m.sourceOntology= 0})
U{o : Ontology
| 3m: usesMediatoe m.targetOntology= o}
totalConcept= hasConcep
(UJ{o : totalOntologiese o.totalConcep}
V¢ : hasConcep# c.inOntology= self

totalTerm= totalConceptJ totalRelationu ...

It is not a trivial task to develop and use an ontology for
some particular problem domains. One standard way of
dealing with the complexity is modularization. The ad-
vantage of modularizing ontologies has been well stud-
ied [16]. WSMO uses two different mechanismgmport
andmediatot to design ontologies in a modular way. Im-

porting can be used as long as no conflicts need to be re-

solved, otherwise a@OMediatoris necessary. Mediators
are described in more detail in Section 3.6.

The basic blocks of an ontology atenceptsrelations
functions concept instanceselation instanceandaxioms
They are modeled as the attributes ©ftology The
secondary attributéotalOntologiesdenotes the set of on-
tologies whose terms can be used by within the de-
fined ontology.totalConcepttotalRelation totalFunction
totallnstanceandtotalRelationinstancélenote all the ele-
ments defined within an ontology and imported from other
ontologies or OOMediators.

The invariant denotes that:

e an ontology can use the terms defined by the target on-
tologies of used OOMediators and those imported on-
tologies which are not sources of any used OOMedia-
tors;

¢ the totalConcept Relation Functionand other ontol-
ogy elements in an ontology include those elements
defined directly in this ontology and all the elements
defined in those ontologies totalOntologies

Only partial model has been presented here.
3.4 Top level element — Web Services

A Web service description in WSMO consists of five
sub-components: not-functional properties, imported on-
tologies, used mediators, a capability and interfaces. The
details of these elements will be discussed later in this
section. The secondary attributetalOntologiesdenotes
the ontologies whose terms may be used by a Web ser-
vice, which include the target ontologies of used OOMedi-
ators and those imported ontologies which are not sources
of any used OOMediators.ServiceElementienotes all
the Web Service components. It is defined as a subclass
of NestedComponemntith a rename and a secondary at-
tribute inService NonFunctionalPropertys a set of prop-
erties which strictly belong to a service other than func-
tional and behavioral, e.g. the security level a service
must comply. We omit the definition dderviceElement
andNonFunctionalPropertglasses here and present part of
WebSerivcenodel.

__WebService
WSMOElement

importsOntology P Ontology

usesMediator P(OOMediatord WWMediatoy
hasNonFunctionProperty? NonFunctionalProperty
hasCapability: Capability

haslnterface P Interface

A

totalOntologies: P Ontology

totalOntologies= ...




3.4.1 Capability

A Web service hagxactly onecapability, which defines
the functionality of the service. A Web service capabil-
ity is defined by specifying thprecondition postcondition
assumptionandeffect each of which is a set @xpressions

e Orchestrationdescribes how different Web service
providers can operate to achieve the overall function-
ality of the Web service.

BesidesChoreographyand Orchestration an interface
also declares a set of imported ontologies and OOMedia-
tors. InterfaceElementlenotes all the components defined

A Web service capability also declares a set of variablesWithin aninterface
shared between expressions. The terms used in these ex-
pressions must be formally defined in some ontologies
which must be imported either directly or via OOMedia-
tors. A capability, and therefore a Web service, may be

___Interface
ServiceElement

linked to certain goals that are resolved by the Web ser-

vice via special types of mediators, namatfsMediators
(WGMediatorswill be explained in a later section). The
last two predicates itCapability invariant ensure that the

shared variables have appeared in some used expressions,

and the expressions must have used well-defined terms.

___Capability.
ServiceElement

importsOntology: P Ontology

usesMediator P(OOMediatorJ WGMediato)
hasNonFunctionProperty? NonFunctionalProperty
hasSharedVariable P Variable
hasPreconditionhasPostcondition P Expression
hasAssumptiarhasEffect P Expression

A

totalOntologies P Ontology

V 00 : useMediatore 00 € OOMediator=-
oo.sourceOntologye importsOntology
totalOntologies= ...
hasSharedVariabl&
(U{e: hasPreconditior e.hasVariable$ U ...U
(J{e: hasAssumptiom e.hasVariable$
V e : hasPreconditioru hasPostcondition
hasEffecty hasAssumption
e Vt: eusedTerme
Jo: totalOntologiesJ inServicetotalOntologies
e t € o.totalTerm

3.4.2 Interfaces

An interface describes how the functionality of the Web ser-
vice can be achieved from two different views:

e Choreographydescribes the communication pattern
that allows one to consume the functionality of the
Web service.

importsOntology: P Ontology
usesMediator P OOMediator
hasNonFunctionProperty NonFunctionalProperty
hasChoreography P Choreography
hasOrchestration P Orchestration
A

totalOntologies: P Ontology

In this paper we only show the specification of
Choreography WSMO Choreographyshows how a client
deals with the Web serviceChoreographyhas three main
components. StateSignaturelefines the static part of the
state descriptionsState(or ground facts) models the dy-
namic part of the state descriptions, atrdnsitionRule
models the state changes by changing the values of the
ground facts as defined in the set of the imported ontolo-
gies.

__Choreography
InterfaceElement

hasNonFunctionProperty NonFunctionalProperty
hasStateSignatureStateSignature

hasState State

hasTransitionRulesP TransitionRule

StateSignaturdefines the state ontology used by the ser-
vice. importsOntologydenotes a non-empty set of ontolo-
gies which defines the state signature over which the tran-
sition rules are executed andesMediatodenotes a set of
OOMediators to solve possible heterogeneity issues among
imported state ontologies.

operation ::= READ| WRITE

mode
ConceptAndRelation

hasGrounding P operation




Stateshows the status of a service at a certain point of
StateSignaturealso defines themodes(or rules) for  time and itis defined as a set of ground facts.
each concept and relation in the state ontology. We
model modeas a subclass of the union class@ncept
and Relation (hamed asConceptAndRelatigrnwith some
grounding mechanisms defined. Focusing on the WSMO
model itself, we ignore the details of grounding mecha-
nisms and abstract them as eithead or write operations.
There are five different types of roles for thenceptsand
relations Statig is the default type for all concepts and re-
lations imported by the signature of the choreography, un-
less defined otherwise in the state signature header. It de-
notes that the extension of the concept cannot be changed.
in means that the extension of the concept or relation can
only be changed by the environment and read by the chore- Thetransition rulesare used to represent how the service
ography execution. A grounding mechanism for this item States change. They are triggered when the current state ful
that implements write access for the environment, must befils certain conditions (we omit the formal definition here).
provided.outmeans that the extension of the conceptorre-  Note that in this paper we only focus on the syntax
lation can only be changed by the choreography execution,and static semantic of WSMO. The dynamic semantics of
and read by the environment. A grounding mechanism for WSMO, which can be formally modeled as a set of Object-
this item, that implements read access for the environmentZ operations, will be addressed in another paper.
must be providedsharedmeans that the extension of the
concept or relation can be changed and read by the choreog3-5  Top level element — Goals
raphy execution and the environment. A grounding mecha-
nism for this item, that implements read/write access ferth ~ Goalsin WSMO are representations of an objective for
environment and the Service’ may be providedntro”ed which fulfillment is Sought through the execution of a Web
means that the extension of the concept is changed and reagervice. The WSMGGOAL can be similarly modeled as
only by the choreography execution. The partial invariant WSMO Service but due to the limited space, we will not
of StateSignaturi presented to capture some of these con- Show the details of its formal specification.
straints.
__StateSignature
ChoreographyElement

___State
ChoreographyElement

groundinstance P Instance
groundRelationInstanceP Relationinstance

Vi : groundinstances 3t : i.hasTypes

t € inChoreographyhasStateSignaturnetalConcept
Vi : groundRelationInstance 3t : i.hasTypes

t € inChoreographyhasStateSignatunetalRelation

3.6 Top level element — Mediators

Mediatoris also a kind of top-level element of WSMO
and it is concerned with handling heterogeneity by re-
solving possibly occurring mismatches between resources.

importsOntology: P Ontology

usesMediator P OOMediator
hasNonFunctionProperty NonFunctionalProperty
hasStatichasIn hasOut hasSharedhasControlled
: Pmode

A
totalOntologies P Ontology
totalConcept P Concept

totalRelation: P Relation

V ¢ : totalConceptU totalRelatione
¢ ¢ hasInu hasOutu hasSharedJ hasControlled
= C € hasStatic
¥'m: hasine WRITE€ m.hasGrounding
¥'m: hasOute READ € m.hasGrounding
V'm: hasShared {WRITE READ} = m.hasGrounding

WSMO has four mediators types which connect different
WSMO elementsi{asSourcandhasTargetand resolve the
mismatches between them using different mediating serives
(hasMediationServige

___Mediator
WSMOElement

importsOntology: P Ontology
hasSourceghasTarget WSMOElement
hasMediationService WSMOElement

3.6.1 OO Mediators

OO Mediators QOMediato) are mainly used to resolve
terminological mismatch; and they represent bridging en-
tities between different ontologiesOOMediatoris mod-
eled as a sub class bfediatorwith two extra secondary at-
tributessourceOntologyndtargetOntologywhich denotes



the ontologies used as the input and result of a mediation
process.

___OOMediator.
Mediator

MediatingOO: Ontologyx
(Serviced GoalU WWMediatoj -+~ Ontology

A
sourceOntologytargetOntology: Ontology

hasSource= OntologyU OOMediator
hasSource= Ontology=- sourceOntolgy= hasSource
hasSource= OOMediator=-

sourceOntolgy= hasSourcgargetOntology
hasTargete

Ontologyu Goal U ServiceJ OOMediator
hasTargetc Ontology=- targetOntology= hasTarget
hasTargete OOMediator=-

targetOntologyid = hasTargetd
hasTargetc ServiceJ Goad=-

sourceOntolgye hasTargeimportsOntolgy
hasMediationService ServiceJ Goalu WWMediator
(sourceOntologyhasMediationServicgargetOntology

€ MediatingOO

The class invariant denotes that:

¢ the source of an OOMediator can be eithe@artology

or anOOMediator

if the source is an ontology, the mediation process will
be to this ontology.

if the source is an OOMediator, the role of the source
ontology for the defined OOMediator will be played
by the target of its source OOMediator.

the target of an OOMediator can be eitheGmtology
aGoal, aServiceor anOOMediator

if the target is an ontology, the result of mediation pro-
cess will be this ontology as well.

if the target is an OOMediator, the result of mediation

contains terms made available in the name space of the

target OOMediator itself.

an OOMediator with a Goal or a Service as a target
component, resolves the heterogeneity problems be-
tween its source ontology and the ontologies imported
by the Goal. Therefore, the sourceOntology must be
in the imported ontologies of the OOMediator’s target
Goal or Service.

aService WWNMediatoror Goalcan be declared as the
hasMediationServiceepresenting the link which real-
ize the meditating process.

nigues, the relatioMediatingOOis used to abstract

the relations between a source ontology, mediationSer-
vice and targetOntology.

Due to limited space, we omit the formal representation
of other mediator types from this section.

3.7 Logic Expression

In this section we show the formal model for the logical
language used for defining formal statements in WSMO.
Due to the limited space, we only shows the logical lan-
guage defined for the WSMO core language.

In WSMO, the value space includes WSMO element
value and literal values. We also define a special kind of
value called thenil value. This is used when variables have
not been bound to any concrete values. The WSMO values
in general are modeled as a class union:

Value= WSMOElement LiteralValueu NilValue

NilValue___ LiteralValue. Variable___
v : Value id : VID

v : Value
v = self

Variable has two attributesd which denotes the name
of a variable; andv which denotes the value a variable
bounded. Expressiordenotes the general WSMO expres-
sion. ThehasVariablesand usedTermslenotes the set of
variables and WSMO elements used in an expression.

___Expression

hasVariables P Variable usedTerms P WSMOElement

___MemberOfExp
Expression

con: ConceptJ Variable, ins: InstanceU Variable

hasVariables= ({con} U {ins}) N Variable
usedTerms= ({con} U {ins}) N WSMOElement

Logic expressions may be simple or complex. There
are two basic types of simple logical expressions —
molecules expression and relation expressidRelExp.
WSMO molecules expressions can have serval forms.
MemberOfExmlenotes the instance molecule with the form

as we are notinterested in any concrete mediation tech-of | memeberOf C wherel is an instance and is a

concept. Other forms of molecules expressions, such as



AttListExp SubConceptExConAttributeDefEx@and rela- On the other handStringis a subclass of literal datatype
tion expressionsRelExp, can be defined as well. Value. LiteralValue and Concept are considered disjointed
WSMO has two kinds of complex logical expressions. in many Semantic Web languages. Thus, the WSMO stan-
The compound logical expressipmodeled by the class dard should be revised as illustrated in Figure 2.
CompoundExpconsists of a number of simple logical ex-

pressions connected with the keywardd. The Formula Current WSMO specification:
consists of two (simple or compound) logical expression, | Classattributesub-Class wsmoElement
separated by an implication symbois:(=- and< ). They hasTypeypeconcept.. ...
are modeled akeftlmpExp RightimpExpandDualmpExp Revised WSMO specification:
Due to the space limitation, we only shows the model for | Classattributesub-Class wsmoElement
LeftimpExp hasTypeype concept or dataType... ....
— LeftimpExp Figure 2. WSMO specification revision.
Expression
4.2 Making the WSMO language precise
left : Expression right : Expression and removing ambiguity

usedTerms= left.usedTerms’ right.usedTerms

i ) , , Large sections of the WSMO document are in normative
hasVariables= left.hasVariablesJ right.hasVariables

text, which could result in several divergent interpretas

of the language by different users and tool developers. Fur-
thermore, the documentation makes many assumptions and
4 Discussion implications, which are implicitly defined. This could lead

to inconsistent conclusion being drawn. Our formal model
of WSMO can be used to improve the quality of the norma-
tive text that defines the WSMO language, and to help en-
sure that: the users understand and used the language cor-
rectly; the test suite covers all important rules implied by
the language; and the tools developed work correctly and
consistently.

The formal specification of WSMO can be beneficial to
the Semantic Web service communities in many different
ways, as discussed in the following Subsections.

4.1 Checking the consistency of WSMO
language

4.3 Reasoning the WSMO by using exit-

WSMO is currently a relatively new technology, and thus ing formal tools directly

may still contain errors. As our formal model provides a rig-
orous foundation of the language, by using existing formal . ) ) _
verification tools, it may be possible to find those errorsand ~ Since Semantic Web Service research in general, and
improve the quality of the WSMO standard. For example, WSMO in particular are still evolving, current verification
suppose that we define a concégipRequesivhich has and reasoning tools (though rudimentary) are also improv-
an attributeResponseGrouprhe range oResponseGroup ing. In contrast, there have been decades of development
is stringS. This WSMO definition can be translated into into mature formal reasoning tools that are used to verify
Object-Z as: the validity of software and systems. By presenting a for-
mal semantic model of WSMO, many Object-Z and Z tools
can be possibly used for checking, validating and verifying
ResponseGroupasType= String WSMO model. For example, in our previous work, we have
helpRequeshasAttribute= {ResponseGroyp...}...... applied Z/EVES [7, 6] and AA [9] separately to reasoning
over Web ontologies. In the previous section, we also ap-
plied an Object-Z type checker to validate a WSMO model.
Instead of developing new techniques and tools, reusing ex-
isting tools provides a cheap, but efficient way to provide
support and validation for standards driven languages$, suc
as WSMO.

‘ ResponseGroupAttribute, helpRequest Concept

Note that the translation from WSMO to Object-Z can be
automatically realized by a tool. However, when we load
our formal WSMO model and the above Object-Z definition
into an Object-Z type checker, the tool complains that there
is a type error. After studying this problem, we realized
that the problem is that according to the WSMO documents
(Section 3.3.2), thénasTypeattribute defined for an con-

. ) . Th f extendibilit
cept attribute can only have a WSMO concept as its values. ¢ ease of extendibility

5A full version of this example accompanies the WSMO release, As _WSMQ is still evolving, an advantage of usi_ng
can be found fronfttp://www.wsmo.org/TR/d3/d3.4/v0.1/ an object-oriented approach in the language model is to



achieve the extendibility of the language model.

NotExp to WSMO core. Then in our model it is necessary

to add only the following class:

—_NotExp
Expression

operand: Expression

usedTerms= operandusedTerms
hasVariables= operandhasVariables

The introduction of this extension does not involve any

(5]

(6]

(7]

changes to the classes defined in the previous section. Val-
idation tools can then be used to confirm the validity of the (8]

extended model as can be observed in this example.

5 Conclusion

WSMO is one of the most important technologies for

Semantic Web service. It complements the existing syn-

9]

tactic Web service standards, by providing a conceptual [10]

model and language for the semantic markup describing

all relevant aspects of general services which are acdessib 11
through a Web service interface. This paper has presented

an Object-Z semantics for WSMO, whereby the WSMO
constructs are modeled as objects. The advantage of this

approach is that the abstract syntax and static and dynamiél
semantics for each the WSMO construct are grouped to-

gether and captured in an Object-Z class; hence the lan{13]

guage model is structural, concise and easily extendible.
Subsequent work will address and complete the dynamic
semantics of WSMO. We believe this OZ specification can
provide a useful document for developing support tools for

WSMO.
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