
Architecture Level Power-Performance Tradeoffs for
Pipelined Designs

Haider Ali and Bashir M. Al-Hashimi
ESD, School of ECS

University of Southampton
Southampton, UK

{ha02r, bmah}@ecs.soton.ac.uk

Abstract—This paper presents a method to investigate power-
performance tradeoffs in digital pipelined designs. The method
is applied at the architectural level of the design. It will be
shown that addressing the tradeoffs at this level will result in
significant savings in power consumption without impacting
the performance. The reduction in power is obtained through
reducing the number of registers used in implementing the
pipeline stages. The method has been validated by synthesizing
a floating-point unit with different pipeline stages and power
consumption of the designs were obtained using industry
standard tools. It is shown that it is possible to obtain up to
18% reduction in power without affecting the clock period and
with less area.

I. INTRODUCTION
Power in recent years has become one of the most

important parameters facing design engineers. Designers on
the other hand are being asked to integrate more circuitry
that operates faster to meet the functional specification which
in turn drives up the overall power consumption. Excessive
power consumption can lead to thermal issues, reliability and
complex power supply design [1]. Power saving can be
tackled at different levels of the design cycle and research
has shown the earlier in the cycle the more gain in terms of
power reduction [2].

Pipelining a design involves the addition of registers to
create stages with the aim of improving throughput when the
pipeline is fully utilized. Crucially the location of the
pipeline stage will dictate the number of registers required to
implement the stage. Since registers are power hungry
elements, reduction in the total number of registers will yield
reduction in power consumption. In recent research [3]-[5],
pipeline power-performance tradeoffs have either been
tackled at the gate level or with no systematic approach to
where stages should be inserted. For example, [3] presented
a gate level analytical approach to determine the number of
gates in each pipeline stages that optimizes power and
performance. Limited benefit was seen in terms of power
reduction because of the low level of abstraction. While in

[4] and [5] attempts were made to solve the problem at the
architecture level, there was no systematic approach to where
stages should be inserted. Since analyzing a design at a
higher level of abstraction produce better results in terms of
power reduction, in this paper we present a new method
which operates at the architecture level. The method explores
efficiently the power-performance tradeoffs and takes into
account the required clock period while evaluating the merits
of each stage insertion based on the number of registers
needed to implement the stage. The final result is sets of
solutions with different power-performance characteristics.

II. MOTIVATIONAL EXAMPLE
In this section we show through an example of a data-

dominated architecture (floating-point adder) how different
pipeline stage insertion could lead to reduced power
consumption through reduction in stage registers without
impacting performance. The floating-point adder architecture
in [6] is the benchmark for this example and is shown in Fig.
1. Each box in Fig. 1 is a functional element (FE) that
performs a task which contributes to the overall floating-
point adder. These elements have been the subject of
extensive research and for this example an appropriate
implementation has been selected. To highlight the impact of
different stage insertion on power, [7] proposed a 5-stages
pipeline of this architecture (stages are shown in Fig. 1) and
we use it as a baseline to compare against our ad hoc 3-
stages pipeline shown in Fig. 2. We implemented the ad hoc
stages by trying to find stage insertion points that results in
fewer number of registers compared to the 5-stages. The
designs were implemented in VHDL and synthesized with a
target system frequency of 200MHz. A state of the art 1.3V,
90nm technology library was used during the synthesis and
the netlist was analyzed for dynamic power consumption in
Synopsys PrimePower tool using toggle data from gate-level
simulation. Table I shows the final result which indicates
both 3-stages and 5-stages architectures satisfy the target
frequency of 200MHz. However, the ad hoc stages consumes
17.6% less power and 25% less area compared to the

5-stages pipeline. As expected, the 5-stages pipeline adder
has higher power consumption compared to the 3-stages due
to the extra number of registers needed to implement the
stages. As will be shown in the experimental results different
system clock period results in different number of stages and
power consumption.

TABLE I. RESULTS OF 3-STAGES AND 5-STAGES PIPELINE

 3-stages ad hoc 5-stages [7]
Power (mW) 3.7 4.49
Area (mm2) 2.1e-3 2.28e-3
Freq. (MHz) 200 200
Latency (ns) 15 25

III. PROPOSED METHOD
Three main steps compose the method: 1) Start with non-
pipelined design architecture, e.g. floating-point adder and
generate a detail data flow graph (DFG), see Fig. 3; 2)
synthesize each element of the architecture to determine its
minimum delay and estimate the element power
consumption using Synopsys PrimePower tool. Finally,
generate naive pipeline stages (naive stages in this context
represents the simplest way of inserting stages achieved by
registering FE outputs without considering the number of
outputs), see Fig. 3; 3) the naive stages are simplified based
on two observations; a) across a stage one element could
dominate in terms of delay masking all other elements and
becomes the critical path of that stage; b) when an
interconnect crosses a stage boundary that interconnect needs
to be registered along with outputs of all elements at that
stage (critical path elements or otherwise). The information
in the simplified naive stages (see Fig. 4) are extracted and
saved in a data array. The array is examined using a pipeline
stage algorithm (PSA) to determine if stages could be
removed without impacting performance.

The PSA has been developed to take in to account system
clock period C, stage outputs O and stage critical path delay
T and can be summarized in Eqs. (1), (2) and (3) were i is

stage number. P: stage does not exist after outputs O, W: the
ratio of the number of next stage outputs over previous stage
outputs and I: a stage after outputs O can be inserted are all
single bit flags. In order for the equations to work correctly
the value for I and W is restricted to 1 or 0 with the rules
shown in Eq. (4). The variable Φ is used as way of delaying
the insertion of a stage and the value used depends on the
distribution of outputs in the architecture as will be shown in
the experimental results.

C

TTPT
I

ii

ik

k

im

km
mk

i

1

1

1

1

+

−=

=

−=

=
++

=
∑ ∏

 (1)

|1|*|1| −−= iii WIP (2)

i

i
i O
OW 1+= (3)

0 where0, otherwise 1 toset W true,is } {W If

0 otherwise 1 toIset ,1I If

ii

ii

≥ΦΦ>
> (4)

Each naive stage will have a different value for I, P and
W and it is the value of P that determines whether a stage
could be removed or not. For example, when P=0 it means a
stage must exist otherwise timing would be violated. When
P=1, it implies a stage could be removed without affecting
timing. Power consumption of the final pipelined design is
estimated with Synopsys PrimePower tool.

IV. EXPERIMENTAL RESULTS
In this section we demonstrate the three steps of the

proposed method outlined in section III on the floating-point
adder shown in Fig. 1.Step 1 is satisfied by taking Fig. 1 and
generating a detail DFG shown in Fig 3. Note, also shown in
Fig. 2 is the naive stages which is required by step 2 and they
have been implemented by simply adding stages after FEs
and having where possible more than one FE in a stage.
Each element in Fig. 3 was coded in VHDL, synthesized
with state of the art 1.3V, 90nm technology library and a
layout floorplan was generated using Magma BlastFusion
tool. Table II summaries the minimum delay for each
element. The power consumption of each element was
estimated using Synopsys PrimePower tool with a verilog
netlist from layout data and switching activity from real
netlist simulations. Step 3 is achieved by simplifying Fig. 3
to that shown in Fig. 4 based on the observations outlined in
section III. From Fig. 4, Table III is extracted and forms the
input data array to PSA (stage0 is assumed to always exist).
The PSA was executed with different clock period
constraints with Φ set to 1 and power was estimated at each
clock period. The power-performance result is shown in Fig.
5 for the proposed approach and the naive stages. There are
three interesting observations. First, PSA is able to perform
as well as the naive approach and a solution was generated
for each clock period. Second, when the clock period is >
1700ps, our algorithm always gives better results in terms of
power consumption compared to the naive stages. For

Figure 1. Floating-point adder [6] with 5-stages implementation [7]

Figure 2. 3-stages ad hoc

example, when clock period is 2500ps, PSA stages results in
dynamic power consumption of 21mW compared with
26mW for naive stages which represents an 18% power
reduction. At higher clock frequencies with clock periods of
< 1700ps both approaches produce the same result. This can
be explained by the fact that when the clock period is very
short there is less opportunity to remove stages without
compromising performance. Third, given a power
consumption budget, PSA generates results that have higher
performance than naive stages (assuming clock period is >
1700ps). For example, with a power budget of 30mW, PSA
solution can operate at 2100ps compared with 2300ps for
naive stages. If we consider the breakdown of power
consumed by combinational logic versus that of registers we
get the result shown in Fig. 6. This graph indicates that
register power is the dominant part at high frequencies but
when clock frequency is reduced a crossover point occurs
where combinational logic starts to consume more power
than registers. Note, the crossover point happens at a fairly
high

TABLE II. ADDER FUNCTIONAL ELEMENTS DELAYS

No. Element Name Delay
(ps)

1 Denormal Check 900
2 Exponent Subtractor 1300
3 Control Logic 1200
4 Data Select 600
5 Significant Adder 1400
6 Final Sign 700
7 Barrel Right 1000
8 StickyBit 1500
9 Pre-Significant Adder 600
10 Exponent Update 1300
11 Result Select 900
12 LZCounter 1100
13 Bypass logic 600
14 Significant Adder 1400
15 Pre-Barrel Left 700
16 M0Minus1 Generator 1100
17 Barrel Left 1000
18 Exponent Subtractor 1100
19 Underflow/Overflow 700
20 LZB Final Shift 1000
21 Result Integrator 900

TABLE III. SIMPLIFIED NAIVE STAGES DATA ARRAY

Stage No. Delay (ps) Outputs
Stage1 900 78
Stage2 1300 82
Stage3 1200 109
Stage4 1500 157
Stage5 1400 178
Stage6 1400 146
Stage7 1100 131
Stage8 1100 114
Stage9 700 106
Stage10 1000 112

frequency corresponding to clock period range of 2700-
3000ps. The significance of this means that if the user selects
a system clock period > 3000ps, adding or removing small
number of registers will not impact power consumption
significantly. Therefore, the PSA result provides the user
with the flexibility to alter the number of registers (albeit a
small addition or subtraction) without compromising
performance or power. Such a crossover point does exist in
the naive stages but at much increased clock period >
7000ps. In terms of actual number of stages and register
count verses clock period, Fig. 7 a) and b) respectively show
how for PSA results these two parameters decrease with
increasing clock period. This result is as expected since
increasing clock period allows more stages to be removed
and hence less register count. Although for periods > 3000ps
the actual register count for PSA is almost flat we still see
power reduction due to decreased operating frequency. It
also can be observed that the value of Φ can affect the final
solution in terms of power. For example, at 5000ps the

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

1500 1700 1900 2100 2300 2500 2700 3000 3300 3600 4000 4400 5000

Clock Period (ps)

Po
w

er
 (W

)

Naive

Proposed

Figure 5. Power-performance trend for PSA

Figure 3. Detail DFG of [6] with naive stages

Figure 4. Simplified naive stages

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

1.5 1.7 1.9 2.1 2.3 2.5 2.7 3 3.3 3.6 4 4.4 5

Clock Period (ns)

Po
w

er
 (W

)

Exhaustive Search PSA
Figure 8. Power-performance comparison between exhaustive

search and PSA

0

2

4

6

8

10

12

1.5 1.7 1.9 2.1 2.3 2.5 2.7 3 3.3 3.6 4 4.4 5

Clock Period (ns)

N
um

be
r

of
 S

ta
ge

s

Exhustive Search PSA

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1.5 1.7 1.9 2.1 2.3 2.5 2.7 3 3.3 3.6 4 4.4 5

Clock Period (ns)

T
ot

al
 R

eg
ist

er

Exhustive Search PSA
 a) b)

Figure 9. Number of stages and register count for exhaustive search
and PSA

solution with Φ=1.4 consumes less dynamic power than
when Φ=1. It may seem that we have to search through a
large number of Φ values to find the least power consuming
solution, however, in practice this is not the case. The
maximum value of Φ is found from the result of dividing the
largest number of stage outputs by the smallest. The range of
Φ values is simply from 1 to maximum Φ increasing at a
user defined interval rate. This significantly reduces the
exploration space and makes the algorithm have low time
complexity.

Further experiment was done by comparing PSA to a
general-purpose exhaustive search algorithm [8]. The
exhaustive algorithm was executed for a range of clock
periods and best_solution is noted for each clock period
when least power consumption is achieved and timing is
met. Fig. 8 shows power-performance comparison between
PSA and exhaustive search. From this it is clear that for the
floating-point adder benchmark the PSA results are closely
correlated to that of exhaustive search. In terms of register
count and number of stages, Fig. 9 a) and b) respectively
show practically identical results between the two
algorithms. The downside of the exhaustive search is the
polynomial time complexity O(2n) compared with the linear
time complexity for PSA O(n) where n is number of stages
(for example, it took PSA 9 seconds to generate the results in
Fig. 9 compared with 13s for exhaustive search). This is
significant when considering complex architectures with
large number of stages.

V. CONCLUSION
In this paper, we have demonstrated that it is important to
consider clock period, functional elements outputs and
delays when inserting pipeline stages. This is best achieved
at the architecture level where element boundaries are clearly
defined. We also detailed a new method which facilitates the

investigation of the best possible stage location that yields
the least number of registers. As part of the method an
algorithm was developed which has the benefit of low time
complexity and the ability to efficiently search through
design space to explore power-performance tradeoffs. Our
results indicate that the algorithm can generate solutions that
are more power efficient compared with the naive stages and
comparable in power to that generated with an exhaustive
search algorithm.

REFERENCES
[1] B. M. Al-Hashimi, “System-on-chip: next generation electronics”,

The Institution of Electrical Engineers, IEE Circuits, Devices and
Systems Series 18, 2006, isbn 0-86341-552-0.

[2] D. I. Lazorenko, A. A. Chemeris, “Low-power issues for soc”, Proc.
of the 2006 IEEE 10th Int. Symp. on Consumer Electronics, 28-01
June/July 2006, pp. 1-3.

[3] V. Zyuban, D. Brooks, V. Srinivasan, M. Gschwind, P. Bose, P. N.
Strenski, P. G. Emma “Integrated analysis of power and performance
for pipelined microprocessors”, IEEE Trans. on Computers, 53(8),
Aug. 2004, pp. 1004-1016.

[4] A. Garcia, W. Burleson, J. L. Danger, “Low power digital design in
fpga’s”, Proc. of the 2000 IEEE Int. Symp. on Circuits and Systems,
vol. 5, 28-31 May 2002, pp. 561-564.

[5] A. Hartstein and T. R. Puzak, “Optimum power/performance pipeline
depth”, Proc. of the 36th Annual IEEE/ACM International Symposium
on Microarchiecture, 2003, pp. 117-125.

[6] R. V. K. Pillai, D. Al-Khalili, A. J. Al-Khalili, S. Y.A. Shah, “A low
power approach to floating point adder design for dsp applications”,
Journal of VLSI Signal Processing, 27(3), March 2001, pp. 195-213.

[7] S. Y. A. Shah, “On synthesis and optimisation of floating point unit”,
MSc Thesis, Concordia University, Montreal, Quebec, Canada, Oct.
2000.

[8] S. H. Gerez, “Algorithms for vlsi design automation”, 1999, Wiley.

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

3.5E-02

1500 1700 1900 2100 2300 2500 2700 3000 3300 3600 4000 4400 5000

Clock Period (ps)

Po
w

er
 (W

)

Crossover Point

Register Power

Comb. Power

Figure 6. Combinational Logic and register power trend

0

2

4

6

8

10

12

1500 1700 1900 2100 2300 2500 2700 3000 3300 3600 4000 4400 5000

Clock Period (ps)

N
um

be
r

of
St

ag
es

Naive

Proposed

0

200

400

600

800

1000

1200

1400

1500 1700 1900 2100 2300 2500 2700 3000 3300 3600 4000 4400 5000

Clock Period (ps)

R
eg

ist
er

C
ou

nt

Proposed

Naive

 a) b)

Figure 7. Number of stages and register count for naive stages and
PSA with Φ=1

