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Abstract—This paper presents a method to investigate power-
performance tradeoffs in digital pipelined designs. The method 
is applied at the architectural level of the design. It will be 
shown that addressing the tradeoffs at this level will result in 
significant savings in power consumption without impacting 
the performance. The reduction in power is obtained through 
reducing the number of registers used in implementing the 
pipeline stages. The method has been validated by synthesizing 
a floating-point unit with different pipeline stages and power 
consumption of the designs were obtained using industry 
standard tools. It is shown that it is possible to obtain up to 
18% reduction in power without affecting the clock period and 
with less area. 

I. INTRODUCTION 
Power in recent years has become one of the most 

important parameters facing design engineers. Designers on 
the other hand are being asked to integrate more circuitry 
that operates faster to meet the functional specification which 
in turn drives up the overall power consumption. Excessive 
power consumption can lead to thermal issues, reliability and 
complex power supply design [1]. Power saving can be 
tackled at different levels of the design cycle and research 
has shown the earlier in the cycle the more gain in terms of 
power reduction [2]. 

Pipelining a design involves the addition of registers to 
create stages with the aim of improving throughput when the 
pipeline is fully utilized. Crucially the location of the 
pipeline stage will dictate the number of registers required to 
implement the stage. Since registers are power hungry 
elements, reduction in the total number of registers will yield 
reduction in power consumption. In recent research [3]-[5], 
pipeline power-performance tradeoffs have either been 
tackled at the gate level or with no systematic approach to 
where stages should be inserted. For example, [3] presented 
a gate level analytical approach to determine the number of 
gates in each pipeline stages that optimizes power and 
performance. Limited benefit was seen in terms of power 
reduction because of the low level of abstraction. While in 

[4] and [5] attempts were made to solve the problem at the 
architecture level, there was no systematic approach to where 
stages should be inserted. Since analyzing a design at a 
higher level of abstraction produce better results in terms of 
power reduction, in this paper we present a new method 
which operates at the architecture level. The method explores 
efficiently the power-performance tradeoffs and takes into 
account the required clock period while evaluating the merits 
of each stage insertion based on the number of registers 
needed to implement the stage. The final result is sets of 
solutions with different power-performance characteristics. 

II. MOTIVATIONAL EXAMPLE 
In this section we show through an example of a data-

dominated architecture (floating-point adder) how different 
pipeline stage insertion could lead to reduced power 
consumption through reduction in stage registers without 
impacting performance. The floating-point adder architecture 
in [6] is the benchmark for this example and is shown in Fig. 
1. Each box in Fig. 1 is a functional element (FE) that 
performs a task which contributes to the overall floating-
point adder. These elements have been the subject of 
extensive research and for this example an appropriate 
implementation has been selected. To highlight the impact of 
different stage insertion on power, [7] proposed a 5-stages 
pipeline of this architecture (stages are shown in Fig. 1) and 
we use it as a baseline to compare against our ad hoc 3-
stages pipeline shown in Fig. 2. We implemented the ad hoc 
stages by trying to find stage insertion points that results in 
fewer number of registers compared to the 5-stages. The 
designs were implemented in VHDL and synthesized with a 
target system frequency of 200MHz. A state of the art 1.3V, 
90nm technology library was used during the synthesis and 
the netlist was analyzed for dynamic power consumption in 
Synopsys PrimePower tool using toggle data from gate-level 
simulation. Table I shows the final result which indicates 
both 3-stages and 5-stages architectures satisfy the target 
frequency of 200MHz. However, the ad hoc stages consumes 
17.6% less power and 25% less area compared to the 



 

 

 

 

 

 

 

 
5-stages pipeline. As expected, the 5-stages pipeline adder 
has higher power consumption compared to the 3-stages due 
to the extra number of registers needed to implement the 
stages. As will be shown in the experimental results different 
system clock period results in different number of stages and 
power consumption. 

TABLE I.  RESULTS OF 3-STAGES AND 5-STAGES PIPELINE 

  3-stages ad hoc 5-stages [7] 
Power (mW) 3.7 4.49 
Area (mm2) 2.1e-3 2.28e-3 
Freq. (MHz) 200 200 
Latency (ns) 15 25 

III. PROPOSED METHOD 
Three main steps compose the method: 1) Start with non-
pipelined design architecture, e.g. floating-point adder and 
generate a detail data flow graph (DFG), see Fig. 3; 2) 
synthesize each element of the architecture to determine its 
minimum delay and estimate the element power 
consumption using Synopsys PrimePower tool. Finally, 
generate naive pipeline stages (naive stages in this context 
represents the simplest way of inserting stages achieved by 
registering FE outputs without considering the number of 
outputs), see Fig. 3; 3) the naive stages are simplified based 
on two observations; a) across a stage one element could 
dominate in terms of delay masking all other elements and 
becomes the critical path of that stage; b) when an 
interconnect crosses a stage boundary that interconnect needs 
to be registered along with outputs of all elements at that 
stage (critical path elements or otherwise). The information 
in the simplified naive stages (see Fig. 4) are extracted and 
saved in a data array. The array is examined using a pipeline 
stage algorithm (PSA) to determine if stages could be 
removed without impacting performance. 

The PSA has been developed to take in to account system 
clock period C, stage outputs O and stage critical path delay 
T and can be summarized in Eqs. (1), (2) and (3) were i is 

stage number. P: stage does not exist after outputs O, W: the 
ratio of the number of next stage outputs over previous stage 
outputs and I: a stage after outputs O can be inserted are all 
single bit flags. In order for the equations to work correctly 
the value for I and W is restricted to 1 or 0 with the rules 
shown in Eq. (4). The variable Φ is used as way of delaying 
the insertion of a stage and the value used depends on the 
distribution of outputs in the architecture as will be shown in 
the experimental results. 
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Each naive stage will have a different value for I, P and 
W and it is the value of P that determines whether a stage 
could be removed or not. For example, when P=0 it means a 
stage must exist otherwise timing would be violated. When 
P=1, it implies a stage could be removed without affecting 
timing. Power consumption of the final pipelined design is 
estimated with Synopsys PrimePower tool. 

IV. EXPERIMENTAL RESULTS 
In this section we demonstrate the three steps of the 

proposed method outlined in section III on the floating-point 
adder shown in Fig. 1.Step 1 is satisfied by taking Fig. 1 and 
generating a detail DFG shown in Fig 3. Note, also shown in 
Fig. 2 is the naive stages which is required by step 2 and they 
have been implemented by simply adding stages after FEs 
and having where possible more than one FE in a stage.  
Each element in Fig. 3 was coded in VHDL, synthesized 
with state of the art 1.3V, 90nm technology library and a 
layout floorplan was generated using Magma BlastFusion 
tool. Table II summaries the minimum delay for each 
element. The power consumption of each element was 
estimated using Synopsys PrimePower tool with a verilog 
netlist from layout data and switching activity from real 
netlist simulations. Step 3 is achieved by simplifying Fig. 3 
to that shown in Fig. 4 based on the observations outlined in 
section III. From Fig. 4, Table III is extracted and forms the 
input data array to PSA (stage0 is assumed to always exist). 
The PSA was executed with different clock period 
constraints with Φ set to 1 and power was estimated at each 
clock period. The power-performance result is shown in Fig. 
5 for the proposed approach and the naive stages. There are 
three interesting observations. First, PSA is able to perform 
as well as the naive approach and a solution was generated 
for each clock period. Second, when the clock period is > 
1700ps, our algorithm always gives better results in terms of 
power consumption compared to the naive stages. For 

 
Figure 1.     Floating-point adder [6] with 5-stages implementation [7] 

 
Figure 2.      3-stages ad hoc 



example, when clock period is 2500ps, PSA stages results in 
dynamic power consumption of 21mW compared with 
26mW for naive stages which represents an 18% power 
reduction. At higher clock frequencies with clock periods of 
< 1700ps both approaches produce the same result. This can 
be explained by the fact that when the clock period is very 
short there is less opportunity to remove stages without 
compromising performance. Third, given a power 
consumption budget, PSA generates results that have higher 
performance than naive stages (assuming clock period is > 
1700ps). For example, with a power budget of 30mW, PSA 
solution can operate at 2100ps compared with 2300ps for 
naive stages. If we consider the breakdown of power 
consumed by combinational logic versus that of registers we 
get the result shown in Fig. 6. This graph indicates that 
register power is the dominant part at high frequencies but 
when clock frequency is reduced a crossover point occurs 
where combinational logic starts to consume more power 
than registers. Note, the crossover point happens at a fairly 
high 

 

  

TABLE II.  ADDER FUNCTIONAL ELEMENTS DELAYS 

No. Element Name Delay 
(ps) 

1 Denormal Check 900 
2 Exponent Subtractor 1300 
3 Control Logic 1200 
4 Data Select 600 
5 Significant Adder 1400 
6 Final Sign 700 
7 Barrel Right 1000 
8 StickyBit 1500 
9 Pre-Significant Adder 600 
10 Exponent Update 1300 
11 Result Select 900 
12 LZCounter 1100 
13 Bypass logic 600 
14 Significant Adder 1400 
15 Pre-Barrel Left 700 
16 M0Minus1 Generator 1100 
17 Barrel Left 1000 
18 Exponent Subtractor 1100 
19 Underflow/Overflow 700 
20 LZB Final Shift 1000 
21 Result Integrator 900 

TABLE III.  SIMPLIFIED NAIVE STAGES DATA ARRAY 

Stage No. Delay (ps) Outputs 
Stage1 900 78 
Stage2 1300 82 
Stage3 1200 109 
Stage4 1500 157 
Stage5 1400 178 
Stage6 1400 146 
Stage7 1100 131 
Stage8 1100 114 
Stage9 700 106 
Stage10 1000 112 

 
frequency corresponding to clock period range of 2700-
3000ps. The significance of this means that if the user selects 
a system clock period > 3000ps, adding or removing small 
number of registers will not impact power consumption 
significantly. Therefore, the PSA result provides the user 
with the flexibility to alter the number of registers (albeit a 
small addition or subtraction) without compromising 
performance or power. Such a crossover point does exist in 
the naive stages but at much increased clock period > 
7000ps. In terms of actual number of stages and register 
count verses clock period, Fig. 7 a) and b) respectively show 
how for PSA results these two parameters decrease with 
increasing clock period. This result is as expected since 
increasing clock period allows more stages to be removed 
and hence less register count. Although for periods > 3000ps 
the actual register count for PSA is almost flat we still see 
power reduction due to decreased operating frequency. It 
also can be observed that the value of Φ can affect the final 
solution in terms of power. For example, at 5000ps the 
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Figure 5.     Power-performance trend for PSA  

Figure 3.      Detail DFG of [6] with naive stages 

 
Figure 4.     Simplified naive stages 
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Figure 8.     Power-performance comparison between exhaustive 

search and PSA 
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Figure 9.     Number of stages and register count for exhaustive search 
and PSA 

solution with Φ=1.4 consumes less dynamic power than 
when Φ=1. It may seem that we have to search through a 
large number of Φ values to find the least power consuming 
solution, however, in practice this is not the case. The 
maximum value of Φ is found from the result of dividing the 
largest number of stage outputs by the smallest. The range of 
Φ values is simply from 1 to maximum Φ increasing at a 
user defined interval rate. This significantly reduces the 
exploration space and makes the algorithm have low time 
complexity. 

Further experiment was done by comparing PSA to a 
general-purpose exhaustive search algorithm [8]. The 
exhaustive algorithm was executed for a range of clock 
periods and best_solution is noted for each clock period 
when least power consumption is achieved and timing is 
met. Fig. 8 shows power-performance comparison between 
PSA and exhaustive search. From this it is clear that for the 
floating-point adder benchmark the PSA results are closely 
correlated to that of exhaustive search. In terms of register 
count and number of stages, Fig. 9 a) and b) respectively 
show practically identical results between the two 
algorithms. The downside of the exhaustive search is the 
polynomial time complexity O( 2n ) compared with the linear 
time complexity for PSA O(n) where n is number of stages 
(for example, it took PSA 9 seconds to generate the results in 
Fig. 9 compared with 13s for exhaustive search). This is 
significant when considering complex architectures with 
large number of stages. 

V. CONCLUSION 
In this paper, we have demonstrated that it is important to 
consider clock period, functional elements outputs and 
delays when inserting pipeline stages. This is best achieved 
at the architecture level where element boundaries are clearly 
defined. We also detailed a new method which facilitates the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

investigation of the best possible stage location that yields 
the least number of registers. As part of the method an 
algorithm was developed which has the benefit of low time 
complexity and the ability to efficiently search through 
design space to explore power-performance tradeoffs. Our 
results indicate that the algorithm can generate solutions that 
are more power efficient compared with the naive stages and 
comparable in power to that generated with an exhaustive 
search algorithm.  
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Figure 6.     Combinational Logic and register power trend 
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 a)                                      b)  

Figure 7.  Number of stages and register count for naive stages and 
PSA with Φ=1 


