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Abstract

Purpose – This paper presents a VHDL-AMS based genetic optimisation methodology for fuzzy
logic controllers (FLCs) used in complex automotive systems and modelled in mixed physical domains.
A case study applying this novel method to an active suspension system has been investigated to
obtain a new type of fuzzy logic membership function with irregular shapes optimised for best
performance.

Design/methodology/approach – The geometrical shapes of the fuzzy logic membership functions
are irregular and optimised using a genetic algorithm (GA). In this optimisation technique,
VHDL-AMS is used not only for the modelling and simulation of the FLC and its underlying active
suspension system but also for the implementation of a parallel GA directly in the system testbench.

Findings – Simulation results show that the proposed FLC has superior performance in all test cases
to that of existing FLCs that use regular-shape, triangular or trapezoidal membership functions.

Research limitations – The test of the FLC has only been done in the simulation stage, no physical
prototype has been made.

Originality/value – This paper proposes a novel way of improving the FLC’s performance and a
new application area for VHDL-AMS.

Keywords Fuzzy logic, Genetics, Algorithmic languages

Paper type Research paper

Introduction
This paper presents a general approach to complex hardware system optimisation
using a hardware description language (HDL). Traditionally, hardware systems are
optimised using a dedicated software application which invokes a suitable HDL
simulator (Hounsell and Arslan, 2000). This dedicated software for optimisation, called
the optimiser, needs to send parameters to the HDL simulator, start simulation, get
back the simulation results and do the evaluation repeatedly. The interaction between
the optimiser and the simulator normally requires multiple data transfers and may lead
to program collision. It has been reported that the integration of optimization and
simulation has become nearly ubiquitous in practice (Fu et al., 2000). The salient
feature of the technique presented here is that the hardware description testbench
includes a GA optimiser which concurrently simulates multiple instances of the system
(chromosomes). In this way, both the hardware system and optimiser are integrated
within the HDL. Our GA optimiser is implemented in VHDL-AMS and was
successfully applied to a case study where it helps to significantly improve the
performance of the FLC in an AASS.
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Automotive suspension systems reduce the vibrations between the sprung and
unsprung masses caused by the motion of an automobile so that the vehicle’s ride quality
could be improved. According to the system’s ability to add or extract energy, the
suspension systems can be classified as passive, semi-active or active (Sam et al., 2000).
Passive suspension consists of conventional springs and dampers only and it cannot add
energy to the system. Semi-active suspension does not add energy either but changes the
damping coefficient of the shock absorbers dynamically to obtain a better suspension
quality. An active suspension system contains an actuator, which can generate a force
acting on the sprung and unsprung masses, as well as the springs and dampers.

The advantages of active suspension systems over passive and semi-active ones
have been known for many years (Tan and Bradshaw, 1997). However, the design of a
suitable active suspension controller, which determines the value of the actuator force
according to the dynamic motions of the sprung and/or unsprung mass, is difficult and
still attracts researchers’ interest. A number of different control algorithms have been
established (Alleyne and Hedrick, 1995; Yagiz et al., 1997; Sam et al., 2000;
Chantranuwathana and Peng, 2004). Accurate performance analysis and optimisation
of such systems is difficult since the input to an AASS (i.e. the road displacement) is
unpredictable. Fuzzy logic controllers, due to their ability of handling uncertain and
complex systems, have emerged as a promising technique for high-performance
AASSs (Son and Isik, 1996; Barr and Ray, 1996; Al-Holou et al., 1999). FLCs are based
on the general principles of the fuzzy set theory (Zadeh, 1965) and their input and
output variables are similar to those of a conventional controller. FLC designs reported
so far show satisfactory suspension behaviour and use regularly-shaped, usually
triangular or trapezoidal, membership functions.

A genetic algorithm is an optimisation method based on natural selection (Goldberg,
1989). It has been reported to optimise various features of a fuzzy controller. For example, a
GA was used to optimise the decision-making rules for fuzzy PI/PD controllers (Kuo and
Li, 1999). The input variables to an FLC can also be chosen by a GA (Hashiyama et al.,
1995). A GA has also been used to tune the vertices of triangular membership functions of
an FLC (Moon and Kwon, 1996). In the research presented in this paper, a GA is used to
optimize not only the vertices but also the geometrical shapes of the fuzzy logic
membership functions to further improve an FLC’s performance. A GA usually has the
following elements: populations of chromosomes, selection according to fitness, crossover
to produce new offspring, and random mutation of new offspring (Mitchell, 1996). The
stochastic nature of GA makes it suitable for fuzzy logic applications.

VHDL-AMS is a HDL designed to support hardware modelling at various
abstraction levels in mixed, electrical and non-electrical physical domains using mixed,
digital and analogue components (Christen and Bakalar, 1999). It has been
recommended as the unified modelling language for the automotive industry by
several sources (Moser and Mittwollen, 1998; VDA/FAT Working Group AK 30, 2004).
The concurrent nature of VHDL-AMS processes makes the implementation of a GA
optimisation system efficient and straightforward.

System model
Figure 1 shows a linear 2-DOF (degree of freedom) quarter-car model. It is simple but
contains the basic features of active suspension, thus can be found in many published
applications (Ulsoy et al., 1994). The dynamic motions of the sprung and unsprung
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masses are described by equations (1) and (2) (Rajamani and Hedrick, 1994) which can
be obtained from Newton’s second law:

€xsMs ¼ Ksðxu 2 xsÞ þ Bð_xu 2 _xsÞ þ Fa ð1Þ

€xuMu ¼ 2Ksðxu 2 xsÞ2 Bð_xu 2 _xsÞ þ Kuðxr 2 xuÞ2 Fa ð2Þ

where Ms and Mu are vehicle’s sprung and unsprung masses, xs, xu and xr are the
displacement of sprung mass, unsprung mass and road, respectively, Ks and B are
the coefficients of the passive spring and damper, Ku is the tire spring rate and Fa
is the actuator force. The numerical values of the system parameters are listed in Table I.

The velocity _xs and acceleration €xs of the automobile sprung mass Ms are chosen as
the inputs to the FLC. The output is the actuator force Fa. The fuzzy sets of the
input and output variables are represented by three linguistic variables: positive (P),
zero (Z) and negative (N). With these linguistic variables, a set of nine fuzzy rules is
developed, as shown in Table II. These rules were generated by using basic
engineering sense. For example, if the velocity is zero and the acceleration is positive
then the mass’s velocity is going to increase and a negative force should be applied.

Figure 1.
Active suspension system

Controller

Actuator

Sprung mass (Ms)

Unsprung mass (Mu)

Fa

Ku

xr

xu

xs

KsB

Symbol Value

Ms 250.0 kg
Mu 30.0 kg
Ks 15,000.0 N/m
B 1,000.0 N/m/s
Ku 150,000.0 N/m
Fa, max 1,500.0 N

Table I.
Numerical values of
system parameters
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The fuzzy inference procedure used is the max-product composition (Sugeno, 1985).
Assuming that the sprung mass velocity has the degree of membership vP, vZ and vN
in positive (P), zero (Z) and negative (N), respectively, and the sprung mass
acceleration has the degree of membership aP, aZ and aN, the positive degree of the
output force Fa is:

FP ¼ maxðaN*vN ; aN*vZ ; aZ*vN Þ ð3Þ

Similarly, the zero and negative degree of Fa are:

FZ ¼ maxðaN*vP ; aZ*vZ ; aP*vN Þ ð4Þ

FN ¼ FamaxðaP*vP ; aZ*vP ; aP*vZ Þ ð5Þ

The defuzzification method employed is the centre of gravity approach (Barr and Ray,
1996). The output force is calculated as:

Fa ¼
Famax *ðFP 2 FN Þ

FP þ FZ þ FN

ð6Þ

Shape optimisation of membership functions
In fuzzy logic theory, a membership function is a graphical representation of the
input’s degree of participation in a fuzzy set. The geometrical shapes of the
membership functions used can seriously affect the performance of an FLC. For
example, although triangular membership functions are very basic and widely used in
active suspension controllers (Son and Isik, 1996; Al-Holou et al., 1999), it was also
illustrated that trapezoidal membership functions may generate superior results in
certain applications (Barr and Ray, 1996) (Figure 2).

Here, we investigate the possibility of using irregular shapes of the FLC membership
functions. This adds more DOF to the FLC and more scope for performance
optimisation. In a specific application, such irregular shapes can be calculated by
optimisation to enhance the system’s performance (Figure 3). Irregular membership
functions are unlikely to lead to more complex hardware implementations given the fact
that electronic control units are quite common in today’s automobile design.

In the GA optimisation, instances of the AASS, including the FLC, are invoked and
each instance of the system represents a chromosome. Since, the centre of gravity
method is used for defuzzification, it is only necessary to optimise the membership
functions of the input variables.

For each of the two input variables, N points from the positive curve and N points
from the right half of the zero curve are selected as genes. This is because a

Acceleration

P Z N
P N N Z

Velocity Z N Z P
N Z P P

Table II.
Fuzzy rules base
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membership function is typically symmetrical about the y-axis. These points are
equally distributed along the x-axis and their y-values can be adjusted between 0 and 1.
The points are simply connected by straight lines to form piecewise linear membership
functions. Improving the ride comfort of an AASS means reducing the sprung mass
acceleration (Chantranuwathana and Peng, 2004). So the optimisation goal is to
minimize the peak-to-peak value of the sprung mass acceleration as(€xs) when the
system is subject to some kind of stimulus.

Parallel GA in VHDL-AMS testbench
In the VHDL-AMS implementation, the chromosome is modelled as a component with
4N genes as input parameters, the road displacement xr as the excitation and the
peak-to-peak value app as the output fitness. Since, app is a value over a certain time
period, a process is needed to track its maximum and minimum value and output
the peak-to-peak value at the end. Figure 4 is the block diagram of the chromosome. It
shows how different components in the VHDL-AMS entity are connected.

Figure 2.
Fuzzy logic triangular and
trapezoidal membership
functions
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Figure 3.
Optimisation of the shapes
of fuzzy logic membership
functions

Fuzzy set

1.0

0.5

0.0

D
eg

re
e 

of
 m

em
be

rs
hi

p

1.0

0.5

0.0

D
eg

re
e 

of
 m

em
be

rs
hi

p
N Z P

Fuzzy set

N Z P

Input variable

GA Optimization

–0.8 –0.6–1.0 –0.2 0.0 0.2 0.4 1.00.80.6–0.4

Input variable

–0.8 –0.6–1.0 –0.2 0.0 0.2 0.4 1.00.80.6–0.4

COMPEL 89327—2/1/2007—RAVICHANDRAN—266486

COMPEL
26,2

456



A flow chart of how the parallel GA is implemented and executed in the VHDL-AMS
testbench is shown in Figure 5. Unlike most existing computer implementations of GA
that evaluate one chromosome iteratively to form a population, in the VHDL-AMS based
optimisation here, the chromosomes of a population are implemented in parallel. The
genes are initialized by uniformly distributed random numbers. The same stimulus is
applied to the population and all the chromosomes are evaluated simultaneously to get a
vector of fitness values. The tournament selection is chosen as the parent selection method,
because it prevents premature convergence with efficient computations (Mitchell, 1996).
The selection method uses fitness values in which parents with higher fitness (i.e. smaller
app) are more likely to be selected to produce offspring. Elitism is also used to improve
GA’s performance by artificially inserting the best solution into each new generation.
Since, the genes are real numbers, arithmetic crossover is used to generate the offspring
(Herrera et al., 2003). Finally, gene mutation is employed to introduce new solutions into
the new population. The evaluation-selection-crossover-mutation process is repeated until
all the chromosomes converge to the same fitness. In VHDL-AMS, this loop is controlled
by a finite state machine.

Experimental results
In the GA optimisation, the number of points on each membership curve N is chosen
as 5. So there are totally 20 genes in one chromosome. The population size is
100 chromosomes. The crossover and mutation rate are 0.8 and 0.01, respectively.
The stimulus is a single sine-wave period jolt with added filtered Gaussian noise (GN)
to reflect realistic effects of an uneven road surface. The sine-wave jolt is of a 10 cm
amplitude and the period of 200 ms (5 Hz). The GN has a 1 cm standard deviation and is
passed through a 50 Hz low-pass filter. The formation of the stimulus is based on

Figure 4.
Block diagram of one

chromosome

Road
Displacement(Xr) Unsprung

Mass(Mu)
Sprung

Mass(Ms)

Plant

Tracking
process

Inference
&

Defuzzification

Degrees of
membership

Degrees of
membership

Membership
function of

velocity

Membership
function of
acceleration

FLC

Fa

as

xs xs (as)

xpp

2N
genes

2N
genes

COMPEL 89327—2/1/2007—RAVICHANDRAN—266486

VHDL-AMS
based genetic
optimisation

457



two considerations. Firstly, for ride and handling characteristics the most important
frequency range is 0.5-50 Hz, of which 5 Hz is the logarithmic middle-value. Anything
below 0.5 Hz is too small to cause any suspension deflection, while frequencies above
50 Hz are outside the bandwidth of tyre and suspension dynamics (Truscott and
Burton, 1994). Secondly, the actual road displacement inputs are of a random nature,
thus some pseudo-random noises have been added. The stimulus is repeated every 4 s,
which is the system’s settling time. The peak-to-peak value of as(t), app, is also updated
every 4 s as a measure of the chromosome’s fitness. Simulations were carried out using
the SystemVision (Mentor Graphics Corporation, 2004) VHDL-AMS simulator from
Mentor Graphics. After simulating the testbench for 800 s, which corresponds to
200 generations in the GA optimisation, the shapes of the membership functions
converge to an optimum. The GA optimised membership function for sprung mass
velocity is shown in Figure 6. The values of the genes, i.e. the locations of points on the
curves, are listed in Table III. The GA optimised membership function for sprung
mass acceleration is shown in Figure 7 and Table IV. The simulation CPU time was
14 h 6 min on a Pentium 4 PC.

Figure 5.
GA optimisation in a
VHDL-AMS testbench
using concurrently
running chromosomes
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whole population
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Figure 6.
GA optimised

membership function for
sprung mass velocity
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0.48444, 0.29025 0.26902, 0.81742
0.64594, 0.43974 0.35869, 0.79367
0.80742, 1.0 0.44836, 0.0

Table III.
Location of the points on

the P and Z curves of
velocity membership

function

Figure 7.
GA optimised

membership function for
sprung mass acceleration
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Table V lists the fitness value of the best chromosome every 25 generations. Because
elitism is employed, the GA optimisation converges quickly.

Then, the GA-optimised membership functions are implemented in the FLC and
simulated. For comparison, the passive suspension system and the FLCs using
triangular and trapezoidal membership functions (Figure 8) are also investigated.

P curve (x, y) Z curve (x, y)

0.0, 0.0 0.0, 1.0
1.5017, 0.16972 1.6440, 0.83747
3.0035, 0.30431 3.2880, 0.80447
4.5052, 0.46677 4.9321, 0.66847
6.0070, 0.49343 6.5761, 0.52093
7.5087, 1.0 8.2201, 0.0

Table IV.
Location of the points on
the P and Z curves of
acceleration membership
function

Generation no. 1 25 50 75 100 125 150 175 200

Fitness value 55.31 50.90 50.04 49.91 49.88 49.54 48.79 48.79 48.79

Table V.
Convergence process
of app

Figure 8.
Triangular and
trapezoidal membership
functions
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Four types of road displacement xr have been used as system inputs. Simulation results
of the four test cases are shown below.

Case 1: Sine-wave jolt with Gaussian noise. In this test case, xr is the same as the
stimulus used in the GA optimisation, a single 5 Hz sine-wave jolt with
low-pass-filtered GN. The simulation waveforms of the passive suspension and
three types of FLCs are shown in Figure 9. Table VI lists the peak-to-peak values of
as(app) and the RMS (root mean square) values of as. The conventional FLCs can reduce
app from 57.6 to 54.0 ms22 (triangular) and 53.4 ms22 (trapezoidal). The GA-optimized
FLC developed here can further decrease the value to 48.8 ms22. In the following test
cases, the GA optimised FLC is subjected to different types of stimulus to test the
generalisation performance of the GA optimisation.

Case 2: 5Hz sine-wave jolt. The second xr is a single 5 Hz sine-wave jolt of a 10 cm
amplitude, which is of the same frequency as the stimulus used for optimisation but
without added noise.

Simulation results are shown in Figure 10 and Table VII.
Case 3: 2.5Hz sine-wave jolt. Here, xr is a single 2.5 Hz sine-wave jolt of a 10 cm

amplitude.
The frequency is different from the stimulus used for optimisation. Simulation results
are shown in Figure 11 and Table VIII.

Figure 9.
Waveforms for noisy jolt

excitation (case 1)

FLC type app (ms22) RMS of as (ms22)

Passive suspension 57.569 4.3997
Trapezoidal 53.420 3.6398
Triangular 54.043 3.6589
GA optimised 48.794 3.3711

Table VI.
Peak-to-peak and RMS
values of responses to

noisy jolt excitation
(case 1)
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Figure 10.
Waveforms for 5 Hz
sine-wave jolt excitation
(case 2)

Response to GA optimized FLC

Response to trapezoidal membership FLC

Response to passive suspension

Response to triangular membership FLC

0.5
Time (s)

1.00.0

10

0.0

–10

20.0

–20.0

0.0

As (ms–2)

Xr (cm)

FLC type app (ms22) RMS of as (ms22)

Passive suspension 34.150 3.4927
Trapezoidal 26.924 2.5281
Triangular 26.868 2.5384
GA optimised 21.743 2.0461

Table VII.
Peak-to-peak and RMS
values of responses to
5 Hz sine-wave jolt
excitation (case 2)

Figure 11.
Waveforms for 2.5 Hz
sine-wave jolt excitation
(case 3)
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Case 4: Trapezoidal bump. The xr is of a different shape from the stimulus used for
optimisation. The trapezoidal bump has the amplitude of 10 cm and lasts for 200 ms.
Simulation results are shown in Figure 12 and Table IX.
In all the above test cases, the GA-optimised FLC shows improvements in both the
peak-to-peak and RMS values of sprung mass acceleration to that of FLCs using
trapezoidal and triangular membership functions. The results demonstrate that the
proposed optimisation method has good generalisation performance.

Conclusion
This paper proposes a novel approach to complex hardware system optimisation in which
the optimiser is a part of the HDL-based simulation testbench. A VHDL-AMS

FLC type app (ms22) RMS of as (ms22)

Passive suspension 21.338 3.2440
Trapezoidal 12.494 1.7410
Triangular 12.164 1.6621
GA optimised 9.0098 1.2997

Table VIII.
Peak-to-peak and RMS
values of responses to

2.5 Hz sine-wave jolt
excitation (case 3)

Figure 12.
Waveforms for trapezoidal

bump excitation (case 4)

ion

FLC type app (ms22) RMS of as (ms22)

Passive suspension 21.340 2.3455
Trapezoidal 13.355 1.3458
Triangular 13.207 1.2929
GA optimised 9.8305 1.1336

Table IX.
Peak-to-peak and RMS
values of responses to

trapezoidal bump
excitation (case 4)
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implementation of a parallel GA was successfully used to optimise the shapes of fuzzy
logic membership functions to improve the performance of the fuzzy logic controller in an
automotive active suspension system. The simulation results show that the GA-optimised
fuzzy logic controller with irregular membership function shapes shows superior
performance to that of conventional controllers with triangular or trapezoidal membership
functions.
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