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ABSTRACT 
When component parts of distributed systems need to reach 
agreement, arriving at consensus is difficult if some 
components don’t behave properly.  The Byzantine Generals 
Problem described by Lamport and others exemplifies the 
difficulty. 
In a real situation, components don’t know which of their 
peers are faulty and hence they cannot apply the algorithms of 
Lamport et al, nor even decide if a suitable algorithm exists. 
This paper discusses options available in this situation and 
describes how a good expectation of arriving at a consensus 
can be achieved without knowing for certain which or how 
many participants are behaving badly. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – Distributed Applications; D.4.5. [Operating 
Systems]: Reliability – fault tolerance  

General Terms 
Algorithms, Design, Reliability. 

Keywords 
Distributed agreement, Byzantine Generals Problem.  

1. INTRODUCTION 
We have mature middleware for building such applications [5, 
7-9] from interacting components [6].  Components generally 
assume their information is correct but the size of modern 
systems means this is no longer reasonable.   
Some problems can solved with approaches like belief 
maintenance systems [2] or DataWarp [3] but sometimes 
inconsistencies have to be eliminated.     
The Byzantine Generals Problem (BGP) described by 
Lamport et al [4] exemplifies the difficulty of arriving at a 
consensus in the presence of bad behaviour.  It describes the 
conditions which have to be met if there is to be a solution 
and algorithms which provide achieve a solution for a 
specified number of rogues.  However, in reality the 

participants do not know how many rogues are present and 
hence they can never guarantee they will arrive at a 
consensus. 
Fortunately, the fact that it cannot be guaranteed doesn’t 
imply that agreement will not be achieved. 
 

2. BGP AND THE OM ALGORITHM 
BGP concerns Generals surrounding a city who are trying to 
decide whether to attack.  Each judges whether a concerted 
attack would succeed and they then have to distribute these 
opinions in such a way that a few rogue Generals can neither 
influence the decision (unduly) nor cause disagreement.  
Lamport et al [4] provide a comprehensive analysis of the 
problem.  They prove loyal Generals must outnumber the 
rogues by more than two to one for it to be possible to 
guarantee a correct decision  They also provide algorithms 
(OMx) which guarantee the result in the face of no more than 
x rogues.  
 

3. THE REAL SITUATION 
The critical factor in selecting the algorithm is number of 
rogue participants but this number is not known.  The 
participants could use the algorithm which is proof against the 
most rogues their number is able to defeat but this doesn’t 
guarantee a correct result and the algorithms become greatly 
more complex with the number of rogues. 
Alternatively they can estimate the number of rogues using 
knowledge of the likely failure rates of their peers.  Assuming 
the probability of failure is reasonably small, the likelihood of 
two or more rogues amongst the group is very small 
suggesting that using an algorithm which is proof against two 
might a waste of effort. 
 

4. USING OM1 IN PLACE OF OM2 
Considering a group of seven, OM1 ensures a consensus in 
the presence of zero or one rogues and it is impossible to 
guarantee a correct result if there are three or more.  OM2 
guarantees the result if there are two rogues. 
These algorithms use layers of message forwarding and 
voting.  In OM1, there is one layer of message forwarding:  
each participant sends a message to each of the others and 
forwards each original message they receive.  Each participant 
receives six messages in the style of, “I say x” and thirty 
messages which say, “He told me y”, a total of 6 + 6x5 = 36 
each, 252 messages in total.  For OM2, the total is 1092, more 
than four times as many.  Since the probability that this extra 
assurance will apply is small and what the group really wants 
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to know is how often they actually achieve the correct result, 
it appears this could be a waste of effort. 
Let us consider seven Generals using OM1, label them A, B, 
… G and assume B and C are rogues.  Suppose A sends b to 
B, c to C, etc.  The good participants pass on values faithfully 
so A’s messages to D,E,F,G are reported accurately and the 
messages b,c,..g will have the same value so each of the other 
good participants receives the correct value from A four times 
(once direct and three accurate reports from others), plus two 
reports via the rogues.  Clearly, there is nothing the rogues 
can do to induce D,E,F,G to any value other than that truly 
sent by A – they would be outvoted by at least four to two. 
See Table 1. 
   

 A B C D E F G 
A        
B b  C1 D e f g 
C c b1  D e f g 
D d b2 C2  e f g 
E e b3 C3 D  f g 
F f b4 C4 D e  g 
G g b5 C5 D e f  

Table 1: Messages of OM1 

The rogues can only create mayhem with their own values but 
as there are just two of them, they can only do so if the others 
are evenly divided.  If the good participants are divided three 
to two, the rogues can achieve a pyrrhic victory by swinging 
the decision but the good participants still achieve a 
consensus.  To really disrupt the process, the rogues need to 
induce disagreement in the others which is more difficult.   
 

5. EXPERIMENTAL RESULTS 
We have carried out experiments using implementations of 
the OM algorithms in which participant applications 
communicate using message passing [1, 5]. 
Probabilities for bad behaviour were selected to create 
experiments in which the long run mean number of rogues is 
0, 1, 2 or 3.  For the experiment reported, the rogues 
behaviour was to insert some chosen value into every message 
they send regardless of what they receive.  Table 2 shows the 
results from 1000 runs and confirms that, for this style of bad 
of our rogues, there is no advantage to using OM2. 
 

Correct Results Probability of 
Traitor A 

Mean No. 
Traitors 

OM1 OM2 

0 0 1000 1000 
1/7 1.03 1000 993 
2/7 2.01 992 954 
3/7 2.96 996 914 

Table 2: Results of 1000 runs 

These results confirm that OM1 provides much better 
protection against the bad behaviour in a distributed 
agreement exercise than its guarantee to frustrate just one 

rogue would suggest and further suggests that there is no 
worthwhile return for the considerable additional effort of 
using OM2. 
 

6. CONCLUSION 
In their study, Lamport et al, consider the implications of the 
presence of badly behaved participants in a distributed 
agreement exercise.  They show how many participants there 
need to be in total for it to be possible to eliminate the 
possible disruption of a given number of badly behaved 
participants and give algorithms which guarantee success. 
However, in a real system participants don’t know how many 
will behave badly.  They can’t even place an upper bound on 
the number.  In this situation, they cannot select an algorithm 
which is guaranteed to succeed nor even decide if one exists.  
However, they can estimate the number of faulty members 
present in a group and using this it is possible to achieve a 
reasonable expectation of a correct result, even when it cannot 
be guaranteed. 
For the particular circumstances examined, OM2 appears to 
offer better protection by guaranteeing a correct result if there 
are as many as two faulty processes where OM1 only protects 
against one.  However this small assurance comes at a cost of 
more than four times the effort and in a practical experiment 
we found it was overwhelmed by other circumstances making 
OM1 a better choice. 
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