
Selecting a distributed agreement algorithm

Robert John Walters
University of Sothampton

Highfield, Southampton,
United Kingdom

rjw1@ecs.soton.ac.uk

Peter Henderson
University of Sothampton

Highfield, Southampton,
United Kingdom

ph@ecs.soton.ac.uk

Stephen Crouch
University of Sothampton

Highfield, Southampton,
United Kingdom

stc@ecs.soton.ac.uk

ABSTRACT
When component parts of distributed systems need to reach
agreement, arriving at consensus is difficult if some
components don’t behave properly. The Byzantine Generals
Problem described by Lamport and others exemplifies the
difficulty.
In a real situation, components don’t know which of their
peers are faulty and hence they cannot apply the algorithms of
Lamport et al, nor even decide if a suitable algorithm exists.
This paper discusses options available in this situation and
describes how a good expectation of arriving at a consensus
can be achieved without knowing for certain which or how
many participants are behaving badly.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – Distributed Applications; D.4.5. [Operating
Systems]: Reliability – fault tolerance

General Terms
Algorithms, Design, Reliability.

Keywords
Distributed agreement, Byzantine Generals Problem.

1. INTRODUCTION
We have mature middleware for building such applications [5,
7-9] from interacting components [6]. Components generally
assume their information is correct but the size of modern
systems means this is no longer reasonable.
Some problems can solved with approaches like belief
maintenance systems [2] or DataWarp [3] but sometimes
inconsistencies have to be eliminated.
The Byzantine Generals Problem (BGP) described by
Lamport et al [4] exemplifies the difficulty of arriving at a
consensus in the presence of bad behaviour. It describes the
conditions which have to be met if there is to be a solution
and algorithms which provide achieve a solution for a
specified number of rogues. However, in reality the

participants do not know how many rogues are present and
hence they can never guarantee they will arrive at a
consensus.
Fortunately, the fact that it cannot be guaranteed doesn’t
imply that agreement will not be achieved.

2. BGP AND THE OM ALGORITHM
BGP concerns Generals surrounding a city who are trying to
decide whether to attack. Each judges whether a concerted
attack would succeed and they then have to distribute these
opinions in such a way that a few rogue Generals can neither
influence the decision (unduly) nor cause disagreement.
Lamport et al [4] provide a comprehensive analysis of the
problem. They prove loyal Generals must outnumber the
rogues by more than two to one for it to be possible to
guarantee a correct decision They also provide algorithms
(OMx) which guarantee the result in the face of no more than
x rogues.

3. THE REAL SITUATION
The critical factor in selecting the algorithm is number of
rogue participants but this number is not known. The
participants could use the algorithm which is proof against the
most rogues their number is able to defeat but this doesn’t
guarantee a correct result and the algorithms become greatly
more complex with the number of rogues.
Alternatively they can estimate the number of rogues using
knowledge of the likely failure rates of their peers. Assuming
the probability of failure is reasonably small, the likelihood of
two or more rogues amongst the group is very small
suggesting that using an algorithm which is proof against two
might a waste of effort.

4. USING OM1 IN PLACE OF OM2
Considering a group of seven, OM1 ensures a consensus in
the presence of zero or one rogues and it is impossible to
guarantee a correct result if there are three or more. OM2
guarantees the result if there are two rogues.
These algorithms use layers of message forwarding and
voting. In OM1, there is one layer of message forwarding:
each participant sends a message to each of the others and
forwards each original message they receive. Each participant
receives six messages in the style of, “I say x” and thirty
messages which say, “He told me y”, a total of 6 + 6x5 = 36
each, 252 messages in total. For OM2, the total is 1092, more
than four times as many. Since the probability that this extra
assurance will apply is small and what the group really wants

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’07, March 11-15, 2007, Seoul, Korea.
Copyright 2007 ACM 1-59593-480-4/07/0003…$5.00.

to know is how often they actually achieve the correct result,
it appears this could be a waste of effort.
Let us consider seven Generals using OM1, label them A, B,
… G and assume B and C are rogues. Suppose A sends b to
B, c to C, etc. The good participants pass on values faithfully
so A’s messages to D,E,F,G are reported accurately and the
messages b,c,..g will have the same value so each of the other
good participants receives the correct value from A four times
(once direct and three accurate reports from others), plus two
reports via the rogues. Clearly, there is nothing the rogues
can do to induce D,E,F,G to any value other than that truly
sent by A – they would be outvoted by at least four to two.
See Table 1.

 A B C D E F G
A
B b C1 D e f g
C c b1 D e f g
D d b2 C2 e f g
E e b3 C3 D f g
F f b4 C4 D e g
G g b5 C5 D e f

Table 1: Messages of OM1

The rogues can only create mayhem with their own values but
as there are just two of them, they can only do so if the others
are evenly divided. If the good participants are divided three
to two, the rogues can achieve a pyrrhic victory by swinging
the decision but the good participants still achieve a
consensus. To really disrupt the process, the rogues need to
induce disagreement in the others which is more difficult.

5. EXPERIMENTAL RESULTS
We have carried out experiments using implementations of
the OM algorithms in which participant applications
communicate using message passing [1, 5].
Probabilities for bad behaviour were selected to create
experiments in which the long run mean number of rogues is
0, 1, 2 or 3. For the experiment reported, the rogues
behaviour was to insert some chosen value into every message
they send regardless of what they receive. Table 2 shows the
results from 1000 runs and confirms that, for this style of bad
of our rogues, there is no advantage to using OM2.

Correct Results Probability of
Traitor A

Mean No.
Traitors

OM1 OM2

0 0 1000 1000
1/7 1.03 1000 993
2/7 2.01 992 954
3/7 2.96 996 914

Table 2: Results of 1000 runs

These results confirm that OM1 provides much better
protection against the bad behaviour in a distributed
agreement exercise than its guarantee to frustrate just one

rogue would suggest and further suggests that there is no
worthwhile return for the considerable additional effort of
using OM2.

6. CONCLUSION
In their study, Lamport et al, consider the implications of the
presence of badly behaved participants in a distributed
agreement exercise. They show how many participants there
need to be in total for it to be possible to eliminate the
possible disruption of a given number of badly behaved
participants and give algorithms which guarantee success.
However, in a real system participants don’t know how many
will behave badly. They can’t even place an upper bound on
the number. In this situation, they cannot select an algorithm
which is guaranteed to succeed nor even decide if one exists.
However, they can estimate the number of faulty members
present in a group and using this it is possible to achieve a
reasonable expectation of a correct result, even when it cannot
be guaranteed.
For the particular circumstances examined, OM2 appears to
offer better protection by guaranteeing a correct result if there
are as many as two faulty processes where OM1 only protects
against one. However this small assurance comes at a cost of
more than four times the effort and in a practical experiment
we found it was overwhelmed by other circumstances making
OM1 a better choice.

7. REFERENCES
[1] A. Dickman, Designing Applications With Msmq:

Message Queuing for Developers: Addison Wesley
Publishing Company, 1998.

[2] N. Friedman and J. Y. Halpern, "Belief Revision: A
Critique," Journal of Logic, Language and Information,
vol. 8, pp. 401-420, July 1999.

[3] P. Henderson, R. J. Walters, S. Crouch, and Q. Ni,
"DataWarp: Building Applications which make Progress
in and Inconsistent World," in 4th IFIP WG 6.1
International Conference, Distributed Applications and
Interoperable Systems (DAIS 2003), Paris, 2003, pp.
167-178.

[4] L. Lamport, R. Shostak, and M. Pease, "The Byzantine
Generals Problem," ACM Transactions on Programming
Languages and Systems, vol. 4, pp. 382-401, 3rd July
1982.

[5] Microsoft, "Microsoft Message Queuing Services,"
Microsoft, 2001.

[6] L. Nicolle, "John Taylor - The Bulletin Interview," The
Computer Bulletin: British Computer Society, 1999.

[7] R. Sessions, COM and DCOM - Microsoft's Vision for
Distributed Computing: Wiley Computer Publishing,
1998.

[8] C. Szyperski, Component Software: Longman, 1998.
[9] A. Thomas, "Enterprise JavaBeans Technology," Patricia

Seybold Group, White Paper prepared for Sun
Microsystems Inc December 1998.

