Selecting a distributed agreement algorithm

Robert John Wallters

University of Sothampton
Highfield, Southampton,
United Kingdom

riwl@ecs.soton.ac.uk

ABSTRACT

When component parts of distributed systems neeeéaoh
agreement, arriving at consensus is difficult ifmgo
components don't behave properly. The Byzantinee@as
Problem described by Lamport and others exempliffes
difficulty.

In a real situation, components don’t know which toéir
peers are faulty and hence they cannot apply tieigims of
Lamport et al, nor even decide if a suitable atpaoniexists.
This paper discusses options available in thisasdn and
describes how a good expectation of arriving abmasensus
can be achieved without knowing for certain whiaghhow
many participants are behaving badly.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems - Distributed Applications; D.4.5. [Operating
Systems]: Reliability — fault tolerance

General Terms
Algorithms, Design, Reliability.

Keywords

Distributed agreement, Byzantine Generals Problem.

1. INTRODUCTION

We have mature middleware for building such apgbece [5,
7-9] from interacting components [6]. Componeragerally
assume their information is correct but the sizenwmfdern
systems means this is no longer reasonable.

Some problems can solved with approaches like fhelie
maintenance systems [2] or DataWarp [3] but sonegim
inconsistencies have to be eliminated.

The Byzantine Generals Problem (BGP) described by
Lamport et al [4] exemplifies the difficulty of aring at a
consensus in the presence of bad behaviour. trides the
conditions which have to be met if there is to bsolution
and algorithms which provide achieve a solution for
specified number of rogues. However, in realitye th

Permission to make digital or hard copies of alpart of this work for

personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa fiist page. To copy
otherwise, or republish, to post on servers oredistribute to lists,

requires prior specific permission and/or a fee.

SAC’'07 March 11-15, 2007, Seoul, Korea.

Copyright 2007 ACM 1-59593-480-4/07/0003...$5.00.

Peter Henderson

University of Sothampton
Highfield, Southampton,
United Kingdom

ph@ecs.soton.ac.uk

Stephen Crouch

University of Sothampton
Highfield, Southampton,
United Kingdom

stc@ecs.soton.ac.uk

participants do not know how many rogues are pteand
hence they can neveguarantee they will arrive at a
consensus.

Fortunately, the fact that it cannot be guarantdedsn’t
imply that agreement will not be achieved.

2. BGP AND THE OM ALGORITHM

BGP concerns Generals surrounding a city who aiagrto
decide whether to attack. Each judges whethernzerted
attack would succeed and they then have to dis&rithese
opinions in such a way that a few rogue Generatsneather
influence the decision (unduly) nor cause disagergm
Lamport et al [4] provide a comprehensive analysfighe
problem. They prove loyal Generals must outnumther
rogues by more than two to one for it to be possitd
guaranteea correct decision They also provide algorithms
(OMXx) which guarantee the result in the face ofhmare than
X rogues.

3. THE REAL SITUATION

The critical factor in selecting the algorithm isinmber of
rogue participants but this number is not known.heT
participants could use the algorithm which is pragéinst the
most rogues their number is able to defeat but dioissn’t
guarantee a correct result and the algorithms beograatly
more complex with the number of rogues.

Alternatively they can estimate the number of ragusing
knowledge of the likely failure rates of their pgerAssuming
the probability of failure is reasonably small, thelihood of
two or more rogues amongst the group is very small
suggesting that using an algorithm which is pragdiast two
might a waste of effort.

4. USING OM1IN PLACE OF OM2

Considering a group of seven, OM1 ensures a cousens
the presence of zero or one rogues and it is inipesso
guaranteea correct result if there are three or more. OM2
guarantees the result if there are two rogues.

These algorithms use layers of message forwarding a
voting. In OM1, there is one layer of message &ding:
each participant sends a message to each of tleesosimd
forwards each original message they receive. adicipant
receives six messages in the style of, “I say x4 anirty
messages which say, “He told me y”, a total of 6xb = 36
each, 252 messages in total. For OM2, the totHD®2, more
than four times as many. Since the probability ths extra
assurance will apply is small and what the growlyevants



to know is how often thegctually achieve the correct result,
it appears this could be a waste of effort.

Let us consider seven Generals using OM1, labeh the B,
... G and assume B and C are rogues. Suppose A betods
B, c to C, etc. The good participants pass onegfaithfully
so A’s messages to D,E,F,G are reported accuratedythe
messages b,c,..g will have the same value so dablke other
good participants receives the correct value frofiou times
(once direct and three accurate reports from othphgs two
reports via the rogues. Clearly, there is nothimg rogues
can do to induce D,E,F,G to any value other tha thuly
sent by A — they would be outvoted by at least frautwo.
See Table 1.

Table 1: Messages of OM 1

The rogues can only create mayhem with their ownegbut
as there are just two of them, they can only di #we others
are evenly divided. If the good participants aingded three
to two, the rogues can achieve a pyrrhic victorysignging

the decision but the good participants still achiea

consensus. To really disrupt the process, theegeed to
induce disagreement in the others which is morficdit.

5. EXPERIMENTAL RESULTS

We have carried out experiments using implementatiof
the OM algorithms in which participant applications
communicate using message passing [1, 5].

Probabilities for bad behaviour were selected teat
experiments in which the long run mean number glies is
0, 1, 2 or 3. For the experiment reported, theuesg
behaviour was to insert some chosen value intoyanesssage
they send regardless of what they receive. Talsleo2vs the
results from 1000 runs and confirms that, for gtide of bad
of our rogues, there is no advantage to using OM2.

Probability of| Mean No.| Correct Results
Traitor A Traitors

OoM1 OoM2
0 0 1000 1000
1/7 1.03 1000 993
217 2.01 992 954
3/7 2.96 996 914

Table 2: Resultsof 1000 runs

These results confirm that OM1 provides much better
protection against the bad behaviour in a distebut
agreement exercise than its guarantee to frusjusteone

rogue would suggest and further suggests that tlsemo
worthwhile return for the considerable additiondlog of
using OM2.

6. CONCLUSION

In their study, Lamport et al, consider the implicas of the
presence of badly behaved participants in a digeib
agreement exercise. They show how many participduere
need to be in total for it to be possible to eliaten the
possible disruption of a given number of badly lwelth
participants and give algorithms which guarantexsss.
However, in a real system participants don’t knawmmany
will behave badly. They can’t even place an ugpmind on
the number. In this situation, they cannot sedectlgorithm
which is guaranteed to succeed nor even decideefexists.
However, they can estimate the number of faulty bens
present in a group and using this it is possibladhieve a
reasonable expectation of a correct result, evesmvithcannot
be guaranteed.

For the particular circumstances examined, OM2 arpé&o
offer better protection by guaranteeing a corresult if there
are as many as two faulty processes where OM1okects
against one. However this small assurance comasast of
more than four times the effort and in a practexgberiment
we found it was overwhelmed by other circumstamaking
OM1 a better choice.

7. REFERENCES

[1] A. Dickman, Designing Applications With Msmq:
Message Queuing for Developer&ddison Wesley
Publishing Company, 1998.

[2] N. Friedman and J. Y. Halpern, "Belief RevisioA
Critique,” Journal of Logic, Language and Information,
vol. 8, pp. 401-420, July 1999.

[3] P. Henderson, R. J. Walters, S. Crouch, andNQ.
"DataWarp: Building Applications which make Progres
in and Inconsistent World," idth IFIP WG 6.1
International Conference, Distributed Applicatioasd
Interoperable Systems (DAIS 2003aris, 2003, pp.
167-178.

[4] L. Lamport, R. Shostak, and M. Pease, "The Bjira@
Generals ProblemACM Transactions on Programming
Languages and Systemsl. 4, pp. 382-401, 3rd July
1982.

[5] Microsoft, "Microsoft
Microsoft, 2001.

[6] L. Nicolle, "John Taylor - The Bulletin Intersw," The
Computer Bulletin: British Computer Society, 1999.

[7] R. SessionsCOM and DCOM - Microsoft's Vision for
Distributed Computing Wiley Computer Publishing,
1998.

[8] C. SzyperskiComponent Softwaréongman, 1998.

[9] A. Thomas, "Enterprise JavaBeans Technologgtti€ia
Seybold Group, White Paper prepared for Sun
Microsystems Inc December 1998.

Message Queuing Services,



