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Abstract: The high computational cost of evaluating objective functions in electromagnetic
optimum design problems necessitates the use of cost-effective techniques. The paper discusses
the use of one popular technique, surrogate modelling, with emphasis placed on the importance
of considering both the accuracy of, and uncertainty in, the surrogate model. After a brief
review of how such considerations have been made in the single-objective optimisation of electro-
magnetic devices, their use with kriging surrogate models is investigated. Traditionally, space-
filling experimental designs are used to construct the initial kriging model, with the aim of max-
imising the accuracy of the initial surrogate model, from which the optimisation search will
start. Utility functions, which balance the predictions made by this model with its uncertainty,
are often used to select the next point to be evaluated. In this paper, the performances of several
different utility functions are examined, with experimental designs that yield initial kriging
models of varying degrees of accuracy. It is found that no advantage is necessarily achieved
through a search for optima using utility functions on initial kriging models of higher accuracy,
and that a reduction in the total number of objective function evaluations can be achieved if the
iterative optimisation search is started earlier with utility functions on kriging models of lower
accuracy. The implications for electromagnetic optimum design are discussed.
1 Introduction

Optimisation problems in electromagnetic design are typi-
fied by features that present difficulties to most determinis-
tic search algorithms, such as the existence of multiple local
minima. Genetic algorithms (GAs), on the other hand, with
their ability to search more globally, are better suited for
exploring complicated objective function landscapes. The
high computational cost of evaluating the objective function
in such problems, however, means that direct use of a GA is
often not feasible or is impractical, owing to their general
requirement for a large number of objective function evalu-
ations. Additional cost-effective techniques must be used,
with the aim to make the GA require fewer evaluations of
the objective function. Techniques used include hybrid
algorithms [1], GAs that are specially adapted for small
population sizes [2] and simplification of the problem by
removal of irrelevant design variables [3]. One technique
that has recently attracted significant attention, called surro-
gate modelling [4], is the focus of this paper.

A surrogate model is a functional relationship between
the design variable space of an optimisation problem and
the objective function space, which is constructed based
on a set of design vectors that have their objective function
values known, referred to henceforth as ‘experiments’.
Once a surrogate model has been constructed, a GA can
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then use it to predict fitness values for unevaluated design
vectors, rather than call the true expensive objective func-
tion, thus reducing computational costs. Surrogate-assisted
optimisation can therefore be viewed as consisting of two
separate stages

(i) the construction of the initial surrogate model from a set
of experiments (off-line learning)
(ii) the subsequent iterative optimisation search where,
during each iteration, predictions from the most recently
constructed surrogate model are used to select a design
vector for evaluation. Once evaluated, this design vector
is then used to construct a more accurate kriging model
(on-line learning).

Accuracy and uncertainty considerations play an important
role in surrogate-assisted optimisation. In the first stage, the
set of experiments is typically chosen with the aim of max-
imising the accuracy of the initial surrogate model; this
allows predictions made by the model to be used with
greater confidence. Uncertainty in the surrogate model is
then usually considered during the optimisation search
and has an influence on the selection of where to sample
next in the design variable space.

This paper includes a brief review of how accuracy and
uncertainty considerations have been used with three
popular surrogate models (polynomial interpolation, artifi-
cial neural networks and kriging) in electromagnetic
optimum design. Although reviews of the use of different
surrogate models exist in the literature, none focuses on
accuracy and uncertainty considerations. The paper also
comprises an investigation into how kriging model accuracy
depends on features of the experimental design used, and an
investigation into how the performance of different utility
37



functions in locating the optimum of several test functions
depends upon the accuracy of the kriging model used.

It should be noted that, for the accuracy of a surrogate
model to be determined, the true function it is approximat-
ing must be known, so that a comparison can be made
between the two, and the relevant accuracy statistics can
be computed. Real electromagnetic examples are therefore
not used in this paper, as the true objective function
is almost always unknown. This should not pose any
concern anyway, as no problem exists that is truly represen-
tative of all electromagnetic optimum design problems; the
logic is that there is as much justification in extending con-
clusions based on an investigation of three different test
functions to real electromagnetic problems, as there is in
extending conclusions based on any single electromagnetic
design problem to real electromagnetic problems.

2 Use of surrogate model accuracy
considerations in electromagnetic
design optimisation

2.1 Polynomial approximations

Polynomial approximations are among the most common
methods of surrogate model construction. Despite their
popularity, however, polynomial approximations suffer in
several respects. A minimum number of experiments is
required in the experimental design before a polynomial
model (of a given order) can be constructed. Also, it is
only for this minimum number that the model will actually
interpolate the experiments; use of additional points through
on-line learning results in an over-determined system of
equations, and the resulting polynomial surrogate model
will no longer be an interpolating surface, that is the
inclusion of additional points into the model does not necess-
arily lead to increased model accuracy. Furthermore, if
uncertainty considerations are not made during the selection
of where to sample next during the optimisation search, so
that only the optimum of the surface is added in each iter-
ation, not only can the model accuracy decrease, but rapid
convergence to a false optimum can occur [6].

In [7], a polynomial surrogate model was used to opti-
mise a brushless permanent magnet motor. The accuracy
of the model was considered at the two main stages of the
optimisation process, namely during the construction of
the initial surrogate model from an experimental design,
and is the choice of which points to evaluate during an iter-
ation of the optimisation search. The experimental design
was constructed so as to minimise the condition number
of the matrix [M] that was to be inverted to determine the
polynomial coefficients; furthermore, to ensure it was inter-
polating (as well as keeping computational cost to a
minimum), only the minimum number of points required
to construct the polynomial model were used. A dynamic
weighting factor was then used, as the optimisation search
proceeded, to place more emphasis on the region around
the predicted optimum. Then, to ensure that [M] did not
become ill-conditioned as the search continued, additional
learning points were evaluated, chosen specifically so as
to minimise the condition number of [M]. An analysis of
the errors on predicted optima and learning points indicated
that the inclusion of learning points was effective in improv-
ing the accuracy of the polynomial surrogate model.

2.2 Artificial neural networks

A wide range of different types of ANN exist that can be
used to construct surrogate models [8]. One of the most
38
widely used is the radial basis function ANN [9]. An
example of the use of such an ANN in electromagnetic
optimum design can be found in [10], where a multiquadra-
tic radial basis function was used as a surrogate model in the
optimisation of a C-core magnet and a magnetiser. In
addition to evaluation of the predicted optimum during
on-line learning, design vectors in the most unexplored
regions of design space were also evaluated, with the aim
of avoidance of local minima. Unexplored regions of
design variable space have the highest uncertainty in their
values, and so the use of such points in on-line learning
facilitated reduction of the uncertainty in the surrogate
model as the optimisation search proceeded.

2.3 Kriging

Kriging has recently been recognised as a useful method for
surrogate model construction in electromagnetic optimum
design [5]. Owing to its statistical nature, useful information
can be extracted, giving an indication of model uncertainty.
The efficient global optimisation (EGO) algorithm [11] uses
such information to build up a utility function, known as the
expected improvement, that automatically balances the
objective function values predicted by the kriging model
with the uncertainty in this prediction. Through optimi-
sation of this auxiliary function, model uncertainty is auto-
matically considered as the optimum is being searched for.
Expected improvement and other utility functions are
reviewed in the following section.

A variation of EGO, known as superEGO, has been used
to solve two electromagnetic design problems with expens-
ive objective functions [12], one with three design variables
and one with four. Experimental designs consisting of
random points sparsely distributed in design variable
space were used to construct the initial kriging surrogate
models, and convergence was found to occur within tens
of iterations in both cases.

The simultaneous growth in the development of modern
experimental designs for computer experiments and that
of the use of utility functions with kriging models for optim-
isation have motivated this investigation into the relation-
ship between the two areas.

3 Kriging model accuracy and
experimental design

3.1 Modern experimental designs

All surrogate models are constructed from a set of exper-
iments, and it is the purpose of design of experiments [13]
to determine the set that will yield the most accurate poss-
ible surrogate model. This set will vary according to the
nature of the true (unknown) function being modelled,
and so generic experimental designs that have desirable
properties are often used. Traditional experimental designs
are increasingly being replaced by modern experimental
designs [14] that have been developed for use with determi-
nistic computer experiments. Such designs usually concen-
trate on the desirable properties of being uniform and
space-filling, although recently the usefulness of such prop-
erties has come under scrutiny [15]. Two experimental
designs are investigated in this paper

(a) Latin hypercube: a Latin square is a square with each
side subdivided, so that there are N rows and N columns.
N points are then positioned (at random) in N of the N2 seg-
ments, so that only one point appears in each row and each
column. A Latin hypercube [16] extends this idea to higher
IET Sci. Meas. Technol., Vol. 1, No. 1, January 2007



dimensions. If each side of the hypercube represents a
different design variable, N design vectors can be selected
using this design, with the advantage that the number of
experiments is independent of the number of design
variables.
(b) Hammersley sequence: a Hammersley sequence pro-
vides a low-discrepancy set of experiments, in that the
points are uniformly distributed in design variable space.
For details of the construction of a Hammersley sequence,
the reader is referred to [17].

Through consideration of the accuracy of kriging models
constructed using these two experimental designs for a
simple test function in the following section, two further
potentially attractive features of experimental designs for
the construction of kriging models have been suggested.

3.2 Potential problem for experimental designs
for kriging model construction

Given a set of experiments, a kriging model is defined by a
vector u that is found by maximisation of the likelihood
function [5]

�
N lnðs2

ðuÞÞ þ lnðjRðuÞjÞ

2
ð1Þ

where N is the number of experiments used to construct the
kriging model, s2 is the variance as predicted by the kriging
model, and R is the matrix of correlations between the N
experiments, whose i-jth entry is usually formed using the
Gaussian correlation function

Rðxi; xj
Þ ¼

Yn

k¼1

e�uk jx
i
k�x

j

k
j
pk

ð2Þ

From this, it is clear that uk determines how rapidly the cor-
relation is lost in the kth design variable (large values imply-
ing rapid loss in correlation), and pk determines the
smoothness of the function of the kth design variable
(values near 2 denoting smooth functions, values near 0
denoting rough functions). Usually, pk ¼ 2 is used for all
k, and this is the value that will be used for all of the
kriging models constructed in this investigation.

The behaviour of the likelihood function determines
the value obtained for the vector u and so determines the
behaviour of the kriging model that is constructed. Poor
behaviour of the likelihood function is likely to result in a
poor value of u being obtained and, consequently, in an
inaccurate kriging model. One common example of poor
behaviour for this function is monotonicity, as this results
in an extremely large value of u being used to construct
the kriging model, implying virtually no correlation
between any of the design vectors, which is undesirable
for most functions.

An example of this can be seen in Fig. 1, where the Latin
hypercube and Hammersley sequence experimental designs
have both been used to construct kriging models for the
Wilkinson test function [18]

f ðxÞ ¼ 8:9248� 10�5x� 2:18343� 10�2x2
þ 0:998266x3

� 1:6995x4
þ 0:2x5

ð3Þ

Each experimental design results in a monotonic likelihood
function (note that the negative sign of the likelihood func-
tions plotted in the figures has been omitted, so that the like-
lihood functions in the figures are now to be minimised),
and so, for each kriging model constructed, an extremely
IET Sci. Meas. Technol., Vol. 1, No. 1, January 2007
large value of u is used; hence, their inaccuracy. At this
point, two potentially attractive features of experimental
designs are suggested, and their effect on the behaviour of
the likelihood function for constructing kriging models for
(3) is examined.

3.3 Potentially attractive features of
experimental designs

For an n-dimensional design variable space, the two follow-
ing attractive features of experimental designs for the con-
struction of kriging models are proposed:

(i) the inclusion of the 2n extreme boundary points of the
design variable space; that is, for a problem with n design
variables that vary as xi

l
� xi � xi

u, i ¼ 1, . . . , n, the 2n

corners of the hypercube that bounds the feasible region
in design variable space are included
(ii) for a particular experiment x� in the experimental
design, the inclusion of n additional experiments a small
distance away from x�, in each of the n orthogonal direc-
tions around x�.

The first of these features is proposed as kriging models are
designed to interpolate points in multidimensional space.
Therefore the inclusion of the extreme boundary points in
the design variable space in the experimental design
means that extrapolation by the kriging model is kept to a
minimum. The second of these features is proposed as,
because a kriging model interpolates the experiments it is
constructed from, the inclusion of such points forces the
gradient around the experiment x� to be highly accurate in
the constructed kriging model.

It should be noted that these features can occur naturally
in some experimental designs (for example, the
Hammersley sequence design will always include one of
the boundary points); alternatively, these features can be
combined with existing experimental designs, giving a
hybrid design that has some of the features of both.

Each of these features will be combined with the Latin
hypercube and Hammersley sequence designs, to give two
additional variants of each: designs that have boundary
points included will be referred to as type II variants, and
designs that have the gradient enforced to be correct at a
point will be referred to as type III variants (Type I variants
will be the experimental design without either feature
imposed). In addition, the effect of combining both features
simultaneously with an experimental design will be investi-
gated; these will be referred to as type IV variants.

The effect of each of these variants on the construction
of kriging models for the Wilkinson test function can be
seen in Fig. 2. Each variant successfully removes the
monotonicity of the likelihood function, resulting in more
reasonable values for u being used to construct the kriging
model. Similar results were obtained for the Latin hyper-
cube variants. Note that, for fair comparison, the same
number of experiments is used in each variant. This
means, for example, that a type II Hammersley sequence
of size 6 in one dimension actually uses a Hammersley
sequence of size 5 (the two boundary points plus the four
non-boundary points of a Hammersley sequence of size 5,
giving a total of six points).

The performance of each of these experimental design
variants in the construction of accurate kriging models
will now be investigated for a range of test functions.
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c d

Fig. 1 Kriging models and likelihood functions for Wilkinson test function using Latin hypercube and Hammersley sequence experimental
designs
3.4 Test functions

Strictly speaking, the true accuracy of a surrogate model can
only be determined if the true function, which it is attempt-
ing to approximate, is also known and is available for
comparison. Almost all electromagnetic optimum design
problems are non-analytic, meaning it is impossible to
measure the accuracy of any surrogate model constructed.
For this reason, the investigation in this paper will be
carried out using well-known test functions. In total, three
test functions have been selected: one one-dimensional
(1D) test function, known as Humps (as used in [19])

f ðxÞ ¼ 6�
1

ðx� 0:3Þ2 þ 0:01
�

1

ðx� 0:9Þ2 þ 0:04
ð4Þ

one two-dimensional (2D) test function, known as Branin
[20]

f ðx1; x2Þ ¼ ð1� 2x2 þ 0:05 sinð4px2Þ � x1Þ
2

þ ðx2 � 0:5 sinð2px1ÞÞ
2

ð5Þ

and one three-dimensional (3D) test function, known as
Hartman3 [21]

f ðx1; x2; x3Þ ¼ �
X3

i¼0

ci exp �
Xn�1

j¼0

Aijðxj � pijÞ
2

 !
ð6Þ

where the matrices A and p and the vector c are as defined in
[21].

Each of these functions will be evaluated over a mesh
of about N ¼ 1000 points (1000 equally spaced points for
(4), 32 � 32 ¼ 1024 equally spaced points for (5), and
40
10 � 10 � 10 ¼ 1000 equally spaced points for (6)). The
kriging models are then evaluated over the same meshes
for a variety of experimental designs, and compared with
the true functions so that their accuracy can be determined.

3.5 Accuracy measures

A variety of methods exist for comparing the surrogate
model with the true function to assess its accuracy. Three
methods will be used here: the normalised maximum error
NEMAX, the normalised root mean squared error
NRMSE and the Kolmogorov–Smirnov statistic D.
NEMAX and NRMSE are defined as

NEMAX ¼
max fjyi � ŷijgi ¼ 1; . . . ;Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=N Þ
P
ðyi � �yÞ2

q ð7Þ

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðyi � ŷiÞ

2PN
i¼1ðyiÞ

2

s
ð8Þ

where yi is the true value at site i, ȳi is the value predicted by
the kriging model at site i, and ȳ is the true mean of the
points at i. Obviously, smaller values of NEMAX and
NRMSE indicate greater accuracy. The Kolmogorov–
Smirnov statistic D is defined as the maximum distance
between the predicted and the true cumulative distribution
functions, denoted SN(y) and PN(y), respectively,

D ¼ max
�1,y,1

jSN ðyÞ � PN ðyÞj ð9Þ

with smaller values of D indicating greater accuracy.
IET Sci. Meas. Technol., Vol. 1, No. 1, January 2007
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Fig. 2 Kriging models and likelihood functions for Wilkinson test function using variants of Hammersley sequence experimental design
3.6 Surrogate model accuracy dependence on
experimental design

Each of the four variants of the Latin hypercube and the
Hammersley sequence was used to construct initial kriging
models for each of the three test functions, for varying exper-
imental design sizes. The accuracy of the kriging models
constructed was then assessed using each of the measures
given above. The results are shown in Figs. 3–5.

The results for the 1D Humps problem showed that there is
no significant difference in performance between the two main
types of experimental design. This is to be expected in one-
dimensional problems: for an experimental design size of n,
when the 1D design variable space is divided into n equally
sized intervals, the Latin hypercube will place one point at
random in each interval, whereas the Hammersley sequence
will place one point at the start of each interval. As would
IET Sci. Meas. Technol., Vol. 1, No. 1, January 2007
be expected, the trend within each experimental design is
that accuracy increases as the experimental design size
increases, but this increase is perhaps not as significant as
we might expect. For small experimental design sizes, some
increase in accuracy resulted from the imposition of the
suggested features; however, no general increase in accuracy
was found in experimental designs of greater size.

Results for the 2D Branin function showed clearer trends.
The simultaneous forcing of the gradient to be correct at a
point and inclusion of the boundary points yielded signifi-
cant increases in accuracy by all measures for both exper-
imental design types, particularly the Hammersley
sequence design. The enforcing of a correct gradient at a
point gave increases in accuracy when combined alone
with the Hammersley sequence design; however, its per-
formance, when combined with the Latin hypercube, did
not always result in an increase in accuracy.
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Fig. 3 Accuracy measures (Kolmogorov-Smirnoff statistic D, NRMSE and NEMAX) for kriging models constructed using different exper-
imental designs for Humps test function
Results for the 3D Hartman3 function showed that
inclusion of the boundary points in either design in
general did not give an increase in accuracy. However,
the combination of either or both of the suggested features
with the Hammersley sequence design led to an increase
in accuracy for smaller design sizes. The forcing of the gra-
dient to be correct at a point in the kriging model tended to
result in an increase in accuracy, although this gain in accu-
racy lessened as the experimental design size grew.

In general, the only feature of experimental designs that con-
sistently resulted in an increase in surrogate model accuracy
was an increase in the number of experiments used. However,
as the task of optimisation is not accurately to approximate an
unknown function, but to locate the minimum of it using
as few experiments as possible, the merit of these extra
42
experiments at such an early stage of the optimisation procedure
is questionable, given that utility functions exist that search for
the minimum of an unknown function while accounting for the
uncertainty in its approximation. The following section begins
with a review of such utility functions, before continuing to
investigate how their performance depends on the accuracy of
the kriging model yielded by the experimental design.

4 Utility functions in kriging surrogate models

4.1 False optima and the need for utility functions

The choice of where to sample next in design variable space
based solely on the values predicted by a surrogate model
brings with it the possibility of being trapped by false
IET Sci. Meas. Technol., Vol. 1, No. 1, January 2007
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Fig. 4 Accuracy measures (Kolmogorov-Smirnoff statistic D, NRMSE and NEMAX) for kriging models constructed using different exper-
imental designs for Branin test function
optima, points that are the optima of the surrogate model,
but not of the true objective function. Even in the case of
non-pathological examples, premature convergence to false
optima can occur when only the minimum of the surrogate
model is chosen for evaluation by the optimisation algorithm
[6]. Instead, the uncertainty of the predictions made by the
surrogate model should also be taken into consideration, so
that design vectors that have a high uncertainty in their pre-
dicted value are also attractive candidates to the optimisation
algorithm for sampling, in addition to design vectors with
low uncertainty and attractive objective function values.

Various utility functions, which balance the prediction
made by a kriging model with the uncertainty in this predic-
tion, have been constructed precisely for this purpose, and
are now briefly discussed.
IET Sci. Meas. Technol., Vol. 1, No. 1, January 2007
4.2 Expected improvement

Suppose, for a design vector x, a kriging model predicts a
value ȳ and a root mean squared error s. Let ymin be the
minimum objective function value so far sampled. Then,
the expected improvement utility function [11] is defined as

EIFðIðxÞÞ ¼

ðymin � ŷÞC
ymin � ŷ

s

� �

þ sc
ymin � ŷ

s

� � if s . 0

0 if s ¼ 0

8>>>><
>>>>:

ð10Þ

where C is the standard Gaussian density function, and c is
the standard Gaussian distribution function. Equation (10) is
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Fig. 5 Accuracy measures (Kolmogorov-Smirnoff statistic D, NRMSE and NEMAX) for kriging models constructed using different exper-
imental designs for Hartman3 test function
composed of two terms: the first places emphasis on a local
search around the current minimum, whereas the second
places emphasis on design vectors with high uncertainty
in their predicted values. Thus the expected improvement
is a fixed compromise between a local search around the
current minimum and a global search in the regions of
design variable space that are of high uncertainty and are
possibly modelled less accurately.

4.3 Generalised expected improvement

The expected improvement can be generalised to give what
is known as the generalised expected improvement utility
44
function [22]

GEIF½Ig
ðxÞ� ¼ sg

Xg

k¼0

ð�1Þk
g!

k!ðg � kÞ!

� �
ug�kTk ð11Þ

where

Tk ¼ �fðuÞu
k�1
þ ðk � 1ÞTk�2 ð12Þ

with

T0 ¼ FðuÞ ð13Þ

T1 ¼ �fðuÞ ð14Þ

Higher levels of the integer g mean that higher levels of
improvement in the current minimum are being sought,
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and so more emphasis is placed on searching in areas with
more uncertainty in their predicted values. Levels of g . 2
place more emphasis on searching regions of high uncer-
tainty than the expected improvement function, whereas
g ¼ 1 is equivalent to the expected improvement function.

4.4 Weighted expected improvement

The weighted expected improvement utility function uses a
weighting parameter w to determine whether emphasis is
placed on searching areas of high uncertainty or around
the current minimum [23]

WEIFðIðxÞÞ ¼

wðymin � ŷÞC
ymin � ŷ

s

� �

þð1� wÞsc
ymin � ŷ

s

� �
if s . 0

0 if s ¼ 0

8>>>><
>>>>:

ð15Þ

Note that values of w less than 0.5 place more emphasis on
searching regions of high uncertainty in design variable
space than the expected improvement function, whereas
values greater than 0.5 place more emphasis on searching
around the current minimum. The value of w ¼ 0.5 is equiv-
alent to the expected improvement function.

The expected improvement, generalised expected
improvement (with g ¼ 3) and weighted expected improve-
ment (with w ¼ 1) will each be used to investigate how the
consideration of uncertainty in the search for an optimum
point is affected by the accuracy of the initial kriging model.

4.5 Utility function performance using
experimental designs of varying effectiveness

For each test function, four kriging models, two of high
accuracy and two of low accuracy, were used with each
of the utility functions to locate the optimum to within a
certain tolerance. An additional kriging model, constructed
using only two design points selected at random, and so
naturally of low accuracy, was also used. The results are
shown in Tables 1–3.

The models are separated in each table according to their
accuracy (with the model constructed from just two points
labelled as Basic). The number of iterations taken by each
utility function to locate the optimum within the required
tolerance is given, with the figures in parentheses giving
the total number of function evaluations needed, that is
the number of iterations taken by the utility function plus
the number of experiments used to construct the kriging
model. In each case, the stopping criteria used the relative
Table 1: Number of Iterations required by WEIF, EIF and GEIF utility functions to locate global minimum within 1%
relative tolerance for Humps test function, using kriging models of varying degrees of accuracy

Kriging model accuracy WEIF (w ¼ 1.0) EIF GEIF (g ¼ 3)

D NRMSE NEMAX

More accurate 0.1592 0.4882 4.8411 4 (18) 2 (16) 3 (17)

0.1611 0.6836 2.2516 3 (17) 3 (17) 4 (18)

Less accurate 0.5791 0.8810 32.1664 4 (9) 10 (15) 7 (12)

0.5117 0.7998 23.2252 8 (16) 19 (27) 19 (27)

Basic 0.7803 0.9170 15.4387 8 (10) 8 (10) .30 (.32)
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relative tolerance

¼ 100�

sampled objective function value

�true minimum

true minimum

0
BB@

1
CCA ð16Þ

A 1% relative tolerance was used for the Humps and
Hartman3 test functions, and a 2% relative tolerance was
used for the Branin test function.

Two main points can be made regarding the results

(a) Although, in general, fewer iterations may be required
when more accurate kriging models are used, this is not
always the case.
(b) Even when fewer iterations are required by the utility
functions when more accurate kriging models are used,
this can come at a cost of a higher total number of objective
function evaluations needed.

The first point can be explained as follows: experimental
designs may be found that will yield surrogate models
which approximate the true function to a high degree of
accuracy; however, unless the true function being modelled
is actually known and available for comparison, the true
accuracy will not be known, and so the kriging model con-
structed will have an uncertainty associated with it, no
matter how accurate it actually is. It is this uncertainty
that the utility function considers when selecting where to
sample next. If the true function were available for compari-
son, so that the true accuracy of the kriging model could be
determined, as in this investigation, then, through the con-
struction of a perfectly accurate kriging model, any sub-
sequent considerations of uncertainty would become
redundant. Therefore the use of utility functions with
highly accurate kriging models does not necessarily yield
an advantage over the use of utility functions with less accu-
rate initial kriging models, as the utility function considers
there to be uncertainty present in both models. Nevertheless,
the overall trend is that fewer iterations are required by
utility functions if they are used with kriging models of
higher accuracy.

The second point is more obvious. Although utility func-
tions did show an overall trend in locating the optimum of
the test functions in fewer iterations, when the kriging
model they started with was of higher accuracy, the
higher accuracy in the kriging model usually came at the
expense of more objective function evaluations being per-
formed in the experimental design stage, and this extra
cost was not always justified. Each objective function evalu-
ation in the experimental design stage is only justified if it
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Table 2: Number of iterations required by WEIF, EIF and GEIF utility functions to locate global minimum within 2%
relative tolerance for Branin test function, using kriging models of varying degrees of accuracy

Kriging model accuracy WEIF (w ¼ 1.0) EIF GEIF (g ¼ 3)

D NRMSE NEMAX

More accurate 0.0684 0.2072 3.4690 6 (23) 27 (44) 18 (35)

0.1133 0.1176 1.6552 .30 (.43) 9 (22) 17 (30)

Less accurate 0.6113 0.6578 3.9200 15 (27) 14 (26) 27 (39)

0.6328 0.6815 5.6191 13 (21) 21 (29) 30 (38)

Basic 0.5596 0.6885 27.4274 30 (32) 17 (19) .30 (.32)

Table 3: Number of iterations required by WEIF, EIF and GEIF utility functions to locate global minimum within 1%
relative tolerance for Hartman3 test function, using kriging models of varying degrees of accuracy

Kriging model accuracy WEIF (w ¼ 1.0) EIF GEIF (g ¼ 3)

D NRMSE NEMAX

More accurate 0.0800 0.1406 0.4749 1 (26) 1 (26) 2 (27)

0.1730 0.2101 1.1150 4 (21) 2 (19) 11 (28)

Less accurate 0.6690 0.7579 10.7701 13 (18) 10 (15) 16 (21)

0.6420 0.7239 39.9308 21 (38) 5 (22) 7 (24)

Basic 0.5650 0.7574 13.1347 .30 (.32) 30 (32) 11 (13)
means that at least one less iteration will be required by the
utility function to locate the optimum.

As the overall aim in single-objective optimisation is to
locate the global minimum using as few objective function
evaluations as possible, the most attractive experimental
design is not the design that yields the most accurate
kriging model, but instead the design that leads to the con-
struction of a kriging model of such an accuracy that, when
the number of additional objective function evaluations
needed by the utility function to locate the optimum is
added to its size, this number (the total number of objective
function evaluations) is minimised. For the three test func-
tions given, this was achieved not by use of an experimental
design that yielded an accurate model, but instead by use of
designs that yielded models of lower accuracy. In fact, for
two of the three test functions, the lowest total number of
objective function iterations required to locate the
optimum to the required tolerance was achieved with a
trivial experimental design of just two random points.
When the overall aim is to locate the optimum of a function
using a surrogate model in as few iterations as possible, it
would appear that it is advantageous to start the iterative
search early with a relatively inaccurate model.

5 Conclusions

Surrogate-assisted optimisation can be viewed as consisting
of two stages: construction of the initial surrogate model
through off-line learning, followed by an iterative optimis-
ation search with on-line learning. Typically, an experimen-
tal design is used to construct the initial kriging model, with
the aim of yielding the most accurate surrogate model poss-
ible, and utility functions with in-built uncertainty consider-
ations are then used to search for the optimum.

The performances of several utility functions were inves-
tigated on three test functions, using experimental designs
that yielded kriging models of high accuracy, and they
were compared with the performances when experimental
designs were used that yielded kriging models of lower
accuracy. When the aim is to reduce the overall number
46
of objective function evaluations required to locate the
optimum (which is normally the case in practical design
optimisation), it was found that no advantage is necessarily
achieved by the use of experimental designs that yield more
accurate surrogate models, and that a saving in total iter-
ations can even sometimes be made if the utility function
is allowed to build up the model entirely by itself as it
searches for the optimum through on-line learning. For
scenarios where objective functions are expensive to
compute, such as in electromagnetic design, such a reduction
in objective function evaluations is highly desirable.
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