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ABSTRACT
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by Simon Goodall

There is an increasing number of multimedia collections arising in areas once only the
domain of text and 2-D images. Richer types of multimedia such as audio, video and
3-D objects are becoming more and more common place. However, current retrieval
techniques in these areas are not as sophisticated as textual and 2-D image techniques
and in many cases rely upon textual searching through associated keywords. This thesis
is concerned with the retrieval of 3-D objects and with the application of these techniques
to the problem of 3-D object annotation. The majority of the work in this thesis has
been driven by the European project, SCULPTEUR.

This thesis provides an in-depth analysis of a range of 3-D shape descriptors for their
suitability for general purpose and specific retrieval tasks using a publicly available data
set, the Princeton Shape Benchmark, and using real world museum objects evaluated
using a variety of performance metrics. This thesis also investigates the use of 3-D shape
descriptors as inputs to popular classification algorithms and a novel classifier agent for
use with the SCULPTEUR system is designed and developed and its performance anal-
ysed. Several techniques are investigated to improve individual classifier performance.
One set of techniques combines several classifiers whereas the other set of techniques
aim to find the optimal training parameters for a classifier. The final chapter of this
thesis explores a possible application of these techniques to the problem of 3-D object

annotation.
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Chapter 1

Introduction

The growing number of large multimedia collections has led to an increased interest
in content-based retrieval research. Content-based retrieval is concerned with retrieval
based upon the data contained within a multimedia object (image, 3-D model, video
etc), such as it’s shape or colour rather than associated keywords which may or may
not reflect the full semantics of the object. Applications of content-based techniques
to image retrieval is an active research area but much less work has been reported on
content-based retrieval of 3-D objects in a multimedia database context. Such objects
are increasingly being captured and added to multimedia collections and the FEuropean
project, SCULPTEUR, developed a museum information system which includes the in-
troduction of facilities for content-based retrieval of the 3-D representations. The project
was also concerned with another rapidly developing area: the semantic web, which will
aid the use of semantically described data both for machine processing and enhanced

human interaction.

Content-Based Retrieval has been an active research area for the last few decades with
many advances in the area of image-based retrieval. This research has naturally pro-
gressed to other forms of multimedia; audio, video and now 3-D objects. 3-D objects
offer many interesting advantages over traditional 2-D image retrieval. Such represen-
tations are increasingly becoming attractive to museums wishing to digitise sculptures
and other objects as the cost of 3-D acquisition becomes cheaper. A 3-D object is an
explicit representation of the surface of an object and in some cases may contain the in-
ternal structure as well. To gain the same information with a 2-D representation requires
many images and special techniques to estimate the 3-D structure. In some cases such
techniques can be used to create an actual 3-D representation of the object. Of course
each different type of multimedia brings its own challenges and 3-D is no exception. A
3-D object can be represented in any orientation, position or scale. Additionally how
the 3-D object is represented can differ vastly while still being visually similar. Two
3-D representations of the same object may differ considerably when looking closely at

its representation. For example one version the surface can be composed of triangles

1



Chapter 1 Introduction 2

whereas in the other version it could be composed of quadrilaterals. Being able to cope

with such differences is a key feature in any 3-D retrieval algorithm.

Closely linked to object retrieval is object recognition. Once it is possible to retrieve
similar objects to a query object, it should then be possible to use the same retrieval
techniques to begin to classify objects into different groupings. Of course visual similarity
does not necessarily equate to similar classes of object and not all techniques can be

expected to yield good classification results.

Another area of research gaining attention is that of annotation. Annotation assigns
textual keywords to an arbitrary item of data to help describe that item and to enable
retrieval through textual search engines. It is also possible to annotate items of data
with concepts in an ontology and this provides a much richer description as any relations
associated with that concept can be associated with the data item as well. In one sense,
annotation can be thought if as an extension of classification. Once some data has been

classified, that classification can be used as an annotation for that data.

A large portion of this work was performed as part of the SCULPTEUR project and
as such there was some collaboration in the software produced. The main software
component produced was FVS, the underlying component that facilitated 2-D and 3-
D content-based retrieval. The 2-D algorithms were ported from the FVG tool in the
ARTISTE project and most of the 3-D algorithms were implemented by GET-ENST. My
contribution to FVS was a re-write of the internal architecture of the FVG tool to more
easily allow new algorithms to be integrated, added support for 3-D objects and to allow
easy addition of further types of media, fixed existing bugs and improved performance
and memory utilisation. Additionally a MySQL UDF interface was written to allow fast
retrieval when integrated with the rest of the SCULPTEUR system. A Java Native
Interface was also written for experimentation within other systems. An ASCII based
feature vector file format was implemented to allow experimentation with descriptor
data in MATLAB. Multiple distance metrics have been implemented and integrated into
some of the 3-D algorithms to investigate which distance metrics worked best with which
descriptor. A novel component, the 3-D thumbnail generator, was also implemented
using the FVS data structures for representing a 3-D object and has been integrated
with Nautilus to allow previews of VRML objects on the file system. Nautilus is the file
manager application that is part of the Gnome Desktop Environment. FVS has recently
been released under the LGPL open source license. As part of the FVS development,
numerous bug fixes and enhancements have been passed back to the supporting libraries,
most notably VIPS and Cyber X3D. Support was added in Cyber X3D for compressed
VRML objects and the VRML parser was fixed to allow 3-D objects with an arbitrary

number of faces rather than only 3-D objects with a small number of faces.

As part of the classification work, several versions of the classifier agent were produced

and additional code was produced for further experimentation. The first classifier agent
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wrapped a JSP web front-end around a MATLAB back end. This used a Support Vector
Machine implementation and some Java to MATLAB code that is freely available on the
web. This agent was a proof of concept system to investigate whether 3-D shape de-
scriptors were usable as inputs to classifiers. The second classifier agent wrapped a PHP
front-end around a C++ back-end. This used a custom implementation the k-Nearest
Neighbour classifier and k-Means clustering algorithms. A Particle Swarm Optimisa-
tion and Genetic Algorithm implementation was also written to investigate automatic
classifier optimisation. A small application was written to communicate with a SCULP-
TEUR system to create training data sets (using the SRW client application to encode
a query and retrieve the response). This version of the agent provided a test bed for
user trials on the interface and potential uses of the system. Final experimentation was
performed in MATLAB to make use of existing classifier implementations in the Netlab
toolbox. Genetic Algorithms, Dynamic Classifier Selection and Classifier Ensembles were
implemented in order to investigate how well these techniques can improve base classifier

performance. Much of this software is described in Chapter 4.

Two main conference papers have been published from this work as well as a number
of contributions to more general papers on the SCULPTEUR project (Addis et al.,
2003b; Sinclair et al., 2005b; Kim et al., 2004; Addis et al., 2005a; Goodall et al., 2004a;
Addis et al., 2003a). The first paper, Goodall et al. 2005a, is a comparison of a number
of 3-D shape descriptors using both the Princeton Shape Benchmark and a data set
composed of museum objects. The second paper, Goodall et al. 2005b, presents our
initial experimentation with the Particle Swarm Optimisation algorithm that was part

of the final version of the Classifier Agent.

The research objectives for this thesis are to design and develop a content-based retrieval
system for 3-D objects using collections of multimedia objects from museums. This will
include research into 3-D content-based retrieval algorithms, and classification techniques
to speed up retrieval and provide recognition capabilities. The SCULPTEUR system has

been tested with substantial museum collections and real users.

There are several main objectives for the work.

1. Evaluate suitability of various 3-D Content-Based Retrieval Algorithms for general

purpose and specific retrieval operations.

2. Design and develop classifiers using 3-D Content-Based Retrieval Algorithms as

inputs to different classification techniques.

3. Explore and evaluate the use of 3-D classification for annotating 3-D objects.

General purpose retrieval is concerned with finding similar objects to a query object

without any prior knowledge about the query object. Specific retrieval is concerned
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with finding similar objects to the query using knowledge about the query to refine the
retrieval process. For example if the query object is a vase, a technique that works well

on vases can be selected.

This thesis begins with some background material relating to 3-D content-based re-
trieval in Chapter 2 and classification techniques in Chapter 3. Chapter 4 introduces
the SCULPTEUR project in more detail and describes the areas with which this thesis
is concerned. This chapter describes the context in which the thesis has been written.
This chapter also describes FVS, the content-base retrieval software developed during
the course of this thesis and is the fundamental building block for content-based retrieval
in SCULPTEUR and in the experimental work undertaken.

Chapter 5 gives an in depth analysis of various 3-D content-based retrieval algorithms
against a publicly available data set, the Princeton Shape Benchmark and against a data
set composed of 3-D objects provided by the museum partners. The 3-D descriptors
are analysed for both their overall performance and on their performance for specific
classes of object. Additionally, a number of different distance metrics are evaluated
for each descriptor in order to determine what distance metrics improve the retrieval
performance of a descriptor. A large range of different performance metrics are used to

perform the evaluation.

Chapter 6 uses classification techniques to classify 3-D objects using as input the 3-D
content-based retrieval techniques described in Chapter 5. Three popular classification
techniques are used in the main body of work providing a large comparison for suitability

as base classifiers and for a combined approach.

Chapter 7 describes how the content-based retrieval and classification techniques can be

integrated with semantic web technologies to facilitate 3-D object annotation.

The thesis then finishes with some conclusions and future work in Chapter 8.



Chapter 2

Content-Based Retrieval

Background

2.1 Introduction

In this chapter we review content-based retrieval techniques, in particular 3-D object
retrieval. The chapter begins by discussing some of the issues involved with the retrieval
of 3-D objects before describing a range of current 3-D descriptors and distance metrics.
This chapter is also concerned with evaluating the retrieval performance of 3-D descrip-
tors across different data sets, both for general purpose retrieval and for specific retrieval
tasks.

2.2 3-D Object Representation

There are two main methods for representing arbitrary 3-D objects. One such method of
representing a 3-D object is the mesh format. This is a collection of connected polygons
forming either part of or the whole surface of an object. Many 3-D techniques assume
that a mesh is composed of triangles rather than arbitrary sized polygons as this greatly

simplifies calculations. A 3-D object can be composed of one or more meshes.

The other main method of representing a 3-D object is by using voxels. A voxel is a
volume pixel, the 3-D equivalent of a pixel in a 2-D image. Unlike the mesh representation
which models the surface of the object, a voxel models the whole volume of the object. As
with 2-D images, increasing the scale of the model can result in blocky edges (pixelation).
Often a model will be represented as a mesh and converted to voxels as needed. See
Figure 2.1 for an example of a mesh and voxel representation of a sphere. The sphere

has been shown deliberately low resolution to emphasise its construction.
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(a) Mesh Representation (b) Voxel Representation

FI1GURE 2.1: Example Mesh and Voxel representation of a Sphere

Another less commonly used method is to represent a 3-D object by a set of parameters.
For example a sphere can be defined by a position and radius size. This method is only
suitable for representing primitive objects, or those that can be represented easily by a

pre-defined function.

2.3 3-D Content-Based Retrieval

3-D object matching is a growing research area and a wide range of differing techniques
have been developed. 3-D content-based retrieval typically consists of four stages. The
CBR descriptor generates a feature vector which contains the data representing a 3-D

object according to the algorithm. In many cases this is a histogram.

e The first stage is to convert the object into a suitable format that is understandable
by the rest of the process. This process may also involve re-sampling the object
to provide a more even spread of vertices on the mesh. The initial sampling of
the object (the creation of the mesh approximation at the time of acquisition or
creation) may result in areas of the mesh being more densely populated than other
areas. Typically flatter areas can be represented in a few large faces and very curved
areas require many small faces. This process may also try to correct problems in
the object, such as holes in the mesh or triangle orientation inconsistencies. This
can be done once and the result saved for future use as this process is independent
of the CBR algorithm.

e The next stage is to normalise the object into a canonical co-ordinate frame; that

is to transform each object into a common co-ordinate system. However, some
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algorithms are invariant to some aspects of possible transformations, e.g. rotation,
scale and translation. The exact requirements depend on the properties of the

algorithm.

e Stage three is to generate the feature vector for the descriptor from the object

mesh.

e Stage four is to compare the feature vector with other feature vectors of the same

type using an appropriate distance metric.

2.4 3-D Storage Formats

There are a wide range of storage formats for 3-D objects. Most formats represent an
object as a collection of polygons (typically triangles) that form a mesh. Additional
information such as surface normals, texture co-ordinates (and texture maps) and colour
information are also commonly stored. Some formats (e.g. VRML (Web 3D Consortium,
1997) and X3D (Web 3D Consortium, 2004)) also allow 3-D objects to be represented by
parameters (e.g. radius and position for a sphere). Many formats have been developed in
association with a 3-D modelling packages (such as 3-D Studio (Autodesk, Inc, No Year)
and Blender (Blender Foundation, No Year)) and may represent an entire 3-D scene
containing camera information, animations etc. Other formats are designed to be quick
to load for use in high performance games (e.g. MD3/MD4 file format in Quake (ID
Software, 1999)).

VRML is the Virtual Reality Modelling Language and is a widely used format for dis-
tributing 3-D objects across the World Wide Web. It is a highly flexible ASCII based
format and there are numerous viewer applications and plug-ins for this format and many
3-D packages list VRML as a supported file type. However the format allows for too
much variability in describing an object which can cause problems when processing an
object. An often referred to problem is called polygon soup, typical to VRML, meaning
that an object can be represented by any number of unconnected or unstructured poly-
gons which may visually look fine as a whole, but are horrendous for processing. VRML
has been superseded by X3D (Web 3D Consortium, 2004), an XML version of VRML.

However, it does not yet have such widespread usage.

The OFF file format has been used by the Princeton Shape Benchmark data set (Shilane
et al., 2004) to represent all the 3-D objects. It is a simple text based format storing

only the vertex information for each object.

The TRI file format is used to represent 3-D objects created by GET-ENST’s 3-D ob-
ject acquisition process (format not published). This is a binary representation storing

information about a single mesh in the form of vertices and faces.
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2.5 3-D Object Pre-Processing

The huge range of 3-D file formats, methods of object creation and user ability mean that
the same object could be represented in many different ways but still be visually similar.
Often some pre-processing of an object is required to bring it “in line” with other objects.
Typically some processing would be required to transform all polygons into triangles,
make sure the mesh is closed, make sure triangles connect to other triangles, fix normals,
redistribute vertices to give a uniform sampling. Typically, it would be expected that
objects obtained from the World Wide Web (WWW) will require considerably more

pre-processing than objects created from a 3-D acquisition system.

In order to be able to perform a good comparison between objects, they should be
geometrically similar, in their scale, orientation and position. This is important for
some descriptor schemes as almost identical objects with even a slight rotation between
the two can have a large difference in the resulting feature space. There are two main
methods for achieving this. One is to build invariance into the descriptor itself (e.g.
Saupe and Vranié¢, 2001), the other is to pre-process the model to transform it into a

common reference frame (Vrani¢ et al., 2001; Paquet et al., 2000).

Typically, most descriptors require transforming an object into a canonical co-ordinate
frame, i.e. to normalise the object. This is to ensure that a given object of an arbitrary
scale, orientation and position will always produce an identical feature vector for an
identical model with a different geometric transformation. Often a descriptor will not be

invariant to all geometric transforms, only some of them.

2.5.1 Translation Invariance

Typically, an object is translated so it’s centre of mass is at the origin of the co-ordinate
system. Care needs to be taken for meshes with an uneven distribution of vertices as

this can cause a bias in the centre point.

2.5.2 Rotation Invariance

Principal Components Analysis (PCA), also known as the Karhunen-Loeve or Hotelling
transform, is a commonly used method to provide rotation invariance to an arbitrary 3-D
object. As part of this process, translation invariance is usually applied to the object.

PCA is more commonly used to reduce the dimensionality of feature vectors.

PCA is more commonly used to reduce the dimensionality of feature vectors. A 3x3
matrix, M, is calculated as M = X - X7 where X is the set of all vertices in the mesh
translated such that the centre of mass of the mesh lies at the origin. The eigenvalues

of the matrix are used to sort the eigenvectors of the matrix to produce a rotation
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matrix. This transforms the vertices in the mesh such that the greatest variation in vertex
positions is along the z-axis. The y-axis points in the direction of greatest variation in

vertex position in the yz plane.

The problem with applying PCA to mesh data is that typically vertices are not uniformly
distributed across the mesh. This can cause problems during the rotation stage as areas
of higher vertex density will have a greater effect than areas of lower vertex density.
Several researchers have tackled this problem and have come up with several different
methods to provide a solution. Vrani¢ et al. (2001) weights each vertex against the
surface area it represents, whilst Paquet and Rioux (1999b) use the centre of mass of
the triangle as the input (instead of vertex position) weighted against the mass of the
triangle. Ohbuchi et al. (2003a) use the point selected algorithm they modified from
Osada et al. (2001) to provide a uniform distribution of points. An alternative method

is to resample the object mesh to provide an even distribution of the vertices.

Sometimes PCA can align the object, but an axis can become flipped when the variance
is equal in both directions along that axis. Kortgen et al. (2003) flips the object such
that the “heavier” side of the object points along the positive direction on the axis. The

heavier side is the side with the most triangles, or most “mass”.

2.5.3 Scaling Invariance

Typically, scale invariance is achieved by scaling the object so that the maximum extent
of the object along one (isotropic) or all (anisotropic) axes is of unit length, or fits within
a unit cube bounding box. The actual size does not matter particularly as long as it is

consistent across all objects put through this stage.

2.5.4 Mesh Invariance

While not necessarily a pre-processing step, we mention mesh invariance here for com-
pleteness. Depending on how a 3-D model was created for a given object, it could differ
greatly in how the mesh is composed. Different models of the same object could vary in
the number and types of polygons composing the mesh, the size of the polygons and to
the degree of which the mesh approximates the object surface. Ideally, a 3-D descriptor
will be able to overcome these differences, but some techniques still require a helping
hand.

In the ideal case, it would be composed of many equally sized triangles. The larger the
number of triangles, the better the approximation of the object surface can be, although
this will increase the size of the model and computation time for processing. A typical
pre-processing technique will re-sample the object to make the mesh consist of equally

sized triangles or at least uniformly spaced vertices.
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The different shape descriptors described in the following section use a range of techniques
to overcome this limitation. Paquet and Rioux (1999b) use the surface area of the triangle
under consideration as a weighting factor. Vrani¢ et al. (2001) use a similar approach,
however they weight the individual vertices rather than the triangle surface area. Osada
et al. (2001) have developed a technique to pick random points on the surface of the

object rather than a particular vertex or triangle.

With all of these techniques, there is still an element of variation as the mesh only
approximates the surface of an object. Shape descriptors therefore need to be tolerant

to variations in the surface between model representations.

2.6 3-D Algorithms

The majority of the work on 3-D model matching is based on finding similar shaped
objects (Shilane et al., 2004; Tangelder and Veltkamp, 2004; Iyer et al., 2005). There
have been some attempts at finding similarly coloured objects (Paquet and Rioux, 1999b)
however this is not an area that has received much attention so far. The following provides

an overview of a range of 3-D content-based descriptors.

The Area Volume Ratio descriptor, Cord Histograms, Shape Distributions, Modified
Shape Distributions, Extended Gaussian Image, 3-D Hough Transform and the Aug-
mented Multi-Resolution Reeb graph are used in the work presented in this thesis. These
are the algorithms implemented within the SCULPTEUR project (see Chapter 4). The

descriptions of the other algorithms are included for completeness.

2.6.1 Area Volume Ratio Descriptor

A simple geometric descriptor described by Tung and Schmitt (2004) is the ratio between
surface area and volume of an object. Equation 2.1 shows the ratio in a dimensionless
form. This is a single valued descriptor capturing only basic geometric properties, how-
ever it is invariant to rotation, scale and translation transforms and relatively quick to

compute.

Area®
110 = ———— 2.1
rato Volume? (2.1)
| X
Area =5 E [(Vin = Vip) X (Vig — Vi) (2.2)
T

where V; ; is the 4% vertex, V (a vector of , y and z components), from triangle i.
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where V% is the x, y or 2 component (a) from the 4t vertex (0, 1 or 2), V, of triangle i

(Zhang and Chen, 2001).

2.6.2 Cord Histograms

The Cord Histograms by Paquet and Rioux (1999b) define an object in terms of cords.
A cord is defined as the vector between the centre of mass of an object and a point on
its surface. Three versions of the Cord Histogram are defined. The first is a histogram of
cord lengths. The second type is a feature vector containing two histograms; a histogram
of angles between a cord and the first principal axis, and a histogram of angles between
a cord and the second principal axis. The third type is a bi-dimensional histogram
indexed by angles between a cord and the first principal axis along one dimension and
angles between a cord and the second principal axis along the other dimension. The
cord histograms are defined using the centre point of each face, weighted according
to the relative surface area of the face. The histograms are rotation and translation
independent. Normalisation for scale is required for the first histogram type, however
the other histograms are inherently invariant to scale. The Cord Histograms capture
basic geometric information and so while relatively quick to compute, they will not be

very discriminating.

2.6.3 Colour Descriptor

In addition to the Cord Histograms, Paquet and Rioux (1999b) also describe one of the
few colour based descriptors for a 3-D object. This technique uses a voxel representation
of the objects and each voxel has a colour value associated with it. A colour histogram
is then used to describe the colour distribution. Colour is defined as a combination of
the texture map, material properties and vertex colour information stored within the
object representation. This method is dependent on not only the size of the bins used
in the histogram (quantisation of the colour space), but also the resolution of the voxel

representation which will typically be generated from a mesh based representation.
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2.6.4 Shape Distributions

The Shape Distributions by Osada et al. (2001) are a collection of descriptors that capture
distributions of various features of the shape of an object. The study performed by Osada
et al. (2001) determined that the D2 variant resulting in a probability density function
performed best overall. The D2 variant captures the distribution of the distances between
pairs of random points on the surface of a 3-D object. This descriptor is invariant to
translation and rotation transforms. It is also robust against changes in mesh resolution
for a given object. It is however sensitive to changes in object scale and so requires

normalisation for scale.

The different variations are:

A3 Measures the angle between three random points (A, B, C')on the surface of a 3-D

— —
model. This is the angle between vectors BA and BC.

D1 Measures the distance between a fixed point (e.g. centroid) and a random point on
the surface of the model. This is similar to Cord length in the first Cord Histogram
of Paquet and Rioux (1999b).

D2 Measures the distance between two random points on the surface.

D3 Measures the square root of the area of the triangle between three random points

on the surface.

D4 Measures the cube root of the volume of the tetrahedron between four random points

on the the surface.

The point selection algorithm used is important as it treats an object as a surface instead
of individual triangles. This provides invariance to mesh resolution in a way that can
be applied to many different techniques. To select a point on the surface, a table of the
cumulative triangle surface area is generated. A random number generator is used to
obtain a cumulative area value which corresponds to a triangle in the table. Two random
numbers, 71 and rg, are generated in the range [0.0, 1.0]. Equation 2.4 generates a point,
P, on the triangle (A, B, C) surface given r; and ro. As a global descriptor, the shape
distributions may not be able to capture the finer details of more complicated objects.

Figure 2.2 helps illustrate this equation.

P = (1 —\/7“71)A—|—\/ﬁ(1 —TQ)B‘JF\/HT'QC (2.4)
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FI1GURE 2.2: Selecting a point on the surface of a triangle

2.6.5 Modified Shape Distribution

Based on the work on Shape Distributions by Osada et al. (2001), Ohbuchi et al. (2003a)
proposes several descriptors based upon the Shape D2 descriptor. These are the modified
Shape D2 (mD2), the Angle-Distance (AD) histogram and the Absolute-Angle Distance
(AAD) histogram descriptors, the latter two additionally take into account surface ori-
entation. These versions of the Shape D2 descriptor both calculate the distribution from
all possible parings of points selected, using a quasi-random number sequence (QRNS)
to select the inputs to the point selection algorithm, (r; and r2), on the surface of the
triangle. This differs from a pseudo-random number sequence (PRNS) in that the QRNS
produces more consistent feature vectors as the same points will always be selected for

a given model.

A pseudo random number generator is the more common type. It calculates a number in
the range [0.0, 1.0] given an initial seed which is updated each time a number is requested.
It is not truly random as given the same seed, the same sequence of random numbers can
be produced. With enough random numbers sampled, the distribution will be uniform.
This, however, could be a large number of samples. The quasi random number generator
again is not really a random generator as a predictable sequence of numbers is generated.
The advantage is that the numbers generated will provide uniform sampling (again, for
proper uniform sampling a suitable number of samples is required, however, this is more
easily calculated). An easy way to think about the QRNS is to sub-divide a line (e.g.
from 0.0 to 1.0). The division point can be thought of as the first random number. Fach

segment can then be subdivided again and the next set of random numbers returned.

The AD and AAD descriptors measure the mutual orientation of the surfaces on which
the pair of points are located. The mutual orientation is the angle calculated as the
inner product of the two surface normals. The additional information is stored in a 2-D
histogram (indexed by distance and angle) as opposed to a 1-D histogram (indexed by
distance). The difference between the AD histogram and the AAD histogram is that
the AD histogram respects the sign of the angle (and so requires consistently orientated
surface normals). The choice of descriptor (AD or AAD) depends on whether the surface
normals of the models are properly and consistently orientated. If they are the AD
descriptor is used and AAD if they are not. The histograms are normalised to improve
comparison results. Out of the four normalisation methods proposed, normalisation by

average produced the best results. The other normalisation methods are called maximum,
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median and mode. The maximum method splits the values between the maximum and
the minimum distances into equally spaced intervals. The average method is similar,
except the intervals above the average values can be of different spacing to those below
the average. The median and mode methods are similar, except using the median and
mode instead of the average respectively. While the mD2 is still very similar to the Shape
D2 descriptor, the AD and AAD give better retrieval performance results.

2.6.6 Parameter Methods

Ohbuchi et al. (2002) developed a descriptor based on a parametrised approach. They
reason that a collection of descriptors will perform better than any single descriptor. The
descriptor is composed of three statistics applied to the three principal axes. These are
moments of inertia about the axis, the average distance to surface points from the axis
and the variance of the distance to the surface points from the axis. The Euclidean and
elastic distance metrics are used for matching on the moments of inertia and the other
statistics are used as a weighting factor if required. While the authors do not compare
this descriptor against any others, they are keen to point out that this is a more general

descriptor framework dependant upon the choice of statistics used.

The parametrisation splits an object into slices along each of the principal axis in turn.
A sliding window is applied to all consecutive pairs of slices to allow for mis-alignment
of the object during pose normalisation. The statistics are calculated on each window
position. This results in nine vectors, one per statistic per axis, which are concatenated

together into a single vector.

2.6.7 Multiple Orientation Depth Fourier Descriptor

The Multiple Orientation Depth Fourier Descriptor (MODFED) by Ohbuchi et al. (2003b)
uses the generic Fourier descriptor by Zhang and Lu (2002c) applied to 42 different 2-D
views generated from a 3-D object. It requires normalisation for scale and translation
invariance. However, the method by Zhang and Lu (2002¢) provides rotation invariance
by representing the object in terms of polar co-ordinates instead of Cartesian. The
mapping from Cartesian to polar co-ordinates changes the rotation into a translation and
takes advantage of the translation invariance provided by a Fourier transform. Similarity
is calculated by the sum of the minimum distances between views on one object and
all other views on the other. This descriptor performs slightly better than the AAD
descriptor in the comparison by Ohbuchi et al. (2003a).
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(a) The Sector Model (b) The Shell Model

F1GURE 2.3: The Sector and Shell Models for the Shape Histograms
2.6.8 3-D Shape Histograms

The Shape Histograms by Ankerst et al. (1999) partition the space inside the bounding
sphere of an object either with shells (concentric spheres), sectors (planar slices) or a
combination of the two. The shell based approach records the distance between the centre
of mass to points on the surface (see Figure 2.3 (b)). This is similar to the first kind
of cord histogram by Paquet and Rioux (1999b) and the Shape D1 descriptor by Osada
et al. (2001). The sector based approach records the area of the model contained within
each sector (see Figure 2.3 (a)). The shell model is rotation and translation invariant
but requires normalisation for scale. The sector model is scale and translation invariant,
however normalisation for rotation in Ankerst et al. (1999) use models represented by
uniformly distributed points, such that the shells and sectors bins can be calculated by
the number of points within the partitioned space. However the volume of the object
contained within the space could also be used. These descriptors were evaluated by
Shilane et al. (2004) and showed that the sector-shell model performed quite well, whilst
the shell model performed worst out of the descriptors evaluated. The sector model gave
better performance than the Shape D2, but still significantly worse than the sector-shell

model.

2.6.9 3-D Shape Contexts

Kortgen et al. (2003) combines the work on Shape Histograms (Ankerst et al., 1999)
with Shape Contexts (Belongie et al., 2002) and provides a set of descriptors called 3-D
Shape Contexts. The shape contexts take a number of sampled points, and for each point
generates the histogram of relative positions of all the other sampled points. In 3-D, the
histogram is one of Ankerst’s shape histograms centred upon the point. An additional
change from Ankerst’s shell model is to use a logarithmic scaling to determine boundary
positions to give a more even distribution of the volume (as outer shells bound a larger
volume than inner shells). The shape histograms are orientated about a point such that

the first axis points towards the centre of mass. The remaining axes are determined by



Chapter 2 Content-Based Retrieval Background 16

projecting the principal axis onto the plane defined by the selected point and the first

axis (as if it was the normal to the plane).

Similarity calculation compares the features points on one object to the points on another
object. Three features are described; The Shape Term compares the shape histograms of
the two points. The Appearance Term measures the distance between the orientation of
the two histograms. The Position Term measures the distance between the two points,
using a function similar to the squared Fuclidean distance. Finally, the three terms are
combined using a a set of user or automatically defined weights. The results showed

good retrieval results, however they were not compared against other descriptors.

2.6.10 Extent Descriptor

Heczko et al. (2001) introduced a simple shape descriptor that measures the extent of
an object along a fixed set of uniformly distributed vectors radiating from the centre of
mass. It is referred to as the Extent Descriptor here, but it is sometimes referred to as
the Radial Descriptor in the literature. In the case of multiple surface intersections along
a vector, the furthest extent is used. Matching can then be performed by comparing the
distance between corresponding vectors on different objects. This descriptor requires

normalisation for scale and rotation invariance. The descriptor is sensitive to noise.

2.6.11 Spherical Harmonics

Further to the original extent descriptor, Vrani¢ et al. (2001) makes use of spherical
harmonics to improve the robustness while representing the object with a few coefficients
in the spectral domain. Spherical harmonics allow any spherical function f (6, ) to be

decomposed into the sum of its harmonics;

co m=l

FO.0)=>_ > #(l,m)Y"™(6,¢)

=0 m=—1

where Y™ (0, ¢) is the spherical harmonic function and 7 (I,m) is a weighting for the

spherical harmonic. Different weightings can be used to characterise different functions.

The extent vector is converted into a simple spherical function. Given a spherical co-
ordinate, the extend of the vector from the centre of the object to the furthest surface
point of the object in the direction defined by the spherical co-ordinate is returned.
Combining the Fourier transform applied to a sphere with this spherical function forms
the basis of the descriptor. Vrani¢ and Saupe (2002) further improve the descriptor by

also taking into account the orientation of the surface along the extent vector.
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2.6.12 Discrete Fourier Transform

In alternative work by Vrani¢ and Saupe (2001a), a voxel representation of an object is
first normalised for orientation and a discrete Fourier transform is applied to it. This
represents the object in the frequency domain. It requires a suitably high degree of
resolution for the voxelisation process in order to capture the finer details of the object.
The Fourier transform provides a small number of co-efficients which compose the feature
vector. For a octree of N3 cells, each coefficient gy, can be calculated by Equation 2.5
where ¢z is a cell in the octree. Vrani¢ and Saupe (2001a) suggest a value of 128 for N

with values of u, v and w in the range of [-3:3].
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2.6.13 3-D Moments

3-D Moments are a popular type of descriptor that has received the attention of several
researchers. Paquet and Rioux (1999a) calculate moments in terms of the centre of mass
for all triangles with respect to the mass of the triangle (See Equation 2.6). Saupe and
Vrani¢ (2001) calculate moments in terms of the extent of an object in a given direction
with respect to the surface area of the object. In this case m; is the surface area of
triangle ¢ multiplied by the distance from the centre of mass of the object. In both cases,
a normalisation step is required for rotation invariance. The 3-D moments usually have

low retrieval performance, although this strongly depends upon the order used.

N
Mqrs = Z myg (-Tz - xcm)q (yz - ycm)r (Zi - Zcm)s (26)
=1

where ¢, r, s are the moments order, (Zem, Yems Zem) 18 the centre of mass of the object,
m; is the mass of the triangle with a centre of mass at x;, y; and z;. N is the number of

triangles.

Saupe and Vrani¢ (2001) use 1 < ¢ +r + s < m for m values ranging from 2 to 6.

2.6.14 Extended Gaussian Image

The Extended Gaussian Image (EGI), originally developed by Horn (1984), is a spherical
function resulting in a histogram of the distribution of the surface normals of an object.
While translation and scale independent, it still requires normalisation for rotation. Typ-

ically the orientation histogram, a discrete approximation of the EGI, will be used for
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mesh based objects. For each triangle, the surface area is added to the histogram bin
representing the direction of the surface normal. The Complex EGI (Kang and Tkeuchi,
1993) stores a complex number where the real component represents surface area and

the phase component represents the distance of the surface from the origin.

2.6.15 3-D Hough Transform

Zaharia and Preteux have developed several successive versions the Hough Transform
for use in 3-D. The original development (Zaharia and Préteux, 2001b) produced the
Optimised 3-D Hough Transform Descriptor (O3DHTD) then in later work (Zaharia
and Préteux, 2002) the Canonical 3D Hough Transform Descriptor (C3DHTD). The
Hough Transform transforms an object into Hough Space; an accumulator which gathers
evidence of how similar the query is to the reference. For each object, a look up table is

generated to perform this mapping.

The 3-D Hough Transform requires calculating a Hough Transform (HT) from all possible
orientations of the x, y and z axes from views down each axis, however this number can
be reduced by taking into account the fact that some pairs of orientation are equivalent,
and that other views can be generated through a simple geometric transform. This
culminated in the O3DITD based on three views. The C3DIHTD reduced this to a single
HT by defining the object in such a way that all views become equivalent. The largest
disadvantage of using a HT is that it requires a large amount of processing to provide a
comparison as the computationally expensive part (populating the accumulator) cannot

be pre-computed. It also requires normalisation for rotation, scale and translation.

Similarity matching is performed by comparing the tables treated as histograms. The
true Hough Transform method creates an accumulator that maps one object into another
one and sees how well it matches. However, this is quite slow compared to matching just

the histograms.

2.6.16 The 3-D Shape Spectrum Descriptor

The 3-D Shape Spectrum Descriptor (3DSSD) by Zaharia and Préteux (2001a) is defined
as the distribution of the shape index over the entire mesh. The shape index is the
function of the two principal curvatures. It is a local geometrical attribute of a 3-
D surface. It is expressed as the angular co-ordinate of a polar representation of the
principal curvature vector. It provides a scale for representing salient elementary shapes
such as convex, concave, rut, ridge and saddle. It is invariant to rotation and translation
transforms. The 3DSSD is a continuous function and for use with polygonal models,
the descriptor is estimated. The 3DSSD is sensitive to topological changes meaning

that objects differing only in some pose (e.g. a human with arms out and arms by the
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sides) will be treated differently. The 3DSSD is the descriptor used by MPEG-7 (see
Section 2.7).

2.6.17 Light Field Descriptors

The Light Field Descriptors by Chen et al. (2003) convert the 3-D shape matching
problem into a 2-D shape matching problem by generating 2-D silhouettes of the 3-D
object at various camera positions and orientations. These 2-D silhouettes are compared
by using a combination of 2-D shape matching techniques to determine the similarity.
These are Zernike moments (Zhang and Lu, 2002b) and Fourier descriptors (Zhang and
Lu, 2002a). A combined feature vector based on the moments and Fourier coefficients is

the result.

Similarity is performed by calculating the sum similarity of each image match. Images
are matched by finding the orientation of images that gives the maximum similarity.

This provides a degree rotation invariance.

Ten silhouettes were determined to be sufficient to represent the whole 3-D object. The
use of silhouettes exploits the fact that they are mirrored when the object is rotated by

180 degrees as twenty views would otherwise be required.

2.6.18 Reflective Symmetry Descriptor

The Reflective Symmetry descriptor by Kazhdan et al. (2002) is a descriptor that mea-
sures the amount of symmetry (or not) in an object. In the 2-D case, it works by
averaging an image against itself reflected along a line of symmetry. The descriptor is
defined for all planes that go through the centre of mass. To do this efficiently, the fast
Fourier Transform is used to calculate the symmetry. Extended to the 3-D case, “slices”
or projections of a sphere are used to make into multiple 2-D problems. Visually, this
is represented by deforming a unit sphere. Areas of higher symmetry cause the sphere
to extend outwards, whereas areas of lower symmetry will not. Comparisons with the
Shape Distributions of Osada et al. (2001), moments and random retrievals show that

the reflective symmetry descriptor performs significantly better.

The 3-D object is converted to a voxel representation and decomposed into a series of
concentric spheres. A Fourier Transform is then applied. The use of a FT defined on a

sphere allows for rotation invariance.

2.6.19 Sphere Projection

The Sphere Projection descriptor by Leifman et al. (2003) computes the amount of

?

“energy” required to deform an object into a predefined 3-D shape such as an enclosing
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sphere. Energy is proportional to the average distance between the pairs of points on
the surface of the object and the corresponding points on the sphere that lie in the same
direction with respect to centre of mass. The feature vector is composed of two parts.
The first part represents the minimal distances from the sphere to the object’s surface.

The second part represents the object’s surface in terms of spherical coordinates.

2.6.20 Octree

An octree is the 3-D equivalent of a quad-tree (Ayala et al., 1985). It recursively decom-
poses a bounded 3-D space into eight equally sized partitions. Typically this method is
used to efficiently store a voxel representation of a 3-D object. Each cell of an octree will
either contain no voxels, be completely full of voxels, or it will be further partitioned into
another eight cells. Leifman et al. (2003) use the octree as a descriptor by comparing
the difference in volume between corresponding tree nodes. The octree is translation and

scale independent, however it requires normalisation for rotation.

2.6.21 Reeb Graphs

The Reeb graph represents the skeletal and topological structure of an object. This is
represented in a graph of interconnected nodes based upon a suitable function. The
most common function is the height function on a 2-D manifold. Hilaga et al. (2001)
proposes a multi-resolution version that construct a Reeb graph at various resolutions
by re-partitioning at each node. Tung and Schmitt (2004) takes this approach further
and store geometrical attributes at each node on the graph. These features are the
Cord histograms and colour statistics of Paquet and Rioux (1999b), local curvature as
used in the 3-D Shape Spectrum Descriptor by Zaharia and Préteux (2001a) and volume

assoclated with the node. It is invariant to rotation and translation transforms.

2.6.22 Descriptor Summary

Table 2.1 gives a summary of the different descriptors. The * denotes tested experi-
mentally in Chapter 5. It classifies the descriptors into several groups. Global features
capture the overall features of object within a single vector. Local features capture the
variations at boundary locations. Graph based features take into account the geometry
of the object. Spatial features captures relationships between locations on the object.
View based features take into account the visual similarity between views of an object.
Generally most descriptors produce a histogram and comparison speed is proportional to

the number of bins in the histogram. Some methods like the Reeb Graph produce much
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‘ Descriptor Name ‘ Type ‘ Retrieval Performance ‘ Speed ‘
Cord Histograms™ Paquet and Global Low->Medium Fast

Rioux (1999b)
Colour Paquet and Rioux (1999b) | Global Low Fast
Shape Distributions* Osada et al. | Global Medium Fast
(2001)
mD2* Ohbuchi et al. (2003b) Global Medium Fast
AD and AAD Ohbuchi et al. Global Medium Fast
(2003b)
Parametrised Vectors Ohbuchi Global Medium Fast
et al. (2002)
Shape Histograms Ankerst et al. Spatial Medium Fast
(1999)
Shape Contexts Kortgen et al. Local Medium Medium
(2003)
Spherical Extent Heczko et al. Spatial Low Fast
(2001)
Complex Function Vrani¢ and Global Medium Fast
Saupe (2002)
3D-DFT Vrani¢ and Saupe (2001a) | Global Medium Fast
3D-Moments Saupe and Vranié¢ Global Low Fast
(2001)
Spherical Harmonics Saupe and Spatial High Fast
Vranié¢ (2001)
Area Volume* Tung and Schmitt Global Low Fast
(2004)
MODEFD Ohbuchi et al. (2003b) Global Medium Medium
Sphere Projection Leifman et al. Global Medium Fast
(2003)
3D-Hough Transform* Zaharia and | Global Medium Slow
Préteux (2001b)
3DSSD Zaharia and Préteux Local Medium Medium
(2001a)
LFD Chen et al. (2003) View High Slow
Reflective Symmetry Descriptor Global Low Medium
Kazhdan et al. (2002)
Octree Leifman et al. (2003) Global Low Fast
Reeb Graph* Hilaga et al. (2001); | Graph Medium Slow
Tung and Schmitt (2004)
EGI* Horn (1984) Global Medium Slow

TABLE 2.1: Descriptor Properties
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more complex feature vectors and have much greater computational requirements. Gen-
eration speed is much slower by comparison, however it is less important and generation

of features can typically be done offline.

2.7 MPEG-7

MPEG-7 (Martinez, 2004) is a content description specification. It is known as Multime-
dia Content Description Interface and it provides a framework for describing multimedia
content. It has three main elements. The descriptor, D, the description scheme, DS and
the description definition language, DDL, defined in XML.

The descriptor is the feature representation. The description scheme specifies the struc-
ture of the descriptor(s) and the relationship between them. The DDL is the language

used to specify the description scheme.

2.8 Distance Metrics

In order to establish the similarity (closeness) of two feature vectors in some feature

space, a wide range of distance metrics have been presented in the literature.

A distance metric calculates the distance between two point sets in metric space. A

distance metric satisfies the following properties (Iyer et al., 2005);

e d(x,y) > 0 (positivity),

d(z,y) =0 iff * =y (identity),

d(z,y) = d(y,z) (symmetry),

d(z,y) +d(y,z) > d(x, z) (triangle inequality).

where d (x,vy) is the distance between a vector  and a vector y.

Typically if only one feature vector is being considered it does not matter what the exact
score returned by the metric is, however the ordering of the results is important. In the
following list the Minkowski norms, histogram intersection, Chi squared, Bhattacharyya,
Kullback-Leibler and the Quadratic distance metrics are used within the later chapters

of this thesis. The other distance metrics are presented for completeness.
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e Minkowski Norms

The most commonly used metrics are the Minkowski norms (Equation 2.7). Typically

the L; norm (the city-block distance) and the Ly norm (the Euclidean distance) are used.

N 1/L
d(z,y) = (Z |z — yi|L> (2.7)
=1

where L is the degree of the norm and N is the number of elements in the vectors. The
norms are popular not only due to their simplicity and speed of calculation, but to the

quality of results obtained given their simplicity.
e Histogram Intersection

The histogram intersection (Hetzel et al., 2001) (Equation 2.8) is another simple distance
metric that is often used. For histograms normalised so that the sum of the bins is one,
the distance is calculated as one minus the sum of the minimum values of corresponding

bins between two histograms.

N
d(z,y)=1-) min(z;y,) (2.8)
=1

e Chi Squared

The x? (chi squared) distance (Hetzel et al., 2001) (Equation 2.9 for comparing unknown
distributions) is based on the x? statistical test, however, the final score is not required

for a distance calculation, only the y2-divergence.

2

d(z,y) = (@i = v (2.9)

— TitUi
e Bhattacharyya Distance

Other distance metrics include the Bhattacharyya distance (Thacker et al., 1997) (Equa-
tion 2.10 and 2.11), a statistical measure often used for comparing two probability density

functions,

N
d(z,y) =Y Vo (2.10)
=1
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N
d(z,y) = —log» iy (2.11)
i=1
o Kullback-Leibler

The Kullback-Leibler distance (Hetzel et al., 2001) is another measure often used for
comparing probability density functions. See Equation 2.12 for the symmetrical version
(also known as the Jeffrey’s Divergence) and Equation 2.13 for the non-symmetric version
(this is not strictly a distance metric although its often used) where In is the natural

logarithm and logsis logarithm to the base of 2.

d(z,y) = Z(x —y)ln (2.12)

d(z,y) = Zz:xz log, (Z) (2.13)

e Earth Mover’s Distance

The Earth Mover’s distance (Rubner et al., 1998) (Equation 2.14),

> Cijfij

€1 jej

oY

Jjes

d(xz,y) = (2.14)

where ¢;; is the distance between two points, and f;; is the set of flows that minimises
the cost of ) ) ¢;; fij subject to the following conditions:

i€ je)

fijZO 1el,jed
dier fis = Ui jed
zjejfijgxi 1€l

where I is the set of indicies into vector  and J is the set of indicies into vector y.
e Mahalanobis Distance

The Mahalanobis distance (Bishop, 1997a) (Equation 2.15),

d(z,y)=(z—y) C'(z—y) (2.15)



Chapter 2 Content-Based Retrieval Background 25

where C' is the covariance matrix. The Hausdorff distance (Huttenlocher et al., 1993)
(Equation 2.16) is unique in regard to the other metrics listed here in that it does not
require & and y to have the same number of elements. It compares points sets rather

than vector to vector.
e Hausdorfl Distance

The Hausdorff distance is recommended by Vrani¢ and Saupe (2001b) as the distance

metric to use when comparing structures such as an octree.

zeX yeY

d (z,y) = max {min{d (x,y)}} (2.16)

The quadratic distance (Ankerst et al., 1999) (Equation 2.17);

da(@y) = (@ —y)-A- (2 —y)" (2.17)

where A is the similarity matrix. The components of A, are calculated by a;; = e~ d(i.d)

where d(i,7) is a distance function between the i** and j** component of  and y. The
quadratic distance is a generalised case of the Euclidean distance which attempts to take

into account the similarity or correlation between histogram bins.
e Quadratic Distance

The quadratic distance allows small variations in the histograms. E.g. due to numerical
precision, a particular value may end up in one bin, or in the one next to it. According

to Ankerst et al. (1999) varying o had little significant effect on performance.

The choice of distance metric to use greatly depends upon application. For general
usage, the Minkowski norms will often suffice, for applications where speed is preferred
over accuracy, the L; norm or histogram intersection can be used. For applications
where the different components cannot be assumed to be independent, a metric such as

the Mahalanobis distance may be preferable.

2.9 Evaluation Techniques

In order to assess the relative performance of retrieval algorithms, a range of evaluation
techniques can be used. The work in Jarvelin and Kekéldinen (2000); van Rijsbergen
(1975); Shilane et al. (2004) provides a range of criteria which can be used to evaluate

the quality of a descriptor for retrieval purposes.
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The Precision and Recall graphs, E-Measure, Nearest-Neighbour, First and Second Tier,
DCG, and the Distance and Tier Images are all provided as part of the Princeton Shape

Benchmark tools.

e Precision and Recall

The precision-recall graph is a commonly used method of evaluating the quality of a
descriptor. Precision is defined as the proportion of relevant results out of the results
returned (Equation 2.18). Recall is defined as the proportion of relevant results returned
out of all the possible relevant results (Equation 2.19). Typically, one would expect that

as recall increases, precision decreases.

# Relevant Items Returned
#All Items Returned

Precision = (2.18)

# Relevant Item Returned

Il =
Feca #All Relevant Items

(2.19)

The basic precision-recall graph (showing precision against recall as the size of the re-
turned set increases) is sometimes considered inadequate and the work by Huijsmans
and Sebe (2001) suggests adding the precision-recall curve for a random retrieval and to

take into account generality (the size of the class compared to the size of the database).
e Fallout

Related to these is fallout. Fallout is what is leftover, it is the proportion of irrelevant

results out of the results returned.

Fallout =1 — Precision (2.20)
e Mean Average Precision

Another performance metric gaining attention is Mean Average Precision (MAP). MAP
is the average precision of all relevant items returned. In Equation 2.21 the precision
for each returned document, r, is calculated. The function Relevance returns 1 if the
document is relevant, 0 otherwise. This results in the sum precision of relevant documents

from the top N returned documents over all possible relevant documents.

SN | Precision(r)Relevance(r)

MAP = (2.21)

Number of all relevant documents
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e The E-Measure

The E-Measure (Shilane et al., 2004) is one of several such criteria that combines preci-
sion (P) and recall (R) into a single value (See Equation 2.23). However Jarvelin and
Kekéldinen (2000) quotes this as the F-Measure, and the E-Measure as Equation 2.22.

b*PR+ PR
Jdrvelin’s E - ﬁ (222)
) 2
Shilane’s E = +—— (2.23)
— _|_ =
P R

e Borko and Vickery Methods

Where b is a constant term, often 1. Other measures include the Borko (van Rijsbergen,
1975) method (simply B = P+ R — 1) and the Vickery measure (van Rijsbergen, 1975)

(Equation 2.24).

Ve1- ! (2.24)

2B+

==
~—
|
w

e Nearest Neighbour

The nearest neighbour criterion is the percentage of objects for which the nearest object

is of the same class.

e First and Second Tier

The first and second tier criteria are the percentage of the first K elements that are of
the same class, where K, for the first tier, is the size of the class. The second tier uses
K as twice the size of the class. More specifically for a class C, K = |C] — 1 for the
first tier and K = 2 % (|C| — 1) for the second tier where |C| is the size of class C' (—1
to ignore the query object). The second tier is also known as the Bull-Eye percentage
(Zaharia and Préteux, 2001a).

e Discounted Cumulative Gain

The Discounted Cumulative Gain (DCG) is a measure that weights correct results re-
turned earlier higher than those returned later within a ranked list. It is defined recur-
sively in Equation 2.25 where G is a vector and G; corresponds to the i" element in the

ranked list of results and has a value of 1 if the result is of the query class, or 0 otherwise.
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Gi, 1=1

) ] (2.25)
DCG;_1 + G;/1gyi, otherwise

DCG; = {

: : 0 1 1 1
For example, G can be (1,0,1,1,1,0) which results in 1 + 923 1503 T 1502 T o5 +
& =2.56. The DCG is then normalised into the range 0.0 to 1.0 by dividing the result
by the value computed if G was a vector of ones. In the example above, this would yield

0.649.
e Distance and Tier Images

Two other visual techniques are available the distance image and the tier image (Shilane
et al., 2004). In both cases, an image is generated showing a matrix that compares each
object against every other object and groups object according to class. This makes it
easy to see class and inter-class relations. The distance image shows the distance or
similarity between objects. Black pixels mark very similar objects, white pixels mark
very dissimilar objects with grey values representing intermediate distances. Ideally each
class would be a black box on the diagonal, and white otherwise indicating that objects
in the same class were very similar, and other objects were very dissimilar. Black boxes

between other classes indicate similarities between those classes.

The tier image is perhaps more useful than the distance image and shows nearest neigh-
bour, first tier and second tier scores. The images are much “clearer” as they show the
best matches for each model and ignore the other matches. This image shows the nearest
neighbour (black) and the first (red) and second tier (blue) results for each object in the
data set. White pixels mean objects are very dissimilar. The image diagonal should be
black indicating that each object is matched best by itself. If the diagonal is not fully
coloured with nearest-neighbour matches then this indicates a possible problem with the
algorithm. Ideally all the coloured pixels would be within the class boundaries along the

diagonal.

2.10 3-D Data sets

The literature has made use of a wide range of 3-D model data sets (Zaharia and Préteux,
2001a; Hilaga et al., 2001; Leifman et al., 2003; Zaharia and Préteux, 2002; Vranié¢, 2003;
Veltkamp, 2001). These have a varying number of models ranging from about 100 to
over 6,500. The number of classified models in each is typically much smaller. For
example, the MPEG-7 data set (Zaharia and Préteux, 2002) has 1,300 models but only
227 of them are classified. The classification data is required to be able to perform a
good evaluation that is repeatable. The Princeton Shape Benchmark (PSB) data set
(Shilane et al.,; 2004) has 1,814 classified models, equally split into a training and test
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group and contains a large range of classes (161). The Viewpoint data set (Funkhouser
et al., 2003) is the next largest data set, however it is not publicly available. There are
several 3-D object repositories available on the World Wide Web such as (3D Cafe, No
Year) containing a wide range of models. However these are not designed or intended
as a benchmark data set and typically lack classification details, or contain only general
indications of what the model is. Many of the web repositories are commercial entities

with some sample objects free for use.

The PSB classification was manually created by partitioning a larger data set down to
atomic concepts such as human and airplane. Further partitioning was done on geometric
aspects such as human _arms_out. Any classes with less than four objects were removed
from the data set (Shilane et al., 2004).

2.11 3-D Search Engines

There are numerous 3-D search engines available on the web. Typically these are the
test systems documented in the literature (E.g. Tzovaras and Daras, 2004; Ansary et al.,
No Year; Suzuki, No Year; Corney, No Year; Antini, No Year; Funkhouser et al., No
Year; Vrani¢, No Year). There are few production systems available. Typically these
engines contain a fixed data set and only offer searching based on items already in the
data set. Many engines offer several data sets. Typically, these are a custom data set
and often the Princeton data set is also available. Some of the engines (such as CCCC
and Princeton) allow the user to upload a query object and the Princeton system has a
2-D and 3-D sketch interface. Some of these engines allow searching using a number of

different algorithms, but some only allow a single algorithm.

Typically all these engines only allow 3-D content-based searching. Princeton for example
also allow a free text search on keywords when combined with a 2-D or 3-D sketch, but

not when uploading a custom object.

2.12 Summary

In this chapter we have looked at a number of different 3-D descriptors, distance metrics
and performance metrics. The majority of the descriptors are shape based, although
there is a colour based technique and some are topology based. All techniques have
shown good performance in their individual experiments. However there is no clear best
technique due to the small number of comparative experiments with a large range of
descriptors. There is also no standard data set used between the different descriptor
experiments, although the Princeton Shape Benchmark provides the first step in this

direction and many more recent works make use of it.
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In the next chapter we will cover a range of popular classification techniques.



Chapter 3

Classification Background

3.1 Introduction

Classification is the act of forming a distribution into groups or classes according to
some common criteria. This chapter begins with some terms and definitions related to
classification. A similar topic is called regression which returns a real valued output

rather than a class label. This topic is not within the scope of this thesis.

Generalisation

Generalisation is the ability for a classifier to correctly classify examples that it has not
seen before. Typically generalisation is evaluated by setting aside some of the data set

used to train a classifier for use as a test set later on.

Inputs, Outputs and Targets

Every classifier takes a set of input patterns and produces one or more outputs. Inputs
can be anything from the values in a descriptor to items of metadata. Typically, input
data needs to be continuous (each input will usually need to be between 0.0 and 1.0).
A technique to convert discrete data to continuous data called one-of-N encoding is
described later. The outputs are what the classifier decides the inputs represent, i.e. the
class or label that the inputs belong to. Targets are the correct classifications for the
input data. During the supervised learning (see below) of a classifier, they are used to

calculate the error of the classifier and the results are fed back into the learning algorithm.

31
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Supervised and unsupervised learning

Supervised learning is the term used to describe the training of a classifier with target
data (class labels) available for the training set. The aim is to find the correct mapping
between input data and the target data. Unsupervised learning does not use target
data, and the goals of learning are more likely to be finding clusters in data or modelling

distributions as opposed to finding a mapping.

The curse of dimensionality

Increasing the number of inputs is one way to improve the accuracy of a classifier.
However, as the dimensionality of the inputs grows, the size of feature space can grow
exponentially. Additionally the amount of training data required to accurately build the
clagsifier grows exponentially too. This is because as feature space becomes bigger, the
data becomes sparse and so requires more data to fill it up again. This phenomenon has
been termed the curse of dimensionality. Techniques to reduce the dimensionality of the

input data are often used to alleviate this problem.

Under and over fitting

Under fitting is used to describe a classifier that is too simple to properly represent the
data it is modelling. An example is a classifier that can model straight lines, but is trying
to represent a curve (such as the sine function). Over fitting is used to describe a classifier
that has managed to properly model the input data, but has failed to properly represent
the real model. An example again with the sine function, an over fitting classifier (such
as a polynomial of high degree) would be able to model the points it has seen, but new
points can be greatly removed from the real sine function. Figure 3.1 shows an example
of under and over fitting the sine function. Some sample data points are also shown. The
straight line represents a classifier under fitting the data. The very curvy line represents
a classifier over fitting the data. While it goes through all the data points it still does a

bad job of approximating the real function.

3.2 Pre-processing techniques

3.2.1 Input Normalisation

Many classifier techniques expect input patterns to have each component in the range
[0.0, 1.0]. Therefore it is often necessary to pre-process inputs. How this is achieved is
dependent on the type of data. One method is to use a sample data set and calculate

the minimum and maximum values for each input and use that to apply a scaling factor.
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FiGURE 3.1: Under and Over fitting the Sine function
3.2.2 One-of-N Encoding

In some cases, inputs will be discrete values and not continuous. Some discrete variables
such as age can easily be converted into a continuous variable. However, other variables
do not have a standard numerical representation. The technique used in these situations
is called One-of-N coding. We can create a separate input for each of the possible discrete
values. We then assign a 1 to the input corresponding to the discrete value, and a 0 to
the remainder. So if we wanted to represent the labels red, green and blue we would

assign the inputs as (1,0,0), (0,1,0) and (0,0,1) respectively.

3.2.3 Missing data

A common problem in classification is an incomplete set of inputs. The simplest approach
is just to ignore the missing values or set a default value. However, if these values are
important to the classification process, then this is not always a satisfactory solution.
The best solution is to base the missing values on the rest of the input data. A simple
approach would be to copy the missing fields from the most similar data item, or to use

the most frequently occurring value for that field.

3.2.4 Feature selection

Feature selection is a simple technique to reduce the number of inputs by discarding

irrelevant or repeated data. The choice of the sub-set of the features can be done by
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an exhaustive search of all possible sub-sets. This is guaranteed to find the optimal set,
however there are usually some constraints so as to reduce computational complexity.
For example 10 inputs gives 1024 possible subsets to search through, 100 inputs gives

103 possible subsets which makes exhaustive searching impractical.

3.2.5 Dimensionality Reduction

Principal Components Analysis (PCA) can be used to reduce the number of inputs by
combining them where possible to get smaller sets of input features. It does this by
combining inputs that are similar. This technique only operates on the input data and
does not use the target data so. This is a more powerful technique than feature selection
as it combines inputs as opposed to discarding them. The main problem with this
technique is that the data lost from the reduced dimensionality may be a critical factor
in the classification process. This differs to the PCA used in 3-D indexing as here this
technique is used to reduce the number of inputs, where as in 3-D indexing, it is used to

transform an object into a common space.

3.2.6 Invariance

Sometimes it is desirable to build in invariance into a classifier system. A common
example is translation invariance. There are several different techniques for doing this.
The first way is to train the classifier by example. This has the disadvantage of requiring
a much larger training set. The classifier will only have an approximate invariance, but it
is relatively straight forward to implement. The second method involves pre-processing
the input data to make it invariant before it even gets to the classifier directly. The
third method is to build the invariance into the classifier. In the case of Multi-Layer
Perceptron networks, careful design of the layers can apply invariance to the data as it

propagates through the network.

3.3 Overview of standard classification techniques

The purpose of classification is to train a machine to be able to assign a correct label
to a set of inputs. The complexity of this task increases as the number of inputs, or
number of different classes, or even as the amount of data increases. There are several
well known classification techniques which are described in the rest of this section. These

techniques are documented in Bishop (1997b); Haykin (1999) unless otherwise noted.
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3.3.1 k - Nearest Neighbour

The k-NN classifier is one of the more traditional classification schemes. It is very simple
in nature and is well understood. The basic premise is to produce a ranked list of the
nearest (or most similar) objects in the training set when compared to a query pattern
in some metric space. This is identical to the process in CBR. The top k£ matches are
then used to obtain a classification. Typically some sort of majority vote is used to
determine the label assigned to the query object. This classifier requires no training,
although the value of £ needs to be determined somehow. If it is too small, the classifier
becomes sensitive to noise and if it is too large the computational time increases and
becomes biased towards the classes with the larger number of members. A commonly
used version of the £-NN is the Nearest Neighbour (NN) classifier where £ is equal to one.
The disadvantage of this scheme is that the quality of results depends on the training
set, and while larger sets may give better results, they also increase the computational
cost. The k-NN algorithm is stable, i.e. small changes to the data set do not cause major

changes in the classification results.

3.3.2 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is one of the more popular classification techniques.
Jones (1990) showed that a MLP with just two layers using a sigmoid activation function
can approximate any function to an arbitrary error. However, this does not mean that
it is feasibly possible to do so. The main disadvantage with the MLP is that is suffers
from the “curse of dimensionality” meaning that as the number of dimensions increases,
the computational cost increases at an exponential rate quickly making more complex

problems infeasible.

The MLP works by propagating an input pattern through a number of layers with varying
numbers of nodes. Each node has a weight assigned to it and has some activation function
assigned to it. The activation function of a MLP determines what sort of functions it can
represent. If the activation function is linear, then the network is no more powerful than a
single layer network (as a combination of linear transforms is another linear transform).
Typically a sigmoid activation function is used which performs a non-linear mapping
allowing much more powerful networks to be built. Typically MLPs are trained using
the error back-propagation algorithm. This algorithm takes into account the individual
weightings within the network and can choose the best change to make to the weights

per iteration.
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3.3.3 Radial Basis Function Networks

The Radial Basis Function (RBF) networks classifier is a technique that relies upon
casting the classification problem into a much higher dimensional space than the input
vector in order to increase the likelihood of creating a linearly separable problem. An
RBF network consists of a number of input nodes, a hidden layer and an output layer.
The hidden layer typically uses a Gaussian activation functions to perform a non-linear
transform. This layer will also contain many more nodes than the input to cast into the

higher dimensions. The output layer consists of a number of linear activation functions.

The RBF uses a randomly initialised set of weights meaning that each time it is trained,
different results will occur (potentially better or worse). The training process should be

able to reduce the effects of initial conditions if enough iterations are performed.

Training a RBF network is faster than training a MLP network. Training is split into two
fast stages. The first stage uses an unsupervised method to determine the parameters of
the basis functions. The final stage solves a linear problem, mapping the hidden layer to

outputs.

3.3.4 Support Vector Machine

The Support Vector Machine (SVM) is a popular and powerful classification technique.
It does not suffer from the curse of dimensionality that other classification techniques
do and it is a kernel based technique. Due to the kernel nature of the support vector
machine, different types of network can be built, such as polynomial learning machines,
radial-basis function networks and two-layer perceptrons. An attribute particular to
SVMs is that they can provide good generalisation performance even though they do not

incorporate problem-domain knowledge.

The SVM is traditionally a binary classifier as this makes the maths much easier to
solve. There has been no satisfactory method to produce a multi-class SVM, although
there are several methods that work. Typically a number of binary SVMs are trained
and the results are combined (Hsu and Lin, 2002). These methods significantly increase
computation expense as the number of classes increases. The one-versus-many method
trains one classifier for each class. Training examples are labelled with "1’ if they are of
the target class, or -’1’ otherwise. The label associated with the classifier returning the
largest positive distance from it’s decision boundary is selected to make the classification.
The one-versus-one method trains a classifier on every possible pairing of classes. The
final classification is made by a voting process where each classifier can vote for one of
it’s two classes. The winning class is then used to make the classification. The third
method, DAG-SVM, is similar to the one-versus-one method except a directed acyclic

graph is constructed such that each classifier is a node in the tree and the leaves are the
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resulting classes. This reduces the number of classifications required whilst keeping a

similar level of performance.

3.3.5 k-Means Clustering

The k-Means is a simple clustering technique with similarities to the k-NN classifier
technique. The k clusters are created at random positions in feature space. The k-Means
training is an iterative process that updates the cluster positions. During each iteration,
all training points are assigned to the nearest cluster. Then, each cluster’s position is
moved to the centre of all the objects that belong to it. The process is then repeated
until the clusters become stationary, or the specified number of iterations is exceeded.
The effectiveness of this algorithm depends on the choices of initial centre points, and
the number of centre points, £ There has been a lot of work to effectively determine &
and the position of the initial centre points, and some work to make k¥ dynamic given an
initial guess (clusters close together are combined, and clusters spread over a large area
are split). A common choice for centre points is to randomly pick k examples and use

them as the initial centre points.

3.3.6 Kohonen’s Self Organising Map

Kohonen’s Self Organising Map (SOM) transforms an input pattern of arbitrary dimen-
sion into a one- or two-dimensional discrete map and to perform this transformation in
a topologically ordered fashion. The SOM algorithm is simple to implement, however
it is very difficult to analyse mathematically. There are three essential processes called
competition, co-operation, and synaptic adaptation. During competition, neurons in the
network compute their respective clause of a discriminant function. This discriminant
function provides the basis for competition among the neurons. The neuron with the
largest value of discriminant function is declared the winner. During co-operation the
winning neuron determines the spatial location of a topological neighbourhood of excited
neurons, providing the basis form co-operation. During synaptic adaptation the excited
neurons increase their individual values of the discriminant function in relation to the
input pattern through suitable adjustments to their synaptic weights. Adjustments are

made so that a similar pattern returns an enhanced discriminant value.

3.4 Performance Metrics

There are many ways of evaluating the performance of a classifier system. A commonly
used statistic is accuracy. There are actually several versions of the accuracy statistic.

The basic statistic just measures the percentage of correct classifications out of all the
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classifications. We can also apply this to obtain an accuracy per class and per classifica-

tion.

e Confusion Matrix

Typically statistics are calculated using a confusion matrix. This records the the true
and predicted classification of each object. It is a NxN matrix where N is the number
of classes. Sometimes a Nx(N-+1) matrix is used when a classifier can reject a query
pattern. A classifier can reject a query pattern when it is unable to produce a prediction
with a high enough confidence value. The accuracy can be calculated as the sum of the
diagonal over the total number of classifications made. For two class problems there are
numerous statistics defined (see below). A multi-class confusion matrix can be converted
into a two-class confusion matrix for a particular class by marking the required class as

positive and all other classes negative.

The two class confusion matrix records four values. The True Positive (TP) value is the
number of positive examples correctly classified. Likewise the True Negative (TN) value
is the number of negative examples correctly classified. The False Negative (FN) value is
the number of positive examples classified as negative and the False Positive (FP) value

is the number of negative examples classified as positive.

The users accuracy (also known as precision; see Equation 3.1) is the number of correct

classifications over all the objects classified as that class.

TP

—_— 1
TP+ FP (3-1)

USErs accuracy, precision =
The producers accuracy (also known as recall and sensitivity; see Equation 3.2) is the

number of correct classifications over all the objects of that class.

TP

d ) l Lty =
producers accuracy, recall, sensitivity = TN

(3.2)

Specificity (see Equation 3.3) measures the proportion of negative examples correctly

classified. The higher the number of false positives, the lower the specificity.

TN

speczfzczty = m

e Receiver Operating Characteristics Graphs

A Receiver Operating Characteristics (ROC) graph (Fawcett, 2006) is a visual tool to help

evaluate classifier performance. A key feature is that it is invariant to class distribution,
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however it is a two class tool rather than a multiple class tool. Multiple ROC graphs
can be generated (one for each class), but this breaks the invariance to class distribution.
The ROC graph plots true positive rate against false positive rate. In the ideal situation,
a curve on the graph will start at 0,0, progress to 0,1 and finish at 1,1. The diagonal
of the graph represents a random classifier. The area under the curve (AUC) can be

calculated to allow a single value comparison between classifiers.

The above methods calculate the overall accuracy of a classifier, they do not gauge the
accuracy of an individual classification. This is a harder task than calculating the overall
accuracy of a classifier as it is dependent on the input pattern. Different classification
techniques can give different outputs. Some techniques can output a single class label,
where as others can output a ranked list. Some techniques can also output a numerical
value that can be used to gauge the confidence of the classification (e.g. distance from
decision boundary). If numerical guidance is available, then it is possible to map the
value directly into a confidence value. However, for classifiers outputting only a label,

alternative methods of estimating confidences are required.
e The a priori and a posterori methods

The work by Giacinto and Roli (1999) looks into several such metrics and highlights the
a priori and the a posterori methods as good confidence estimators. These techniques
make use of a validation set. If the k¥ nearest objects in a validation set were correctly
classified, then it is likely that the query object will also be correctly classified. The
a priori method estimates the confidence without requiring the query to be classified.
It simply bases the confidence on how many of the neighbouring objects were correctly
classified. The a posterori method requires the query object to be classified first and then
bases the confidence on how many of the neighbouring objects were correctly predicted
that class.

Equation 3.4 shows the a priori confidence estimate for a given classifier. For each of
the K objects, Xk, in the neighbourhood the probability of it being correctly classified,
P (w; | X € w;) is calculated (where i = 1,..., M, M being the number of classes and
w; is the label for class i) and weight the result by W} which is 1/d where dj, is the
Euclidean distance between X}, and the query pattern. The sum of the correct predictions

is then divided by the sum weighting of all K objects.

S P wi | Xi € wy) - Wy,
fo:l Wi,

(3.4)

a priori confidence =

Equation 3.5 shows the a posterori confidence estimate for a given classifier predicting a
label w;. For each of the K objects, X, in the neighbourhood the probability of it being
correctly classified, P (w; | X}) is calculated, with the label w; and weight the result by
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Wj.. The sum of the correct predictions is then divided by the sum weighting of all K
objects that were predicted label w;.

S P wi | Xi) - Wi

a posterori con fidence = (3.5)

For classifiers returning only a label, the probability of the classifier predicting the re-
turned label is 1, and 0 for all other labels.

3.5 Classifier Training Schemes

Classifiers need to be “trained” to learn the features of the data sets they work with. It
is also useful to know how well a classifier will work. Several different training schemes

have been proposed to help get a good estimate of the generalisation ability of a classifier.

3.5.1 Split-Sample

A commonly used method for classifier training and validation is Split-Sample Validation
(Weiss and Kulikowski, 1990). The data set is split into a training and validation set
(often a 50%-50% or 75%-25% split). The classifier is trained using the training set,
and validation is performed on the validation set. The greater the number of samples,
the closer to the true error the estimate will be. This means that for small numbers of

samples the estimate is likely to be inaccurate.

3.5.2 Cross-validation

There are several similar techniques that come under the cross-validation heading. Cross-
validation has been used to select classifier training parameters (Haykin, 1999) and to
just estimate the generalisation performance of a particular set of parameters. In this
situation, training and testing data sets are produced. The training data set is further
partitioned into an estimation and validation set. For each set of parameters, a classifier
is trained using the estimation set and its performance evaluated using the validation set.
The best performing set of parameters is then selected and it’s performance is evaluated

using the test data set to avoid problems of over-fitting the training data.

Alternatively cross-validation can be used to provide a better generalisation estimate
than split-sample when small data sets are available. Unlike split-sample validation, k-
folds cross-validation uses all the data in both the training and validation stages. The
data set is split into k£ partitions and k classifiers are trained each using one of the £

partitions as the validation set and the rest as the training set. The average error from
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the £ classifiers is then used as the error estimate. Typically a value of 10 is used for &.
When £ is equal to the number of samples, then the method is known as leave-one-out
cross-validation. Cross-validation is more suited to smaller data sets where split-sample
would be at a disadvantage. It is computationally expensive for larger data sets or high

values of k.

3.5.3 Boot Strapping

Boot strapping is similar to cross-validation except that it uses sub-samples of the data
set instead of sub-sets. A sub-sample is random sampling with replacement of the original
data set allowing sub-samples to be of nearly any size as required. This is useful when

data sets are unbalanced or too small.

3.6 Combining Classifiers

For some problems, a single classifier will never be able to achieve good results no matter
how well it has been trained. However, the combination of several classifiers should be

able to make up for the deficiencies in the base classifiers.

3.6.1 Classifier Ensembles

There are numerous techniques for combining classifiers. Some of the earlier work on
combing classifiers was by Hansen and Salamon (1990). They created a combination of
classifiers called an ensemble. This is a set of classifiers (called base classifiers) trained
slightly differently from each other and then the results of all the classifiers are combined
using a combination rule. Hansen and Salamon (1990) uses plurality and Majority Vote
to combine the base classifier predictions. Further work by Kittler et al. (1996, 1998)
defined a theoretical framework for classifier ensembles and derived several basic combi-
nation rules. These are the Product, Sum, Max, Min, Median and Majority Vote rules.
Experimental work showed that the Sum rule gave the best performance. However, much
of the experimentation by other authors has suggested that Majority Vote is generally
the best rule for general purposes (see e.g. Duin and Tax (2000))

Research has shown that the base classifiers should make errors on different parts of
feature space to give the best combination results (see e.g. Kuncheva et al. 2000).
This is often achieved by altering training data, network parameters, network types and
even the network architecture. Typically combining weak learners give better results
as they are more likely to make different errors than those optimally trained. Schapire
(1990) shows that classifiers need to perform slightly better than random guessing to

lead to improved performance when combined. It was shown that if an infinite number
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of classifiers were combined then they would give 100% accuracy. Similarly if a infinite
number of classifier’s whose accuracy was below random guessing, then accuracy would
be 0%. Giacinto and Roli (2001) state however that combining higher performing, but
less error diverse classifiers can still out-perform a collection of weaker but more diverse

classifiers.

3.6.1.1 Combining Ranked Outputs

Typically the classifier will be combined based on a single label (e.g. Majority Vote rule)
or on an output value (e.g. Sum rule). However it might be preferable to combine a
ranked list of classifications from a classifier (Ho et al., 1994). It could be that the second
or third classification in a list is the correct class instead of the first item. For example an
object that lies on the decision boundary of two classes could go either way. In the case
where one classifier in the group can only output a single class (or reduced list compared
to others), then either all classifiers need to crop their ranked lists to one class (class set
reduction) or first combine the larger ranked lists and then reduce (class set reordering).

Both methods return a list of possible classes ranked in the order likelihood.

3.6.1.2 Estimating error diversity

The greater the error diversity of a set of classifiers, the greater the expected increase in
accuracy gained by combining them. Here we describe three methods for estimating the

error diversity of a pair of classifiers.

The first is the within-set generalisation diversity (GD) measure (Partridge and Yates,
1996) for a set of classifiers.

GD—1— p(2 bothfazl)
p (1 fails)
where;
A |
2both fail) = ———Dn
p (2both fail) n:zNNflp
and;
N
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Pr is the probability that exactly n classifiers fail on a random test sample. It can be
calculated as the average percentage of samples incorrectly classified by n classifiers. N
is the total number of classifiers, p (1 fails) is the probability that one randomly selected
classifier fails to classify a random test sample and p (2 both fail) is the probability that

two randomly selected classifiers fail to correctly classify a test sample.

As an example, if there are two classifiers (A and B) and there are five test samples.
Classifier A correctly classifies the first three samples and incorrectly classifies the final
two. Classifier B correctly classifies the first and last samples, but incorrectly classifies
the remaining three. This gives pjof 0.25 and po of 0.2. This results in a p (2 both fail)
of 0.2, a p (1 fails) of 0.45 and a GD of 0.56.

The second used @ statistics to evaluate the diversity of two classifiers (Kuncheva et al.,
2000).

NllNOO _ N01N10

Qi = NTTN00 - NOINTO

where N is the number of elements zj of Z for which y;; = a and yi 1, = b. Z is the
labelled data set and y; is the output vector for classifier D; such that if D; correctly
classified sample z; correctly then y;; = 1 otherwise 0. Likewise where i is one classifier,
k represents the second classifier. For statistically independent classifiers, Q; = 0
otherwise it will vary between -1 for more errors on different objects and 1 for correctly

classifying the same objects.

As an example, using the same two classifiers as before, N' =5, N =5 N9 =4 and

N0 = 6. This results in a Q value of 4—19.

The third method is called the compound diversity (CD) (Giacinto and Roli, 2001).

CD =1 —prob(c; fails, c; fails)

By example using the same classifiers as before, ¢; fails is 0.4 and ¢; fails is 0.6, resulting
ina CDof1-(0.4%*0.6) = 0.76.

Experimentation by Roli et al. (2001) determined that none of the methods are partic-

ularly better than the others and uses a combination of them in their work.

3.6.1.3 Improving error diversity

Base classifiers to be combined should be different from each other in order to help
improve error diversity. Duin (2002) lists six criteria, below, in descending order of

importance. Duin also lists disadvantages to several of the “fixed” training rules (fixed
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meaning that no training is performed to tweak the output). Duin also notes that for

combining classifiers, the output needs to be normalised, e.g. for confidence measures.

Confidence estimates by a classifier may be inaccurate due to over training. Using confi-
dence estimates in combining classifiers can be susceptible to incorrect confidences leading

to bad classifiers dominating the result.

1. Different Initialisations: E.g. network rates

2. Different Parameter choices: e.g. number of neighbours

3. Different architectures: e.g. number of hidden nodes

4. Different classifiers: e.g. MLP or £-NN

5. Different training sets: e.g. sub samples of the same data set for each classifier

6. Different feature sets: e.g. Shape D2 and Cord Hist 1

A final note by Duin (2002) says that base classifiers should be properly trained and care
should be taken so they are not over-trained. It is preferable that the base classifiers are
weakly trained. The combining classifier can then be trained as normal. Duin suggests
that the training set can be split into separate sets for the base classifiers and for the

combining classifier to avoid the issue of over-training, but it is a less desirable approach.

3.6.1.4 Test and Select

The test and select methodology (Sharkey et al., 2000) aims to find the best combination
of base classifiers for an ensemble. An alternative name to this approach is called over-
produce and choose (Duin and Tax, 2000). Typically most ensemble approaches combine
all the generated base classifiers. In the test and select method, the idea is that due to
redundancy in the base classifiers, a smaller subset will be required and so combinations
of the base classifiers for use in the ensemble are tested and the best one is selected. When
the number of combinations are large, then it may not be feasible to test all combina-
tions. Randomly selecting an acceptable number of combinations may be appropriate
but does not guarantee the optimal combination. Exhaustive search will be adequate
for a small number of base classifiers, but it will quickly become too computationally
expensive as more base classifiers are used. This method does not require calculation of

the diversity of a collection of classifiers, rather it works experimentally.

Roli et al. (2001) proposes a number of alternatives to exhaustive search that do not
guarantee finding the optimal combination, but should find a near-optimal solution in
an acceptable time. These are forward search, backward search and Tabu search. For-

ward search starts by calculating the performance of all base classifiers. The highest
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is then combined with every other classifier in a two classifier ensemble. The highest
performing pair is then taken forward into finding the highest performing triple, and so
on. The search terminates when performance starts to decrease. That is, the accuracy of
k classifiers is greater than the accuracy of k+1 classifiers. Backwards search is similar
to forward search except that it begins with an ensemble of all classifiers and starts by
removing one classifier from the ensemble. The Tabu search is a combination of both
forward and backwards search. When & classifiers have been evaluated, ensembles of
k+1 and k-1 classifiers are evaluated. Cyclic searching is not allowed (Classifiers created
in the previous steps are not used in the following step). Instead of terminating when
performance decreases, the process stops after a certain number of iterations. This is to

avoid local minima conditions.

3.6.1.5 Boot strapping

Boot strapping is a technique used to increase the size of a data set by duplicating existing
members zero or more times. Section 3.5.3 mentions boot strapping in the context of
estimating generalisation, where as here it is mentioned in the context of improving

performance.

3.6.1.6 Bagging

Breiman (1996) developed a technique called bootstrap aggregating or more commonly
known as bagging. This technique creates multiple data sets drawn from an initial data
set. Samples are drawn at random with replacement and a particular sample can appear
multiple times or not at all in the new data set. The classification technique is trained
on each of the data sets and the results are combined. If the classifiers offer a numerical
output, then the result is averaged. If the output is a class label, then a voting process
is used to determine the final value. Bagging is more useful for unstable classifiers and

has been shown to increase the accuracy of a given unstable classification technique.

3.6.1.7 Boosting

Boosting is another technique for combining several versions of a classifier based on a
given training set. It was pioneered by Schapire (1990) and then improved upon and the
current technique is called ADABoost (Freund and Schapire, 1996). In ADABoost each
item in the data set is assigned a weighting which represents the probability of it being
selected to become part of the training set for the classifier. The training data set is
created using sampling with replacement. Initially all items have equal weighting. Then
a classifier it trained and tested on a sampled data set. Test items that were incorrectly

classified have their weightings increased and then the next iteration begins. This results
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in a set of classifiers each trained on a different sub set of the data. The whole set of
classifiers is used when making a classification, with a weight assigned to the label given

by each classifier such that classifiers with a lower error are awarded a higher weighting.

3.6.1.8 Dynamic Classifier Selection

Dynamic Classifier Selection (DCS) chooses the most appropriate classifier at run-time to
give the highest confidence estimate for that object. A brief description of this technique
is that the classifier with the highest confidence for the query object is selected to classify
the query object.

Giacinto and Roli (1999) proposed a framework for classifier selection in which numerous
methods can be used to determine the confidence of the base classifiers. The a priori
method estimates the confidence as the number of correct classifications over all classifi-
cations in the locality. The a posterori method estimates the confidence as the number
of correct classification for label w over all classifications for label w when the query is
predicted to have label w. Both these methods weight the confidence by the distances of
the neighbours in the locality. The locality is defined as the & nearest neighbours from a

validation set. See Section 3.4 for a description of the a priori and a posterori methods.

The framework selects an appropriate classifier from a pool of possible classifiers. When
presented with a query pattern, a confidence value is generated for each classifier. Those
classifiers with confidence less than a reject threshold (e.g. 50%) are removed from the
pool. In the next step, the difference between each classifier confidence to that of the
classifier with the highest confidence is calculated. A threshold value is then used (0.1
is given as an example). If the distance between each classifier and the best classifier is
greater than the threshold, the best classifier is used to classify the object. However, if
some classifiers have a distance smaller than the threshold, then one of these (including

the best classifier) is randomly picked as the one to classify the object.

The DCS framework algorithm has the following stages;

1. Compute confidence for each classifier, C; for j =1,..., K
2. For each classifier, C; , if C; < reject threshold then remove C; from classifier pool
3. Set C,, as the classifier with the maximum confidence

4. For each classifier, C;, compute the difference, d;, in confidence between Cy, and
Cj

5. If all differences, d; are greater than selection threshold then select classifier C),

else randomly select a classifier from those with d; less than selection threshold.
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The experimental work by Giacinto showed that DCS can outperform ensembles, but

not always.

3.6.2 Mixture of Experts

The original Mixture of Experts (MoE) algorithm splits up a feature space into regions
with a single expert assigned to each region. A gating network is then used to choose
a mixture of experts to calculate the final classification. The MoE algorithm has since
been improved upon and Jordan and Jacobs (1994) describe the Hierarchical Mixture of
Experts (HME) algorithm. In this technique each expert is trained on all the data and the
gating network is trained to work out which experts are good for which input patterns.
The Hierarchical aspect comes from the ability to have several layers of gating networks.
The HME is trained using the Expectation-Maximisation technique to simultaneously

assign the weights to each expert and to the gating networks.

Tang et al. (2002) used a different approach where a SOM was used to partition the
input space. A secondary clustering of the SOM nodes combines nodes that are within

the same region.

3.6.3 Other Techniques

There are several other techniques such as Dempster-Shafer theory of evidence, Bayesian
methods and Behaviour Knowledge spaces (see Impedovo and Salzo, 2000), however

space is always a limiting factor and they will not be covered in this thesis.

3.7 Optimisation Techniques

Each classification scheme has a number of parameters which can be used to adjust the
performance of a classifier. Typically these need to be set when specifying a classifier and
it is difficult to determine the optimal values without prior knowledge as they are data
set and requirements dependant. In some cases prior knowledge can be used to estimate

“good” parameter values, however more typically there will be little prior knowledge.

3.7.1 Exhaustive Search

The most basic and reliable way to find the best parameters is to search through every
single value and combination and select the best one. However, this is a very computa-
tionally expensive method and quickly becomes infeasible when working with continuous

variables. It is however an option for limited, discrete variables, especially variables that
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are labels rather than numeric. E.g. the distance metric type used is a discrete variable

and an exhaustive search through each one is possible.

3.7.2 Cross-Validation

As described in Section 3.5.2 cross validation can be used to select training parameters.

3.7.3 Genetic Algorithms

A commonly used technique is Genetic Algorithms (GA) (Beasley et al., 1993). Originally
developed in the 1960’s GA’s have typically been used in optimisation and machine
learning problems. Genetic Algorithms have their roots in evolutionary principles where
“offspring” are formed by combining the chromosomes or genes of “parents”. An iterative
process evolves a population to an optimal result. Each gene or chromosome encodes a
set of parameters that form a solution to the problem in hand as a binary string. GAs
have two basic operators. The first operator is the crossover operator. This takes two
parent genes and chooses a split point in which the first part of one gene is combined with
the second part of the other gene to make a new, offspring gene. Sometimes a probability
is used to determine whether or not to crossover the parents. The other operator is the
mutate operation. This causes random bits in the binary string to be flipped. Typically
a low probability is used (e.g. < 0.1%) so only small changes are present. This operator

ensures that values not currently in the population have a chance to be evaluated.

Typically in each iteration, the genes are ranked in order of fitness (e.g. by performance).
Then a certain portion of the population (e.g. the lower 50%) are replaced by the offspring
from crossover using the remaining population. The mutate operator is applied to the

offspring.

The population should eventually converge if enough iterations are performed. Gene
convergence is typically when 95% of the population have the same value. When all
genes have converged the population is said to have converged. Of course different

thresholds may be more suitable in different situations.

3.7.4 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) Kennedy and Eberhart (1995, 1997) use a swarm
of particles which represent points within parameter space. The algorithm is based on
the simulation of birds flocking and such behaviour observed in the natural world where
members of the group are actively seeking “good” areas and members will “gravitate”

towards other members especially if they look like they have found a good area.
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The PSO algorithm adjusts the trajectories of the particles within this space based on the

particle’s previous best performance and the previous performance of the “best” particle.

Each particle records its best position, and each particle has access to the global best
position. During each iteration, the current performance of each particle’s parameters is
recorded and the best position is updated if applicable. Each particle then updates its
position based on how far away it is from both its personal best, and the global best,
with the aim of moving closer to both of these positions. A random factor is introduced
to avoid particles directly homing in on the centre point between the global and personal

best. The process is described by the following equations:

Vid = Vid + ¢ (Pid — Tia) + ¢ (Pgd — Tid)

Tid = Tid + Vid

where v;4 is the velocity of a particle id and z;4 is the current co-ordinates of particle 4d.
Piq is the co-ordinate where particle ¢d showed the best performance and pyq is the co-
ordinate of the best performance found so far. ¢ is a random positive number generated
for each particle. Each iteration a new velocity is calculated and the particle position is
modified accordingly. Alternatively the “global best” can be the neighbourhood of the
particle, typically particle id — 1, id and ¢d + 1.

In this form, floating point numbers (i.e. continuous data) are assumed, however Kennedy
and Eberhart (1997) proposes a modification to the algorithm to work with binary data

that allows discrete data to be used in the algorithm.

This technique however does not work with labelled variables such as different distance
metrics. This is because the technique searches for peaks or troughs in parameter space
(depending on whether we are looking for maxima or minima respectively) and there is

no such relationship between labels.

3.7.5 Simulated Annealing

Simulated Annealing (SA) is a method based on Monte Carlo simulation and it was first
used by Kirkpatrick et al. (1983) for optimisation. SA is analogous to physical annealing
where a substance is melted and has its temperature lowered slowly until it reaches
freezing point. In SA, a possible solution is called an atom. At each iteration, the atom
is displaced by a small randomly determined amount. The energy, F, is computed for
the new position or state and the change in energy, AF, between the old state and new

state is calculated. If the change in energy is less than or equal to zero, the new state
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is accepted. Otherwise a randomly generated number is compared against the following

probability to determine whether or not to accept the new state;

p(AE) =exp(— A E/kpT)

where kp is the Boltzmann constant and T is the current temperature. 1" is decreased
at each iteration until it reaches zero. As T decreases, so does the chance of accepting
a worse solution over a better one. However this probability allows a solution to move
out of a local minima position. The energy E can be calculated as the error for the
solution. Multiple solutions can be considered at once, however they are independent of

each other.

3.8 Summary

In this chapter we have covered a range of popular classification techniques and various
techniques that can be used to improve the performance over an individual classifier
either by combining several base classifiers, or by automatically finding the best training
parameters for a classifier. The different techniques are good for different distributions

of data sets although no one technique claims to be better than others in all situations.

The next chapter introduces the SCULPTEUR project and sets the underlying context

for the work performed within this thesis.



Chapter 4

The SCULPTEUR Project and the
Semantic Web

4.1 SCULPTEUR Introduction

The SCULPTEUR project (Addis et al., 2005b) was a three year European project with
partners from both cultural heritage and technical backgrounds and took forward tech-
nology developed during the ARTISTE project (Lewis et al., 2003). The SCULPTEUR
project aimed to develop a system to store, search and retrieve multimedia content and
associated metadata that formed a museum or gallery’s digital collection. It aimed to
add support for 3-D multimedia objects to existing support for 2-D images. It also aimed
to integrate up and coming Semantic Web technologies to provide enhanced search ca-
pabilities for the metadata. The ability to allow external systems to inter-operate with
the SCULPTEUR system using existing standards where appropriate and to provide
e-Learning capabilities were other aims. One of the more ambitious goals was to develop
automatic techniques to add metadata to the system by creating classifiers trained on

existing data (the Classifier Agent).

In this chapter, the development of the architecture within SCULPTEUR to facilitate
content-based retrieval is described together with the development of the Classifier Agent.
The SCULPTEUR system architecture is first described to show how each component
fits into the overall system. This is followed by a section on the development of the
content-based retrieval facilities and then a section on the innovation of a classifier agent.
This chapter focuses on the experimental work and architecture design as used in the
SCULPTEUR system. Chapter 5 and Chapter 6 give a much more in-depth study of

these areas.

o1
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4.2 SCULPTEUR System Overview

Figure 4.1 shows the SCULPTEUR architecture diagram. The core of the system was
built around a Web Service implementing a Search and Retrieve interface based on the
739.50 specification (SRW Editorial Board, 2004) called the SRW (Search and Retrieve
Web service). A web application (called the WebApp) is built on top of the SRW and
provides the primary user interface to the system. By using the WebApp users can
search a museum’s digital collection using a combination of keywords, concepts from
the ontology and using content-based retrieval techniques. A concept browser allows
users to browse or search through the ontology, with specific views developed for each
gallery based on their requirements. The concept browser allows specifying parts of the
metadata query through selecting specific concepts in the ontology. Figure 4.2 shows a
view from the concept browser. The left-hand side of this figure shows “shortcuts” to key
concepts within the ontology. The right-hand side shows the selected concept (“Object”)

and the relations to other concepts within the ontology.

Underlying the web service is a database storing all the metadata in the museum or
galleries native database format. A mapping has been developed between the native
database schema and the CIDOC Conceptual Reference Model (CRM) (Crofts et al.,
2001) for each gallery. The CIDOC CRM is an ontology of cultural heritage informa-
tion moving towards becoming an official ISO standard. It represents the concepts and

relations covering, at a very high level, a large range of cultural heritage areas. The
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F1GURE 4.2: Example view from the Concept Browser

CRM does not cover all aspects of the users database schemas requiring gallery specific
extensions to the CRM.

Content-Based Retrieval (CBR) in SCULPTEUR is implemented in the library FVS
(Feature Vector Service; described later in this chapter) and is accessed through a MySQL
UDF (User Defined Interface) interface to the library. Feature Vectors are stored as blobs
(chunks of binary data) in the database allowing fast access by the MySQL module.

The WebApp, like any other interface to the SCULPTEUR system, uses the SRW to
process its queries. Some functionality that can not be processed by CQL is facilitated
by additional servlet functionality. Internally, the SRW converts the CQL query into
the correct set of SQL statements for a given gallery to work on their database schema.
This process also generates the relevant CBR SQL statements to be applied after the
metadata query has taken place. On the assumption that a CBR query will always take
longer than a metadata query, the metadata query is performed first and the reduced
data set is then passed to the CBR query. This does of course make the assumption
that all relevant objects have the correct metadata associated with them. This is really
re-ranking the metadata query results using CBR similarity distances. However, this

may not be appropriate in all situations.
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Figure 4.3 shows the query interface in the WebApp. The query interface shows a large
number of metadata fields key to a particular gallery’s collection. A user may enter each
field manually. Alternatively, by clicking on the magnifying icon next to a particular
field, a list of all possible values is displayed, or if the field is already partially complete,
a list of possible values beginning with the existing data is displayed. At the bottom of
this form, the content-based retrieval part of the query can be formulated and will be

describe in more detail below.

Figure 4.4 shows the interface for specifying a CBR query. When an image or 3D object
query is selected, the user is prompted to upload a 2-D query image or 3-D object.
Once uploaded a list of available CBR descriptors is displayed (3-D descriptors for 3-D
objects, and 2-D descriptors for 2-D images). A preview is also displayed showing the

user’s query. If the query is a 2-D image, the user has the option of selecting a sub-image
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FIGURE 4.4: CBR with a query object uploaded

as the query. If it is a 3-D object, then the user’s 3-D viewer is used if installed. Unlike
for 2-D, no manipulation of the 3-D object for the query is possible.

Alternatively the colour picker tool allows a user to manually create a colour histogram
(see Figure 4.5) to find similar 2-D images. The user can adjust the colours and the

weightings for each colour in the histogram by simple controls in a Java applet.

Figure 4.6 shows the results of using the colour picker to choose a red colour and using the
search term “chair”. As can be seen, the combination of keyword and colour produces
a page full of red chairs. The notable oddity is the orange coloured chair in third
place. However the colour picker is finding images that contains some amount of the red

component specified and does not look specifically for the amount of the specified colour.

The Classifier Agent runs as a separate entity communicating with a SCULPTEUR
server to obtain objects and metadata for use in training data sets. It uses the feature

vectors present in the system as inputs to classifiers.
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4.3 Content-Based Retrieval

Content-Based Retrieval (CBR) in SCULPTEUR is just one component of the search
and retrieve interface along with metadata and concept based search. Individually,
each search method can produce reasonable results. Best results are obtained, how-
ever, through a combination of the different search methods. CBR in SCULPTEUR
needs to be fast (potentially many thousands of images and objects to query), easy to
use (user’s will want it to “just work”), extensible (need to be able to add new CBR tech-
niques easily), stable (the system will be deployed in a working environment) and reuse
existing techniques developed from the previous ARTISTE project (Lewis et al., 2003).
It also needs to be portable and work on at least Linux and Windows based platforms
due to partner requirements. Minimising the number of dependencies (external software

libraries) is also advantageous due to the wide range of target machines and platforms.

The result in SCULPTEUR is the development of the FVS library that is based loosely
on the FVG (Feature Vector Generator) tool from ARTISTE and provides a MySQL
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FI1GURE 4.6: First page of results for query term “chair” and using the colour picker to
select the colour red.

UDF interface for generating and comparing feature vectors. This section describes
more details of the issues involved in integrating CBR into the SCULPTEUR system.

Chapter 5 gives an in-depth evaluation of the 3-D algorithms.

FVS makes heavy use of classes and inheritance to simplify the addition of new de-
scriptors and make the interfaces to the library much simpler and cleaner to use. Each
descriptor is composed of two classes. The first is a FeatureAPI class which implements
the generation and comparison functions for that algorithm. The second class is a Fea-
tureVector class which stores the feature vector data and handles I/O (Data file reading
and writing). These classes are sub-classed for each descriptor with commonly used

functionality in the super-classes or in utility classes.

The FeatureAPI classes have an intermediate level of inheritance between the super Fea-

tureAPI class and the descriptor’s implementation that specifies whether the descriptor
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is a 2-D descriptor or a 3-D descriptor as the type of input media is different for each
type. Should another type of media be added to FVS (for example video), a new inter-
mediate FeatureAPI would need to be defined. In each case, a new generate function is
defined to accept video data sources, whereas the compare function is defined in the top

level FeatureAPI class, remaining the same for every descriptor.

Feature vector I/0 is also encapsulated in a class hierarchy. A top level class, called
MemoryBlobWriter, defines the interface for reading and writing primitive data types.
Two sub-classes exist; the first reads and writes endian independent binary data and
the second reads and writes ASCII data (used for analysis/debugging). FeatureVector
objects have a read and write function that take a MemoryBlobWriter. This allows
multiple features to be saved in one file which is important for facilitating the multi-

scale algorithms.

2-D images are loaded using the VIPS library which can potentially handle most image
formats. The advantage of using VIPS over other image libraries are that it is designed to
handle very large images efficiently. For 3-D, there is no such “wrapper” library and each
3-D model format needs to be implemented separately. FVS supports VRML through
a modified version of the CyberX3D library (Konno, 2003). This library was chosen as
it did not use C++ exceptions which is a requirement for using FVS in MySQL. It also
supports a file format used by one of the project partners named the .TRI format (format
unpublished). FVS also supports the .OFF file format (Object File Format) used in the
Princeton Shape Benchmark (Shilane et al., 2004).

3-D objects are much more complex than the 2-D array of pixels an image is composed of.
A 3-D model is typically composed of a set of connected polygons (faces) called a mesh.
Fach face is composed of a number of vertices which may or may not be shared with
other faces. Each face can have a surface normal, as can each vertex (usually the average
of the normals from the faces it belongs to). Each vertex can have one or more texture
co-ordinates indicating how one or more texture maps (typically a 2-D image contained
in a separate file) are mapped onto the model. FVS uses a custom data structure to

store all this data for processing by the 3-D descriptors.

In SCULPTEUR metadata searching eventually resolved into SQL statements used in
the MySQL database. To improve the speed of a CBR-based query, it was decided to
develop a MySQL interface to the CBR techniques for direct incorporation into the SQL
statements. While there have been no comparative studies on the retrieval speed of other
architectures, discussions comparing SCULPTEUR to ARTISTE and SCULPTEUR to
eChase (Sinclair et al., 2005a) revealed that the SCULPTEUR method is the faster of
the three. ARTISTE called the FVG command line tool, while eChase separated the
CBR to a separate system to facilitate more advanced CBR techniques. However, the

additional overhead involved in both of these methods out-weighs their advantages. More
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recently, eChase has moved to a hybrid approach, trying to allow near direct database

access whilst keeping the CBR engine separate from the SRW.

A further requirement was the production of a thumbnail generator for automatically
producing 2-D thumbnail images from the original 2-D and 3-D content. The user in-
terface in the WebApp stayed fairly similar to that used in the ARTISTE system; a
drop-down box with “user friendly” names for the descriptors. There are also some cus-
tom Java applets providing advanced functionality for cropping query images and using

a colour picker applet to build a colour histogram for colour based queries.

4.3.1 Reuse of existing technology

In the ARTISTE project (Lewis et al., 2003), CBR was implemented in a tool called FVG
(Feature Vector Generator). This was a command line program implementing the 2-D
based algorithms. Each algorithm was written as a stand-alone component by different
authors. This tool was run from the command line against images and feature vectors

stored on the file system.

FVS is based upon the FVG tool, taking the 2-D descriptor and feature vector I/O code
and re-writing it to fit into the FVS architecture. Large amounts of duplicated code
was moved into super-classes or into utility classes. The FVS library took the FVG tool
and developed it further for the SCULPTEUR project. It was re-written to allow the
easy addition of 2-D and 3-D descriptors by leveraging C-++ features such as classes,
inheritance and templates. A MySQL UDF front-end was written as an alternative to

the command line front-end to facilitate faster retrieval.

In FVG, each algorithm was implemented as a self contained unit. This however meant
there was a lot of duplicated code with minor variations between them. Using sub
classes allows nearly all of the higher level parts of the algorithm to be shared. (e.g.

image loading, FV I/0O and commonly used routines for image manipulation).

4.3.2 The Algorithms

FVS provides support for both 2-D and 3-D content-based retrieval. For 2-D CBR
(see Lewis et al., 2003), RGB, L*a*b* and monochrome histogram matching is im-
plemented along with the CCV (Colour Coherence Vector), PWT (Pyramidal Wavelet
Transform) and QBF (Query-by-Fax) algorithms (Fauzi and Lewis, 2002). There is also

a colour picker (allowing the user to manually specify the colour histogram for matching).

A multi-scale interface allows sub-image matching to be applied to any of the 2-D algo-
rithms. The image is decomposed into a pyramid structure consisting of 64 by 64 pixel

tiles, at different resolutions (the image is scaled down by a factor of two at each level).
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At the top level, there is a single tile representing the whole image, and at the lowest level
there are many sub-images tiled across the whole image. The sub-matching comparison
finds the tile that gives the best match to the query and can return the position in the

image in addition to the similarity distance.

For 3-D CBR, there is an Area-Volume ratio descriptor (Tung and Schmitt, 2004), the
Cord Histograms (Paquet and Rioux, 1999b), Shape Distributions D2 (Osada et al.,
2001), Modified Shape D2 (Ohbuchi et al., 2003a), augmented Multi-resolution Reeb
Graph (Tung and Schmitt, 2004), Extended Gaussian Image (Horn, 1984) and 3-D Hough
Transform (Zaharia and Préteux, 2001b) descriptors. These are described in more detail

in Chapter 2 and are evaluated in Chapter 5.

4.3.3 Ease of Use

Making CBR easy to use is a trade off between choosing the best “overall” settings and
letting the user choose for themselves the best settings for their current task. Each CBR
technique has different parameters that can effect how it generates a feature vector or
how it compares a pair of feature vectors. Presenting all these options will confuse most
users and experimenting with generation parameters can be computationally expensive
if there is a large reference data set. However choosing a set of parameters to work well
in all situations is very difficult. Those that work best overall, may not be suitable in all

situations.

In FVS, some good default parameters were chosen and the ability to optionally specify
custom ones was added to the MySQL and command line interfaces. However at the user
interface level, only default parameters are used. Users wishing to be able to customise
their requirements are able to do so by communicating directly with the FVS module or

tool.

4.3.4 MySQL Module

The MySQL UDF module is the primary means for the SCULPTEUR system to use
CBR techniques. It exports two functions, a generate and a compare function (to gen-
erate a feature vector from an image or object and to compare a pair of feature vectors
respectively). Feature vectors are created using the generate function and are stored as
blobs in the database. The compare function takes two such blobs and returns a simi-
larity distance between them. Creating the MySQL module presented several challenges
specific to using MySQL. The biggest issues were debugging problems with the module
and handling the language interactions between the C based database application and
the C+—+ based module.
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Initial distribution of the module consisted of a collection of dynamically linked modules,
however it soon became apparent that the differences between Linux distributions meant

that a statically linked module containing all the required dependencies was required.

MySQL modules are required to be thread safe and cannot use threads themselves. This
caused a big issue as VIPS and some of its dependencies use the Posix Threads library.

This impacted on which libraries and which versions could be used with FVS.

Many C++ applications use exceptions as a method of reporting errors. When an error
occurs, an exception detailing the error is thrown. However, the very act of throwing an
exception causes MySQL to crash. This also had an impact in what libraries could be
used with FVS, and how FVS was built itself.

4.3.5 Thumbnail Generator

A cross platform thumbnail generator was required for both 2-D images and 3-D objects
to show small representations of the real object on a web page of results. For 2-D
images, the built-in VIPS functions for scaling were enough. 3-D, however, is much more
challenging and little work has been done in this area. Typically, 3-D thumbnails are

created manually by taking a screen shot from a 3-D viewer; a time consuming process.

To generate an image of a 3-D object, the mesh needs to be projected onto a 2-D plane.
This process is known as rendering. There are two standard libraries that exist to render
3-D objects into a 2-D scene. The first is Direct 3-D, part of Microsoft’s Direct X
platform for using multimedia. It is widely used, however it is limited to Windows based
platforms only. The second library is called Open GL and it is cross-platform. Open GL
is maintained by a consortium of industrial partners that oversee the the specification of
Open GL versions and of extensions. An extension is a particular feature that is not part
of the current specification. New functionality can be added by vendors for immediate

use long before it becomes part of the main specification.

Typically these libraries are used to render a 3-D scene into a 2-D window visible on
a user’s display. However, for our purposes, there may be no display (e.g. a headless
server). Creating an Open GL graphics context with no screen requires platform specific
extensions to Open GL. The Mesa 3D project provides a software implementation of
Open GL (emulating functions typically performed in hardware) which includes a cross-

platform method of creating an Open GL graphics context without requiring a display.

There are several features that need to be considered when producing a thumbnail image
of a 3-D object. Unlike in 2-D, where the view is pre-defined, a 3-D object can be viewed
from any orientation and at any distance from the camera (viewpoint). Ideally the object
will fill the whole area of the thumbnail (or as much as possible) but be completely visible.

For this, the bounding box (this is the smallest box that encloses the entire object) of the
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(a) Human (b) Bi-Plane

FIGURE 4.7: Two objects in the same co-ordinate system, but require viewing from
different angles.

object was computed and used to adjust the camera so that the bounding box was fully
visible within the thumbnail area. This ensures that the object is within the viewable

area.

The second issue is that of object orientation. An object could be represented in any
orientation, however it is more likely to be axis aligned (i.e. along the z, y and z axes)
but it is impossible to know for sure from the object alone. In the 3-D descriptors,
Principal Components Analysis is used to determine the axis with the most variance and
rotate the object such that this is the z-axis. This may not correspond with the primary
viewing axis (that is the axis along which an observer would look to see the front of the
object; see Figure 4.7). As a result, no additional rotation has been performed. It is
assumed that all objects are in the left-handed co-ordinate system (y points upwards,
points to the right and z points towards the viewer), rotated about the z-axis such that

the z axis points upwards.

4.3.6 Similarity Distance Normalisation

Similarity distance normalisation in ARTISTE took a sample data set and recorded all
the distances for comparing each object with every other object. These distances were
then used to plot a probability curve so that a score of 1.0 means there is 100% probability
there was no better match and 0% means that there is 100% probability of getting a
better match. The “control points” of the curve are then hard coded into a normalisation
function for each algorithm on which this process was performed. While this process was
sufficient for ARTISTE where there was a single data set. In SCULPTEUR there are
several different data sets (one per gallery) and the existing normalisation did not work

well in many cases.

The proposed approach for SCULPTEUR (which was not fully integrated into the sys-
tem) was to store the score data in a histogram. The histogram is then used to determine

a mapping using a log function between similarity distance and normalised score. This
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data was stored as a blob (like feature vectors) and numerous normalisation blobs could

be created for the same descriptor (for example one per data set).

4.3.7 Concluding Words

The architecture described here allows for very fast retrieval of objects based on their
similarity. However, this is at the expense of robustness and flexibility. The tight coupling
of CBR to the core SQL queries makes it hard to use algorithms that need more than

just a pair of features for comparisons and return a single distance.

In eChase, CBR is removed from the core SQL queries and is instead accessed via a web
service and the results added in to the final results table. This allows a much greater
range of algorithms to be implemented and allows CBR to potentially be hosted on
another machine. However, this does sacrifice a lot in query speed. A comparison of
around 8000 objects can take nearly a minute in eChase, whereas this would have been
a few seconds with SCULPTEUR.

4.4 Overview of the Classifier Agent

The Classifier Agent is one of the more ambitious goals of the SCULPTEUR project
bringing together the fields of 3-D content-based retrieval, classification and semantic

web technologies into a single system.

The aim of the Classifier Agent is to train classifiers using the existing feature vectors
and metadata in the system as training data. It would then use these classifiers to
classify objects (either new objects entering the system or existing objects with missing
metadata) and add the classification to the system. The classification could either be
some metadata field already in the database, or it could potentially determine that a
new metadata field or concept in the ontology needed to be created. It would also have
some of its functionality directly available to a user of the system should they have a

specific task to complete.

Chapter 6 gives an in-depth review of the classification using 3-D CBR techniques as clas-
sifier inputs. In this chapter the focus is on the architecture as used in the SCULPTEUR

project.

4.4.1 Architecture

The Classifier Agent is a user driven web application composed of a PHP user interface
and C+-+ binaries providing the classification routines for speed. The user interface

allows browsing of existing data sets and the creation of new data sets using the SRW
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interface of the SCULPTEUR system to retrieve the set of objects specified by a query
(either specific or general groupings of objects). It allows the creation of new classifiers
either with manually or automatically specified training parameters and the subsequent
clagsification of user uploaded objects with these classifiers. Classifiers can be tailored to
generally classify between a large number of classes, or can be specialised to distinguish

between a small number of classes by altering the training data set.

Two classification techniques are available in the agent, the £-NN classifier and a classifier
that applies majority vote to winning clusters in the k-Means clustering technique. These
techniques are well understood making it easier to understand why the agent is making

the predictions it does.

4.4.1.1 3-D Object Data sets

A data set is a collection of objects and class labels that represent a problem to be solved.
The problem could be as specific as “is this object a vase or a statue?”, or it could be
more general “what is this object?”. Data sets can be manually created, however it is of
more use to create a data set using the SCULPTEUR system, automatically obtaining
the metadata for the objects.

A small Java program is used to communicate to the SRW to obtain a data set based
upon a given query from the system. In the agent, the query is specially constructed to
obtain labels for a single concept in the ontology due to the limited amount of metadata
available for 3-D objects. However, much more complex queries can be formulated for use
in a system containing more metadata. The SRW returns URLs to the 3-D object, feature
vectors and thumbnails in addition to the requested metadata within its response. The

required data can then be downloaded separately to complete the data set acquisition.

The system ontology contains a number of concepts or “clagses” which can indicate object
type such as vase, statue or tile, but they could also be artists names or periods of
creation. These different types of class are not mutually exclusive, so if the descriptors
support these different class types, then a query object may obtain several labels during
the classification process, e.g. “type = vase” and “artist = Christopher Dresser”. The
agent is able to query the ontology and retrieve URLs pointing to 3-D objects and feature
vectors through the SRW interface.

A training data set can be created by querying the system using the SRW interface to
find specific or broad groupings of objects and metadata. Alternatively a data set can
be manually created and presented to the system. Classifiers can be trained on a data
set by manually specifying training parameters, or by using a technique to automatically
determine the optimal parameters. Query objects can be passed to a classifier and
the predicted label is presented to the user along with some statistics indicating the

confidence of the classification.
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QUERY := public_en.obj number = "*" and public_en.pl view = "*3D"

XPATH := /art_object | /art_object/object name2 | /art object/a_part |
/art_object/a_part/photo | /art _object/obj number |

/art _object/a_part/photo/pl short caption |
/art_object/a_part/photo/representation

FIGURE 4.8: Example SRW Query to obtain all 3-D objects (Using VAM schema)
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The following are thumbnails for every object in the dataset,

Object: dcrm2 00409012738
Object: pcdbs 81163 I0F0E-085 Object: domaQ0F08022658

tabal: hElmET

tabel: Bwer and basin tabel: statuette

FIGURE 4.9: Data set Browser

Figure 4.9 shows a sample view from the data set browser. It shows the summary table
for the number of objects in each class, followed by a thumbnail and other details for
each object. Additionally, clicking on each label shows all the other objects with the

same label.

4.4.1.2 Classifier Training

Each classification technique has a number of parameters that need to be specified. Both
of the techniques used in the agent allow the choice of descriptor and distance metric to
be selected in addition to those parameters specific to the technique. The k-NN classifiers
allows the choice of k£ (the number of neighbours) to be selected and the k-Means classifier

allows k£ (the number of clusters this time) and a cluster shift threshold to be specified.
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To train a classifier, several things need to be taken into account. Firstly the properties
of the data set need to be considered. These are the number of objects in the set, and
the number of classes. This will typically have an effect on the time it takes to train a
classifier and the number of classes determines the complexity of the problem. Typically
low numbers of objects and high numbers of classes will lead to poor generalisation in
classifiers whereas high numbers of objects and low numbers of classes should lead to
high generalisation in the classifiers. The number of objects in each class determines how
well the classifier will perform. If the classifier is good enough, i.e. shows high enough
performance, it can be stored in the system for further use. If it is a particularly bad

classifier, it can be discarded.

4.4.1.3 Classifier Optimisation

Classifier optimisation is the method of determining the best parameters for which to
train a classifier with to maximise its accuracy. This can be done manually by trying all
combinations of parameters and selecting the best set. This is often known as exhaustive
search. Typically, however the number of possible combinations is far too large to actively
search through each one. There are a number of techniques that exist to avoid searching
all possible combinations by choosing the better combinations over the worse ones. These
methods may not necessarily find the optimal solution, however they should find a near

optimal solution.

The number and range of parameters makes manual or exhaustive search a long process.
Particle Swarm Optimisation (PSO, Kennedy and Eberhart, 1995) allows the machine
to find the optimal parameters for numerical problems without having to search through
every possible combination. This is achieved by concentrating on parameters that give
better results and ignoring those that give poorer results. The PSO cannot handle
non-numerical parameters and in this work exhaustive search through the descriptor
and distance metric combinations is performed before applying a PSO on the numerical
classifier parameters. The larger the number of non-numerical parameters in the search

space, the less useful this technique becomes.

This is described more fully in Chapters 3 and 6.

4.4.1.4 3-D Object Classification

Created classifiers are stored with a unique name selected by the user and are made
available for use to all users of the system. Users may view a classifier to see what data
set and training parameters it was created with and also the accuracy obtained through
testing. This allows the user to select the classifier they think is most appropriate for

classifying their object.
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k- Classifier

Starting Classification. ...

Query Object

Predicted Label

Object: demzZ0040301273

Predicted Label: statuette

Classifier Accuracy

Class Performance Statistics for statuette

Aocuracy 0. 566667

Nearest MNeighbours

FIGURE 4.10: Classification Results

A user may upload a query 3-D object to the system for classification. A pre-created
clagsifier can be selected by the user. A results page is presented to the user showing
an automatically generated thumbnail of the query object, the predicted label and a
confidence value of the correctness of the classification. This page also shows the &
nearest objects used to classify the object for k-NN clasgsifiers, or the objects in the

nearest cluster for k-Means classifiers.

Figure 4.10 shows the results from a classification using a £-NN based classifier. The
query object is displayed along with its predicted label. This is followed by the accuracy
for the predicted label from the classifier (this is different from the accuracy of the
classifier for all classes). Following this would be the nearest neighbours used to determine
the predicted label. These would be displayed in much the same way as the data set

browser.

4.4.2 Classifier Agent Evaluation

A prototype of the classifier agent was made available to users during formal evaluation
of the SCULPTEUR system. Feedback from this evaluation (Coates, 2005) was then
used to update the agent for the final version delivered for the project. Due to the small
size of the data set at that time, the evaluation focused on the usability of the classifier

agent rather than how well it worked in classifying user objects. Table 4.1 shows the
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’ Class Name ‘ Training ‘ Testing

Mask 3 3
Misc 9 10

Statue 8 7
Tile 16 16
Tool 5 5)
Vase 31 31

TABLE 4.1: The Evaluation data set

clags sizes in the data set. Users were asked to create some classifiers based on the
data sets available and choose the values of parameters. The optimisation technique was
not available in the initial evaluation. The users were provided with the URL to the
system and asked to create a few classifiers based on the training data available. This
consisted of a small number of objects from the Victoria and Albert Museum (VAM)
and GET-ENST.

4.4.2.1 Evaluation Feedback

The feedback from the evaluation highlighted that the initial version of the Classifier
Agent was too complicated for typical users. Too much of the underlying technical
details were exposed to the users and the interface assumed prior knowledge about clas-
sification techniques. The users evaluating the system had little or no prior knowledge
about classification techniques and so found the initial system hard to use due to lack
of understanding of the techniques presented. This resulted in producing a much more
descriptive interface, complete with guides on how the classification techniques worked
and what good default values for the different parameters would be in the final version

of the agent.

Another issue highlighted that the range of statistics presented was confusing to the users
as they had little idea of the meaning of each statistic and were more concerned on just
knowing whether the classifier was good or not. In the final agent, only the accuracy
statistic was shown as this gives a good overall indication of performance that is easy for

users to understand.

These issues led to only a few classifiers being made during the evaluation and little
experimentation appeared to have been performed in attempting to find good parameters
for the classifiers. In the final version of the agent, the optimisation technique is available

to users so they do not have to manually find good parameters.
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4.4.3 Classifier Agent Discussion

As a proof of concept, the Classifier Agent worked quite well showing that it is indeed
possible to use the 3-D descriptors of objects in the system as inputs to classifiers that
are able to distinguish between broad classes. It also showed that it is possible to use
optimisation techniques to find near optimal training parameters for these classifiers.
However, further experimentation is required using larger data sets and more closely
related classes. One concern is how well the current system will scale with increasing
amounts of data and classes. The classification techniques used may not be able to cope
well with more complex class boundaries and the optimisation techniques will take more

than just a few minutes to complete.

Another area for future work is the improvement of the training data set creation. The
query interface of the SCULPTEUR system could be used to define a training data set
as the result of a query. A user would then need to select a metadata field as the class

labels, or the user would need to manually classify the data if no suitable field existed.

As more and more classifiers are created, it will become harder for a user to select the
appropriate classifier for their problem. One solution is to get the machine to select the
best classifier itself. A technique for this task is called Dynamic Classifier Selection and

it is investigated in Chapter 6.

4.5 Conclusions

In this chapter, an overview of the SCULPTEUR project and system has been presented.
Two components of this system, content-based retrieval and the classifier agent have
been described. These components provide some of the motivation and direction of
the work in the next two chapters. Chapter 5 investigates how well the different 3-D
descriptors perform in a more in depth analysis. Chapter 6 investigates the use of various

classification techniques applied to the 3-D descriptors.



Chapter 5

3-D Content-Based Retrieval

5.1 Introduction

The previous chapter described the SCULPTEUR project and the content-based retrieval
architecture. This chapter examines the performance of the 3-D descriptors used within
the SCULPTEUR project.

The area of Content-Based Retrieval (CBR) started to take off during the 1990’s with the
start of wide spread World Wide Web (WWW) usage giving increasing access to large
numbers of digital images (Smeulders et al., 2000). Textual retrieval for content soon
became insufficient with the explosion in the number of images and poor annotation.
The problem was down to keywords. When using text to locate documents, you can find
those words in the documents. 2-D images and other forms of multimedia typically do
not have words in them so a set of keywords are assigned to the image which can then be
matched against the query terms. One problem lies in defining a suitable set of keywords
that adequately describes the content and knowing what keywords are available to be
able to appropriately define the query. The phrase “an image is worth a thousand words”
is an apt description. Fixed vocabularies can help the user to know what terms are
available, however, the vocabulary may not be descriptive enough. Textual querying is
therefore not a suitable query mechanism for content retrieval; however, as much recent
research has shown, it can complement a content-based query very well (Goodall et al.,

2004b). This chapter however is concerned with content-based retrieval on its own.

For CBR there are two main questions that we would like to address;

e [ want to find similar objects to mine, what should T use?

e | have an example of object type X and I want to find other examples of object

type X, what should I use?

70
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The first question is asking what is the best overall method to use. The second question is
being more specific by defining the type of object that is required. This type of question
requires more detailed understanding of the performance of the CBR techniques for

different types of object.

How can we find out this information? Answering the first question is easier, we can
just put all our descriptor and metric combinations through an evaluation and rank
them according to some retrieval performance metric. The second question is slightly
different in that we wish to optimise the retrieval by choosing the descriptor and distance
metric combination that performs best on objects of type X. In this case, statistics need
to be generated for each class per descriptor and distance metric combination which
can easily generate an unmanagable amount of data. We could put all the descriptor
and distance metric combinations through an evaluation and see which combinations
are ranked highest and give that information back to the user. This is good for small
numbers of classes, but becomes less useful for many classes (information overload). It
is also advantageous to know what descriptors perform badly on a class. Often the best
performing descriptor may not be appropriate to use due to computational cost, and
so a faster one may be more suitable. It may also be useful to see which classes the
descriptors are unable to distinguish between. This helps identify areas to target for

future descriptors.

Chapter 2 reviewed a large range of 3-D content-based retrieval algorithms and distance
metrics. The review highlighted several areas of possible research. Firstly, Shilane et al.
(2004) is the only attempt at a comprehensive evaluation of different algorithms, however
it does not cover all of the algorithms available. Secondly there is no general evaluation
of different distance metrics except in papers such as Ankerst et al. (1999); Hetzel et al.
(2001) where a few metrics are compared to see how they effect the performance of a par-
ticular algorithm. Typically the literature makes use of data sets built for experimental

purposes and not data used in real production systems.

Here our first investigation is to compare and contrast the performance of a selection of
these algorithms to identify their strengths and weaknesses. This will also highlight po-
tential areas of further research to improve the existing algorithms or develop new ones.
This chapter begins by explaining the problem of content-based retrieval and more specif-
ically the problems involved in 3-D CBR. This is followed by a description of the different
3-D CBR algorithms, distance metrics used in this work and the techniques employed for
evaluating retrieval performance. The performance of the different 3-D algorithms and
distance metrics is then evaluated in terms of the Princeton Shape Benchmark (PSB)

and with real museum objects. This chapter then ends with some concluding remarks.
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(a) Fully Textured (b) Mesh

FIGURrE 5.1: Example 3-D Object

5.1.1 The Content-Based Retrieval Problem

3-D Content-Based Retrieval is concerned with the retrieval of objects based upon their
content. Typically this can be achieved by using an example to find “similar” objects,
however it is also possible to define a query in terms of partial content (e.g. a sub-section
of a model or image, or specific colours contained within the object). The definition of
“similar” can be somewhat vague and is dependent on the task in hand, but often means
similar shape, colour or texture. For example, to find vase shaped objects, the user can
give the system an example vase model. Alternatively to find red objects, a user can
specify the colour red using e.g. a colour palette and giving the system that instead. It
is also possible to “sketch” the basic outline of an object although the quality of results
depends upon the skill of the user in sketching a query (Min et al., 2003). Traditionally
the area of CBR has been limited to 2-D images, but more recently has expanded into
other areas of multimedia including 3-D objects. While the fundamental problem remains
the same, each type of media brings certain advantages, but also a number of additional
problems that need addressing. The rest of this chapter is concerned with the problem
of 3-D CBR.

5.1.2 3-D CBR Problems

3-D objects have a number of useful properties that aid CBR. Unlike 2-D images, 3-D
objects contain only the representation of the object and typically have no extra informa-
tion such as background, occluding objects or varying lighting conditions to complicate

things. Figure 5.1 shows an example 3-D object and the corresponding mesh representing
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FIGURE 5.3: Untextured Object

the object. The representation of the object is explicit rather than implicit or embedded
in the pixels as in the case for images. This simplifies the problem in many ways. How-
ever, there are several issues specific to 3-D CBR. Typically 3-D objects are represented
as a mesh of (possibly) interconnected polygons, typically triangles. In the ideal case
this will be a single closed mesh of triangles, i.e. every triangle edge connects to only one
other triangle edge. Additionally all triangles will be consistently orientated, either all
pointing inwards, or all pointing outwards (outwards will typically be the correct facing
for viewing an object). When calculating the surface normal of a triangle, the trian-
gle can be specified either with a clockwise or anti-clockwise ordering of the vertices.

Choosing the wrong ordering means the normal will point in the opposite direction to
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that intended (e.g. inwards instead of outwards). In some cases, especially from mod-
els obtained off the web, models may be composed of higher order polygons, multiple
open meshes, and arbitrary triangle orientation (which may or may not be specified).
Additionally the same object may be represented with a differing number of polygons
or geometric transformations depending on how the model was created. These factors
need to be taken into account either directly in the algorithm or as a pre-processing step.
Failure to do so can lead to significantly reduced retrieval performance. Of course, in
some cases pre-processing may remove the very feature that distinguishes between one
class of objects and another. For example, something like a footstool and a table could
differ only in scale. However, this requires all models to be acquired with a known scale,

a detail which is often lacking.

Another characteristic of 3-D models is that colour information (typically a texture map;
see Figure 5.2) may be stored in another location (i.e. another file) and can easily become
separated and lost. Figure 5.3 shows the untextured version of the object in Figure 5.1.
In some cases a model may not have any colour information at all, e.g. if it has been
acquired by a laser scanner. This makes the application of colour based techniques

limmited.

In this chapter we will evaluate a number of descriptors and distance metrics in terms
of their retrieval performance. Two data sets will be used. The first is a small data set
composed of objects generated from real museum artifacts. The second is a much larger
data set from the Princeton Shape Benchmark and is composed of objects obtained from
the World Wide Web that will generally be of low quality. The following sections will
give an overview of these descriptors, distance metrics and evaluation techniques along

with more details of the two data sets used.

5.2 Description of Algorithms

A number of algorithms have been implemented for use in the SCULPTEUR project (Ad-
dis et al., 2005b) and are used within the work presented here. This section gives some
more details of the algorithms implemented although Chapter 2 gives a more compre-
hensive overview. The majority of 3-D objects used in this work do not have any colour
information associated with them, so only shape based descriptors have been used. Four-
teen algorithms have been implemented. These are the Area Volume Ratio (Tung and
Schmitt, 2004), the Cord Histograms (six versions) (Paquet and Rioux, 1999b), Extended
Gaussian Image (EGI) (Horn, 1984) and 3-D Hough Transform (Zaharia and Préteux,
2001b) (both are implemented using spherical and octagon decomposition methods as
described below), the D2 Shape Distribution (Osada et al., 2001) and the modified D2
Shape Distribution (Ohbuchi et al., 2003a) and finally the augmented Multi-resolution
Reeb Graph (MRG) (Tung and Schmitt, 2004).
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’ Short Name ‘ Descriptor Name
Area Volume Area Volume
Cord Hist 1 Cord Histogram (Lengths)
Cord Hist 2 Cord Histogram (First Principal Axis)
Cord Hist 3 Cord Histogram (Second Principal Axis)
Cord Hist 4 Cord Histogram (Joint First/Second Principal Axes)
Cord Hist 5 Cord Histogram (Combined First/Second Principal Axes)
Cord Histogram Combined Cord Histogram
EGI Oct Extended Gaussian Image (Oct Method)
EGI Sphere Extended Gaussian Image (Sphere Method)
Hough Oct 3-D Hough Transform (Oct Method)
Hough Sphere 3-D Hough Transform (Sphere Method)
MD2 Modified Shape D2
Shape D2 Shape Distributions (D2 variant)
MRG Augmented Multi-resolution Reeb Graph

TABLE 5.1: Short names of descriptors

There are several desirable characteristics for a 3-D descriptor. It should be invariant
to changes in rotation and position. Scale invariance can also be desirable. However, in
some cases the original scale may be desirable if the objects are all captured in the same
manner, or encode the scale somehow. Scaling methods can also scale the model such
that the largest axis is in the range [0.0:1.0] and the other axes are scaled by the same
factor, or each axis can be separately scaled such that they are all in the range [0.0:1.0].
It is also desirable for the descriptor to ignore how the model is composed; that is it

should work on the surface of the model and not directly on the polygons composing it.

Table 5.1 lists the short names for the descriptors used in this work.

5.2.1 Area Volume Ratio

The Area to Volume ratio descriptor (Tung and Schmitt, 2004) calculates the ratio
between the surface area and the volume of a 3-D object. See Section 2.6.1 in Chapter 2
for more details. The principal drawback of this method is that the triangles need to be

orientated consistently for a correct volume calculation and a closed mesh is required.

The area volume ratio descriptor is likely to perform badly against the PSB models as
they are more likely to have inconsistently orientated triangles and have holes in the
mesh. Both of these conditions will result in an incorrect volume calculation. Typically
the museum objects will have consistently orientated triangles due to the acquisition
process, however some objects may contain holes in the mesh. Therefore varying, but
typically low performance is expected, however it is fast to compute which may be

advantageous in some circumstances.
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5.2.2 Cord Histograms

The Cord Histograms were introduced by Paquet and Rioux (1999b) and are described
in Section 2.6.2

The histograms are rotation and translation invariant but again normalisation for scale is
required. Principal Components Analysis (PCA) is used as the normalisation step. This
also adjusts the first principal axis to the z-axis, and the second to the y-axis making
the angle based Cord histograms easier to calculate. Histograms with 16 bins have been
used for the Cord Hist 1, 2 and 3 descriptors. The Cord Hist 4 descriptor has 32 (16
+ 16) bins and the Cord Hist 5 descriptor has 256 (16 * 16) bins. The Combined Cord
Histogram has a histogram size of 48 (16 + 16 + 16) bins.

5.2.3 Extended Gaussian Image

The Extended Gaussian Image (EGI) method is a way of indexing features. It is described
in Section 2.6.14

Two methods are used to perform the indexing to the histogram. These are the Oct
method and the Sphere method (Zaharia and Préteux, 2001b, 2002). The Oct method
subdivides an octahedron twice such that there are 128 faces. Each face has a surface
normal and each quantised surface normal represents a bin for the histogram. The Sphere
method uses spherical co-ordinates as the index into a bi-dimensional histogram. Each
axis is quantised into five sections. The problem with the sphere method is that each
bounded region can be a different size, with larger regions at the equator and smaller

regions near the poles. Misalignment during PCA can cause this to be a problem.

The EGI Oct method has a histogram of 386 (128 * 3) bins and the EGI Sphere method
has a histogram of 50 (5 * 5 * 2) bins.

5.2.4 Hough Transform

The 3-D Hough Transform developed by Zaharia and Préteux (2002) takes its roots
from the 2-D generalised Hough Transform (Ballard, 1981). See Section 2.6.15 for more
details. Like with the EGI technique, the Oct and Sphere methods are employed in
indexing surface normals in this implementation. The Hough Transform creates a table
indexed by surface normal orientation (represented as spherical co-ordinates in the Sphere
method or as a face index in the Oct method) and distance from centre of mass storing
the surface area for each polygon in the mesh. Similarity matching is performed by
comparing the tables treated as histograms. The true Hough Transform method creates

an accumulator that gathers evidence for the existence of an object based on parameters
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calculated from a reference. Peaks in the accumulator space identify possible matches.

However, this is quite slow compared to matching just the histograms calculated here.

The Hough Sphere method has a histogram of 250 (5 * 5 * 10) bins and the Hough Oct
method has a histogram of 1280 (10 * 128) bins.

5.2.5 Shape Distributions

The Shape Distributions (Osada et al., 2001) are a collection of descriptors that capture
distributions of various features of the shape of an object. See Section 2.6.4. The work
done by Osada et al. (2001) determined that the D2 variant performed best overall
and hence this variant is used here. The Shape D2 descriptor captures the distribution
of distances between random pairs of points on the shape surface. It is rotation and
translation invariant and robust to changes in mesh resolution. However, it is not scale
invariant and so requires some pre-processing. It is created using a large number of
sample points (1024%) recorded into 64 histogram bins as used in Shilane et al. (2004);
Osada et al. (2001).

5.2.6 Modified Shape Distributions

Based upon the Shape D2 algorithm, the modified Shape D2 (MD2) (Ohbuchi et al.,
2003a) has several modifications that aim to improve it and these are described in Sec-
tion 2.6.5. The MD2 uses a 64 bin histogram and 1024 sample points.

5.2.7 Augmented Multi-resolution Reeb Graph

The augmented Multi-resolution Reeb Graph (MRG) (Tung and Schmitt, 2004) stores
geometric attributes associated with nodes of the Reeb Graph (see Section 2.6.21). These
geometric attributes are typically various 3-D descriptors applied to the section of mesh
the node represents. In this implementation, the attributes are the value of mu (the
function of the graph), surface area, volume, Cord Histograms (Cord Hist 1, 2 & 3), sur-
face curvature (as in the 3-D Shape Spectrum Descriptor (Zaharia and Préteux, 2001a))
and the 3-D Hough Transform.

Unlike the other methods, simple histogram matching will not suffice. At the lower
level, histogram matching between geometric attributes is still used, however similarity

between nodes is much more complicated and is based on graph matching.



Chapter 5 3-D Content-Based Retrieval 78

’ Short Name \ Distance Metric
City-block City-block Distance, L1 Norm
Euclidean Euclidean Distance, Lo Norm
Intersect Histogram Intersection
Chi x? Distance
Bhattacharyya Bhattacharyya Distance
Kullback Kullback-Leibler (symmetric) Distance
Kullback-ns | Kullback-Leibler (non-symmetric) Distance
Quadratic Quadratic Distance

TABLE 5.2: Short names of distance metrics

5.3 Description of Metrics

As part of the testing process a range of distance metrics have been implemented as ad-
ditional query parameters. These are the L; (City-block) and Ly (Euclidean) norms, the
quadratic distance, the Kullback-Leibler distance (both symmetric and non-symmetric
versions), the Bhattacharyya distance, the x? distance, and the histogram intersection
as described in Chapter 2. The quadratic distance is the only metric that allows some
degree of parameter control. The choice of bin distance function, and the value of sigma
are left to be determined by the application. It was decided to use the L; norm as the
distance function (this seems to be the most intuitive as there is only a single pair of
values). Sigma is used as 1.0 as Ankerst et al. (1999) reported no significant changes in

performance in altering the value, which was confirmed in early experimentation.

The majority of literature uses the Euclidean distance to match feature vectors. The
Bhattacharyya and Kullback-Leibler distances have been shown to give better results in

some cases, but this is at the expense of speed.

Table 5.2 lists the short names for the distance metrics used in this work.

5.4 Methodology

The aim of this work is to determine what descriptors are good in general and in which
situations an alternative descriptor and metric will be more useful. The first case will
be the more commonly used scenario. The second case will be useful for more specific
queries. The work by Shilane et al. (2004) has shown that there is no one descriptor
that does well in any situation, so in some cases it makes sense to use one descriptor, in

others it makes sense to use a different one.

The descriptors to be evaluated are the Shape D2, MD2, Cord Hist 1, Cord Hist 2,
Cord Hist 3, Cord Hist 4, Cord Hist 5, Cord Histogram, Area Volume, EGI (Oct and
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Sphere methods) and the Hough Transform (Oct and Sphere methods) and MRG de-
scriptors. The evaluation then continues to compare the distance metrics side by side
with the Shape D2 descriptor. These are Minkowski L; and Ly norms, Bhattacharyya,
x2, Kullback-Leibler (both symmetric and non-symmetric), histogram intersection and

quadratic distances metrics. The individual class performance will then be examined.

To evaluate retrieval performance, the Princeton Shape Benchmark (PSB) framework
has been used (Shilane et al., 2004). This framework has been chosen as it is the only
known framework proposed in the literature for evaluating 3-D CBR. The provided data
set allows comparisons to other studies based on it. The PSB paper (Shilane et al., 2004)
gives a sample comparison of a set of 3-D descriptors. This is composed of a set of tools
to generate the evaluation statistics, graphs and images. It also contains a reference data

set of approximately 1,800 manually classified objects.

In addition to the PSB data set (which is composed of models obtained from the World
Wide Web and will be typically of a low quality) a data set created from museum artifacts
is also used. This is composed of higher quality models and will be more typical of the
kind of data that will be used. However, due to the time and cost of acquiring 3-D

models of artifacts, this data set is much smaller.

The evaluation procedure will make use of the evaluation criteria, precision-recall graphs,
nearest-neighbour, first- and second-tier, E-Measure and DCG statistics to give a broad
view of the abilities of the descriptors. The statistics are calculated for the whole data set
and on a per-class basis. The statistics are normalised to the range [0.0:1.0] for presenta-
tion purposes. The tier image will help give an overview of the class-based performance
of each descriptor and results will be backed up by the statistics for individual classes.
The tier image (For example, see Figure 5.7) shows the nearest neighbour (black) and
the first (red) and second tier (blue) results for each object in the data set. White pixels
mean objects are very dissimilar. The image diagonal should be black indicating that
each object is matched best with itself. If the diagonal is not fully coloured with nearest-
neighbour matches then this indicates a possible problem with the algorithm. Ideally
all the coloured pixels would be within the class boundaries along the diagonal. These

techniques are described in more detail in Chapter 2.

As an alternative to the PSB statistics, the ratio of within-class and between-class vari-
ance is presented. Within-class variance is the variance of the members within a given
class. The between-class variance is the variance of the mean of each class.It is expected
that descriptors that give a large ratio are better at separating the classes and so will

provide better retrieval performance than those with lower ratios.

Intuitively, we would expect that a descriptor that minimises the variance within classes
and maximises the variance between classes would perform better than those descriptors

that do not. In this work the ratio of between class variance to mean within class
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’ Class Name ‘ Size ‘

Figurine 52
Head 8
Mould 15
Pot Y
Statue 45
Tile 28
Misc 15

TABLE 5.3: Museum Data set: Classes and sizes

variance is calculated (See Equation 5.1). The higher the value of the ratio, the better

the expected performance.

. ) between class variance
Variance Ratio = S . (5.1)
mean(within class variance)

This ratio does not take into account the class sizes, i.e. classes with few members have
equal weighting to classes with many members. Conceptually, this ratio turns out to be
very similar to the process defined in ANOVA (ANalysis Of VAriance) although there

are differences in the calculations of the between and within class values.

5.4.1 3-D Object Data sets

The PSB data set contains four different levels of classification. These are hierarchical
in nature and have a number of empty classes that are parent types. Typically only the
leaf classes contain the actual objects, although in some cases the parent also contain
objects. There is a “base” classification containing about 160 non-empty classes and
this is the classification used in this work. There are also another three coarser grained
classification schemes, with the coarsest classification containing only four classes. Each
of these classifications is split into a training and testing group of equal size. This split
is aimed for use in a classification system. The descriptor comparison in Shilane et al.
(2004) used the base test set (referred to as the PSB Data set in the rest of this chapter)
of 907 models so for comparative purposes, this work will use the same. Table B.1 shows
the class hierarchies (separated by ’/’) for each populated class and it’s size. As can be
seen the classes have a varying number of objects ranging from only four objects to fifty
objects. All the PSB objects are represented in the OFF file format (Shilane et al., 2004)

storing only vertex data.

The museum data set contains 210 objects manually classified into 7 classes. Table 5.3

shows the classes and their sizes. These objects are represented in VRML and .tri file
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formats and range from those containing a few thousand polygons, to some containing
many thousands of polygons. However they typically contain many more polygons than
the models in the PSB data set.

The figurine and mould classes contain the mould used to create the original figurines.
There are two different figurines class contains objects that are clay figurines of two
different objects. The figurines and moulds differ mainly in size and level of detail.
A mould creates a large number of figurines before it breaks (or becomes otherwise
unusable) and so a new mould is created from an existing figurine. However as the
figurine is made of clay, it shrinks while drying making it smaller than the original.
The new mould is also able to capture less detail than the original. This means that
newer generations of figurines are much smaller and have much less detail than older
generations. The mould and figurine objects are also broken in many cases and the model
is of only a part of the original. The tile class is composed of paving tiles, typically flat
square shaped objects. The main detail in these objects lies within the texture map
(which is not used in this work). The statue class contains various statue-like objects.
The pot class contains various vase shaped objects. The head class contains models of
head shaped objects. The misc class contains objects that did not readily fit into any of

the other classes.

It is expected that the tile class will be easy for the descriptors as they are all basically
the same shape. The figurine and mould class likewise. However, we may find that
the figurine and mould class have more correspondence due to the moulds being used
to create the figurine. The other classes have a much more diverse range of objects,
however the pot and head classes should obtain good retrieval results as they are more

homogeneous than the other classes such as the misc and statue classes.

The objects and classes within the two data sets are quite different. The PSB data set
is made up of objects obtained from the WWW. This means that they are likely to be
lower quality due to the way they have been created and to keep their file size down. This
could mean that the meshes are of a low resolution. Other problems include incomplete

meshes and unlabelled or incounsistently orientated polygons.

5.5 Evaluation Results

The evaluation begins first by evaluating the descriptors and distance metrics in the
context of the PSB data set, and then in the context of the Museum data set. For
each data set, the overall results are first presented followed by results of class by class

analysis.
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’ Descriptor \ Ratio ‘
Area Volume 0.6
Cord Hist 1 5.7
Cord Hist 2 11.2
Cord Hist 3 8.2
Cord Hist 4 19.4
Cord Hist 5 38.1
Cord Histogram 25.2
Shape D2 80.5
Modified Shape D2 | 80.7

TABLE 5.4: PSB Data set: Ratio of Between Class and Mean Within Class Variance

5.5.1 Princeton Shape Benchmark Data set Results

The PSB data set contain models obtained from the World Wide Web and as such are
prone to problematic meshes. As a result, the EGI Oct and both Hough methods are
missing from these results as the quality of the models adversely effected the descriptors

such that meaningful results were unable to be obtained.

Table 5.4 shows the ratio of between class variance and mean within class variance. The
higher the value, the better as it means that members of the same class are grouped
tightly together, but different classes are spread apart. It can be seen that the ShapeD2
and MD2 both give a very high ratio compared to other descriptors. The Cord Hist
5 and Cord Histogram (and to some extent Cord Hist 4) also give higher ratios than
other descriptors, but the ratio is much closer to them. We would expect the Shape D2
and MD2 to perform better than the other descriptors. We would also expect the Area

Volume (with the smallest ratio) to perform worse than the other descriptors.

The first experiment compares the relative performance of the descriptors on the PSB
data set. The Euclidean distance metric has been used as the distance metric. Table 5.5
shows the statistics (see Section 2.9 for descriptions of these) and Figure 5.4 shows the
corresponding precision-recall curves. The best performing descriptors are the Shape D2
and the MD2 descriptors. The Combined Cord Histogram and Cord Hist 4 are the next
best. The worst descriptors are the Cord Hist 1 and Area Volume descriptors, although
they are still better than performing a random retrieval. The precision-recall graph show

a similar ranking of results to the statistics.

Comparing these results to those in the Princeton Shape Benchmark (Shilane et al.,
2004), we can see that the Shape D2 is one of the poorer performing descriptors in their
comparison where as it is one of the better ones in our comparison. This means there is
definite room for achieving greater retrieval performance with alternative descriptors. It

is also worth noting that the two EGI based techniques perform better than the Shape D2
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FIGURE 5.4: PSB Data set: Descriptor Comparison using the Euclidean Distance

Descriptor Nearest First Second E- DCG
Neigh- Tier Tier Measure
bour

Area Volume 0.042 0.142 0.178 0.074 0.384
Cord Hist 1 0.131 0.162 0.200 0.088 0.399
Cord Hist 2 0.239 0.206 0.266 0.124 0.453
Cord Hist 3 0.202 0.205 0.261 0.124 0.446
Cord Hist 4 0.280 0.224 0.284 0.135 0.470
Cord Hist 5 0.282 0.221 0.277 0.132 0.463
Cord 0.290 0.225 0.287 0.136 0.471

Histogram
EGI 0.181 0.186 0.224 0.102 0.418
MD2 0.341 0.242 0.325 0.154 0.492
ShapeD2 0.336 0.246 0.327 0.156 0.492
MRG 0.250 0.184 0.218 0.103 0.417
Random 0.019 0.018 0.034 0.018 0.307

TABLE 5.5: PSB Data set: Descriptor Performance using the Euclidean Distance
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F1GURE 5.5: PSB Data set: Average Distance Metric Performance
Metric Nearest First Second E- DCG
Neigh- Tier Tier Measure
bour
Bhattacharyya 0.120 0.160 0.199 0.087 0.400
Chi 0.224 0.199 0.250 0.117 0.440
City-block 0.215 0.193 0.244 0.114 0.435
Euclidean 0.205 0.189 0.238 0.110 0.431
Intersect 0.144 0.153 0.195 0.088 0.401
Kullback 0.156 0.168 0.211 0.091 0.401
Kullback-ns 0.205 0.189 0.238 0.110 0.431
Quadratic 0.207 0.189 0.239 0.111 0.431

TABLE 5.6: PSB Data set: Average Distance Metric Performance

in their comparison. One difference between implementations is that our EGI descriptors

store surface area whereas the PSB implementations do not.

The second experiment compares the relative performance of the distance metrics on
the PSB base test data set averaged over all descriptors. Table 5.6 shows the statistics
and Figure 5.5 shows the corresponding precision-recall curves. It can be seen that the
metrics fall into two groups. The higher performing group contains the Chi, City-block,
Euclidean, Kullback-Leibler (non-symmetric) and Quadratic distances and the lower per-

forming group contains the Bhattacharyya, Histogram Intersection and Kullback-Leibler
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FIGURE 5.6: PSB Data set: Best Distance Metric for Descriptor

(symmetric) distances. The Chi distance gives the best average performance overall and

the Bhattacharyya distance giving the lowest average performance overall.

Figure 5.6 shows the precision-recall curves and Table 5.7 shows the corresponding statis-
tics for the best metric for each descriptor ranked on highest DCG score. In some cases
multiple distance metrics scored exactly the same. The table shows that the Bhat-
tacharyya and Chi distances are the best performers typically, with the City-block dis-
tance the only other metric and that appears only once. This contrasts with the previ-
ous results in Table 5.6 and Figure 5.5 where the Bhattacharyya distance was the worst
overall distance metric. Although increases in performance can be observed compared

to Table 5.5, the increase is only slight.

Table 5.8 shows the descriptor and metric combination that gave the list of classes the
best performance (DCG). As can be seen, no one combination comes out on top for all
cases. Most combinations are only good for a single class, and only a few combinations
have a sizable number of good classes. The Shape D2, MD2 and MRG descriptors have
more classes in general than the other Cords based descriptors. However, the Cords based
descriptors have many classes spread out over the distance metrics. This suggests that
for these descriptors, no one metric works bests, where as for the Shape D2 descriptor a
smaller number of distance metrics have been best matches indicating that some metrics

are better than others for this descriptor.
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Descriptor Metric Nearest First Second | E-Measure DCG
Neigh- Tier Tier
bour
Area Bhattach-|  0.043 0.142 0.178 0.075 0.385
Volume aryya /
Chi
Cord Hist 1 | Bhattach-| 0.163 0.172 0.217 0.098 0.413
aryya
Cord Hist 2 Chi 0.246 0.217 0.278 0.131 0.465
Cord Hist 3 | Cityblock| 0.228 0.208 0.266 0.126 0.448
Cord Hist 4 Chi 0.303 0.234 0.297 0.142 0.477
Cord Hist 5 Chi 0.324 0.242 0.310 0.148 0.484
Cord Chi 0.330 0.247 0.308 0.148 0.489
Histogram
Shape D2 Chi 0.215 0.190 0.232 0.105 0.425
Modified | Bhattach-| 0.354 0.267 0.348 0.165 0.507
Shape D2 aryya
Shape D2 | Bhattach-| 0.352 0.269 0.348 0.166 0.509
aryya
MRG N/A 0.251 0.185 0.219 0.103 0.417

TABLE 5.7: PSB Data set: Best Metric for Descriptor - Based on highest DCG

Figure 5.7 shows an example tier image for the Shape D2 descriptor using the Euclidean
distance metric (see Section 2.9 for a description). We can immediately see the diagonal
is a solid black line showing the nearest neighbour is correctly matched as itself. We
can also see while the “human arms out” class and the “fighter jet” class both show good
within class matches, there is also a large number of between class matching, indicating
that the Shape D2 descriptor has trouble distinguishing between the two. There is a
large number of matches outside the diagonal class boundaries, showing that there is a

large amount of confusion between classes and that there is still room for improvement.

Table 5.9 shows the statistics for a few selected classes. There are far too many classes
to present them all. The upper section of the table shows the statistics for some classes
the the Shape D2 performed well on, and the lower half some classes the Shape D2
performed badly upon. A large difference in performance can be seen between those
clagses that obtain good retrieval performance and those classes that obtain poor retrieval
performance. The higher performing classes are reflected in the Tier Image (Figure 5.7)
as densely coloured class squares, where as the poorer classes are reflected by empty class

squares.
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Descriptor ‘ Distance Metric Classes
Area Volume Kullback Barren
Cord Hist 1 Bhattacharyya Satellite, Hand, Shelves
Cord Hist 1 Chi Mailbox
Cord Hist 1 Euclidean monster _truck
Cord Hist 1 Intersect Helicopter
Cord Hist 1 Kullback-ns monster _truck
Cord Hist 1 Quadratic Staircase
Cord Hist 2 Chi Stealth bomber
Cord Hist 2 City-block Flying bird, School desk
Cord Hist 2 Euclidean Jeep
Cord Hist 2 Intersect Snake, Wheel, Gear
Cord Hist 2 Kullback-ns Jeep
Cord Hist 3 Bhattacharyya One_story _home
Cord Hist 3 Chi Commercial
Cord Hist 3 City-block Book
Cord Hist 3 Euclidean Pail
Cord Hist 3 Intersect Flying saucer, Satellite dish
Cord Hist 3 Kullback-ns Pail
Cord Hist 3 Quadratic Pail
Cord hist 4 Chi Sink
Cord hist 4 City-block Train_car
Cord Hist 5 Bhattacharyya Vase
Cord Hist 5 Chi Human, Fish, Axe, Face, Head
Cord Hist 5 City-block Rectangular, hat
Cord Hist 5 Kullback Biplane
Cord Hist 5 Quadratic Billboard, Race car
Cord Histogram Chi Enterprise like, Skull, Skyscraper, Ship, Sedan, Semi
Cord Histogram City-block Knife, Single leg
EGI Sphere Bhattacharyya Two _story home
EGI Sphere Chi Bench
EGI Sphere City-block Church, Slot _machine
EGI Sphere Kullback-ns Tie_ fighter
EGI Sphere Quadratic Ant
EGI-Sphere Kullback Hot _air_balloon, Standing_ bird
MD2 Bhattacharyya Chess set, Human arms out, Sea turtle,
Computer _monitor, Door, Cabinet, Ladder
MD2 Chi Chess_set,Gazebo, Submarine
MD2 City-block Rabbit, Umbrella
MD2 Intersect Rabbit, Umbrella
MD2 Kullback Walking, One peak tent, Eyeglasses, Street light
MD2 Kullback-ns Butterfly
MD2 Quadratic Barn
MRG —_— Dog, Geographic map, Glass with stem, Newtonian toy,
Potted plant, Conical, Large sail _boat
Shape D2 Bhattacharyya Fighter_jet, Glider, Sword, city, Desk chair, Handgun,
Electric_guitar
Shape D2 Chi Shovel, Desktop, Dining_ chair
Shape D2 Intersect Desktop, Dining_chair
Shape D2 Kullback Hammer, Horse, Fire place, Hourglass

TABLE 5.8: PSB Data set: Best descriptor and metric for classes
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FIGURE 5.7: PSB Data set: Tier Image for Shape D2 using Euclidean Distance

5.5.2 PSB Results Commentary

The overall performance of these descriptors follow a similar ranking to that in Table 5.4.
This gives a good indication that the ratio used can be used to predict the relative per-
formance of descriptors without having to perform an exhaustive comparison. However,
this is only an overall indication and other techniques still need to be used to analyse

class by class performance.

5.5.3 Museum Data set Results

In the second part of this evaluation, the museum data is used to evaluate the perfor-

mance of the retrieval algorithms. Both Hough methods and the EGI Oct method are
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’ Class ‘ Nearest Neighbour | First Tier ‘ Second Tier | E - Measure ‘ DCG
fighter jet 0.540 0.325 0.488 0.299 0.714
human 0.700 0.405 0.609 0.356 0.752
electrical guitar 0.692 0.404 0.526 0.311 0.700
sword 0.625 0.421 0.596 0.380 0.687
glider 0.842 0.327 0.415 0.280 0.670
human arms_out 0.450 0.197 0.316 0.208 0.551
horse 0.333 0.200 0.300 0.108 0.414

knife 0.286 0.095 0.333 0.218 0.412
walking 0.000 0.054 0.107 0.058 0.276
tie_fighter 0.400 0.100 0.100 0.022 0.268
satellite 0.000 0.000 0.000 0.000 0.180
rabbit 0.000 0.000 0.000 0.029 0.163
satellite dish 0.000 0.000 0.000 0.000 0.135

TABLE 5.9: PSB Data set: Class Statistics for Shape D2 using Fuclidean distance

‘ Descriptor ‘ Ratio ‘

Area Volume 14
Cord Hist 1 6.3
Cord Hist 2 7.8
Cord Hist 3 5.5
Cord Hist 4 13.3
Cord Hist 5 23.5
Cord Histogram | 19.6
EGI Oct 12.3
EGI Sphere 2.0
Hough Oct 40.7
Hough Sphere 13.1
Shape D2 314
MD2 31.4

TABLE 5.10: Museum Data set: Ratio of Between Class and Mean Within Class
Variance

available for this data set.

Table 5.10 shows the ratios of the different descriptors histograms. The ratio for the
MRG cannot be calculated as it is a variable length feature vector. The Hough Oct
descriptor gives the highest ratio. Like the PSB data set, the Area Volume descriptor
gives the lowest ratio. The Shape D2 and MD2 descriptors also give the high ratios.

Table 5.11 shows the statistics and Figure 5.8 shows the corresponding precision-recall
curves. The MRG descriptor shows a clear improvement over the other descriptors in
both the precision-recall curves and statistics. Surprisingly the next best descriptor is
the Cord Hist 1, which while it has similar performance to many of the other descriptors

for low recall values it manages to keep higher precision for higher recall, coming closer



Chapter 5 3-D Content-Based Retrieval

Descriptor Nearest First Second E- DCG
Neigh- Tier Tier Measure
bour
Area Volume 0.455 0.385 0.637 0.371 0.718
Cord Hist 1 0.705 0.492 0.656 0.462 0.780
Cord Hist 2 0.632 0.357 0.589 0.347 0.733
Cord Hist 3 0.655 0.398 0.588 0.384 0.734
Cord Hist 4 0.723 0.416 0.614 0.405 0.758
Cord Hist 5 0.718 0.421 0.620 0.407 0.754
Cord 0.727 0.419 0.616 0.408 0.760
Histogram
EGI Oct 0.568 0.373 0.566 0.367 0.720
EGI Sphere 0.600 0.341 0.502 0.352 0.711
Hough Oct 0.623 0.361 0.544 0.346 0.711
Hough Sphere 0.345 0.293 0.503 0.271 0.663
MD2 0.800 0.401 0.596 0.395 0.754
Shape D2 0.759 0.400 0.595 0.395 0.754
MRG 0.805 0.534 0.699 0.520 0.818
Random 0.150 0.191 0.387 0.178 0.604

TABLE 5.11: Museum Data set: Descriptor Performance using the Euclidean Distance
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FIGURE 5.8: Museum Data set: Descriptor Comparison using the Euclidean Distance
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Distance Nearest First Second E- DCG
Metric Neigh- Tier Tier Measure
bour
Bhattacharyya 0.454 0.344 0.553 0.322 0.697
Chi 0.670 0.406 0.601 0.392 0.746
City-Block 0.664 0.397 0.590 0.386 0.743
Euclidean 0.655 0.389 0.582 0.378 0.736
Histogram 0.543 0.356 0.556 0.337 0.710
Intersection
Kullback- 0.551 0.332 0.538 0.316 0.700
Leibler
(Symmetric)
Kullback- 0.655 0.389 0.582 0.378 0.736
Leibler
(Non-
Symmetric)
Quadratic 0.656 0.388 0.582 0.377 0.735
Random 0.150 0.191 0.387 0.178 0.604

TABLE 5.12: Museum Data set: Average Distance Metric Performance

to the MRG performance. The worst algorithm is the Hough Sphere descriptor, although
it is still much better than random. Also interestingly the Area Volume descriptor starts
out on the lower side of the descriptor performance, but it keeps up its precision well as

recall increases.

Table 5.12 shows the statistics averaged across all the descriptors (except the MRG
descriptor (uses the Euclidean internally) and the Area Volume (only so many ways to
compare two numbers)). Figure 5.9 shows the corresponding precision-recall curves. Chi
seems to come out on top, closely followed by the City-block metric. The Bhattacharyya

gives the worst performance. The Fuclidean distance gives intermediate performance.

Table 5.13 shows the best distance metric for each descriptor ranked on DCG score first.
Figure 5.10 shows the corresponding precision-recall curves. Again, like for the PSB data
set the Chi distance does very well, however the Bhattacharyya distance only appears in
a joint best position. Unlike the PSB, the City-block and Histogram Intersect distance
appear on several results. Most notably, the Shape D2 and MD2 algorithms have these

as the best metrics, whereas for the PSB it was the Chi distance.

Table 5.14 shows the best descriptor and metric(s) for each class based on DCG score.
Compared to the variance table displayed earlier (Table 5.10), we can see that only
the pot class has the best descriptor that gave the lowest variance. The lack of total
correspondence is perhaps due to the different distance metrics altering the effects of

the variance of the histograms, thus causing the descriptors to behave differently. As
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Descriptor Metric Nearest First Second E- DCG
Neigh- Tier Tier Measure
bour
Area Volume | Bhattach-| 0.455 0.386 0.638 0.371 0.719
aryya /
Chi /
Kullback
Cord Hist 1 Chi 0.723 0.496 0.671 0.463 0.787
Cord Hist 2 Chi 0.636 0.361 0.593 0.344 0.737
Cord Hist 3 Chi 0.636 0.403 0.592 0.392 0.740
Cord Hist 4 Chi 0.732 0.427 0.619 0.415 0.761
Cord Hist 5 Chi 0.759 0.474 0.668 0.452 0.781
Cord Chi 0.750 0.443 0.630 0.430 0.771
Histogram
EGI Oct City- 0.591 0.392 0.594 0.390 0.732
Block
EGI Sphere Chi 0.723 0.390 0.595 0.395 0.744
Hough Oct City- 0.650 0.373 0.554 0.354 0.721
block /
Intersect
Hough Sphere Chi 0.395 0.298 0.502 0.281 0.665
MD2 City- 0.764 0.404 0.602 0.397 0.761
block /
Intersect
Shape D2 City- 0.755 0.403 0.600 0.398 0.759
block /
Intersect
MRG N/A 0.805 0.534 0.699 0.520 0.818

TABLE 5.13: Museum Data set: Best Metric for Descriptor - Based on highest DCG

expected, the misc class performs worse due to the diverse range of objects. Also, as

expected the tile class performs well as the class consists of very similar objects.

This is also interesting as the MRG only appears once in this list despite being the best
overall descriptor. The Hough Oct appears twice in this list despite giving a more average
performance overall. In the tile class, we see Hough Oct which ranked tile in the middle
in the feature vector variance was actually the best descriptor for it. It scores very high
results with the Kullback metric, although all other results with different metrics are

much worse.

Figure 5.11 shows an example tier image for the Shape D2 descriptor using the Euclidean
distance. It can be seen that the figurine and mould classes showed a correspondence as

would be expected as the mould is used to create the figurine.

Table 5.15 shows the statistics for each class. A large difference can be seen between the

worst class performance (misc) and the best class performance (tile and mould).
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Class Descriptor | Metric | Nearest First Second E - DCG
Neigh- Tier Tier Mea-
bour sure

Figurine MRG Bhattach-| 0.885 0.578 0.800 0.629 0.897
aryya

Head MD2 Intersect 0.625 0.281 0.359 0.133 0.540
/ City-
Block

Misc Hough Bhattach-| 0.067 0.133 0.173 0.093 0.463
Oct aryya

Mould Cord Intersect 0.895 0.724 0.960 0.708 0.934
Hist1 / City-
Block

Pot EGI Kullback | 0.911 0.625 0.905 0.615 0.880

Sphere

Statue | Cord His- City- 0.321 0.279 0.403 0.277 0.633
togram block

Tile Hough Kullback | 1.000 1.000 1.000 0.524 1.000

Oct

TABLE 5.14: Museum Data set: Best Metric for Descriptor - Based on highest DCG

‘ Class ‘ Nearest Neighbour | First Tier ‘ Second Tier | E - Measure ‘ DCG ‘
Tile 0.933 0.657 0.905 0.559 0.886
Figurine 0.808 0.463 0.732 0.392 0.818
Mould 0.965 0.530 0.761 0.480 0.886
Statue 0.464 0.167 0.271 0.169 0.569
Head 0.875 0.179 0.268 0.122 0.517
Pot 0.756 0.266 0.439 0.257 0.714
Misc 0.133 0.081 0.138 0.090 0.382

TABLE 5.15: Museum Data set: Class Statistics for Shape D2 using Euclidean distance

5.5.4 Museum Results Commentary

A surprising result is that of the Cord Hist 1 descriptor. It performed very well in many

cases, however in Table 5.10 it achieved a low ratio. Of course the ratio does not take

into account whether classes overlap each other in feature space, nor does it take into

account how many objects are in each class. The use of distance metrics produced much

larger differences in performance than was seen in the PSB data set.
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FIGURE 5.11: Museum Data set: Tier Image for Shape D2 using Euclidean Distance
5.6 Conclusions

We have seen that overall the Shape D2 and MD?2 descriptors produce the best results,
although on a class by class basis, other descriptors can give better performance. The use
of alternative distance metrics to the Euclidean distance showed that better performance
could be obtained, but again there was no consistently better metric, although there were
definitely some poorer choices of metric for some of the descriptors. This implies some

prior knowledge is required in order to obtain the best possible retrieval performance for
a given query.
The differences between the museum and PSB data sets can be attributed to differences

in quality of the models, but also due to the number of models and classes in those data

sets. Smaller numbers of classes makes it much easier to correctly retrieve an object of
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the same class so it is to be expected that the performance levels would be higher for
the museum data set than with the PSB data set.

Overall there is room for improvement over the techniques presented here. Comparing
our results to those in the PSB comparison shows that there are other more powerful
techniques that could be used to improve retrieval performance. Indeed, the choice of
descriptor alters the level of performance much more than changing the distance metric

for a descriptor.

The next chapter describes the production of a classifier agent that uses the descriptors

generated from the algorithms as inputs to the system.



Chapter 6

3-D Object Classification

6.1 Introduction

In this chapter, popular classification techniques are evaluated for their suitability for
use in classifying 3-D objects based upon their 3-D shape descriptors. Classification
techniques typically have large numbers of parameters to modify behaviour and result-
ing performance. However manually determining these parameters is a time consuming
task and not one that is desirable to be repeated. Therefore an important aspect of
this work is to minimise the amount of user intervention required in creating suitable
classifier systems. Typically the more sophisticated the technique, the larger the range

of parameters to set.

Chapter 4 described the work on developing a classifier agent to automatically classify
unknown objects with the aim of filling in some of the missing metadata for the object.
From this work a number of things need to be considered when making decisions about
what to use when. Firstly, there are likely to be a large number of classes with few samples
per class. Each object can have more than one class label (which may or may not be
related to each other). There is potential for new “training data” to appear at regular
intervals making existing classifiers obsolete. The metadata can be poor, unstructured

and liable to errors (e.g. spelling mistakes in class names).

Two strategies are considered in this work. The first attempts to combine a number of
classifiers in order to increase performance. The second attempts to find the optimal

parameters to use with a single classifier.

6.2 Related Work

In Chapter 3 a large number of classification techniques were described. In this section,

we will briefly re-cover the relevant areas for the work contained in this chapter.

97
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Chapter 4 described the Classifier Agent developed as part of the SCULPTEUR project.
This was more focused on user interface design and interaction with the SCULPTEUR
system to obtain data rather than how well it actually performed. In this chapter several
clagsification techniques are evaluated as are several methods to improve classification

performance over using a single base classifier.

6.2.1 Classification Techniques

A number of classification techniques have been used in this work initially selected mainly
because of their popularity in previous work. These are the k-Nearest Neighbour, Multi-
Layer Perceptron, Radial-Basis Function Networks and the Support Vector Machine (See
e.g. Bishop, 1997b; Haykin, 1999). These have been described in Chapter 3 and some

more specific details have been added here where necessary.

6.2.1.1 k-Nearest Neighbour

The k-Nearest Neighbour (£-NN) is one of the simplest classifier techniques to understand
and implement. It works by finding the k¥ nearest objects in feature space and assigning a
classification based upon the dominant label of those & objects; typically a majority vote
is used. A commonly used version of the k-NN is the Nearest Neighbour (NN) classifier
where £ is equal to one. This classifier is fast to train (just need to store training data
as reference feature points). Classification can be computationally expensive however as

it is proportional to the number of reference features.

Unlike many other classification techniques, there is no random component to the initial
conditions so the same classifier is always produced from the same initial parameters.

This is advantageous as re-training will not give better or worse performance.

6.2.1.2 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP), described in Section 3.3.2, is a powerful and popular

clagsification technique.

The MLP uses a randomly initialised set of weights meaning that each time it is trained,
different results will occur (potentially better or worse). The training process should
be able to reduce the effects of initial conditions if enough iterations are performed.
Training of MLP’s is typically achieved using some form of gradient decent function. In
the space representing the weight vector and error value, the gradient of the error for a
given set of weights is calculated. The weights are then adjusted to a new position in the
direction of the lower error. This is applied iteratively until it is not possible to move to

a point with lower error. However, this can lead to finding local minima rather than the
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global minimum. Several methods attempt to avoid local minima whilst trying to find

the global minimum quickly.

Each node in the MLP has a set of weights and a bias. The input vector is multiplied
against the weight vector and has the bias added to it to produce an output value. During
training, the bias is considered as an extra weight rather than a separate component.
In the simplest case, the activation function can return the input value. In this form
we have a linear activation function. However, non-linear activation functions produce
more powerful classifiers. The logistic sigmoid activation function uses the exponent of
the output value perform the mapping. Another function is the softmazr function which

is a generalisation of the logistic sigmoid function.
For each node, the output, y, is calculated as follows
y =g (v x+w)

where w is the weight vector, wy is the bias and x is the input vector.

The linear activation function is simply;

g(a)=a

The logistic sigmoid activation function is;

(a) :
a) =
g 1+ exp(—a)
The softmax activation function is;
exp (ar)
glar) = =g ———
Sk exp(ax)

where aj, is the output of node k and K is the number of nodes.

The Hessian Matrix forms an important aspect of several MLP training algorithms. Each
element is a second derivative of the error calculated for components of the weight vector.

The matrix itself is of size W x W where W is the size of the weights vector.

There are many training methods and we describe three such methods here. Newton’s
method makes use of the Hessian Matrix to obtain the gradient at any given point. By
taking the inverse of the Hessian matrix the weight vector representing the minimum error
can be obtained. However, the calculation of the Hessian matrix is computationally costly

and the method to calculate the weight vector of the minimum error is approximated
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so requiring an iterative approach. The Quasi-Newton method approximates the inverse

Hessian matrix over a number of steps reducing the computational cost.

The conjugate gradients (CG) method attempts to pick the best direction to start trav-
elling immediately. Fach step is taken in the direction orthogonal to the gradient until

the next location where the gradient is again orthogonal to the search direction.

The scaled conjugate gradient (SCG) method is similar to the conjugate gradient method,
but employs a faster function to estimate the Hessian matrix. The scaled part of the
name comes from the scaling factor applied to the unit matrix which is added to the

Hessian matrix to make sure it is positive definite and can be inverted.

The conjugate gradient methods are more computationally efficient than the Quasi-
Newton method allowing higher dimensional problems to be solved at the expense of

increased sensitivity to the line search accuracy.

6.2.1.3 Radial Basis Function Networks

The Radial Basis Function (RBF) networks classifier is another popular technique and

is described in Section 3.3.3.

Three basis functions are used in the work in this chapter defined as ¢ (r). The Gaussian

basis function is one of the most commonly used basis functions.

$(r) = exp (20>

where o is the width of the basis function.

The Thin-Plate Spline (tps) is, in one-dimension, a piecewise-linear interpolation func-

tion;

6 (r) = rIn (r)

The rlog r basis function is;
¢ (r) = r'log (r)

6.2.1.4 Support Vector Machine

The support vector machine (SVM) is a more recent and powerful classification technique.
It does not suffer from the curse of dimensionality allowing much more complex problems

to be solved than with other techniques. Section 3.3.4 gives more details. The SVM uses
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a randomly initialised set of weights meaning that each time it is trained, different results
will occur (potentially better or worse). The training process should be able to reduce

the effects of initial conditions if enough iterations are performed.

We use three kernel functions in this work, defined as K (z,2') where x and 2’ are the

kernel parameters. The spline kernel;

where k is the spline order, N is the number of knots located at 7.

The Polynomial kernel,

K (x,x') = (xTx + 1)p

where p is the degree of the polynomial.

The Exponential RBF kernel;

112
(x,x) €$p< 720’2

Where o is the width of the basis function.

6.2.2 Improving Performance

A number of techniques have been described in Chapter 3 for improving performance and
are used in the work in this chapter. Classifier Ensembles are described in Section 3.6.1
and Dynamic Classifier Selection (DCS) in Section 3.6.1.8. Two optimisation techniques
are used in this chapter. Particle Swarm Optimisation is described in Section 3.7.4 and

Genetic Algorithms in Section 3.7.3.

6.2.3 Early Experimentation

The initial work in this area, undertaken as part of the classifier agent development (see
Chapter 4), applied Support Vector Machines to the Shape D2 and Cord Hist 1 3-D shape
descriptors. A binary SVM implementation was used (Gunn, 1997). The initial work
created a classifier for each class in the data set. For each classifier, samples in the data
set of the current class were labelled with "1’ and all other samples were labelled with ’-1’.

Split-sample was used to train and evaluate each classifier individually. Naively perhaps,
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’ Class Name | Training Size ‘ Test Size ‘

animals 11 10
bike 1 2
chairs 7 7
guns 3 2
helicopter ) 6
objects 10 9
other 11 11
people 16 17
planes 36 36
robot 15 16
shapes 2 2
space 3 3
spaceships 7 6
startrek 8 8
starwars 3 4
vases 14 13
vehicles 11 11
zepplins 3 3

TABLE 6.1: SVM Test Data set

the winning label was selected as the label from the classifier with the highest testing
accuracy that gave a positive (’1’) prediction. Here, we present the classifier results
and of experimenting with more popular methods of obtaining multi-class results from
binary classifiers. Here we present the results for using one-versus-all, one-versus-one
and DAG-SVM combining methods (Hsu and Lin, 2002).

Table 6.1 shows the class names and sizes in the training and testing partitions. As can
be seen there is a range of different classes. Some classes have very few objects (e.g.
the class bike) and poorer performance can be expected for the objects in those classes.
There are also a number of classes that could be considered very similar to each other

(the space classes) however they are kept separate here.

Table 6.2 shows the performance of the SVM for the Shape D2 (upper half) and Cord
Hist 1 (lower half) descriptors. The experiments use all three combination methods with
a number of different kernels and kernel parameters (value of parameter is shown in
parenthesis). It can be seen that the one-versus-all method gives the best performance,
whilst the one-versus-one and DAG-SVM give lower, but similar performance. The
Shape D2 results for both DAG-SVM and one-versus-one are notable as they are the

same regardless of the kernel, however for Cord Hist 1, they are variable.

While Hsu and Lin (2002) suggested that the DAG-SVM and one-versus-one methods
would give better results, it can clearly be seen that in this case one-versus-all gives the
best results (approximately 30 % instead of approximately 15% accuracy). The data set

used is not ideal causing these methods to perform badly. It is possible in the case of
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’ SVM Kernel ‘ One-versus-All ‘ One-versus-One ‘ DAG-SVM ‘

Descriptor: Shape D2

Spline 38.0% 13.9% 13.3%

Poly (1.0) 34.9% 13.9% 13.3%

Poly (2.0) 36.7% 13.9% 13.3%

RBF (0.5) 39.2% 13.9% 13.3%

RBF (1.0) 36.7% 13.9% 13.3%

RBF (2.0) 34.9% 13.9% 13.3%
Descriptor: Cord Hist 1

Spline 31.9% 15.6% 15.7%

Poly (1.0) 29.5% 18.1% 16.9%

Poly (2.0) 28.9% 15.1% 14.5%

RBF (0.5) 33.7% 12.7% 13.9%

RBF (1.0) 31.3% 15.7% 15.1%

RBF (2.0) 29.5% 13.3% 13.9%

TABLE 6.2: SVM Results

‘ Class Name ‘ Training ‘ Testing ‘

Mask 3 3
Misc 9 10
Statue 8 7
Tile 16 16
Tool 5 5)
Vase 31 31

TABLE 6.3: The PSO Data set

the DAG-SVM, that an alternative ordering of classifiers in the tree would give better

results, but the optimal ordering would be different for each example presented.

The SVM work provided an insight into the problems associated with using CBR and
classification techniques together. The data set was unbalanced, with some class having
many members, and other classes with only a few members. Typically the classifiers
performed badly on the classes with few members. Some of the classes were very mixed
in terms of shape similarity. Classes with a diverse range of objects generally performed

worse than those with more consistently shaped objects.

Our previous work in Goodall et al. (2005b) presented a small classifier system where
users could train classifiers and manually choose the training parameters. These results
showed that the users were not inclined to change the parameters too far from defaults to
try and find optimal results. When applying a PSO augmented with exhaustive search,
much higher performing classifiers resulted. However the PSO approach is limited in

that it tends towards exhaustive searching due to the types of parameters we are using.

Table 6.3 shows the data set used in this work. It consists of the 3-D objects available

from museums at that time. As can be seen it is a small data set with unbalanced classes.
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’ Type ‘ Descriptor ‘ Metric ‘ k ‘ Accuracy ‘
Manual Area Volume | Euclidean | 15 84.7%
Manual | Hough (Oct) | Euclidean | 3 89.8%
Manual Shape D2 Euclidean | 15| 87.9%
Manual Cord Hist 1 Euclidean | 15 70.3%

Automatic | Area Volume | City-Block | 1 97.6%

Automatic | Shape D2 City-Block | 1 98.1%

1
1

Automatic | Shape D2 | Intersection 98.1%
Automatic | Cord Hist 1 Quadratic 96.8%

TABLE 6.4: PSO k-NN Results

Table 6.4 shows the results of the classifiers created during the SCULPTEUR evaluation
(type manual; see Chapter 4) and those created using PSO to determine the parameters
(type automatic). As can be seen high accuracy has been obtained, although the small
number of objects and classes makes this work more proof-of—concept rather than giving

useful results.

6.3 Experimentation

We wish to explore how well the CBR techniques described in Chapter 5 can be used
with the classification techniques described in this chapter (See Table 5.1 in Chapter 5
for the full name of the descriptors, the short names are used here). In this work the Area
Volume ratio descriptor, Cord Histograms, Shape D2 and Modified Shape D2 descriptors
are used. The Multi-resolution Reeb Graph is not appropriate for use in this work as
the feature vector can vary in length depending on the complexity of the model it is
created from. The classification techniques used here typically require a fixed length
input vector. The Extended Gaussian Image and 3-D Hough descriptors have also been
left out as their large input vector size dramatically increase the computational time
required to perform these classification techniques. Where appropriate, the Kuclidean

distance metric has been used.

This work will use the PSB data set and its four classification levels (Base, coarse 1,
coarse 2 and coarse 3). As the PSB already contains a split into train and test groups,
clagsifiers will be trained according to split-sample validation. Appendix B gives full

details of classes and sizes for the PSB classifications.

Of note in the PSB classifications is that classes in the training data do not necessarily
appear in the testing data and vice-versa. This means that obtaining 100% is impos-
sible for the base and coarse 1 classifications. The reason for this according to Shilane
et al. (2004) is to allow evaluation of the classifier when new classes are presented to it.
Table 6.6 shows the highest accuracy that can be achieved. The Exact row shows the

percentage of objects in the test set that have a corresponding exact class label in the
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’ Class name | Training Size ‘ Testing size

figurine 35 17
head 6 2
misc 10 5)

mould 38 19
pot 30 15

statue 18 10
tile 10 5

TABLE 6.5: Museum data set

Base Coarse 1 Coarse 2 Coarse 3
Classification Classification Classification Classification
Exact 40.8% 91.4% 100% 100%
Hierarchy 90.3% 94.7% 100% 100%

TABLE 6.6: Maximum accuracy achievable in PSB classifications

training set. The Hierarchy row shows the percentage of objects in the test set that have
a corresponding class label in their class hierarchy in the training set. As can be seen,
the base exact percentage is the only one considerably effected by this with a maximum

achievable accuracy of 40.8%.

In this work, a second smaller data set composed of 3-D models of museum artifacts is
used for the more computationally expensive techniques. However, full validation of the
technique would require a larger data set. To compare with the PSB data set, we have
split the museum data set into a training and testing set. Due to the smaller size of the
data set, we have used two thirds of the data in the training set and the remaining third
in the testing set. Some of the classes are very small. See Table 6.5 for class size details.

See Section 5.4.1 in Chapter 5 for a description of this data set.

Our testing platform is MATLAB (The MathWorks Inc., No Year); a powerful package
for mathematical processing. Additionally, a toolbox called NetLab (Nabney, 2002)
provides a large range of classification techniques based on Bishop (1997b). This allows

rapid prototyping and testing of various classification techniques.

Three popular classification techniques are used within this work. These are the NN,
MLP and RBF techniques. The NN is often used due to its simplicity making its results
easy to interpret. The MLP is the typical choice in neural network literature. The RBF
is a technique that’s growing in popularity as it is much faster to train than the MLP

networks while achieving comparable results. We chose not to use the SVM in this work.

We begin by presenting the base classifiers, that is, a single classifier of one of these
These

classifiers form both a baseline in performance for comparing other techniques against

techniques. We train a base classifier for each descriptor for each technique.

and they are the classifiers used by the combination techniques we will describe shortly.
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The accuracy statistic has been used to determine how well a classifier performs. In this
work the accuracy is given for both the exact label correctly predicted and for predicting
a label that has a match within the class hierarchy. L.e. if the classifier predicted fighter
jet and the actual object was a bi-plane, then it would score correctly as both objects
are of the super-class air plane. It is also possible to apply this to obtain a per class

accuracy.

In order to determine how much improvement in performance there is (or not) by using
a particular combination technique, the base classifiers have been trained on parameters
selected arbitrarily and checked to see that they give acceptable levels of performance.
However, we have not explicitly tried to find the best parameters. This is to simulate a
normal user trying to make a classifier without too much experimentation. In the nearest
neighbour classifier we used the Euclidean distance metric. In the MLP classifiers, two
hidden layers, a softmax activation function and the quasi-newton training method were
used. In the RBF classifiers two hidden layers and the Gaussian activation function were

used.

Due to the complexity of the data sets (multiple classes, wide range of different objects
within a class) it is unlikely that a single classifier will be able to capture all the differences
within the data set. A combination of classifiers is much more likely to be able to do

much better as one classifier can make up for the weakness in another classifier.

Classifiers are combined using the popular classifier ensemble technique called Majority
Vote and by using the Dynamic Classifier Selection (DCS) framework. While there
are other popular classifier ensemble rules such as the sum and product rule, they are
generally more suited to two class problems rather than multi class problems. The a
priori and a posterori rules were used in the DCS framework. Experimentation with a
neighbour size of 1 to 50 is performed and the highest accuracy obtained is presented.

A separate comparison of neighbourhood size versus accuracy is given.

Finally an oracle is used to show the optimal results of combining the classifiers. If at
least one of the classifiers makes a correct prediction for a given object, then that counts

as a correct prediction for the oracle when calculating accuracy.

Classifiers are combined first by like type and then all classifiers are combined together.
Ten instances of each of the MLP and RBF base classifiers (one for each set of parameters)
were created the average performance is reported. The classifiers achieving the highest
performance were used in the combination methods. This was to minimise the effects of

the random weight initialisation for these techniques.
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Parameter ‘ Values
Descriptor | Area Volume, Cord Hist {1,2,3,4,5}, Cord Histogram, Shape D2, MD2
Metrics Euclidean, City-Block, Intersect, Bhattacharyya, Bhattacharyya-log,
Chi, Kullback, Kullback-ns, Quadratic,
k 1 to smallest class size
FIGURE 6.1: Nearest Neighbour parameters for GA
Parameter ‘ Values
Descriptor | Area Volume, Cord Hist {1,2,3,4,5}, Cord Histogram, Shape D2, MD2
Hidden 1to 16
Nodes
Activation linear, logistic, softmax
Functions
Training conjugate-gradient(conjgrad), quasi newton (quasinew), scaled
Methods conjugate gradients(scg)
F1GURE 6.2: Multi-Layer Perceptron parameters for GA
Parameter ‘ Values
Descriptor | Area Volume, Cord Hist {1,2,3,4,5}, Cord Histogram, Shape D2, MD2
Hidden 1to 16
Nodes
Activation Gaussian, tps, rdlogr
Functions

FI1cURE 6.3: Radial Basis Function Network parameters for GA

6.3.1 Optimisation

As an alternative to combining classifiers to improve performance, an attempt can be
made to optimise the training parameters for a classifier to obtain the best possible per-
formance out of it. Our earlier experimentation (Goodall et al., 2005b) used the Particle
Swarm Optimisation coupled with exhaustive search to optimise classifier parameters.
Exhaustive search was required to iterate through labelled parameters such as distance
metric as these could not be encoded in the PSO directly. While improved performance
was obtained, the use of exhaustive search dramatically increased computation time lim-
iting the use of the technique. In this work, Genetic Algorithms (GA) are used to perform
the optimisation as they can encode all the training parameters. We begin by using the
GA to optimise the parameters for each classification technique, NN (see Table 6.1 for
parameters), MLP (see Table 6.2 for parameters) and RBF (see Table 6.3 for parame-
ters). The GA encode the descriptor in each case and the classification technique specific

parameters.

As the number of values for training parameter does not necessarily require the full range
of number provided by the bit range (e.g. the number 5 and 8 both require the same

number of bits to represent them), we wrap the extra values back to the start of the
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range. (e.g. if the bit string represents 8, but 5 was the maximum value, then we wrap
the number at 5 which gives us 3 minus 8 modulo 5) This does however mean that values
listed earlier in the parameter range have a higher chance of being selected for the initial

population. With a large enough population this should not pose a problem.

For each possible solution, ten classifiers are constructed and the average accuracy is
returned as the utility. This is to reduce the effect of the random weights initialisation
in the MLP and RBF classifiers.

In the GA a population size of 20 was used with a maximum number of 50 iterations
for the PSB data set, and for the Museum data set a population size of 50 was used.
Cross-over was applied to replace the lower 50% of the population and a 0.1% chance of
mutation for a bit in the chromosome string. The GA terminated when the population
converges (the same set of parameters was specified by all individuals), or when the

maximum number of training iterations had been reached.

Our initial experimentation with the GA used the test set to evaluate each individual
solution. However, this makes the GA biased towards the test set and so the performance
can be artificially higher then it should be. For the Museum data set we also created
some un-biased classifiers. In this case we randomly selected 25% of the training data to

validate the solution and used the rest to train the solution.

The previous results looked at methods of combining classifiers to improve performance.
This section looks at improving individual classifier performance by attempting to de-
termine the optimal training parameters. The Genetic Algorithms technique is used to
encode the training parameters for the classifiers. In this case, the GA encodes the dis-
tance metric and the number of neighbours (k). The descriptor was hard coded to find

the best parameters for the descriptor.

6.4 Results

The results sections begins by presenting the performance of the base classifiers along

with the ensemble and DCS based performance.

6.4.1 Base Classifier Performance

Table 6.7 shows the performance for the Nearest Neighbour classifier. As expected, exact
label matching is less accurate than hierarchical matching, and the higher the number
of classes, the lower the overall performance. While generally low accuracy, it is still
above the level of random classification (1 / number of classes). It can be seen that the
Area Volume and Cord Hist 1 descriptors generally perform much worse than the other
descriptors. The Shape D2 and MD2 give the best levels of performance, with the MD2



Chapter 6 3-D Object Classification 109

Descriptor Base Coarse 1 Coarse 2| Coarse 3| Museum
Exact ‘ Hierarchy] Exact ‘ Hierarchy|

Area Volume 3.6% 8.6% 9.8% 12.1% 22.5% 56.2% 47.9%
Cord Hist 1 6.8% 12.5% 13.8% 17.4% 26.9% 52.1% 65.7%
Cord Hist 2 13.3% | 21.7% 22.5% 25.8% 35.0% 58.8% 64.3%
Cord Hist 3 12.9% | 21.2% 20.8% 24.9% 32.0% 60.4% 53.4%
Cord Hist 4 16.3% | 25.8% 25.4% 29.4% 38.8% 60.3% 71.2%
Cord Hist 5 171% | 26.2% 25.1% 29.3% 38.5% 61.4% 67.1%
Combined 16.3% | 26.1% 26.0% 29.7% 38.6% 58.9% 69.9%
Cord
Histogram
Shape D2 17.5% | 27.0% 27.5% 30.4% 38.8% 61.1% 72.6%
Modified 172% | 27.7% 28.2% 31.2% 39.5% 62.5% 78.1%
Shape D2

Oracle 29.9% | 53.1% 54.0% 62.2% 82.4% 98.2% 93.2%
Majority Vote | 1.7% 29.9% 3.6% 29.3% 41.6% 69.0% 76.7%
Dynamic 17.6% | 28.3% 21.8% 32.1% 40.2% 71.8% 78.1%
Classifier
Selection (a
priori)
Dynamic 20.9% | 31.5% 26.0% 36.3% 45.8% 77.8% | 74.0%
Classifier
Selection (a
posterori)

TABLE 6.7: Nearest Neighbour Classifier Accuracy

giving over 5% extra for the Museum data set. It is also interesting to note that the
Cord Hist 1 descriptor performs relatively much better on the museum data set when
compared to the different PSB data sets.

The oracle shows around 30% accuracy for the base exact matching which means that the
fine granularity of classes proves too complex for the capabilities of the base classifiers. At
the other end of the scale, it gets 98.2% accuracy for the coarse 3 classification. Majority
Vote struggles to perform well on the exact matching, giving results much lower than the
base classifiers its composed of. Majority Vote gives better performance on the coarse 2
and coarse 3 classifications giving better results than its base classifiers. The a priori
confidence estimate for DCS performs similarly to Majority Vote, but it also manages
to work well on the exact label matching. For the museum and coarse 1 exact data
sets it does not manage to do better than its base classifiers, but in all other cases it
does. The a posterori confidence estimate for DCS shows the best combination results,
out-performing both Majority Vote and a priori (except for the museum data set where
a priori performs best). For coarse 1 exact, none of the combination methods do better

than the base classifiers.

Table 6.8 shows the performance for MLP classifiers trained on the data. The upper
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Descriptor Base Coarse 1 Coarse 2| Coarse 3 Museum
Exact ‘ Hierarchy | Exact ‘ Hierarchy

Average

Accuracy

Area Volume | 9.2% 16.2% 20.9% 26.5% 31.6% | 73.1% | 55.1%
Cord Hist 1 7.4% 13.3% 18.2% 21.8% 27.9% | 66.8% | 64.4%
Cord Hist 2 10.7% 18.1% 19.5% 23.3% 31.8% | 68.3% | 53.0%
Cord Hist 3 10.8% 19.0% 20.9% 26.0% 284% | 64.3% | 53.6%
Cord Hist 4 9.4% 16.4% 17.8% 20.7% 32.8% | 60.4% | 57.0%
Cord Hist 5 8.5% 15.2% 15.3% 18.1% 27.9% | 59.2% | 56.0%
Combined 9.8% 17.0% 20.3% 23.9% 31.6% | 63.9% | 56.2%
Cord
Histogram
Shape D2 12.9% 21.1% 22.9% 25.5% 321% | 65.4% | 59.0%
Modified 13.5% 22.9% 23.4% 25.9% 33.0% | 66.6% | 59.7%
Shape D2

Best Accuracy
Area Volume | 9.9% 173% | 21.6% | 27.0% 33.7% | 74.4% | 57.5%
Cord Hist 1 8.5% 14.4% 19.5% | 23.5% 29.1% | 67.5% | 68.5%
Cord Hist 2 12.1% 19.5% | 20.9% | 24.7% 33.7% | 69.7% | 57.5%
Cord Hist 3 11.9% 202% | 22.3% | 27.5% 31.0% | 67.6% | 57.5%
Cord Hist 4 12.5% 22.7% | 21.9% | 26.5% 34.8% | 63.7% | 63.0%
Cord Hist 5 9.4% 17.5% 175% | 20.1% 30.5% | 65.9% | 60.3%
Combined 12.7% 21.9% | 23.2% | 28.4% 342% | T1.1% | 67.1%
Cord
Histogram
Shape D2 14.9% 25.7% | 25.0% | 27.2% 33.3% | 66.3% | 61.6%
MD?2 14.1% 23.0% | 25.1% | 27.8% 34.8% | 69.5% | 63.0%

Combined
Classifiers
Oracle 23.8% 46.2% 45.5% 59.6% 72.5% | 95.3% | 87.7%
Majority Vote | 0.9% 25.4% 2.4% 26.7% 37.8% | 70.6% | 68.5%
Dynamic 120% | 23.7% | 20.5% | 30.3% 385% | 75.4% | T4.0%
Classifier
Selection (a
priori)
Dynamic 14.1% 26.4% 22.9% 34.2% 422% | 71.8% | 74.0%
Classifier
Selection (a
posterori)

TABLE 6.8: MLP Classifier Accuracy
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portion of the table shows the average accuracy for ten classifiers trained on the same
parameters and the middle portion shows the accuracy of the best of those ten classifiers.
We can see that there is a large difference between the average and best classifiers, in
some cases nearly 10%. This indicates that the random weights have a large effect on
the classifier and a larger number of training iterations may be helpful. Again we can see
that as expected, the results for exact matching are much poorer than for hierarchical
matching. The Area Volume ratio does quite well with the MLP classifiers and even
shows the highest accuracy on the coarse 3 classification. In fact, in addition to the Area
Volume, the Cord Hist 1 and Cord Hist 2 descriptors also give much better results in
the coarse 3 than the other descriptors. The Area Volume and Cord Hist 2 descriptors
are generally at the higher end for all the classifications. This is notable as the results in
Table 6.7 show these descriptors as poor performers for the Nearest Neighbour classifier.
Another point to note is that the Cord Hist 4 based classifiers are generally much lower

performing than the other classifiers.

The oracle for the MLP shows poorer results than for the NN, indicating that these
clagsifiers make much more similar errors than the NN does. This is reflected in the even
poorer results for Majority Vote with only 0.9% accuracy for the base exact classification.
The DCS results do not appear to suffer too much, although in several cases the base

classifiers show better results.

Table 6.9 shows the performance of the RBF classifiers. The upper portion of the table
shows the average accuracy for ten classifiers trained on the same parameters and the
middle portion shows the accuracy of the best of those ten classifiers. We can see there
is little difference between the average and best classifiers (only a couple of percent)
indicating that the training process is good at reducing the effects of the random weights.
It is immediately obvious that these classifiers generally perform badly compared to the

NN and MLP classifiers, although it’s coarse 3 results are generally much higher.

It can be seen that most descriptors give similar performance within the same data set,
although the Area Volume and Cord Hist 1 descriptors do perform worse for the base and
coarse 1 data sets. The museum data set shows the biggest variation between descriptors,
with the Cord Hist 1 giving the highest performance. It can be seen that the a posterori
combination method performs best in all cases, although it shows lower performance

than some of the base classifiers for coarse 1 exact.

Table 6.10 shows the performance of combining all of the base classifiers. We can see
that the performance is generally much higher when combining multiple types of classifier
rather than combining the classifiers of the same type. The oracle shows nearly 100%
accuracy for the coarse 3 classification. The Majority Vote did improve in some cases, for
example, the NN Museum data set MV accuracy is higher. Despite these improvements,
Majority Vote is still worse than the base classifiers is almost all cases. The DCS based

clagsifiers did however show an improvement in performance in almost all cases. The a
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Descriptor Base Coarse 1 Coarse 2| Coarse 3 Museum
Exact ‘ Hierarchy | Exact ‘ Hierarchy

Average

Accuracy

Area Volume | 5.3% 9.5% 14.2% 17.0% 25.0% | 70.1% | 52.1%
Cord Hist 1 5.2% 8.8% 12.5% 15.9% 25.9% | 69.6% | 62.9%
Cord Hist 2 8.6% 14.9% 19.3% 22.6% 27.7% | 68.9% | 50.4%
Cord Hist 3 8.3% 14.2% 20.0% 24.2% 24.8% | 69.8% | 49.0%
Cord Hist 4 9.0% 15.4% 20.0% 23.9% 202% | 70.9% | 42.2%
Cord Hist 5 8.0% 13.8% 18.3% 22.2% 28.7% | 69.6% | 46.3%
Combined 8.7% 14.9% 19.7% 23.7% 295% | 70.8% | 42.9%
Cord
Histogram
Shape D2 6.2% 11.3% 13.8% 16.6% 24.4% | 68.9% | 57.1%
Modified 6.1% 11.0% 12.8% 15.4% 24.3% | 68.9% | 57.1%
Shape D2

Best Accuracy
Area Volume | 6.6% 12.5% 15.3% 17.8% 28.0% | 70.3% | 54.8%
Cord Hist 1 6.0% 9.7% 13.5% 16.7% 27.3% | 69.9% | 64.4%
Cord Hist 2 9.7% 15.8% | 20.6% | 24.1% 284% | 69.5% | 52.1%
Cord Hist 3 9.3% 153% | 21.1% | 25.5% 25.6% | 70.2% | 52.1%
Cord Hist 4 9.7% 16.4% | 20.9% | 24.9% 31.0% | 72.0% | 43.8%
Cord Hist 5 8.9% 14.0% 19.6% | 24.0% 29.7% | 70.2% | 47.9%
Combined 9.7% 14.8% | 20.7% | 25.0% 322% | 71.4% | 46.6%
Cord

Histogram
Shape D2 7.3% 12.3% 15.0% 17.4% 26.0% | 68.9% | 58.9%
Modified 7.3% 11.9% 15.0% 18.1% 25.5% | 68.9% | 60.3%
Shape D2

Combined
Classifiers
Oracle 208% | 383% |41.9% | 53.5% 62.1% | 81.5% | 78.1%
Majority Vote | 0.2% 15.0% 1.5% 20.5% 28.6% | 69.7% | 60.3%
Dynamic 8.3% 14.3% 13.2% 24.1% 32.6% | 71.4% | 65.8%
Classifier
Selection (a
priori)
Dynamic 11.5% 21.5% 18.0% 29.0% 37.4% | 73.5% | 68.5%
Classifier
Selection (a
posterori)

TABLE 6.9: RBF Classifier Accuracy
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Descriptor Base Coarse 1 Coarse 2| Coarse 3 Museum
Exact ‘ Hierarchy | Exact ‘ Hierarchy
Oracle 34.5% 64.4% | 64.8% | T76.7% 90.3% | 99.6% | 97.3%

Majority Vote | 2.4% 28.8% 1.9% 27.2% 40.7% | 70.7% | 75.3%
Dynamic 182% | 284% | 25.1% | 33.6% 42.6% | T7.6% | 76.7%
Classifier

Selection (a
priori)
Dynamic 22.2% 33.4% 29.7% 38.8% 484% | 18.7% | 74.0%
Classifier
Selection (a

posterori)
TABLE 6.10: Combination of all classifiers accuracy
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FI1GURE 6.4: Neighbourhood size versus Accuracy

priori for the museum showed slightly lower accuracy than for the equivalent NN based

classifier.

6.4.1.1 DCS: k versus Accuracy Evaluation

Figure 6.4 shows how the neighbourhood size, &, effects the overall accuracy for the DCS
classifiers when considering the base classification and exact label matching. Note that
the accuracy axis only goes up to 0.3, or 30%, A general trend is that as k increases,

accuracy tends to decrease. The RBF posterori classifier increases as k increases until
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’ Descriptor Metric ‘ k ‘ Exact ‘ Hier ‘

Rand-1 Shape D2 Kullback-ns 2 1 16.7% | 26.9%
Rand-2 Cord Hist 3 Intersect 31 32% | 6.1%
Rand-3 Cord Hist 4 Kullback 3| 15.7% | 25.1%
Rand-4 Cord Hist 1 Kullback 4| 6.7% | 13.2%
Rand-5 Cord Hist 4 Intersect 2| 3.0% | 5.3%
Rand-6 Shape D2 Kullback-ns 4 | 18.0% | 29.7%
Rand-7 Cord Histogram Quadratic 1] 0.0% | 2.6%
Rand-8 MD?2 Quadratic 3| 1.0% | 4.2%
Rand-9 Cord Hist 5 Chi 41 16.8% | 27.5%
Rand-10 Area Volume Kullback-ns 4| 54% | 8.8%
Rand-11 Area Volume Intersect 3| 1.4% | 11.1%
Rand-12 Cord Hist 4 Kullback 2 | 14.0% | 24.1%
Rand-13 Cord Hist 3 intersect 2| 3.0% | 6.6%
Rand-14 Shape D2 Kullback 2| 15.7% | 26.2%
Rand-15 Cord Hist 1 Kullback-ns 4| 72% | 12.6%
Rand-16 CordHistogam euclidean 1|16.3% | 26.1%
Rand-17 Cord Hist 4 quadratic 31 0.1% | 0.6%
Rand-18 MD?2 quadratic 41 0.8% | 4.9%
Rand-19 MD2 Bhattacharyya-log | 1 | 18.0% | 29.0%
Rand-20 Cord Hist 5 quadratic 21 0.6% | 1.4%
Oracle 32.0% | 60.8%
Majority Vote 3.3% | 31.6%
a priori 17.5% | 28.9%
a posterori 22.6% | 35.2%

TABLE 6.11: Random - PSB Base - k-NN

little over k=5 where it starts to decrease again. Similar results were observed for other
PSB classifications.

6.4.1.2 Random classifiers

Table 6.11 show 20 k-NN classifiers trained on the PSB Base data set and created with
randomly selected parameters for descriptor, metric and £ (limited to the range 1 :

smallest class size approximately 4).

The randomly created classifiers show a large range of performance values. Very poor
performance can be seen in some of the classifiers (0% in some cases) to those gaining high
performance, similar to the best achieved in the NN base classifiers. The combination of
classifiers gives slightly better results with the a posterori showing the greatest improve-
ment in performance (approx 5% for both exact and hierarchical matching). This gives
some good indication that with a reasonably sized sample, we could combine classifiers

created with random parameters and obtain good results.
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’ Descriptor ‘ Metric ‘ K ‘ Exact Accuracy ‘
Area Volume Euclidean | 22 10.4%
Cord Hist 1 Kullback-ns | 25 16.5%
Cord Hist 2 Chi 4 22.8%
Cord Hist 3 Cityblock 1 25.3%
Cord Hist 4 Chi 1 29.3%
Cord Hist 5 Chi 1 30.9%
Cord Histogram Chi 2 29.6%
Shape D2 Kullback-ns | 1 25.7%
Modified Shape D2 | Kullback-ns | 1 29.9%

TABLE 6.12: (PSB) GA Results for k&-NN

Classifier Descriptor Parameters Accuracy | Iterations
Type
NN Cord Hist 4 Metric: City-Block K: 3 82.2% 31
MLP Cord Histogram Train: scg node: linear 75.9% 50
nhidden: 14
RBF Cord Hist 1 Func: Gaussian NHidden: 65.6% 35
3

TABLE 6.13: GA Results (Biased) - Museum Data set

6.4.2 Optimisation Techniques

In this section of results, Genetic Algorithms are applied to the problem of finding
optimal training parameters for the classification techniques. Due to the computational
requirements of the GA technique, the results are limited to using the PSB Base set for
training a classifier for a particular descriptor and to the museum data set to find the

optimal classifier for each classifier type.

Table 6.12 shows the results for using GA to select the optimal parameters for a k-NN
classifier trained on the PSB base data set. Thees classifiers are created by using the test
set to guide the GA and so are biased towards the test data set and can show artificially
high accuracy. Comparing these results to Table 6.7 we can see that different parameters
can be selected to greatly improve performance by adjusting the number of neighbours
and the distance metric. We can also compare these scores to Table 6.10 where in most
cases these classifiers beat the combination methods, but do not quite get as high as an

optimal combination.

Table 6.13 and Table 6.14 show the results for applying the GA technique to the museum
data set. Table 6.13 uses the test data set to guide the GA algorithm as to what is a
good solution and what is a bad solution. This however makes it biased towards the test
data set. Comparing to Tables 6.7, 6.8 and 6.9, we can see that the GA NN achieved best
results, where as for MLP and RBF, the combined classifiers gave better results. This
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Clagsifier Descriptor Parameters Validation| Test | Iterations
Type
NN Cord Hist 4 Metric: Chi K: 1 74.3% 65.8% 42
MLP Cord Train: quaisnew node: 75.1% 72.6% 50
Histogram softmax nhidden: 16
RBF Cord Hist 1 Func: Gaussian 60.3% 65.8% 50
NHidden: 3

TABLE 6.14: GA Results (Unbiased) - Museum Data set

suggests that the MLP and RBF classifiers would not show much increase in performance
by further training. The NN classifier on the other hand show a dramatic increase in

performance when k and the distance metric are altered.

Table 6.14 shows the results for using part of the training set to validate the solution.
This means that the final classifier is not biased towards the test data set, however it does
reduce the amount of data available to both train and validate the classifiers. Comparing
to Tables 6.7, 6.8 and 6.9, we can see that the the combined classifiers gave better results.
The MLP classifier gives the best results, with 72.6% accuracy, where as the NN and
RBF both achieved 65.8%.

As can be see by comparing the two tables, the resulting descriptor is the same for each
technique in both tables, however the technique’s parameters have changed. It can also
be seen that the biased results are higher than the unbiased ones (as would be expected).
In fact the unbiased results are poorer than some base classifiers. Interestingly the RBF
classifier results in the same classifier, although it takes longer to get there. In both cases
the MLP took 50 training iterations, as did the RBF in the unbiased case. This means
that they reached the maximum number of training iterations before the population
converged. One reason for this could be that the value of one or more of the training
parameters had little effect on the overall outcome of the classifier and so many different

values exist in the population for that parameter.

The difference between the two tables shows that the NN classifier is a lot less able to
generalise than the other techniques. The RBF classifier produced was the same in both
instances suggesting that it would work just as well on another “test” data set where as
the NN classifier could have drastically different results. This is likely to be due to the
MLP and RBF classifiers being better able to model the class boundaries than the NN

so objects that are not so near a neighbour will still be correctly classified.

6.5 Discussion

So why do the classifiers generally perform so badly on the PSB classifications, especially
majority vote? As shown in Table 6.6 the highest PSB base-exact accuracy is 40%, but
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F1GURE 6.5: Tier Image for Shape D2

for the rest, much higher accuracy is possible. We shall turn to content-based retrieval
performance metrics to help explain the results. The PSB proposed several statistics for
use with 3-D CBR (Shilane et al., 2004). Of particular use in this instance is the tier
image. This shows the objects that were the nearest neighbour (hopefully itself) and
those within the first and second tier bands. The first and second tier criteria are the
percentage of the first K elements in a ranked list from a retrieval that are of the same
class as the query, where K, for the first tier, is the size of the class. The second tier
uses K as twice the size of the class. More specifically for a class C', K = |C] — 1 for the
first tier and K = 2% (|C| — 1) for the second tier where |C| is the size of class C' (—1 to
ignore the query object). The tier image shows all objects that fall within these bands.

Figure 6.5 shows a subsection of the tier image for the Shape D2 descriptor on the test
data set for the base classification. Ideally we expect all the pixels to be arranged along

the diagonal such that the box bounding each class is full. However as can be seen, many
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(a) Human (b) Fighter Jet

FIGURE 6.6: Two objects conceptually different, but similarly shaped

pixels are spread across the image showing that the Shape D2 cannot really distinguish
between the classes very well. Of particular note is that the human and fighter jet classes
show a strong correspondence meaning that many fighter jets will be classed as human
and many humans will be classed as fighter jets. From this image it is easy to see why
the classifiers were struggling with the base classification. The 3-D shape descriptors are

not capable of discriminating between the full semantics implied by the class labels.

Figure 6.6 helps to illustrate this point. It shows a model of a human with the arms
sticking out and it also shows a fighter jet. Notice how similar, in terms of the overall
shape, the two models are. The descriptors we used in this work are all global descriptors
and are unlikely to have picked up on the finer details of the models. The idea behind
combining classifiers based on a range of descriptors is that between them they should be
able to pick up on a lot of the finer details. One problem of course is that the descriptors
are generally quite similar to each other. A more diverse range of descriptors would be
expected to produce a more diverse set of classifiers. This could perhaps explain why
the Majority Vote performed so badly. It is also likely that the large number of classes
resulted in each classifier predicting a different label giving no majority. Increasing the
number of classifiers should eventually start giving a consensus on the predicted label.
In the worst case, you would need as many classifiers as you had classes plus one to
ensure a majority however slim. However, as the number of classifiers in an ensemble
increases, so do the computational requirements. The test and select methodology (Roli
et al., 2001) may help by finding the best combination of base classifiers although this
can be computationally expensive depending on the number of base classifiers involved.
An alternative is to make use of the error diversity measures, (CD, GD and Q statistics;
See Chapter 3 for more details) to discard classifiers that are very similar to another
classifier. Of course can lead to a sub-optimal solution as two classifiers can be very

similar, but the differences they do make could be significant.



Chapter 6 3-D Object Classification 119

The DCS based approach shows much better results, especially for the a posterori estima-
tion method compared to Majority Vote. While DCS has been proposed as an alternative
to ensembles as it does not require classifiers to be error diverse, it does help for the clas-
sifiers to have this property. Indeed, our results showed the best performance for the
DCS techniques was when all the classifiers were combined. In some cases, however, the
DCS techniques did not manage to improve performance over the base classifiers. We
expect that this was caused by no classifier having a confidence much greater than the
others leading to the random selection of several classifiers which may or may not predict
the correct label. Perhaps a smaller threshold value would increase the overall accuracy
of the DCS classifiers.

The base classifier results show that the Nearest Neighbour gives the strongest perfor-
mance despite being the least sophisticated technique. This gives a good indication that
this data set gives an #ll-posed classification problem and it is likely that poor perfor-
mance can be expected. The RBF results are surprisingly lower than the other classifiers
except for coarse 3, where the RBF base classifiers showed higher accuracy. However in
some cases the MLP and RBF classifiers performed better than their NN counterpart.
The MLP and RBF results are highly dependent on the initialisation of the weights used
within the network and the variation between best and average accuracies could be quite
high in some cases. Allowing more training iterations would help at the cost of increased
computation. The RBF classifiers seemed quite sensitive to the data and parameters
they were given. Some combinations could lead to posterori probabilities of zero during

training reducing the performance of the classifier.

The base classifiers showed that the individual classifiers were unable to cope with the
more complex classifications. Even with the few classes in the coarse 3 data set, the
base classifiers were unable to get above 74% accuracy. We can clearly see that the base
clagsifiers are not useful for obtaining high quality results on their own. It is possible
other techniques (e.g. SVM ) may show better performance, but it is unlikely to boost

the more complex classifications to more useful levels.

The differences between oracle performance and the performance of Majority Vote and
Dynamic Classifier Selection indicates that a better combination technique could lead
to higher performance. For the DCS classifiers, an alternative confidence estimator
may yield better results, while for ensembles alternative combination rules may perform
better. Higher oracle performance may be obtained by using alternative 3-D descriptors

or classification techniques.

The use of GAs has shown to produce reasonable results. Better results were obtained
when the test set was allowed to drive the selection process, however this results in biased
classifiers. Better results could possibly be obtained by better ranking of the classifiers
during training. In this work, each solution was created 10 times, each time using a

random 25% to validate it. This is almost cross-validation, but does not make sure that
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all of the data is used for testing at once. The high computational cost of this technique
is very high and does not show improvement over the combined classifiers which are

much less computationally intensive.

There are several possible uses of classification to improve CBR results. We can classify
the object and then return only those objects in the data set with the same class label.
In Chapter 5 we looked at the per-class statistics for a set of objects. By pre-calculating
these statistics, we can classify the query object and discover it’s class label. We can
then find the best descriptor to use for that class. Finally, we could use the GA technique
to help find the optimal parameters for a CBR technique, although of course this will be

likely to make the algorithms tailored to a particular data set.

Recently Barutcuoglu and DeCoro (2006) has published a technique using Bayesian Ag-
gregation to combine binary classifiers trained on a one-versus-all basis for each class
in the hierarchy (including the parent classes). Each positive classifier is assigned a
probability and it is organised in the class hierarchy. The Bayesian Aggregation process
re-assigns the probabilities, reducing or removing completely false positives and increas-
ing the correct classification. Of course, if the classifiers are very bad, then incorrect
classifications can still be made. This seems like a better method than those experi-
mented with for the SVM’s as it attempts to remove the false positives which can effect
the one-versus-one methods and it takes into account the class hierarchies which none of
the SVM methods would do.

6.6 Summary

In this chapter we have investigated the use of using classification techniques using CBR
feature vectors as inputs. We focused on using multi-class classifiers which work well
with a few classes and uncomplicated class boundaries, but perform much worse as the
number of classes increases and the classes become more mixed in feature space. The
results indicate that the descriptors used are generally too similar or just not capable
of distinguishing between the finer details and more powerful descriptors need to be
investigated. However, the current descriptors are dissimilar enough to show the potential
of combination techniques as small improvement were shown in our results. The use of
binary classifiers can make it easier for the classifiers to distinguish between classes and
the recent work by Barutcuoglu and DeCoro (2006) shows a powerful technique to obtain
correct classifications. We have seen that generally the Nearest Neighbour classifier
performs best, even though it has limitations in estimating class boundaries. It would
have been expected that the MLP and RBF networks would be better estimators for the
clags boundaries. Perhaps the boundaries were too complex causing worse performance

than the NN. This obviously brings into question the quality of the data sets. However,
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real world data sets are unlikely to be perfect and the techniques used must be flexible

enough to handle such problems.



Chapter 7

Semantic 3-D Object Annotation

7.1 Introduction

The previous chapters have explored various 3-D shape descriptors with their application
to 3-D content-based retrieval and have investigated creating classifiers using the feature
vectors as inputs. This work was originally undertaken in the context of a digital mul-
timedia warehouse using advanced search techniques to access the data. In this chapter
it will be shown how the more low level work described in the previous chapters can be

applied to the bigger picture.

More specifically we study the problem of 3-D object annotation using Semantic Web
technologies and classification techniques to help facilitate a possible solution. The use
of annotations in a combined content-based retrieval has shown good improvements.
However there exist many image and object collections that are un-annotated. Manually
annotating small collections is a slow and mundane task which is prone to error, and
is unfeagible on large collections. Therefore there is scope for developing systems which
can automatically annotate objects. There has been a large amount of research in the
area of 2-D image annotation (see e.g. Barnard et al. 2003; Duygulu et al. 2002) but
there has been limited research in the 3-D annotation area (see e.g. Garcia-Rojas et al.,
2005).

We describe here how the classification techniques from the previous chapter can be used
to annotate 3-D objects using concepts in an ontology. By adding such classifications
to a semantic database, semantic web technologies can be used to derive new knowledge
using the existing knowledge in the system and classifier predictions. This is essentially

the task the classifier agent described in Chapter 4 was intended for.

In the previous chapter classification techniques were used to predict a single class label
for a query object. While the classifier combination and optimisation techniques investi-

gated did improve performance over a single classifier created with arbitrary parameters,
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performance was still less than perfect and degrades dramatically as the number of classes
under consideration increases and the number of samples in each class decreases. Any
annotation system based on such classifiers therefore needs an element of confidence at-
tached to any annotations it makes. An annotation made from a single classification
should be treated with greater suspicion than an annotation made from many classifica-

tions agreeing upon the result.

Given a set of existing annotated content, we wish to annotate new content using the
existing data as a reference. A single object may have more than one possible annotation.
For example a blue coloured vase may have the annotations “blue”, “vase”, “pot” and
“container”. Additionally an annotation may apply to the whole object, or just part of
the object (part correspondence (Barnard et al., 2003) is a much harder problem and not
within the scope of this thesis). Typically a classifier is trained to distinguish between
a set of class labels for a given concept. For example colour, shape or function. In
the case of the blue vase, a classifier would typically need to be trained to distinguish
between colours and another classifier would need to be trained to distinguish between
shapes. However this depends on the features and class labels presented to the classifier.
Other labels can be inferred; for example vase could imply container. Such terms could
be obtained through a thesaurus or relations in an ontology. At this level, we treat a
clagsifier as a black box; how it produces a classification is not important as long as
it is correct (at least to within a given error). It is trained on sample data containing
examples of the concepts to distinguish between and then it is used to classify query
objects. Ideally the classifier system would take care of all the finer details; however as
yet there is no standard methodology for doing so. The aim of this work is to investigate
some possible methods. Feature vectors generated from the shape descriptors can be
used as inputs to classifiers. Most of the descriptors produce fixed length normalised
histograms which are almost perfect for inputs to classifiers. Some feature vectors are
quite large however which can lead to problems in training certain classification schemes

due to the large dimensionality.

This chapter begins with some background on annotation techniques and semantic web
technologies. This is followed by a discussion on how these technologies can be combined
with classification techniques to create the basis of a 3-D object annotation system. This

chapter ends with some conclusions.

7.2 Some Background

There are many approaches to annotation and there are various levels of annotation. An
object may have one or more annotations associated with it. These annotations may be

associated with particular parts or regions of the object rather than the whole. In the
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case of a 2-D image, annotations could point to the sun, sky or beach. For a 3-D object,

annotations such as arm, leg or head could be applied to parts of a statue.

There are several approaches to automatically annotating objects. A simple approach
would be to assign the annotation that most frequently occurs in a reference data set,
but this method ignores any other knowledge about the object. Another method is to
find the most similar object in the reference set and copy the annotations from that
object to the query object (nearest neighbour classification). However it is possible the
query object is very different to any in the reference set, yet it will still have annotations
applied to it. Alternatively the correct annotations may be present across several similar
objects instead of just one. In this situation complex class boundaries may not be fully
represented by the reference objects; a more sophisticated approach is needed. Barnard
et al. (2003) gives an overview of two general classes of annotation models, Multi-Model
Hierarchical Aspect Models and Mixture of Multi-Model Latent Dirichlet Allocation.
These models attempt to find a mapping between terms and regions. For example, the
term sky may lead to mostly blue regions and mostly green regions may map to the term
grass. Thus when searching for the term sky, unannotated images with blue regions can

also be returned.

Duygulu et al. (2002) used machine learning techniques to associate a fixed number of
terms to regions of an image. They treat the problem as one of language translation,
where terms are one language and features in regions are another. Each region was
determined by a segmentation algorithm and terms were associated to each region using
Expectation Maximisation to translate regions to terms. Essentially the process finds
similar regions in different images that contain the same terms. The probability of the
term occurring for such regions increases with how strongly correlated the term and

regions are.

Semantic Web technologies aim to impose a machine readable structure to any content
published on the Web (or otherwise). For any individual item of data, a tag of some kind
needs to be associated with it to say what the information is. Information is structured
according to some schema or Ontology describing the concepts and relations between
concepts. This allows any program that understands a particular schema to understand
any data structured according to that schema. A schema or ontology can be described
in several different formats. Typically RDF (Lassila and Swick, 1999) is used, however it
is unable to model the full range of relationships that can be used to model an ontology.
OWL, the Web Ontology Language (McGuiness and van Harmelen, 2004) is based upon
RDF and provides a language to fully describe an ontology.

In an effort to help interoperability, there are several ontologies defined with the Dublin
Core (DCMI Usage Board, 2004) being one of the more well known ones and often used
as a basic level of interoperability between systems. This is an ontology to describe

a resource. A resource can have such elements as creator, title, description and date.
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<7xml version="1.0"7>
<rdf :RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:contact="http://www.w3.0rg/2000/10/swap/pim/contact#">
<contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">
<contact:fullName>Eric Miller</contact:fullName>
<contact:mailbox rdf:resource="mailto:em@w3.org"/>
<contact:personalTitle>Dr.</contact:personalTitle>
</contact :Person>
</rdf :RDF>

F1GURE 7.1: Dublin Core Example

Figure 7.1 shows an example taken from Manola and Miller (2004) describing contact

details for a person.

Typically a group of experts in a particular domain will produce an ontology for that
domain. In the case of SCULPTEUR, the CIDOC CRM (Crofts et al., 2001) was used

as this describes the cultural heritage domain.

All of this structured content would be of little use if there was no way to search it, and
several query languages have been developed. One of the more commonly used languages
is RDQL (Seabourne, 2004), although there are several other competing languages offer-
ing more sophisticated querying. SeRQL is the query language used in Sesame (Aduna
BV, No Year), a RDF database system. SPARQL (Prud’hommeaux and Seabourne,
2006) is the other language, a W3C recommendation.

Typically RDF is stored in a RDF database which provides one or more query languages
to manage the data. Sesame (Aduna BV, No Year) has already been mentioned. This
supports both RDQL and SeRQL and it also allows inference rules to be defined which are
applied to data as it is imported into the database. Another database is the triplestore
(Harris et al., No Year) supporting RDQL and SPARQL query languages. Jena (Hewlett-
Packard Development Company, No Year) is another database supporting RDQL and

SPARQL and it provides a customisable semantic reasoner which allows inferencing.

There has been some interest in using a Shape Ontology to describe a 3-D object from
a collection of known “primitive” components. Garcia-Rojas et al. (2005) use virtual
humans as the basis for their work. They use this technique to identify parts of the
human body. This technique however is directed towards a single class of objects (human

shaped objects in this case) rather than a range of different objects.

7.3 Application

In Chapter 4 a classifier agent was described. The original aim of the agent was to

help create metadata for new objects entering the SCULPTEUR system. By modelling
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a prediction made by an arbitrary classifier for a given object as RDF, we can use
Semantic Web technologies to make use of this prediction to populate the SCULPTEUR
system. A very simple method would be to add the predicted class to the correct place in
the system directly. However, this assumes perfect accuracy by the predicting classifier.
As we have seen in Chapter 6 classifiers are far from perfect and different classifiers
may make contradictory classifications. We need to store multiple classifications with
a confidence value for how correct they are. Storing classifications in a semantic web
database allows the use of semantic web inferencing technologies to be applied to create
new knowledge about the object. This is useful when applying other existing knowledge
about the object to the predictions, however, there is no real way to make use of the

prediction confidences.

The basic building blocks for such a system can easily be implemented. Taking the
PSB classifications as an example, we can easily represent them using SKOS (Miles
and Brickley, 2005). SKOS allows simple knowledge structures to be defined. Of main
interest is the definition of broader and narrower concepts which can be used to model
the hierarchy of classes. Figure 7.2 shows how some of the classes can be represented
using SKOS. It shows how the hierarchy from the root class, 0, to a leaf class such as
F117 and biplane can be represented. Each object in the PSB data set can then be
associated to one of these SKOS representations of a PSB class. Figure 7.3 shows how

an object of class F117 can be represented. This represents the real class labels.

Representing a prediction is a bit more complicated as there are several things to model.
A prediction is a class label, which should have some kind of confidence value associated
with it. Each prediction is made by a classifier for a particular query object. A classifier
can make predictions on multiple objects, and each object can have predictions from

multiple classifiers. Figure 7.4 shows a possible representation in RDF.

7.4 Expanding Knowledge

These individual pieces don’t offer much in the way of extra value. We are just storing
the data we already have in a different way. However, once it is in such a format, existing
Semantic Web technologies can be utilised to add to that knowledge. A basic method
is to apply inference techniques to a predicted class label so that the parent class labels

are also explicitly associated.

We can also exploit the fact that the PSB base classification contains very fine grained
classes, and coarse 3 contains very coarse grained classes with the coarse 1 and 2 classifi-
cations somewhere in between. This means that in some or all cases, objects in a class in
the base classification will all be in the same class in the coarse 1, 2 and 3 classification.
However, the inverse is not true, that it objects in a class in coarse 1 are very likely to

be in several classes in the base classification. This makes it easy to help infer relations
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<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:skos="http://www.w3c.org/2004/02/skos/core#">
<skos:Concept
rdf :about="http://wuw.ecs.soton.ac.uk/sg/psb#aircraft'">
<skos:broader
rdf :resource="http://www.ecs.soton.ac.uk/sg/psb#0"/>
<skos:narrower
rdf :resource="http://www.ecs.soton.ac.uk/sg/psb#airplane"/>
</skos:Concept>
<skos:Concept
rdf :about="http://www.ecs.soton.ac.uk/sg/psb#airplane">
<skos:broader
rdf :resource="http://www.ecs.soton.ac.uk/sg/psb#aircraft"/>
<skos:narrower
rdf :resource="http://www.ecs.soton.ac.uk/sg/psb#F117"/>
<skos:narrower
rdf :resource="http://wuw.ecs.soton.ac.uk/sg/psb#biplane"/>
</skos:Concept>
<skos:Concept rdf:about="http://www.ecs.soton.ac.uk/sg/psb#F117">
<skos:broader
rdf :resource="http://www.ecs.soton.ac.uk/sg/psb#airplane"/>
</skos:Concept>
<skos:Concept rdf:about="http://www.ecs.soton.ac.uk/sg/psb#biplane'">
<skos:broader
rdf :resource="http://www.ecs.soton.ac.uk/sg/psb#airplane"/>
</skos:Concept>
</rdf :RDF>

FIGURE 7.2: Representation of class hierarchy

<rdf :RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:skos="http://www.w3c.org/2004/02/skos/core#">
<rdf:Description rdf:about="http://www.ecs.soton.ac.uk/sg/psb/1298">
<skos:subject
rdf :resource="http://www.ecs.soton.ac.uk/sg/psb#F117"/>
</rdf :Description>
</rdf :RDF>

F1GURE 7.3: Representation of an object
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<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:prob="http://.../.#"
xmlns:prediction="http://.../. #">
<rdf:Description
rdf :about="http://wuw.ecs.soton.ac.uk/sg/prediction#123">
<prediction:classifier_id
rdf :resource="http://www.ecs.soton.ac.uk/sg/classifier#111"/>
<prediction:object_id
rdf :resource="http://www.ecs.soton.ac.uk/sg/psb/1298"/>
<prob:PriorProb0bj rdf:ID="P(F117)">
<prob:hasVariable>
<rdf:Value>F117</rdf:Value>
</prob:hasVariable>
<prob:hasProbValue>0.4</prob:hasProbValue>
</prob:PriorProbIbj>
</rdf :Description>
</rdf :RDF>

FIGURE 7.4: Representation of a prediction

between the different classifications. More generally this is a form of ontology mapping

which is generally a much harder problem.

Classification predictions could be combined using the techniques described in Chapter 6,
however this would not add anything to the system; we may as well have just performed

those operations on the classifiers directly.

Making use of probabilistic data in a semantic setting is a new research area requiring
methodologies to both represent and interpret probabilities in RDF. While a new area for
RDF, it is not a new research area in general. Current research has focused on defining
a representation that is easy to convert to a Bayesian network representation allowing
external, well established techniques to be applied to the data and the result imported
back into the system (Ding and Peng, 2004). To see the advantages of such a scheme,
Barutcuoglu and DeCoro (2006) have used Bayesian networks to improve the results of
binary classifiers trained on the Princeton Shape Benchmark (PSB). While this work
does not explicitly use Semantic Web techniques, it is using the Bayesian network to

accomplish the same task.

7.5 Some Open Issues

There are several issues still to be addressed. The most important one is the distinction
between manually assigned annotations and machine assigned annotations. Annotations
with low confidence values should be kept separate from the real annotations to avoid

polluting the system with bad annotations. However, as the confidence increases, the
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higher the likelihood of an annotation being a true annotation. The question is, when
is the confidence high enough? It is unlikely that 100% confidence will ever be reached
as there will always be some element of doubt. A system operator could validate the
proposed annotations which is a suitable proposal for limited numbers of annotations.
However, when large numbers of annotations have been generated, automatically adding
them is more desirable. The exact policy is really dependent upon the task. In some

cases quantity may be more desirable than quality of annotations.

Another issue is when to decide how good a prediction is to make use of it. An object with
a single prediction is not really a very reliable prediction, even with 100% confidence.
Ideally several predictions should be collected together first for the same classification

(e.g. PSB base classification).

7.6 Conclusions

In this chapter an outline for transforming the research into a Semantic Web setting and
furthering the status of the classifier agent has been described. The techniques described

here should easily be incorporated into an existing semantic system.

One of the original goals of the classifier agent was to automatically classify new objects
entering the system and to automatically create the classifiers required to do this. It
should be possible to drive the process of creating new classifiers in situations where the
existing set of classifiers is insufficient to produce an annotation with a high enough level

of confidence.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis we have investigated the use of 3-D shape descriptors for use in content-
based retrieval, classification and annotation. Involvement with the SCULPTEUR project
provided real world 3-D objects and users for testing in out of the lab situations. Two
papers have been published; one is an analysis of a range of 3-D shape descriptors and
the other is our initial investigations into classifier training parameter optimisation. One
software package developed during the course of this thesis, FVS, has been released as

open-source software and is available at http://1ibfvs.sourceforge.net/.

From the experimentation with 3-D CBR algorithms we have seen that there is no one
descriptor that performs best in all situations. While some generally show higher perfor-
mance than others overall, for specific cases other descriptors may perform much better.
The same can be said for the different distance metrics, although they play a much smaller
role in effecting performance compared to the choice of descriptor. It is also interesting
to note that no one performance metric is best overall either. Some descriptors are very
good at finding an object of the same class as the query object as the closest match but
they are not so good at finding objects of the correct class for the other close matches.
Such a descriptor would rank highly for the Nearest Neighbour statistic but lower for
the first tier statistic. Another descriptor may never find an object of the correct class
for the closest match but the other closer objects may well be of the correct class thus
giving a low nearest neighbour ranking and a higher first tier score. Each descriptor and
metric combination is sensitive to certain shape features while insensitive to other shape
features. This is what makes them good for certain classes of object while poor for other
clagses. While it is unlikely that a descriptor will ever be sensitive to all shape features,
it is much more likely that a subset of descriptors will be able to collaborate to achieve

this goal.
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As with the choice of descriptor and distance metric, the choice of performance metric
is quite dependent upon the task in hand. Such analysis of the reference data sets
and descriptors can provide useful information to a knowledgeable user to improve the
quality of their search results. Current retrieval systems typically either have one specific
descriptor or a small user-selectable range, but there no way to automatically pick the

best descriptor for query object.

The classification work has shown that the descriptors used in this work are not discrim-
inating enough for fine grained classifications, but reasonable results can be obtained
with fewer classes. We have seen that the combination of classifiers can improve per-
formance and with more discriminating descriptors and classification techniques, higher
accuracy rates can be expected. While the combination of classifiers showed a small
improvement in performance, it suggests that the current selection of descriptors are
quite similar in discriminative capability. Dynamic classifier selection offers the best
potential for improving the performance of a set of base classifiers over any individual
performance while Majority Vote struggles with our data sets. It is interesting to note
that most prior research involves distinguishing between two classes with many members
in each whereas our work considered multiple classes with typically only a few members
in each class. The Majority Vote classifier combination rule may not have had a strong
majority with votes spread across a number of candidate classes. Such situations reduce
the classification to a random assignment. A possible alternative is to reject the input

pattern outright rather than assigning a weak classification.

The application of classifiers to annotate 3-D objects allows annotation of objects based
upon content. This allows a machine to “learn” the features that represent a given
annotation and apply that knowledge to new objects. The ability to learn annotations
is entirely dependent upon the capability of the descriptors to capture the features that
represent that feature. The use of probabilistic networks and standard Semantic Web
reasoning tools should provide a much higher quality of annotations than by just using a
single classifier on its own. By storing all the predictions made by classifiers, it allows for
evidence gathering of the real class. By making use of the multiple PSB classifications, a
range of applicable annotations can be applied to a single object. It should be noted that
some annotations we wish to assign to an object cannot be represented visually and exist

only to define a context. Such annotations are impossible to learn using visual features.

It is important to note that while the focus has been on 3-D objects, the techniques
described in this thesis can be applied to any type of media for which a fixed length
feature vector can be generated. By using techniques such as k-NN classifiers variable

length feature vectors could also be used.
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8.2 Future Work

The 3-D descriptor is the fundamental building block of the work in this thesis, however
as we have seen, the descriptors used did not provide the discriminative capabilities to
handle the fine grained classes. There are many other techniques that have not been in-
vestigated in this thesis and may help improve performance by either being substantially
different to the existing descriptors or by having a much greater discriminative power.
The current descriptors are all shaped based. Colour information has been ignored. In-
clusion would make the descriptors very different, however the lack of colour information
in the majority of 3-D models in our data sets makes the use of colour applicable to only

a few objects.

Another limitation faced in this work is the small data set sizes. The PSB Base classifi-
cation has an average class size of around ten members. This is very small for training a

classifier, especially when there are nearly a hundred leaf classes to distinguish between.

We have only experimented with a few popular classification techniques. Further investi-
gations with other techniques will be useful to establish whether any substantial increase
in performance can be obtained. Alternative methods of combining classifiers may also

yield improved results.

The complex class boundaries makes learning to discriminate between all classes in one
go a difficult task to achieve, especially when some classes are very large and others are
very small. Techniques for breaking the task into smaller, easier to solve problems may

help improve results.

Chapter 7 suggested how 3-D objects could be annotated using classification techniques
and how to potentially build upon that knowledge using semantic web techniques. It
would be good to build such a system and experiment with methods of building upon
the classifier predictions. The use of relevance feedback could be useful in training the
system to “prefer” some annotations over others. An example here is the use of relevance
feedback to adjust the confidence associated to a classifier. A classifier with a poor
estimated confidence could make very good annotations in the view of a user. Likewise a
classifier with a high confidence could make some very poor annotations in the view of a
user. Of course annotations are often subjective and different people can make different

annotations for the same object.

Manually creating classifiers may not provide for the whole range of difficult cases that
may arise while annotating an object. Allowing the annotation system to drive the
creation of new classifiers to handle difficult cases is an area that should help improve
overall accuracy. For example, the manually created classifiers may predict with a high
accuracy two mutually exclusive classes for set of objects. In this case it would be

advantageous to generate some classifiers to distinguish between these two classes.
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An interesting area to look at is the use of classification techniques to select the best
descriptor to use in a CBR query. By using a classifier to determine the potential class of
the query object, appropriate methods can be used to boost performance for objects of
that class. Possibilities are to select the best descriptor for the query object class, or to

return only objects of the predicted class (or at least make sure they are ranked higher).
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(Glossary

ARTISTE The predessesor project to SCULPTEUR that developed integrated content

and metadata-based image retrieval across several major art galleries in Europe.
CBR Content-Based Retrieval.
CD Compound Diversity measure for comparing classifier diversity.

CIDOC CRM CIDOC Conceptual Reference Model. An ontology of cultural heritage

information.
CQL Common Query Language.
CyberX3D A C++ VRML and X3D parser library.

DAG-SVM Directed Acyclic Graph Support Vector Machine. A multi-class SVM tech-
nique using binary SVMs.

DCG The Discounted Cumulative Gain.
DCS Dynamic Classifier Selection.
Descriptor A specific version of a content-based retrieval algorithm.

Distance Image A visual matrix representing the distance between every object in a

data-set.
eChase A European project following on from the SCULPTEUR project.
EGI Extended Gaussian Image descriptor.
Feature Vector The output of a descriptor, typically a histogram.

First Tier A performance metric indicating how many of the top matches are of the
correct class. The number of matches to consider is equal to the size of the class

under consideration.
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FVG The Feature Vector Generator software in ARTISTE.

FVS The Feature Vector software in SCULPTEUR. Derived from FVG.
GA The Genetic Algorithms optimisation technique.

GD Generalisation Diversity measure for comparing classifier diversity.
GET-ENST A partner in the SCULPTEUR project.

JSP Java Servlet Pages.

LGPL Lesser/Library GNU Public License.

MCS Multiple Classifier System.

MD2 Modified Shape D2 descriptor.

MLP Multi-Layer Perceptron.

MoE Mixture of Experts multiple classifier architecture.

MRG Multi-resolution Reeb Graph descriptor.

MYV Majority Vote classifier combination rule.

MySQL An open-source database management system.

Nearest Neighbour The nearest neighbour is the closest object in feature space to
a query. The nearest neighbour statistic is the proportion of objects for which
the nearest neighbour was of the same class. The nearest neighbour classifier is a

special case of the k-Nearest Neighbour classifier where £ is equal to 1.
OWL Web Ontology Language. A language used to define an ontology.
PCA Principal Components Analysis.

Precision A performance metric indicating how relevant the matches are.

PSB The Princeton Shape Benchmark. A data set of around 1,800 objects classified
into several groupings. The benchmark also provides a set of tools to evaluate

performance.
PHP A scripting language used in web servers to provide dynamic content.
PSO The Particle Swarm Optimisation technique.
RBF Radial Basis Functions Network Classifier.
RDF Resource Description Framework.

RDQL RDF Data Query Language.
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Recall A performance metric indicating the proportion of relevant items found.
ROC Receiver Operating Characteristics Graph.
SCG Scaled Conjugate Gradients. A training method for the MLP classifier.

SCULPTEUR A European project.

Second Tier A performance metric similar to the First Tier but with twice as many

matches considered.
SeRQL Sesame RDF Query Language.
Sesame A RDF framework for storing and querying RDF.
SOM Kohonen’s Self Organising Map.

SKOS Simple Knowledge Organisation Systems. A standard way to represent knowl-
edge using RDF.

SPARQL Simple Protocol and RDF Query Language for querying RDF databases.
SQL Structured Query Language. Used to query databases such as MySQL.

SRW Search and Retrieve Web service.

SVM Support Vector Machine.

Tier Image A visual matrix showing which objects were counted as the nearest neigh-

bour, first and second tier matches for every object.
UDF A User Defined Function in MySQL.

VIPS VASARI Image Processing System. Originally developed during the VASARI
project. Used within FVS for 2-D image processing.

VRML The Virtual Reality Modelling Language.
WWW The World Wide Web.

X3D An XML representation of a 3-D object. Replaces VRML.
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PSB Classifications

‘ Train Test ‘ ‘ Train ‘ Test ‘

Class Name Class Name
aircraft/airplane/F117 4 0 furniture/seat/chair/dining 11 11
aircraft/airplane/biplane 14 14 furniture/seat/chair/desk 0 15
aircraft /airplane/commercial 10 11 furniture/seat/char/stool 7 0
aircraft/airplane/fighter jet 50 50 furniture/seat/couch 15 0
aircraft/airplane/glider 0 19 furniture/shelves 13 13
aircraft/airplane/multi_fuselage 7 0 furniture/table/rectangular 26 25
aircraft/airplane/stealth bomber 0 5 furniture/table/round 12 0
aircraft/baloon vehicle/dirigible 7 0 furniture/table/round/single leg 0 6
aircraft/balloon vehicle/hot air 0 9 furniture/table and chairs 5 0
balloon
aircraft /helicopter 17 18 geographical map 0 12
aircraft/spaceship/enterprise like 11 11 gun/handgun 10 10
aircraft/spaceship/satellite 0 7 gun/rifle 19 0
aircraft/spaceship/space shuttle 6 0 hat 0 6
aircraft /spaceship/flying saucer 0 13 hat/helmet 10 0
aircraft/spaceship/tie fighter 0 5 hourglass 0 6
aircraft /spaceship/x wing 5 0 ice cream 12 0
animal/arthropod/insect/ant 0 5 ladder 0 4
animal/arthropod/insect/bee 4 0 lamp/desk lamp 14 0
animal/arthropod/insect/butterfly 0 7 lamp /streetlight 0 8
animal/arthropod/spider 11 0 liquid container/bottle 12 0
animal/biped/human 50 50 liquid container/glass with stem 0 9
animal/biped/human/human arms 21 20 liquid container/mug 7 0
out
animal/biped /human/walking 0 8 liquid container/pail 0 4
animal/biped/trex 6 0 liquid container/tank 5 0

Table B.1: PSB Dataset: Classes and sizes
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‘ Train

Test ‘

‘ Train

Test ‘

Class Name Class Name
animal/flying creature/bird/duck 5 0 liquid container/vase 11 11
animal/flying creature/bird/flying 0 14 mailbox 0 7
bird
animal/flying 0 7 microchip 7 0
creature/bird/standing bird
animal/quadruped/aptosaurus 4 0 microscope 5 0
animal/quadruped/dog 0 7 musical 4 0
instrument/guitar/accoustic guitar
animal/quadruped/feline 6 0 musical 0 13
instrument/guitar/electrical guitar
animal/quadruped/horse 0 6 musical instrument/piano 6 0
animal/quadruped/pig 4 0 newtonian toy 0 4
animal/quadruped/rabbit 0 4 phone handle 4 0
animal/snake 0 4 plant/bush 0 9
animal/underwater 5 0 plant/flower with stem 15 0
creature/dolphin
animal/underwater creature/sea 0 6 plant/flowers 0 4
turtle
animal/underwater creature/shark 7 0 plant/potted plant 25 26
animal/underwater creature/fish 0 17 plant/tree 17 0
blade/butcher knife 4 0 plant/tree/barren 11 11
blade/axe 0 4 plant/tree/conical 0 10
blade/knife 0 7 plant/tree/palm 10 0
blade/sword 15 16 satellite dish 0 4
body part/brain 7 0 sea vessel/sailboat 5 0
body part/face 17 16 sea vessel/sailboat/large sail boat 0 6
body part/hand 0 17 sea vessel/sailboat/sailboat with 4 0
oars
body part/head 16 16 sea vessel/ship 10 11
body part/skeleton 5 0 sea vessel/submarine 0 9
body part/skull 0 6 shoe 8 0
body part/torso 4 0 sign/billboard 0 4
book 0 4 sign/street sign 12 0
bridge 10 0 sink 0 4
building/barn 0 5 skateboard 5 0
building/castle 7 0 slot machine 0 4
building/church 0 4 snowman 6 0
building/dome church 13 0 staircase 0 7

Table B.1: PSB Dataset: Classes and sizes
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‘ Train

Test ‘

Class Name Class Name
building/gazebo 0 5 swingset 4 0
building/lighthouse 5 0 tool/hammer 0 4
building/one story home 0 14 tool/screwdriver 5 0
building/roman building 12 0 tool/shovel 0 6
building/skyscraper 0 5 tool/wrench 4 0
building/tent/multiple peak 5 0 umbrella 0 6
building/tent/one peak tent 0 4 vehicle/car/antique car 5 0
building/two story home 11 10 vehicle/car/race car 0 14
chess piece 17 0 vehicle/car/sedan 10 10
chess set 0 9 vehicle/car/sports car 19 0
chest 7 0 vehicle/covered wagon 0 5
city 10 10 vehicle/cycle/bicycle 7 0
computer/laptop 4 0 vehicle/cycle/motorcycle 0 6
display device/computer monitor 0 13 vehicle/military tank 16 0
display device/tv 12 0 vehicle/monster truck 0 5
door 0 18 vehicle/pickup truck 8 0
door/double doors 10 0 vehicle/semi 0 7
eyeglasses 0 7 vehicle/suv 4 0
fantasy animal/dragon 6 0 vehicle/suv/jeep 0 5
fireplace 0 6 vehicle/train 7 0
furniture/bed 8 0 vehicle/train/train car 0 5
furniture/cabinet 0 9 watch 5 0
furniture/desk/desk with hutch 7 0 wheel 0 4
furniture/desk/school 0 4 wheel/gear 0 9
furniture/seat/bench 0 11 wheel/tire 4 0

Table B.1: PSB Dataset:

Classes and sizes
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Class Name ‘ Train ‘ Test ‘ Class Name ‘ Train ‘ Test ‘
aircraft /winged vehicle 107 | 135 furniture/seat 40 37
aircraft /ballon vehicle 7 9 furniture/shelves 13 13

aircraft /helicopter 17 18 furniture/table 43 35
animal/arthropod 15 12 geographic map 0 12
animal /biped /human 71 78 gun 29 0
animal /biped /trex 6 0 hat 10 6
animal/flying creature 5 21 ladder 0 4
animal /quadruped 14 17 lamp 14 8
animal/snake 0 4 liquid container 35 24
animal /underwater creature | 12 23 mailbox 0 7
blade 19 0 | musical instrument 10 13

body part/hand 0 17 plant 78 60
body part/head 40 38 satellite dish 0 4
body part/skeleton 5 0 sea vessel 19 26
body part/torso 4 0 shoe 8 0
bridge 10 0 sign 12 4
building 53 47 skateboard 0 4

chess piece 17 0 slot machine 0 4
chest 7 0 snowman 6 0

city 10 10 staircase 0 7

display device 16 24 swingset 4 0
door 10 18 handheld 40 83

fantasy animal/dragon 6 0 vehicle/car 63 51
fireplace 0 6 vehicle/cycle 7 6
furniture/bed 8 0 vehicle/train 7 0
furniture/cabinet 0 9 wheel 4 13

TABLE B.2: PSB Coarse 1 Data set: Classes and sizes

’ Class Name ‘ Train ‘ Test ‘ Class Name ‘ Train ‘ Test ‘

vehicle 230 245 building 53 47
animal 123 155 furniture 104 94
household 219 185 plant 78 60

TABLE B.3: PSB Coarse 2 Data set: Classes and sizes

‘ Class Name ‘ Train ‘ Test ‘ Class Name ‘ Train ‘ Test ‘

natural 282 | 256 | vehicle/car 80 0
man made 625 | 571

TABLE B.4: PSB Coarse 3 Data set: Classes and sizes
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