
Towards Equivalence Checking Between TLM and RTL Models∗

Nicola Bombieri Franco Fummi Graziano Pravadelli
Dipartimento di Informatica
Università di Verona, Italy

{bombieri, fummi, pravadelli}@sci.univr.it

Joao Marques-Silva
School of Electronics and Computer Science

University of Southampton, UK
jpms@ecs.soton.ac.uk

Abstract
The always increasing complexity of digital system is

overcome in design flows based on Transaction Level Mod-
eling (TLM) by designing and verifying the system at dif-
ferent abstraction levels. The design implementation starts
from a TLM high-level description and, following a top-
down approach, it is refined towards a corresponding RTL
model. However, the bottom-up approach is also adopted
in the design flow when already existing RTL IPs are ab-
stracted to be reused into the TLM system. In this con-
text, proving the equivalence between a model and its re-
fined or abstracted version is still an open problem. In fact,
traditional equivalence definitions and formal equivalence
checking methodologies presented in the literature cannot
be applied due to the very different internal characteristics
of the models, including structure organization and timing.
Targeting this topic, the paper presents a formal definition
of equivalence based on events, and then, it shows how such
a definition can be used for proving the equivalence in the
RTL vs. TLM context, without requiring timing or structural
similarities between the modules to be compared. Finally,
the paper presents a practical use of the proposed theory,
by proving the correctness of a methodology that automati-
cally abstracts RTL IPs towards TLM implementations.

1 Introduction
TLM is nowadays the reference modeling style for

HW/SW design and verification of digital systems. TLM
greatly speeds up the verification process by providing de-
signers with different abstraction levels whereby digital sys-
tems are modeled and verified. Thus, the complexity of the
modern systems can be handled by designing and verifying
them through successive refinement steps [1].

In a TLM-based design flow, a system is first modeled
at high-level in order to check the pure functionality, dis-

∗This work has been partially supported by European project VER-
TIGO FP6-2005-IST-5-033709.

regarding details related to the target architecture. Thus,
motivated by the lack of implementation details, the simula-
tion speed is a few orders of magnitude faster than at RTL.
Then, step by step, designers refine and verify the system
description more accurately, towards the final RTL imple-
mentation.

Reuse of previously-developed Intellectual Propertie
(IP) modules is another key strategy that guarantees con-
siderable savings of time in transaction level modeling. In
fact, modeling a complex system completely at transaction
level could be inconvenient when IP cores are already avail-
able on the market, usually modeled at RTL. In this con-
text, modeling and verification methodologies are based on
transactors for converting TLM function calls to sequences
of RTL signals and vice-versa [2], thus allowing the inte-
gration between TLM and RTL components. Nevertheless,
since the integration of RTL IPs into a TLM design involves
slowing down the whole system simulation, a methodology
has been recently proposed to automatically abstract RTL
IPs towards TLM descriptions [3].

Whether in the top-down or in the bottom-up flow, it is
mandatory to verify the equivalence between implementa-
tions at different abstraction levels after each refinement or
abstraction step (see Figure 1). Some techniques have been
proposed in the past to check the correctness of the top-
down refinement flow [4, 5]. In [4], properties expressed
at TLM are reused at RTL by means of transactors. Thus,
the behavior expressed by the set of reusable properties can
be checked also in the refined version of the design. In [5],
an incremental verification based on assertions is proposed
to validate the TLM-to-RTL design refinement. The con-
cept of equivalence proposed in [4, 5] is based on proper-
ties, i.e., two implementations are equivalent if they satisfy
the same set of properties. Thus, the effectiveness of such a
kind of equivalence checking depends on the quality of the
defined properties, since the equivalence is guaranteed only
for behaviors for which a property has been defined.

The property-based approach differs from the traditional

Equivalence Checking

TLM
Model

RTL
Model

R
ef

in
em

en
t

A
bs

tra
ct

io
n

Figure 1. Equivalence Checking in TLM De-
sign Flows.

equivalence checking (EC) strategies presented in literature.
Combinational EC and sequential EC have achieved con-
siderable success in the context of hardware verification, to
prove the equivalence between two RTL implementations or
between an RTL and a gate-level implementation [6, 7]. In
these cases, the proof of equivalence relies on tight similar-
ities in terms of interfaces, temporal and functional behav-
iors. Combinational EC checks two acyclic and gate-level
circuits. Combinational equivalence checkers can also be
used to check equivalence of two sequential designs (and
thus called sequential EC) once the state encoding of the
two designs are the same. Thus, the real challenge of se-
quential verification is in verifying two designs with differ-
ent state encodings. Considerable research has been done
to find compare-points for latch mapping [8, 9]. However,
these techniques operate at gate-level, where they reason in
the Boolean domain.

Equivalence checking between system-level (i.e., TLM)
and RTL implementations is still an open problem, and,
to the best of our knowledge, research work in this topic
is still in its early stages [10, 11]. The main problem in
checking the equivalence between RTL and TLM models
is due to the fact that, generally, there are neither temporal
nor structural similarities between TLM and RTL descrip-
tions. Thus, equivalence checking by using the traditional
RTL/gate-level techniques can be considered inapplicable.
In [11], a technique to apply sequential EC to system level
vs. RTL designs is presented. It proposes a methodology
to alleviate the complexity of the latch mapping by com-
paring variables of interest (observables) in the design de-
scriptions. Nevertheless, even if variable mapping is more
intuitive and easier w.r.t. standard techniques, the problem
becomes unmanageable when the compared circuits are sig-
nificantly different.

Because of these substantial differences among TLM
and RTL abstraction levels, the first main issue concerns
what functional equivalence means when TLM and RTL de-
scriptions are compared. In [12], a definition of functional
equivalence is given but it is strictly related to C functions
and the corresponding Verilog implementation. Several no-
tions of equivalence have been formulated in [10]: combi-

national equivalence, cycle-accurate equivalence, pipelined
equivalence, etc. All of them aim at comparing the model
functionality by strictly considering timing. Hence, they are
well suitable to be applied for checking “similar” descrip-
tions, while they present strong limitations when applied for
comparing models with no matchable timing behaviors.

In this paper, we first give a general formal definition
of functional equivalence, that we call event-based equiv-
alence, since it is based on the concepts of event and se-
quence of events. In particular, our definition differs from
the others since it has the following key characteristics:

1. The models to be compared are considered as black-
boxes and only the I/O behaviors are matched. Thus,
no similarities on the internal structures of the models
(e.g., common registers, or common finite state ma-
chine templates) are required to check the equivalence.

2. The functional equivalence can be checked even if
there is no timing correlation between the models,
since the definition proposed in this paper relies on the
concepts of sequence of events disregarding the real in-
stant when such events occur. That is, the two models
executing the same functionality are allowed to per-
form a possibly lengthy computation completely inde-
pendent from each other.

A second outcome of the paper is to show how the pro-
posed definition of equivalence applies in the TLM-RTL
context by settling the meaning of event and sequence of
events at different abstraction levels. The concept of event
plays a key role, as it characterizes the I/O operations
whereby the equivalence of the models can be checked.

Finally, we give a more formal definition of the elemen-
tary steps of the RTL-to-TLM abstraction methodology pre-
sented in [3]. Then, we prove that modules abstracted ac-
cording to such a methodology are correct by construction
with respect to event-based equivalence. The proof relies on
the fact that the abstraction steps preserve the event-based
equivalence between the original RTL implementation and
the TLM abstracted description.

The paper is organized as follows. Section 2 gener-
ally introduces the definitions of event, sequence of events,
and event-based equivalence. Section 3 introduces the con-
cept of event and event-based equivalence for TLM and
RTL abstraction levels. Then, Section 4 presents an RTL-
to-TLM abstraction methodology that preserves the event-
based equivalence. Finally, Section 5 draws the conclu-
sions.

2 Event-based Equivalence
The event is the base concept to evaluate the behavior

of a model through its execution since both functional and
performance analysis rely on events. Functional analysis
checks the correctness of sequences of events, in terms of
values of primary inputs (PIs), primary outputs (POs) and
internal registers of the model. Model performance is evalu-
ated by checking the distribution of events in terms of delay
over time [13].

2.1 Events and Ordering of Events
In general, an event corresponds to something happening

at a certain time during the evolution of the system model.
According to the desired granularity, and the considered ab-
straction level, an event can be associated to the circum-
stance in which the clock ticks, an output changes its value,
an instruction is executed, a function call returns, etc. Thus,
the execution of a set of processes modeling the system un-
der development can be considered as a sequence of events,
provided that the granularity of events has been defined.

The main idea of the proposed event-based equivalence
consists of providing a way for proving the equivalence
of two implementations by comparing their sequence of
events. However, the event-based equivalence must be in-
dependent from the concept of time, since we want to ap-
ply the definition for proving the equivalence between mod-
els with different time scales (e.g., RTL vs. TLM). A way
for ordering sequence of events, and then comparing them
without considering real time, has been proposed by Lam-
port [14]. Lamport defined relation “happens before” to or-
der a sequence of events related to several processes running
on a distributed system. A similar definition can be applied,
in the context of this paper, for ordering the sequence of
events generated by a model representing a digital system.
Without loss of generality, we can assume that the model
is composed of a single process. In fact, we consider the
model as a black box whose events are observed only at PIs
and POs, disregarding the number of processes that act on
such PIs and POs. Thus, we define the “happens before”
relation, denoted by ”→”, as follows:

• event a happens before event b, if a is executed before
b;

• if a, b and c are events such that a → b and b → c, then
a → c;

• finally, we say that two events, a and b, are concurrent
if neither a → b nor b → a. We write a||b if a and b
are concurrent.

We assume that a � a for any event a, as systems in
which an event can happen before itself do not seem to be
physically meaningful. This implies that ”→” is an irreflex-
ive partial ordering on the set of all events in the system.

2.2 Snapshots and Sequences of Events
As better clarified in Section 3, a model is described

with a more or less degree of accuracy depending on the
adopted abstraction level. In particular, each level is in-
tended to model and verify either the pure untimed func-
tionality or the approximately timed behavior or the cycle
accurate behavior. Furthermore, two models, that imple-
ment the same functionality at different abstraction levels,
very often present completely different internal structures.
As a consequence, no relations on the internal structure of
the models can be assumed. For this reason, the equivalence
of two models should be proved only in terms of sequences
of events.

Thus, in this section, we give a definition of equivalence
checking which relies only on the assumption that the I/O
of the models to be compared can be put in correspondence.
Hence, instead of comparing, for example, the states of two
finite state machines, we propose to consider the model like
black boxes and to check only the I/O behavior that is ex-
ternally visible at each event. Informally, assuming that the
same values are given to the PIs of two models, we require
that the outputs give the same results.

It is important to note that, in this paper, we do not in-
troduce a new meaning of equivalence between design de-
scriptions. All the simulation-based techniques, for exam-
ple, rely on the same concepts by which two designs are
equivalent if, having the same test patterns on input, they
produce the same output results. The contribution of our de-
finition of equivalence relies on the fact that it aims at prov-
ing the correctness of abstraction or refinement method-
ologies. In other words, considering a methodology that
transforms a design into a more abstract or more refined
description, the definition of equivalence can be applied to
formally prove that the generated description is correct-by-
construction. An application example is given in Section 4.

We start by defining the model domains. Given a model
M where < I1, .., In > and < O1, ..., Om > are, respec-
tively, the set of PIs and the set of POs of M , we denote with
D(Ii) and D(Oj) respectively, the domain of input Ii and
output Oj . Furthermore, we denote the tuple of the input
and output domains respectively as

D(I1) × D(I2) × .. × D(In)

and
D(O1) × D(O2) × .. × D(Om).

Then, we call snapshot an instance of the tuple contain-
ing the values of PIs and POs when a particular event oc-
curs. In this context, we distinguish an input snapshot (σI)
and a model snapshot (σM) as follows:

σI ∈ D(I1) × D(I2) × .. × D(In)

σM ∈ D(I1) × .. × D(In) × D(O1) × .. × D(Om)

where the snapshot is related only to PIs in the former
case, while it is related to both PIs and POs in the latter case.
Informally, a snapshot is the configuration of the model ex-
ternally observed on the I/O when a particular event occurs
during the model simulation.

Then, we define the sequence of events:

ΣI = < σI
0 , σI

1 , ... >, where ∀i σI
i → σI

i+1

and

ΣM = < σM
0 , σM

1 , ... >, where ∀i σM
i → σM

i+1

as the sequence of snapshots observed on the PIs for
the former case (event sequence on inputs), and the the se-
quence of snapshots observed in both PIs and POs for the

latter case (event sequence on the model). The set of all the
event sequences forms the universe of sequences:

⋃
ΣI : universe of event sequences on inputs;

and ⋃
ΣM : universe of event sequences on the model.

Finally, we formally define behavior � of the model with
regard to event sequences on I/O as follows:

�M :
⋃

ΣI −→
⋃

ΣM

Function � represents the behavior of the model considered
as a black box where for any event sequence on inputs there
is an event sequence on the model. The range of � con-
siders both PIs and POs for preserving causality. In fact, it
is easier to relate POs events with triggering PIs events if
the sequence of events includes both. For example, assum-
ing a system that might not respect causality (i.e., output
events could occur before the associated input events), then
we could wrongly conclude that such a system would be
equivalent to a correct system.

Function � abstracts all the details concerning compu-
tation timing as well as internal structures. Hence, we rely
on the definition of � to express the concept of equivalence
between two models, as follows:

Definition 1 Given two models M1 and M2 and the func-
tions �M1 and �M2 representing their behaviors, M1 and
M2 are event-based equivalent iff ∀ ΣI ∈ ⋃

ΣI ,

�M1(Σ
I) = �M2(Σ

I)

The next section uses event-based equivalence for com-
paring RTL vs. TLM models.

3 RTL-TLM Event-based Equivalence
TLM levels have been defined in literature in different

ways and by proposing different interfaces [15, 16]. How-
ever, the key characteristic, which aggregates all of such de-
finitions, concerns the classification of the TLM abstraction
levels in terms of timing and communication mechanism.
Thus, the following TLM abstraction levels can be defined
by using the OSCI terminology [15]:

• TLM Programmer’s View (PV), which is transaction-
based and untimed;

• TLM Programmer’s View with Time (PVT), which is
transaction-based and approximately timed;

• TLM Cycle Accurate (CA), which is cycle-based and
timed.

At the highest level (PV) a functional specification is cre-
ated to provide a proof of concept. At this level, it is not
determined yet which modules will be implemented in HW

and which in SW. Both communication and computational
parts of the system are untimed. Data transfers between
modules rely on abstract types and point-to-point commu-
nications implemented by means of function calls.

At PVT, the model simulates in non-zero simulation time
and, thus, a first estimation of timing performance can be
performed. Furthermore, HW/SW partitioning is performed
according to several constraints (e.g., performance, cost,
component availability, etc.), and the abstract architecture
is mapped into a set of interconnected resource-constrained
blocks. Data transfers still relies on function calls, but they
are characterized in terms of bit width and message size to
estimate bus bursts. Pipelined structures are introduced by
splitting complex operations into a timed sequence of sim-
pler operations.

At the lowest TLM level (CA), the model is cycle accu-
rate. SW components are implemented by means of stan-
dard SW engineering techniques, HW components are very
similar to behavioral RTL descriptions, and interfaces be-
tween components are defined (even if pins can be still hid-
den). A bus model is introduced and clock-accurate proto-
cols are mapped to the chosen HW interfaces and bus struc-
ture. Transactions are mapped directly to bus cycles. There-
fore, a CA TLM model is very close to the corresponding
RTL model, particularly with respect to the notion of time.

Thus, depending on the TLM abstraction level, a model
is described with some degree of accuracy, and the commu-
nication protocol performing read or write actions can be
syntactically and semantically fairly different. For exam-
ple, at CA TLM, data is exchanged between the master and
the slave ports by means of signals. Thus, a read operation
for a slave corresponds to read from PIs. On the contrary,
at PV or PVT TLM, the same operation consists of one or
more transactions implemented by means of function calls,
whose parameters contains the data to be exchanged.

For this reason, it is reasonable to relate the concept
of event with respect to the abstraction level, to apply the
definition of event-based equivalence formulated in Sec-
tion 2. In particular, according to the different communi-
cation mechanisms implemented at TLM and RTL levels,
we consider the following kinds of models:

• Cycle Accurate (CA) models, which includes both CA
TLM and RTL descriptions;

• Transaction-based (TB) models, which includes both
PV and PVT TLM descriptions.

Thus, in the following of the paper, we focus on CA
models and TB models rather than generically speaking of
TLM and RTL models.

3.1 Transaction-Based Events vs. Cycle
Accurate Events

In Section 2, the concept of event has been generally de-
fined as “something happening during the evolution of the
system”. The following definition specifies the concept of
event for TB and CA models.

T1
T2

T3
T4

(eTB
1) (eTB

2) (eTB
4) (eTB

5) (eTB
6) (eTB

7)

(non-blocking) (blocking)

(eTB
3) (eTB

8)

TB

Figure 2. Events in a TB model.

Definition 2 In a TB model, an event occurs each time a
transaction starts or a transaction finishes. In a CA model,
an event occurs each time a read on a PI or a write on a PO
is performed.

The “happen before” relation defined in Section 2 is
suited for the concept of CA and TB event proposed in
Def. 2. In fact, both a sequence of CA events and a se-
quence of TB events can be partially-ordered according to
the “happen before” relation.

Let us consider Figure2 and Figure 3, respectively, for
an example of TB sequence and CA sequence.

In the case of a TB model, we distinguish two events per
transaction since the function calls characterizing a transac-
tion can be either blocking or non-blocking. In particular,
a transaction T is blocking, if the process triggering T is
suspended until T terminates. In the meantime, other trans-
actions from different processes can be executed (e.g., T3
and T4 in Figure 2). On the contrary, a transaction is non-
blocking if it must terminate (possibly, with an error condi-
tion) before other transactions can be triggered (e.g., T1 and
T2 in Figure 2). In case of blocking calls, the system could
have overlapping transactions. However, distinguishing be-
tween the starting and the ending point of a transaction pro-
vide us with a more granular view of the system behavior
[13]. As a consequence, we can partially order events in
a TB model disregarding the difference between blocking
or non-blocking transactions. For example, in Figure 2, the
following relations among TB events hold:

eTB
1 → eTB

2 → eTB
4 → eTB

5 → eTB
6 → eTB

7 ,
eTB
2 ||eTB

3 , eTB
7 ||eTB

8 .
Similarly, the sequence of events occurring during the

evolution of a CA model can be partially ordered according
to the “happen before” relation. Figure 3 shows an exam-
ple. Signals data and data en represent, respectively, the
data to be read and the flag for indicating that such data are
available to be read, while result and result en represent,
respectively, the result of the computation and its enabling
flag. In this example, the following relations among CA
events hold:

eCA
1 → eCA

3 → eCA
5 → eCA

7 ,
eCA
1 ||eCA

2 , eCA
3 ||eCA

4 , eCA
5 ||eCA

6 , eCA
7 ||eCA

8 .
Given the definition of event proposed in Def. 2, we can

also introduce the concept of snapshot, generally expressed
in Section 2.2 as an instance of the tuple containing the val-

(eCA
1)

CA
clk

data
data_en

result
result_en

(eCA
5) (eCA

7)

(eCA
2)

(eCA
3)

(eCA
4) (eCA

6) (eCA
8)

Figure 3. Events in a CA model.

ues of PIs and POs when a particular event occurs. In a TB
model, a snapshot captures the I/O values contained in the
data structure exchanged by the transaction corresponding
to the observed event. On the other hand, in a CA model, a
snapshot captures the values read or written respectively on
PIs and POs.

3.2 TB-CA Event-based Equivalence
Checking

According to the definition of CA and TB events pro-
posed in Def. 2, this section introduces the concept of event-
based equivalence between a CA model and a TB model.

The general definition of event-based equivalence pre-
sented in Def. 1 assumes that the I/O operation performed
by the models to be compared can be put in correspondence.
In fact, assuming that the same input stimuli are provided
to both a CA and a TB implementations, the event-based
equivalence holds if and only if both implementations pro-
duce the same results independently of timing. However,
the strategy and the data structure required for reading in-
put stimuli or writing results is generally different, when
a CA and a TB models are compared. Moreover, such I/O
operations can possibly require a different number of events
on CA models with respect to TB models.

Thus, the following correlations between CA and TB
models are necessary conditions for proving the event-
based equivalence:

• The tuple of the model domains (defined in Section
2.2) of the TB and CA models must correspond. How-
ever, PIs and POs in TB and CA models may differ
in type and in number (without affecting the compu-
tation result) depending on the communication proto-
col. Thus, a set of “relevant” I/O objects have to be se-
lected for representing the tuple of the model domains.
Any object of this set corresponds to a PI or a PO that
is present on both the TB model and the CA model.
We assume that the designers provide the set of “rel-
evant” I/O objects and the correspondence of PIs/POs
between the CA and TB models.

• The sequences of events observed during the evolution
of the models to be compared must correspond. This
means that a bijection must exist between the CA and
the TB sequences of events. Such a correspondence

is automatically achieved by means of two abstraction
functions (one for CA models and one for TB models)
that, given the CA and the TB sequences of events and
the set of “relevant” I/O objects, generate two new se-
quences of events for which a bijective correspondence
exists.

Before presenting the abstraction functions, let us con-
sider an example to better clarify these aspects. Figure 4
shows the evolutions of the CA and TB modules imple-
menting a simple sequential adder. In such an evolution,
the adder calculates the sum of two data (data1 and data2).
The I/O operations performed by both CA and TB models
are conceptually the following:

read data1; read data2; write result.

The CA model (Figure 4a) has 3 PIs (clock, data, and
data en) and 2 POs (result and result en). Reading data1
corresponds to read ports data and data en, for getting the
data1 value only if the data en flag is set. The same hap-
pens for reading data2. Thus, according to Def. 2, each
read operation is associated with two CA events1: one for
reading data en, and the other for reading data. In the same
way, writing the result corresponds to two events associated
to a write on result and a write on result en. Thus, for the
CA model, a total number of 8 events are generated, where
some of them are concurrent.

It is reasonable that a corresponding TB untimed imple-
mentation (i.e., PV TLM) of the same system preserves only
the PI data and the PO result, since flags for enabling read
and write operations are useless in the case of a transaction-
based communication, and clock is not considered at all.

Furthermore, the read operation is performed by two
transactions exchanged between the adder module and
a TLM communication channel. The first transaction
(get(data1)) gets the data value from the channel, while the
second (put(OK)) returns the acknowledgement to the chan-
nel. Such a read operation can be considered accomplished
only when the second transaction ends. The same happens
for getting data2. Thus, each read operation is associated
with 4 TB events. On the other hand, writing the result of
the computation corresponds to 4 events: two for the trans-
action that puts result on the channel and two for the trans-
actions that gets the corresponding acknowledgment. Thus,
for the TB model, a total number of 12 events are generated,
where some of them are concurrent.

The CA and TB sequences of events obtained so far can-
not be matchable, since their lengths differ (8 vs. 12), and
some events are not “relevant” to be compared, e.g., CA
events on flags do not have corresponding TB events, and
TB events on acknowledgment do not have corresponding
CA events.

1Without loss of generality, in this example we do not consider the
clock port. However, in case it was considered, all the events triggered
by the read operation on this port would be dropped by the abstraction
function presented in the following.

get(data1)

put(OK)

(eTB
1) (eTB

9) (eTB
12)

TB

(eCA
2)

(eCA
3)

CA

result

clk
data

data_en
result

result_en

(eCA
6) (eCA

8)

data1

(eCA
5)

put(result)

get(OK)get(data2)

put(OK)

(eTB
4) (eTB

6) (eTB
8) (eTB

10)

data2

(a)

(b)

(eCA
4)

(eCA
1)

(eCA
7)

(eCA
II) (eCA

III)(eCA
I)

Φ

(eTB
2)

(eTB
5)(eTB

3) (eTB
7) (eTB

11)

(eTB
II) (eTB

III)(eTB
I)

Ψ

Figure 4. Example of abstraction and match-
ing of CA and TB events.

The following operations must be performed for solving
this undesired situation, that prevents the possibility of us-
ing the event-based equivalence for comparing TB and CA
models:

1. “relevant” I/O objects must be defined by the design-
ers;

2. concurrent events must be collapsed (to avoid multiple
captures of the same I/O values in the same instant,
since this would be redundant for the analysis of the
model equivalence);

3. events specifically generated for compliance with the
communication protocol must be removed.

Provided that the first point is accomplished by the de-
signers, the second and the third points are implemented by
two abstraction functions. Let R be the set of PIs and POs
included in the set of the “relevant” I/O objects . We define
the abstraction functions Φ and Ψ that work, respectively,
on sequences of CA events and sequences of TB events as
follows:

Φ(ΣCA, R) = ΣCA′

where an event e ∈ ΣCA is preserved in the new sequence
ΣCA′

only if:

• e is generated by a read or a write operation performed
on an element of R;

• ΣCA′
does not already contain an event e1 ∈ ΣCA

such that e||e1.

Ψ(ΣTB , R) = ΣTB ′

where an event e ∈ ΣTB is preserved in the new sequence
ΣTB ′

only if:

• e is generated by a put or a get transaction carrying the
acknowledgement of a previous get or put transaction
performed on an element of R;

• ΣTB ′
does not already contain an event e1 ∈ ΣTB

such that e||e1.

Considering the example of Figure 4, Φ and Ψ work as
follows, provided that the set of “relevant” I/O object, i.e.,
R, is composed of data1, data2 and result.

Φ(eCA
1 , .., eCA

8) = (eCA
1 , eCA

3 , eCA
6) =

(eCA
I , eCA

II , eCA
III)

Ψ(eTB
1 , .., eTB

12) = (eTB
5 , eTB

8 , eTB
12) =

(eTB
I , eTB

II , eTB
III)

In this way, the sequences generated by Φ and Ψ contain
all and only events related to the I/O operations that are ex-
ternally visible by considering the module implementations
like black boxes (e.g., read data1, read data2, and write re-
sult). Moreover, a bijection exists between the abstracted
sequences, thus, they can be used for analyzing the event-
based equivalence.

From Def. 1 and from the definition of Φ and Ψ we de-
rive the following definition of event-based equivalence that
can be used for comparing CA vs. TB models.

Definition 3 Given a CA model MCA, a TB model MTB ,
the corresponding universes of event sequences on inputs⋃

ΣI
CA

and
⋃

ΣI
T B

, the functions �MCA
and �MT B

rep-
resenting the behaviors of MCA and MTB , the set R of
“relevant” I/O objects provided by the designers, and the
abstraction functions Φ and Ψ, MCA and MTB are event-
based equivalent iff ∀ pairs 〈ΣI

CA, ΣI
TB〉 ∈ ⋃

ΣI
CA

×⋃
ΣI

T B
, such that Φ(ΣI

CA) = Ψ(ΣI
TB),

�MCA
(Φ(ΣI

CA)) = �MT B
(Ψ(ΣI

TB)).

The next Section shows how the previous definition can
be used to prove that the RTL-to-TLM abstraction method-
ology proposed in [3] is correct by construction, i.e., the
TLM abstracted model is event-based equivalent to the RTL
model.

4 RTL-TLM Abstraction Proof of Correct-
ness

In this Section, we formalize the main concepts of the
methodology presented in [3], that automatically abstracts
RTL IPs towards TLM implementations. We focus on ap-
plying the concepts of event-based equivalence introduced
in Section 3 to prove the correctness of the process that ab-
stracts an RTL model (which is CA) towards a TLM PVT
model (which is TB). A similar proof can be drawn to prove
the correctness of the PVT to PV step.

in1!=0 and
reset=0

reg:=in1;
out1<=1;
out2<=1;

A

B

reset=1
out1<=0;
out2<=0;

reset=0 and reg!=1
out1<=reg;
out2<=reg*2;

reset=0 and reg=1
out1<=in1*2;
out2<=in1;

reset=1
out1<=0;
out2<=0;

Figure 5. Example of EFSM.

To achieve such a goal, first we need to introduce a for-
mal model that allows us to represent designs at different
abstraction levels. Among different alternatives, we select
the Extended Finite State Machine (EFSM) [17] since it
captures the main characteristics of the state-oriented, ac-
tivity oriented and structure-oriented model [18].

Definition 4 An EFSM is defined as a 5-tuple M =
〈S, I,O,D, T 〉 where: S is a set of states, I is a set of input
symbols, O is a set of output symbols, D is a n-dimensional
linear space D1 × . . .×Dn, T is a transition relation such
that T : S × D × I → S × D × O. A generic point in
D is described by a n-tuple x = (x1, ..., xn); it models the
values of the registers internal to the design.

A pair 〈s, x〉 ∈ S × D is called configuration of M .
An operation on M is defined in this way: if M is in a
configuration 〈s, x〉 and it receives an input i ∈ I , it moves
to the configuration 〈t, y〉 iff ((s, x, i), (t, y, o)) ∈ T for
o ∈ O.

The EFSM differs from the traditional FSM, since each
transition is not labeled in the classical form i/o, but it takes
care of the register values too, as reported below. Transi-
tions are labeled with an enabling function e, which rep-
resents the guard of the transition, and an update function
u, which specifies how the values of registers and outputs
evolve when the transition is traversed.

Given an EFSM M = 〈S, I,O,D, T 〉, s ∈ S, t ∈ S, i ∈
I, o ∈ O and the sets X = {x|((s, x, i), (t, y, o)) ∈ T for
y ∈ D} and Y = {y|((s, x, i), (t, y, o)) ∈ T for x ∈ X},
the enabling and update functions are defined respectively
as:

e(x, i) =
{

1 if x ∈ X;
0 otherwise.

u(x, i) =




(y, o) if e(x, i) = 1 and
((s, x, i), (t, y, o)) ∈ T ;

undef. otherwise.

Figure 5 exemplifies the state transition graph (STG) of
an EFSM representing a simple RTL IP-core. According to

the conditions reported in the enabling functions, the EFSM
moves from a state to another at each clock cycle executing
the HDL code included in the update function of the tra-
versed transition. Note that, an EFSM can be automatically
extracted from an HDL description as reported in [19, 17].

4.1 Cycle-Accurate RTL Model

Let MCA = 〈SCA, ICA, OCA,DCA, TCA〉 be the
EFSM representing the cycle-accurate RTL model we want
to abstract towards TLM.

We define a computational phase as a sequence of EFSM
states that must be consistently traversed to get the input
data (input sub-phase), elaborate them (elaboration sub-
phase), and finally provide the related output result (output
sub-phase). During the input sub-phase, the update func-
tions of the traversed transitions read input data and con-
trol lines without performing any further elaboration. Then,
data is manipulated in the elaboration sub-phase without
reading new values from inputs neither writing on outputs.
Finally, in the output sub-phase, the update functions do not
modify the computation result anymore, while control and
data output lines are written according to the communica-
tion protocol selected for the interaction between the mod-
ule and the environment where it is embedded.

The identification of input, elaboration and output sub-
phases on an EFSM is automatic. In fact, each computation
phased is composed of three different sets of adjacent states,
that can be recognized by parsing the enabling and the up-
date functions of the EFSM transitions.

• Input states. A sequence of input states is recogniz-
able since: (1) it starts with the initial state, (2) the en-
abling functions of the connecting transitions involve
conditions on control PIs, and (3) the related update
functions contain only assignments from PIs to inter-
nal registers.

• Elaboration states. A sequence of elaboration states
is recognizable since: (1) it starts after a sequence of
input states, (2) the enabling functions of the connect-
ing transitions involve conditions on internal registers,
and (3) the related update functions manipulate such
registers to compute the final result without reading PIs
nor writing POs.

• Output states. A sequence of output states is recog-
nizable since: (1) it starts after a sequence of elabora-
tion states, (2) the enabling functions of the connecting
transitions involves conditions on control PIs, (3) the
related update functions write on POs without further
manipulation of internal registers, (4) the sequence of
output states finishes with a transition in-going in the
initial state or in an input state.

We call SI
CA, SE

CA and SO
CA respectively the set of in-

puts, elaboration and output states, so that

SCA = SI
CA ∪ SE

CA ∪ SO
CA

I
uf0;

clk & ef0
G

wait

FIFO == empty

Get(data);
Put(OK);

FIFO != empty
& ef0

O
uf0;

clk & ef0
P

wait

FIFO == full

Put(result);
Get(OK);

FIFO != full
& ef0

CA TB

CA TB

(a)

(b)

Figure 6. Abstraction of I/O states.

4.2 CA-to-TB Abstraction

The automatic abstraction from the cycle-accurate RTL
design towards the transaction-based PVT TLM description
is carried out by collapsing the RTL computational phases
according to the three rules (input rule, elaboration rule, and
output rule) formalized in the following subsections. The
abstracted model is represented by a TB description mod-
eled as an EFSM MTB = 〈STB , ITB , OTB ,DTB , TTB〉
where, ITB = ICA and OTB = OCA.

4.2.1 Input Rule
For each input state I ∈ SI

CA of the CA model MCA, one
state G is generated for the TB model MTB with two out-
going transitions (see Figure 6a). The enabling function ef0

of the CA model is mapped into a system of transitions in
the TB model, where data is got from the TLM channel
(e.g., a FIFO) only if it is not empty (FIFO!=empty) and the
enabling function ef0 is satisfied. Otherwise, the module
waits on the channel. The update function uf0 of the CA
model, which performs read operations on input ports, is
mapped into a sequence of TLM function calls (get()/put())
that correspond to get input data from the TLM channel and
to return the acknowledgment.

4.2.2 Elaboration Rule
Each sequence of states (s1, .., sn) belonging to the same
elaboration sub-phase (i.e., so that si ∈ SE

CA, i = 1, .., n) of
the CA model MCA, is substituted by a single elaboration
state E on the TB model MTB . The state E and the cor-
responding in-coming and out-going transitions, are gener-
ated by recursively collapsing the CA states in accordance
with the following rules (depicted in Figure 7):

1. If a state A in the CA model has a single outgoing tran-
sition to a state B (i.e., A → B) whose enabling func-
tion is always true, then A and B are collapsed into a
single state A′, whose incoming transition has ef0 as
enabling function and the sequence of instructions in-
cluded in uf0 and uf1 as update function (Figure 7a).

A B
uf0;
ef0

uf1;

- A’
uf0;
uf1;

ef0

A B
uf0;
ef0

uf1;
ef1

uf2;
~ef1

A’uf0;
while (~ ef1) {

uf2
};
uf1;

ef0

A

B

uf0;
ef0

uf1;
ef1

uf2;
~ef1 C

uf0;
if (ef1) {

uf1;
// recursively, all the
code representing
the path of state B }

else {
uf2;
// recursively, all the
code representing
the path of state C };

ef0

(a)

(b)

(c)

A’

Figure 7. Basic steps for abstracting the elab-
oration sub-phases.

Further transitions incoming in B become incoming
transition of A′.

2. If a state A in the CA model has an outgoing transi-
tion towards a state B and a transition incoming into
the same state A, then A and B are still collapsed into
a single state A′. However, in this case, the transi-
tion incoming into A′ has a more complex form. The
enabling function is ef0, while the update function se-
quentializes uf0, uf2 and uf1 provided that uf2 is it-
eratively executed while ef1 is false. In this way, the
looping transition A → A in the CA model is implic-
itly represented by a while loop, as showed in Figure
7b. Further incoming transitions to B become incom-
ing transition to A′.

3. If a state A in the CA model has two outgoing tran-
sitions towards states B and C, then A, B and C are
collapsed in a single state A′ in the TB model. The
enabling function of the transition incoming into A′ is
ef0, while the update function is composed of uf0 fol-
lowed by and if-then-else statement. The guard of such
a statement is ef1, while the then and else branches are
obtained by recursively composing, respectively, uf1

with the code that can be executed outgoing from B,
and uf2 with the code that can be executed outgoing
from C, as showed in Figure 7c. Further incoming
transitions to B and C become incoming transitions to
A′.

4.2.3 Output Rule
CA output states are abstracted similarly to CA input states.
Thus, for each output state O ∈ SO

CA of the CA model
MCA, one state P is generated for the TB model MTB with
two out-going transitions (see Figure 6b). The CA update
function uf0, which corresponds to write data on output
ports, is mapped into a sequence of TB function calls for

putting the result on the TLM channel, if it is not full, and
getting the corresponding acknowledgment.

4.3 Proof of Equivalence
In this section, we prove that the abstraction method-

ology presented so far, is correct-by-construction with re-
spect to the definition of event-based equivalence reported
in Def. 3, i.e., we prove that whatever TB model obtained
by applying the previous abstraction rules is event-based
equivalent to the original CA model.

The proof relies on the fact that the abstraction rules
change neither the order of events generated by the TB
model with respect to the original CA model, nor the op-
erations performed inside the update functions.

Let us consider first the elaboration rule. Such a rule
cannot change the order of events since elaboration states
do not generate events externally observable. In fact, the
update functions involved in transition traversing the elab-
oration states neither perform read on input nor write on
output. Furthermore, the elaboration rule does not change
the order in which the code related to update function of
transitions traversing elaboration states is executed. All the
branch conditions of the original CA code are preserved into
the collapsed TB representation. This guarantees that the
functional part of the model is preserved, i.e., if input data
are correctly read in the input sub-phase and output data are
correctly written in the output sub-phase, then the TB model
generates the same result of the corresponding CA model.
Thus, the elaboration rule preserves the event-based equiv-
alence, if the input and output rules do not wrongly affect
the input and output sub-phases.

Considering the input rule, it modifies the way data are
read by the TB model with respect the CA model. However,
such a rule does not change the order of events generated by
CA read operations when they are abstracted towards a se-
quence of TB put/get function calls. In fact, according to the
definition of CA and TB events, and the definition of Φ and
Ψ given in Section 3, for each CA event triggered by a read
and preserved by the function Φ there is one and only one
TB event triggered by the read operation of the same data
on the abstracted model, preserved by Ψ. Moreover, the
input rule does not affect the functional part of the model,
since this is included in the elaboration states that are not
considered by the input rule. Thus, the input rule preserves
the event-based equivalence, if the elaboration phase does
not wrongly affect the elaboration sub-phases.

The output rule is dual with respect to the input rules, and
similar considerations can be applied. Thus, the output rule
preserves the event-based equivalence, if the elaboration
phase does not wrongly affect the elaboration sub-phases.
This proves that the abstraction methodology is correct-by-
construction with respect the event-based equivalence.

4.4 Implementation Details
The abstraction technique presented in [3] and sum-

marized in Section 4.2 has been implemented in the A2T

Design RTL code rows# PV code rows# Abstr. time(s)
Root 204 391 3.55
Div 425 681 3.72
Dist 325 547 3.60

ADPCM 305 521 3.65
B01 266 456 3.51

Table 1. Details of Abstractor results.

(Automatic Abstraction Tool) prototype. It automatically
abstracts RTL IPs towards TLM models guaranteeing the
event-based equivalence presented in this paper. Experi-
mental results have been conducted by applying the tool to
several RTL IP designs:

• Root, Div and Dist: three industrial submodules of an
STMicroelectronics SoC implementing a face recogni-
tion system [20].

• ADPCM: an Adaptive Differential Pulse Code Modu-
lation (ADPCM) module of a voice over IP system.

• B01: a benchmark of the ITC-99 benchmark suite [21].

Table 1 shows some details on the automatic abstraction
of these RTL IPs to their correspondent PV models by us-
ing A2T. Column RTL code lines # reports the size of the
RTL designs expressed in number of code lines. Column PV
code lines # reports the number of code lines of the PV im-
plementations. Finally, column Abstr. time(s) reports time
in seconds spent by the tool for the automatic abstraction
process.

5 Conclusions
The paper deals with the issue of equivalence checking

between RTL and TLM models, and a formal definition of
equivalence based on the concepts of event and sequence of
events is given. Such a definition can be used for proving
equivalence without requiring timing or structural similar-
ities between the modules to be compared. Thus, the pa-
per illustrates the use of the definition of equivalence in the
RTL vs. TLM context. Finally, a practical use of the pro-
posed theory is described, by proving the correctness of a
methodology that automatically abstracts RTL IPs towards
TLM implementations.

References

[1] L. Cai and D. Gajski. Transaction Level Modeling: An
Overview. In Proc. of ACM/IEEE CODES + ISSS, pp. 19–
24. 2003.

[2] D. Brahme, S. Cox, J. Gallo, M. Glasser, W. Grundmann,
C. N. Ip, W. Paulsen, J. Pierce, J. Rose, D. Shea, and
K. Whiting. The Transaction-Based Verification Methodol-
ogy. Tech. Rep. CDNL-TR-2000-0825, Cadence Berkeley
Labs, 2000.

[3] N. Bombieri, F. Fummi, and G. Pravadelli. A methodology
for abstracting RTL designs into TL descriptions. In Proc. of
ACM/IEEE MEMOCODE, pp. 103–112. 2006.

[4] N. Bombieri, A. Fedeli, and F. Fummi. On PSL Proper-
ties Re-use in SoC Design Flow based on Transaction Level
Modeling. In Proc. of IEEE MTV , pp. 127–132. 2005.

[5] N. Bombieri, F. Fummi, and G. Pravadelli. Incremental ABV
for Functional Validation of TL-to-RTL Design Refinement.
In Proc. of ACM/IEEE DATE. 2007.

[6] M. Fujita. Equivalence checking between behavioral
and RTL descriptions with virtual controllers and data-
paths. ACM Trans. Des. Autom. Electron. Syst.,
vol. 10(4):pp. 610–626, 2005.

[7] R. Drechsler and D. Grosse. System level validation using
formal techniques. IEE Proceedings-Computer and Digital
Techniques, vol. 152(3):pp. 393–406, 2005.

[8] D. Anastasakis, R. Damiano, H.-K. Mah, and T. Stanion. A
practical and efficient method for compare-point matching.
In Proc. of ACM/IEEE DAC, pp. 305–310. 2002.

[9] J. R. Burch and V. Singhal. Robust latch mapping for com-
binational equivalence checking. In Proc. of IEEE ICCAD,
pp. 563–569. 1998.

[10] A. Koelbl, Y. Lu, and A. Mathur. Embedded tutorial: formal
equivalence checking between system-level models and RTL.
In Proc. of ACM/IEEE ICCAD, pp. 965–971. 2005.

[11] S. Vasudevan, V. Viswanath, J. Abraham, and J. Tu. Auto-
matic decomposition for sequential equivalence checking of
system level and RTL descriptions. In Proc. of ACM/IEEE
MEMOCODE, pp. 71–80. 2006.

[12] D. Kroening and E. Clarke. Checking consistency of C and
Verilog using predicate abstraction and induction. In Proc.
of ACM/IEEE ICCAD, pp. 66–72. 2004.

[13] W. Ecker, V. Esen, and M. Hull. Execution semantics and
formalisms for multi-abstraction TLM assertions. In Proc.
of ACM/IEEE MEMOCODE, pp. 93–79. 2006.

[14] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
vol. 21(7):pp. 558–565, 1978.

[15] A. Rose, S. Swan, J. Pierce, and J.-M. Fernandez. Trans-
action Level Modeling in SystemC, 2004. White paper.
www.systemc.org.

[16] Open Core Protocol International Partnership (OCP-IP).
http://www.ocpip.org.

[17] G. Di Guglielmo, F. Fummi, C. Marconcini, and
G. Pravadelli. EFSM Manipulation to Increase High-Level
ATPG Efficiency. In Proc. of ACM/IEEE ISQED, pp. 57–62.
2006.

[18] D. Gajski, J. Zhu, and R. Domer. Essential Issue in Code-
sign. Technical report ICS-97-26, University of California,
Irvine, 1997.

[19] K. Cheng and A. Krishnakumar. Automatic Generation of
Functional Vectors Using the Extended Finite State Machine
Model. ACM Trans. on Design Automation of Electronic
Systems, vol. 1(1):pp. 57–79, 1996.

[20] M. Borgatti, A. Capello, F. Fummi, J.-L. Lambert, I. Moussa,
G. Pravadelli, and U. Rossi. An Integrated Design and Verifi-
cation Methodology for Reconfigurable Multimedia System.
In IEEE DATE, pp. 266–271. 2005.

[21] P.di Torino. ITC-99 Benchmarks, 1999. In
http://www.cad.polito.it/tools/itc99.html.

