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Chapter 1

Introduction

As part of an ongoing effort to increase the uptake of formal methods and make them
more accessible to the wider community, a notation known as UML-B [25] is being
developed. Discussed in detail in the following sections, the aim of this notation is
essentially to combine the rigorous and formal capabilities of the B-notation [22] with
the ease of use and low barriers to entry of the widely used UML [18] methodology.

Along with the notation, a set of tools for the creating and application of the notation
is required. Some have already been developed by the University of Southampton. The
first of these was based upon IBM’s Rational Rose package [23, 8], which is a package
for the design and modelling of software systems. This provided an effective tool for
constructing models. However, being based on a proprietary and closed-source platform,
meant the final tool lacked the openness and flexibility ideally required for such a tool
to be successful. It also imposed a minimum level of investment upon anyone wishing
to make use of it. The tool, nonetheless, provided proof of concept.

To address these issues a new tool was developed, based upon the highly popular and
open Eclipse platform [6] (also originally from IBM). Eclipse is an open source, Java-
based, platform which is highly extensible. This provided a much friendlier environment
for developing the tool. The Eclipse framework also includes several plug-in frameworks
such as GMF and EMF (see Section 2.4) that provide an extended level of support for
creating model based tools and applications, such as the UML-B environment. These
factors, combined with the existing popularity of the platform, made it an ideal platform
for UML-B.

Developed as part of the RODIN project (see Section 2.4.1) the UML-B tool provides
support for the established range of UML-B notations. Now this is available, it is being
brought to the attention of interested companies (such as AT Engine Controls Ltd., the
industrial partner to this project). As a result, it has become apparent that there is a
need to expand the UML-B notation to include other diagramming types such as the
Component, Sequence and Use-Case Diagrams.

1
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The existing notations are very ‘B-orientated’ and they provide adequate functionality
for a software engineer to perform diagrammatically, what could otherwise have been
achieved using formal methods. In this respect they achieve their goals. However, there
is little else to them; especially considering that UML-B is supposed to be UML extended
with B connotations, rather than the other way round [4].

UML-B is sold as both a combination of and an alternative to formal methods and
UML design. To fulfil this role, it must support the entire software engineering process,
not just those parts requiring rigorous formalisation. As such new, extended notations
are being designed that will be aimed at enhancing UML-B as a software engineering
process. This is the aim of this project.

1.1 Project Brief

More formally, this project extends the UML-B tools currently available and allows
the use of new diagrammatic models, which extend and enhance the use of UML-B. It
achieves this by first extending the existing UML-B metamodel and secondly, by pro-
ducing Eclipse plug-ins to support the editing of new diagram types. The new diagrams
are adapted from existing UML notations that were omitted from the original UML-B
specification. The new diagrams that have been decided upon and implemented are:

• Activity diagram

• Component diagram

• Object diagram

• Sequence diagram

• Use-Case diagram

These new models are to be integrated with the existing UML-B models and tools, so
that the entire extended notation can be seamlessly utilised. The key requirement of
these extensions is that they enhance the software engineering process, without raising
the learning curve or introducing barriers to entry.

1.2 Project Scope

This project has been somewhat limited in scope due to restrictions in terms of time
and man power. The nature of the group project system, under which this work was
carried out, was such that the total time allowed for implementation was only ten weeks
of part-time work, by three students. Bearing this in mind, it was decided that the
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scope of this project would extend to fully designing and implementing new model and
diagram types for the UML-B notation. Originally, three new diagrams were proposed,
but as the project progressed a further two were found to be necessary and the scope
was extended.

There is much more work that could be performed to further enhance the UML-B
notation and toolset. Some thought has been given to this and several possibilities are
outlined in Section 7. In addition, though it was outside of the scope of the project, each
new diagram has been evaluated for possible uses within the larger UML-B framework.
These are presented together with some possible corresponding semantics for the various
diagram elements.



Chapter 2

Background

2.1 Formal Methods

Formal methods are “mathematically based techniques for describing system proper-
ties” [33] when designing a computer system. Formal methods are used to design and
verify systems to try and ensure completeness of the system being designed. Due to
the high cost in terms of time taken to design a system using formal methods and the
expertise required from the system designers, formal methods are generally limited to
being used in safety critical systems.

2.1.1 B-Method

The B-Method, designed by J.-R. Abrial [1], is a formal methods approach described by
Schneider for “specification and development of computer software systems” [22]. The
B-Method takes aspects of formal systems design, such as Z, and has been designed
as a simplification of other formal method approaches. In this project we discuss two
variations of the B-Method: Classic-B and Event-B. Classic-B is the name given to
Abrial’s original B concept, where as Event-B [16] is an extension to B to allow for the
formal design of distributed systems.

In Event-B, events replace the idea of operations in Classic-B. Events have guard con-
ditions associated to them, similar to pre-conditions in Classic-B. In Event-B an event
can be called at any time when the guard condition is true, meaning that events being
called is largely a random process.

The B-Method has been used to solve several large formal system designs, including the
design of the Paris Metro Line 14’s Train Control System [5].

4



Chapter 2 Background 5

2.1.2 ProB

ProB is an animation and model checking tool for the B-Method [15]. Currently ProB
is used in Classic-B model checking, however there is an intention for it to be modified
to work with Event-B and then to be added to the RODIN platform.

ProB allows the user to create a Classic-B model and then provides various methods
for consistency checking. The consistency checking in ProB is used to check that the
invariant is preserved throughout a given model’s lifetime. If the checker manages to
find a situation where the invariant has been violated, the checker stops and displays
in the animator the current state for the model. In this project we are less concerned
about the consistency checking element of ProB, other than for it to be the motivation
for using the ProB animator.

The ProB animator, as shown in Figure 2.1, shows for a given state, the current states
of all variables in the model, the available operations and the list of operations that
were called to get to the given state. When an operation is called in the ProB animator,
the state properties and the history are updated to reflect this and the invariant is
recalculated.

Figure 2.1: Output from the ProB animator showing the animation of a system
monitoring users being registered to a system and whether they are logged in or logged

off.

2.2 UML Design

The Unified Modelling Language or UML [18] is a diagrammatic notation originally
developed in the 90’s by the Object Modelling Group to support object-oriented software
engineers through the entire development process. The Unified name comes from the
fact that UML was one of the first notations to bring together both object-oriented
analysis and design under a single model. With the help of significant early corporate
backing, UML has become a de facto standard, almost universally recognised within
the industry. Unlike formal methods, which have been met with some resistance, UML
remains consistently popular and remains under development today [13].
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The notation itself is very large, its current format (UML 2.0) encompasses 13 separate
diagram types, each with well defined semantics. Even so, it is not considered to be
strict. The UML philosophy generally aims to provide flexibility, being an enabling
technique rather than a constricting one.

An example of its usage: A software engineer might conceptualise his system using
Use-Case Diagrams, high level Class Diagrams and Activity Diagrams; perform detailed
design it with Package Diagrams, lower level Class Diagrams and Deployment Diagrams;
and produce blueprint designs with implementation level Class Diagrams, Timing Dia-
grams and Sequence Diagrams. This is, of course, just an example usage: there are no
regulations compelling you to use certain diagrams only in specific situations.

2.3 UML-B

UML-B [25] is being developed to try and bridge the gap between the UML design
model and formal methods techniques. UML is a widely accepted design format and
many customers of software systems may expect to see it being used, whereas formal
methods is often seen as being unnecessary and costly. In the work carried out by
Amey [2] it was reported that customers of software systems often did not like the idea
of formal methods being used, with some customers asking “couldn’t you use UML?”.
UML-B brings the two together into a combined standard that provides the diagrams
of UML, reinforced with added structure and formalisation. This allows B code to be
much more easily constructed, via UML-B diagrams.

Currently UML-B has four UML style diagrams implemented, the Package, Context,
Class and State Diagrams. By creating a package with a given context and classes,
a system designer can start to design a system as they would in standard UML. By
adding state diagrams to classes to show how the events in classes operate, the designer
has got to a stage where they are close to defining the total functionality of a system.
Finally a system designer must include an amount of formal mathematical logic, known
as µB [25], to the class and state diagrams to define how events occur and the guards
that have to be true in order for the operation to take place.

When a system designer produces a the required UML-B diagrams along with the
events and guard conditions, UML-B can be used to automatically produce Event-B
code through the U2B tool [23, 24].

2.4 Eclipse

The Eclipse Framework [6] is a project that started life as a product of IBM, aimed at
replacing their VisualAge development environment. In common with VisualAge, the
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aim of the framework was to provide a platform on which integrated development envi-
ronments (IDEs) can be based. Eclipse reached mass audience with the popularity [12]
of its Java IDE, known as the JDT (Java Development Tool) [10]. However, this is only
one of many plug-ins and its real power is as a platform.

Eclipse is now maintained independently from IBM by the Eclipse Foundation [26], a
not-for-profit consortium of leading companies. It is one of the most popular develop-
ment frameworks available today, with companies such as Adobe, Borland and SAP AG
choosing it as the basis for their upcoming products [20, 9, 21].

2.4.1 RODIN

The RODIN (Rigorous Open Development Environment for Complex Systems) project [19],
is being developed to provide an Eclipse-based platform and open, extensible, environ-
ment for formal systems specification. RODIN aims to encapsulate all aspects of formal
system design and currently supports several plug-ins and components, such as UML-B
and U2B.

With the RODIN UML-B plug-in, a user can define a system in UML-B through the
Package, Machine, Class and Sequence diagrams. RODIN then automatically translates
the UML-B to Event-B using the U2B plug-in. Details of how the translations are
performed can be found in UML-B: Formal Modelling and Design Aided by UML [25].
During this process any syntax errors are returned to the user through the problem
areas, which are highlighted in red. The completed Event-B code can then be sent to a
prover where automatic and semi-automatic proving takes place.

2.4.2 EMF

The Eclipse Modelling Framework (EMF) [28] is a framework for building model-based
tools and Eclipse plug-in applications. It includes facilities for both designing models and
generating code that can be used as a back-end, upon which more advanced applications
can be created. Diagram editors, especially structured ones such as those used in software
engineering, are a classic example of a model based application. In this case the model’s
use is obvious; it is used to store all the semantic information associated with a diagram,
abstracted away from the details of presentation or formatting. The framework is not
limited to this use though, any Eclipse application that makes use of a model, definable
on a class diagram, can take advantage of EMF.

By building an application based upon EMF, the developer enjoys a high level of com-
patibility with modern CASE tools such as Rational Rose. There is also the advantage
of reduced development time, allowing the framework to quickly and reliable generate
quite straightforward code, which avoids an otherwise time consuming and laborious
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process. This code can then be easily altered and maintained from the single model file,
allowing potentially significant model changes to be made right the way through the
implementation process.

2.4.3 GEF and GMF

The Graphical Editing Framework [30] is a product of the Eclipse Tools Project [27],
a major project within Eclipse aimed at developing and promoting the development
of significant Eclipse-based tools and support utilities. GEF is a framework for more
easily constructing rich EMF-based Graphical editors. It achieves this by implementing
an extensible API, based on an MVC architecture, which provides control and view
components [3, 17] that utilise an EMF model. A major aspect of the framework is
the Draw2D plug-in [14], which provides a diagram-centric layout and rendering toolkit,
with an API specialised for creating diagram viewers and editors.

The theory behind GEF is that a programmer can develop a GEF implementation of
an editor more rapidly than a bespoke implementation. An advantage of this method,
besides time saving, is that by using an established approach the application will be
smoother and less susceptible to bugs. However, GEF has a high initial learning curve
and as a result one must become an expert with it, in order to develop usable tools.

To address this issue the Graphical Modelling Framework (GMF) [31] was conceived.
GMF is an additional plug-in to Eclipse, which provides an API and simple toolset for
automatically producing template GEF editors based on a supplied EMF model. Using
GMF anyone, even without significant programming skills, can produce a basic diagram
editor. The framework is broken down into four scripts, or models, that represent the
different aspects of an editor plug-in. These are the: Graphical Model, Tools Model,
Mapping Model and the Generator Model, which handles configuration of the plug-in
itself. Each of these is composed of specific classes and associations that represent some
element of the diagram that, when processed, will be translated into fully implemented
GEF code. To ease the process further, a set of Wizards are provided to easily create
the models in the correct sequence.

For more information on using GMF, see the official GMF tutorials [29]. Whilst initially
useful, these peer-reviewed documents can be confusing and are frequently lacking in key
areas. Therefore, to compliment this we have included our own overview of the GMF
diagram creation process in Chapter 4.



Chapter 3

Requirements

The requirements of both the new diagram types and the associated development tools
are detailed in this section. This reflects how the Project Brief will be realised and
which aspects of the notations were assessed to be necessary and suitable for adoption
into the UML-B notation. Any specific restrictions, extensions or changes made to the
notations are also outlined. These requirements directly drive the structure of the new
models and so were highly important in developing the new metamodels and editors.

3.1 Activity Diagram

The Activity Diagram must look like the UML 2.0 Activity Diagram [7], as shown in
the example in Figure 3.1. The Activity Diagram must have elements for Initial Node,
Activity, Fork, Join, Decision, Merge, Final Node, Flow Final along with a notion of
a flow linking the elements. This differs slightly from the UML 2.0 Activity Diagram
by the removal of partitions in the UML 2.0 definition of the Activity Diagram. The
elements used in this Activity Diagram must look like their equivalents in the UML 2.0
Activity Diagram.

Activities must have labels associated to them, which are linked to the Activities name.
The label must be positioned inside the center of the Activity element and must resize
itself and the graphical component as the amount of text in the label increases. Flows
going into Activities must also have labels that are linked to the Guard Conditions for
the Activity the flow is going into.

All elements in the Activity Diagram have different requirements in terms of how many
Flows the element can receive and how many Flows the element can transmit. The
Initial Node allows no incoming Flows and at most one outgoing Flow. An Activity
allows at most one incoming Flow and at most one outgoing Flow. A Fork allows one
incoming Flow and many outgoing Flows. A Join allows many incoming Flows but only

9
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one outgoing Flow. A Decision allows one incoming Flow and many outgoing Flows. A
Merge allows many incoming Flows but only one outgoing Flow. A Final Node allows
only one incoming Flow and no outgoing Flow and the same is true for a Flow Final
element.

Ideally there should be one tool in the Activity Diagram editor for creating a Flow and
the editor should be able to determine the starting and ending elements to determine
whether there are any constraints on the Flow.

There may only be at most one Initial Node in an Activity Diagram. Whilst there may
be any number of the other elements in an Activity Diagram.

Figure 3.1: An example of a Activity Diagram for a database of people with µB added
to the guard conditions for the activities. The Activities addPerson and removePerson
are protected by the Guard Conditions pp /∈ people and pp ∈ people, which are defined

using their ASCII equivalents.

3.1.1 UML-B Specific Requirements

The Activity Diagram will be integrated with the other UML-B diagrams at several
points. These include with the UML-B Machine on the Package Diagram and on the
Class element of the UML-B Class Diagram.

3.1.2 Uses in UML-B

The Activity Diagram is used more in early system design to determine how the system
may operate. The Activity Diagram sits closely with the Use-Case Diagram to develop
initial understanding on the problem being solved. In terms of relationships with UML-
B, the Activity Diagram has not been given a specific purpose for processes such as U2B
translation and is provided solely to help the user understand and model their system.
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To allow flexibility of using the model, the Activity Diagram should be able to be defined
in the machine and class levels of UML-B. Activity diagrams can also sit outside of a
machine or class and be defined as their own entity.

3.2 Component Diagram

The Component Diagram must have a similar look and feel as a UML 2.0 Component
Diagram, an example of which is shown in Figure 3.2. This requires that the Com-
ponent Diagram uses Object, Required Interface and Provided Interface elements and
Associations between both Components, and Required and Provided Interface pairs

Components should be represented by a rectangular box with a component icon in the
top right corner and a name label. Components should also be able to nest within each
other.

Provided Interfaces should be represented by an unfilled circle and are attached to a
Component with a solid line. Required Interfaces should be represented by an open
semicircle and are attached to a Component with a solid line. Both Interface types
should have a name label.

Figure 3.2: An example UML 2.0 Component Diagram showing the ‘ball and socket’
join
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Associations between Interface pairs should consist of one Provided Interface connected
to one Required Interface such that it results in the ‘ball and socket’ type join. Un-
connected interfaces should be connected to their parent Component by a straight,
perpendicular line and should be positioned close to their parent. The facility to con-
nect together two unconnected interfaces to produce the ‘ball and socket’ join should
be provided. This action should be able to be undone; such that a pair of connected
interfaces revert to their unconnected state.

Associations between Components should be represented by a solid line with no arrow.
The Association should have an optional label.

3.2.1 UML-B Specific Requirements

To integrate the Component Diagram with the UML-B tool it needs to be linked to a
Package. The user should be able to right-click a package and create a new Component
Diagram from the pop-up menu. Component Diagrams should also be creatable without
the need for an existing Package.

3.2.2 Uses in UML-B

A Component is representative of a Machine or Group of Machines. The diagram can
be used in UML-B to show the way the different parts of a system interact and what
Interfaces are be needed. This will be useful when a UML-B system is in the refining
process.

3.3 Object Diagram

The Object Diagram must have a similar look and feel as a standard UML 2.0 Object
Diagram, as shown in Figure 3.3. This requires that the Object Diagram uses Object
elements and Associations between Objects.

The Object element should be represented as a rectangular box with a separate com-
partment for the Object’s attributes. The Object should also have a Class Type and a
Name, which displayed as label with the format Name: ClassType. This should allow
for Objects without a defined Name, but not for Objects without a defined Class Type.
Attributes for Objects should be displayed as AttributeName: Value. This should allow
for Attributes without a Value.

Associations between Objects should be represented by a solid line with no arrow head
and should have an optional label to describe the relationship between the Objects.
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Figure 3.3: An example UML 2.0 Object Diagram showing the make up of a system
modelling a car.

3.3.1 UML-B Specific Requirements

To integrate the Object Diagram into the UML-B tool it must sit with the other available
diagrams and complement their functionality. This will be achieved by linking the Object
Diagram to the existing UML-B tool in the several ways.

The Object Diagram should be attached to Machines and Contexts as it will provide
modelling capabilities for both of these UML-B components. It should therefore be
possible for the user to create a new Object Diagram through the right-click menu options
of a Machine or Context and for the created diagram to be linked to the parent. The
XMI produced from the Component Diagram should be contained within the existing
.umlb XMI file.

The Object Diagram should allow the user to create a new Object as an instance of
an existing UML-B Class. This should be integrated into the right-click pop-up menu
such that the option is presented when the user right-clicks on an empty space in the
diagram.

3.3.2 Uses in UML-B

The Object Diagram is used to model a static snapshot of a dynamic system. This gives
it several possible uses in UML-B. Firstly, the diagram can be used as a model of a
complex system of entities to get an idea of ther structure as a first step in designing a
system. Secondly, the diagram can be used to model the relationship of Objects inside
a UML-B Machine or Context. This could be useful to explain the way in which Classes
interact with each other. Thirdly, the Object Diagram can be used as a supplementary
diagram when a system is being animated. The diagram can show the state of the system
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at any point during the animation and can be linked to an Event Call in a Sequence
Diagram to show the state of the system up to that point in the diagram.

3.4 Sequence Diagram

The Sequence Diagram is used to depict a sequence of progressions and transitions
between various elements on the diagram, which are arranged as swim lanes running
from top to bottom (see Figure 3.4). In UML 2.0 the semantics correspond to Object
Oriented Design. The diagram shows method calls between Objects in a system. This is
useful in modelling the sequence of operations that make up some larger task or process.

Figure 3.4: An example of a UML 2.0 Sequence Diagram showing the sequence of
events involved in an email system.

Syntactically, the Sequence Diagram is to look much the same as the UML 2.0 Sequence
Diagram. The swim lanes represent Objects in the system (instances of the UML-B
Classes). These are represented by a yellow box containing the Class name and Object
label, with a dotted line that extends vertically downwards, terminating with an X. The
length of the line can be extended to accommodate varying lengths of diagram.

The activity boxes, which in UML 2.0 represent periods of activity within the Objects
are included in the diagram. However, in terms of UML-B, these are more to complete
the look of the diagram than to add meaning. With the B language not being Object
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Oriented, there is no real notion of Object life or activity. The Classes present in the
UML-B diagram, when translated, are recreated procedurally using sets. The activity
boxes are useful however, for providing an element to anchor links to.

There are two types of link present on the UML-B Sequence Diagram. Standard links,
which reflect method calls in UML 2.0, now represent Event Calls (the closest equivalent
to methods in Event-B). These are represented by a solid horizontal line, which runs
from an area of activity in one object to that in another. The target end of the link
is decorated by an open arrow, as in the UML 2.0 version. The other type of link is
a dotted line, in UML 2.0 this represents a method return. In UML-B this notation is
included, partially to complete the illusion of object orientation and partly as it could
correspond to an animator backtrack.

Of all the UML 2.0 diagrams, the Sequence Diagram is probably the most restricted in
terms of appearance. The swim lanes, which correspond to Class instances, or Objects,
should all be aligned on the same horizontal axis, with their upper boundaries at a fixed
distance from the edge of the canvas. The user may arrange the swim lane positions
horizontally, with the ability to change the spacing between them, but not move verti-
cally. The activity boxes are locked to the centre of the swim lane’s dotted line, they
can be resized vertically but not horizontally.

3.4.1 UML-B Specific Requirements

The layout of the links on the diagram are to be more formalised than in UML 2.0.
In UML 2.0 there are little rules or restrictions on how or where they can be placed.
In UML-B the links are restricted so that they are also horizontal lines and there is a
strict notion of sequence, which is the key aspect of the Sequence Diagram to record for
output. Only one link may occupy any one vertical level on the diagram, this removes
an ambiguity in determining the order of occurrence. The diagram editor will have to
enforce this, providing functionality to automatically position and organise the links,
depending on the order in which the user wishes to place them. The order will also need
to be recorded persistently in the model file.

The diagram will be integrated with the existing notations. This will occur at two
points. Firstly there will be a method of linking the diagram to Machines within the
UML-B Package Diagram. A Machine effectively represents a collection of Classes, so
it makes sense to link sequences of calls between these Classes to the relevant parent
Machine. Secondly, within the Sequence Diagram itself there will be the ability to link
the Object swim lanes to their corresponding Class elements and the Event Call links to
their corresponding Events, both of which will have been defined via the other diagrams.
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3.4.2 Uses in UML-B

In UML-B we can use the sequence depicted in the diagram to actually drive a test
animation (see Section 7.1), which can then be run to verify the validity of the model.
Achieving this would be relatively straightforward; an animation script could be gener-
ated simply by reading the order that the Event Calls are recorded in.

3.5 Use-Case Diagram

The Use-Case Diagram must look like the UML 2.0 Use-Case Diagram [7], as shown
in the example in Figure 3.5. Therefore the Use-Case Diagram must have elements for
Actors, Use-Cases and System Boxes. The elements in the Use-Case Diagram must look
like the elements in the UML 2.0 Use-Case diagram.

Figure 3.5: An example of a Use-Case diagram for a shop

The Actor, Use-Case and System Box elements must also have labels that are associated
to the to a property of the element. The labels must be positioned differently for each
element in the Use-Case Diagram. The label in the Actor element is linked to the Actor’s
name. The Actor label must sit below the actor and resize itself automatically if the
text in the label requires it to do so, without resizing the actor graphical figure. The
Use-Case label is linked to the Use-Case’s description. The Use-Case label must be
centered inside the Use-Case graphical figure and the label must resize itself and the
Use-Case figure as the amount of text in the label increases. The System Box label is
linked to the System Box’s name. The System Box labels position is not critical so long
as it can be read and distinguished as a label for the System Box.

The System Box must allow other System Box and Use-Case elements to be nested
inside of them as is allowed in the UML 2.0 Use-Case Diagram. The nesting must not
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interfere with connections between Use-Cases or Actors. Actors cannot be nested inside
of a System Box.

Actors representing the system are not a special element of the Use-Case diagram. To
create a System Actor, the system designer must add <<system>> to the actor’s name
label.

The links between elements in the Use-Case Diagram are defined as being: a link from
an Actor to a Use-Case; a link from a Use-Case to an Actor; a link between an Actor and
another Actor and three types of links from Use-Case to Use-Case, which are include,
extend and generalize. All links in the Use-Case Diagram exist as a many to many
relationship. The link from an Actor to a Use-Case show where an Actor is using
a particular Use-Case, this link is a continuous line with an open ended arrow head
pointing at the Use-Case. The link from a Use-Case to an Actor shows when a Use-Case
invokes or requires another Actor, this link is a continuous line with no arrow head. The
link between two Actor elements is used to show one Actor generalizing another Actor,
the link is a continuous line with a closed arrow head at the end. The include link
between two Use-Case elements shows where one Use-Case must invoke another Use-
Case for it to complete its operation, this link is a continuous line with an open arrow
head pointing at the Use-Case being included. The include link also requires a pre-set
uneditable label that contains the text “<<include>>”. The extend link between two
Use-Case elements shows where one Use-Case is an extension to the behaviours described
in the Use-Case being pointed to. The extend link is a continuous line with an open
arrow head pointing at the Use-Case being extended. The extend link also requires
a pre-set uneditable label that contains the text “<<extend>>”. The generalize link
between two Use-Case elements allows the generalization of the Use-Case being pointed
to. The generalize link requires a continuous line with a closed arrow head pointing at
the Use-Case being generalized.

3.5.1 UML-B Specific Requirements

The Use-Case diagram will have no semantic meaning within UML-B in terms of U2B
translation, it is primarily a support notation (see Chapter 7). Use-Case diagrams should
be able to be created from both the package and machine elements.

3.5.2 Uses in UML-B

The Use-Case diagram is used as a high level system design tool and as such has no formal
role in UML-B in terms of U2B translation. The purpose of the Use-Case Diagram is
to help the system designer in the design process and is included to help UML-B be a
complete solution in system design.
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The Use-Case Diagram should be able to be created from the package and machine
level in UML-B. The Use-Case Diagram should also work as a standalone diagram type
within a UML-B project.
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Editor Construction

There are several steps that need to be taken to construct a diagram editor in the GMF
framework. This process starts with the definition of a metamodel for the diagram
and then moves into the definition of the Graphics, Tooling and Mapping models. A
Genmodel is created from the Mapping model and is used to generate the diagram code.
A short overview of diagram editor construction in GMF is given in the following section.

4.1 Metamodel

The EMF Metamodel for a diagram defines the way in which the diagram nodes can
interact with each other. The metamodel XMI format is known as an Ecore file, which
is a standard that exists outside of Eclipse; as such it is possible to define the metamodel
externally, using a tool such as Rational RSA. Within Eclipse there are three options
for editing the model: directly editing the XMI, which is useful for copying large blocks
of the model between files; editing the model via the EMF tree editor, which provides
a methodical and unambiguous approach (shown in Figure 4.1); and lastly using the
GMF editor, this allows the model to be created using a class diagram-like viewer,
which is extremely useful in aiding visualisation and conception (it is this viewer that
the metamodel screenshots have been taken from). The nodes are specified as EClasses in
the metamodel, which can have a number of EAttributes, EReferences and EOperations.

EAttributes are used to define the attributes that are desired in the diagram class and
have to be given both a name and a type. Attribute types can be any of the standard
Java types, such as String, Long or Boolean. The name of the attribute is not restricted
but it is often good practice to name it in such a way that it can be differentiated from
similar attribute names in different classes.

EReferences are used to define the relationships between one class and another, or be-
tween one class and itself. Setting a reference between two classes or back to the same
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Figure 4.1: An extract from the EMF tree editor

class allows the classes to be linked with connectors in the diagram editor. Links can also
be modelled by having a canonical EClass representing the link, this would then need to
have two EReferences, one to the target node and one to the source node. EReferences
have several properties that need to be set in order for them to work properly.

The name property must be set and it is good practice to give the reference a uniquely
identifiable name within the metamodel to make it easier to identify at later stages,
leaving this blank can cause errors during code generation. The eType of the reference
must be set to the target class, which will also set the eReference type property. The
upper bound and lower bound can both be set to restrict the cardinality of the reference.
Setting the upper bound to -1 allows for an unlimited upper bound. The containment
property can be set to true or false. Setting it to true allows the target of the reference
to be included as a child node in the parent of the reference. This is useful if a recursive
nesting behaviour is required; the required class can have a self referencing reference
with the containment set to true and the resulting node in the diagram will be capable
of recursive nesting.

EOperations are used to define some behaviour for a class in the metamodel that is not
determined solely in the metamodel design. There are various ways in which EOpera-
tions can be used, such as creating a method in the Java output for the class that the
EOperation is defined in. EMF automatically adds methods for any EOperations that
exist in a class, into the implementation code for the class. This method is then up-
dated by changing the @generated tag to @generated NOT, to stop EMF overwriting the
method at a later date, and by adding the desired code to the body of the method. Any
EOperations defined in the metamodel must then be explicitly called from elsewhere.
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For example it is possible to define link constraints in GMF that are represented in Java
code that are used to call the classes defined using EOperations.

Once the metamodel has been constructed, an EMF GenModel must be created from
the metamodel. This is available through the right-click menu on the metamodel file
(.ecore extension), in the Eclipse Package Explorer window. Generally the GenModel
does not require alteration. The Model Code and Edit Code need to be generated from
the EMF GenModel before continuing, this can be performed using operations provided
by the right-click menu on the root node of the EMF Model.

4.2 Graphical Model

The Graphical Model is used within the GMF framework to define the graphical elements
of the diagram. This includes nodes, labels, connections and decorations for connection
ends. The Graphical Model contains a Figure Gallery that contains the figures that are
used to define the shapes; the elements that define the nodes, labels and connections are
under the root of the file.

GMF provides a simple wizard for the creation of Graphical Models, which is available
through the right-click menu on the metamodel file. The wizard allows the desired
nodes, labels and connections to be selected, and will automatically choose a sensible
set of defaults when provided with a root class. The output from the wizard is a simple
Graphical Model that contains figures and elements for the selected classes, labels and
connections. The generated Graphical Model can be heavily modified to produce the
required behaviour.

There are three major modifications that can be made to the Graphical Mapping. The
first is to change the default graphical representation of the nodes. This is accomplished
by defining a new figure in the Figure Gallery and setting the appropriate node to use the
new figure. New figures can either be one of those available by default, such as Rounded
Rectangles, Ellipses and Polygons, or they can be Custom Figures. To use a Custom Fig-
ure a Java class needs to be defined that extends the org.eclipse.draw2d.Graphics.Shape
class and overrides the fillShape() and outlineShape() methods. The custom class then
needs to be referenced by the Custom Figure.

The second major modification is to add a Compartment that can be used in the Mapping
Model. This is a two stage process; the Compartment must be added below the root of
the Graphical Model and a Figure needs to be defined for it. Compartments need to be
named, and can optionally be forced to display this name in the diagram editor.

The third major modification is to modify the style of the Connections. There are two
options for this: modifying the style of the line or modifying the style of the Decorations
that appear at the source and target ends of the Connection. The line is easily modifiable
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through the properties that define it in the Graphical Model. Several properties can be
changed, such as line kind, line width and the graphical elements used for source and
target Decorations. The Decoration is more difficult to modify and often involves the
creation of a Custom Decoration in the same way as a Custom Figure is created.

4.3 Tooling Model

The Tooling Model is used within GMF to define the toolbar and menus to be used with
the diagram editor. The Tooling Model allows several types of menu to be included,
such as Context, Pop-up and Main Menus. The toolbar, which is the main focus of the
Tooling Model, is defined within a Palette and contains Tool Groups, which contain the
Tools.

GMF again provides a wizard to generate a Tooling model, which is available through
the right-click menu on the metamodel file. The wizard produces a reasonable set of
defaults that can be modified to provide the required behaviour. The most common
modification of the Tooling model is to split the Tool Groups into different categories
and to change the names on the Tools, this is easily performed.

4.4 Mapping Model

The Mapping Model is used within GMF to map the Graphical and Tooling Models
to the metamodel. The Mapping Model can be automatically generated through the
wizard, which GMF makes available, but this is slightly unreliable and has a tendency
to associate a creation tool for one element with the graphical definition for a different
element, so the resulting Mapping Model must be carefully checked.

The Mapping Model consists of several Top Node References, which each contain one
Node Mapping and are used to map nodes in the diagram to both the element in the
metamodel and to the creation tool. It is within the Node Mapping that Label Mappings,
Child References and Compartment Mappings are defined.

Label Mappings map a Diagram Label in the Graphical Model to one or more attributes
in the metamodel class that is referenced by the enclosing Node Mapping. Compart-
ment Mappings map a Compartment from the Graphical Model into the metamodel
class referenced by the enclosing Node Mapping. Compartments can also have children,
which are specified as Child References of the Node Mapping. Child References allow
metamodel classes to have children and as such contain an inner Node Mapping, or a ref-
erence to an already defined Node Mapping. An example of this is shown in Figure 4.2,
the UMLBObjectActivity node is nested within the UMLBObjectLifeTime node.
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Figure 4.2: An extract from Sequence Diagram GMF Map, showing a nested node.

Once the Mapping Model has been completed it is used to create the Generation Model.
This is done through the right-click menu of the Mapping Model.

4.5 Generation Model

The Generation Model is used within GMF to produce the diagram code. As such, it
contains many features that can be modified to produce specific features in the diagram
code. Figures defined the Graphical Model can be given a default size property at this
stage for example.

The Generation Model is not normally modified as most of the functionality should be
included in the prior diagrams. One common modification however is to change the
package location that the diagram code is generated into. This becomes necessary if
there are several diagrams being produced from one metamodel, to avoid one diagram
overwriting another; it also helps to have the digram code in separate packages to make
the addition and maintenance of custom code easier. The generation package is modified
by changing the Gen Editor’s package name prefix and the Gen Plugin’s ID to the desired
package name.

4.6 Extensions and Code Customization

The use of GMF with EMF allows the rapid construction of a wide range of different
diagrams. However, there is a limit to the level of complexity that the framework can
provide. For instance, if one wanted to create a diagram with some specialised graphics,
formatting or behaviour, there would be very little support in GMF.



Chapter 4 Editor Construction 24

The solution to creating more complex diagrams is to extend what GMF produces. There
are a number of ways of achieving this. GMF and EMF do themselves provide some
support for extensions. In EMF it is possible to add custom constraints to the nodes.
An example of this is seen in the Activity Diagram Metamodel (Section 5.1.1). Adding
custom constraints creates place-holder methods when the model code is generated, by
adding code to these methods constraint behaviour can be customised.

GMF provides inbuilt extension mechanisms within the GMF Graph. Here it is possible
to provide custom implementations of key features at certain points. For instance, it
is possible to create a custom graphical representation for any of the elements on the
diagram. This is done by creating a Java class that draws the shape of the element
exactly as desired (see Section 5.4.2.1 for an example). It is also possible to specify a
custom layout for a container, so that elements that appear within that container can
be laid out in a specific manner (again, the sequence diagram shows an example of this).

Beyond these two mechanisms, it is not possible to obtain additional complexity through
standard routes. However, as GMF is an API on top of GEF, it is possible to manipulate
the GEF code and Eclipse plug-in configuration directly. These are the files that are
generated by the GMF Generator Model and at this level it is possible to widely alter
the behaviour of the editor, within the constraints of GEF. Performing this requires an
intimate knowledge of the GEF framework and how it works. There is not space within
this report to provide this, however some example modifications and explanations can
be found within the sequence diagram (Section 5.4).



Chapter 5

Design

Each editor was developed using the process outlined in Chapter 4. The design details
of each, together with any associated extensions or technical challenges are presented in
this chapter. The metamodels of each diagram are presented individually (see Chapter 5)
but are in fact unified under a single hierarchy. This allows an entire UML-B project
to be carried out using a single output model file, increasing the level of cohesion and
portability.

5.1 Activity Diagram

The Activity Diagram consists of many element types: Initial Node, Activity, Decision,
Merge, Join, Fork, Final Node and Flow Final. The Activity Diagram also consists of a
single Flow link type that is constrained in different ways for each element type.

5.1.1 Metamodel

The base class in the Activity Diagram Metamodel, shown in Figure 5.1, is the UML-
BActivityDiagram. The diagram type is defined as being made up of multiple Merges,
Joins, activities, Final Nodes, Flow Finals, Forks, Decisions and Flows. The diagram
also allows at most one Initial Node.

The nodes directly aggregated from UMLBActivityDiagram are the components of the
diagram, for example UMLB AD InitialNode represents the Initial Node component in
the Activity Diagram. The Merge, Join, Activity, Final Node, Flow Final, Fork, Decision
and Flow elements have no maximum limitation on the number of times they can appear
in the diagram. The Initial Node element is restricted through the initial aggregation
to at most one Initial Node element per Activity Diagram.

25
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The Activity element, UMLB AD Activity contains a name property of type EString.
The name property is designed to allow the Activity to have a name, that then links
to the label inside of an Activity in the diagram. The Flow element, UMLB AD Flow
contains a guard property also of type EString. This allows guard conditions to be added
to the Flows, which are used when a Flow enters an Activity.

To solve the problem of keeping track of the Flows allowed into and out of a diagram
element, the metamodel designed has four restrictive classes based on incoming and out-
going properties for Flows. Flows in the metamodel are defined as the UMLB AD Flow
class and are associated to the UMLB AD Element class, which is the base class for
all components that can be added in the Activity Diagram. The associations incom-
ing and outgoing are used to define the set of Flows that an Activity Diagram element
has incoming and outgoing. The associations target and source are the opposite asso-
ciations to incoming and outgoing respectively. In the metamodel, the incoming and
outgoing associations have no upper limit set, meaning that for any element in the
Activity Diagram, the element can have multiple incoming Flows and multiple outgo-
ing Flows. Obviously we do not want all elements of the Activity Diagram to have
multiple incoming and outgoing Flows, therefore we must restrict this. In the meta-
model, Flow restrictions are defined by the classes UMLB AD Element NoIncoming,
UMLB AD Element OneIncoming, UMLB AD Element NoOutgoing and
UMLB AD Element OneOutgoing, where the restrictions are no incoming Flows, one
incoming Flow, no outgoing Flows and one outgoing Flow respectively. Elements are
restricted in the metamodel by generalizing one or more of these restrictive classes.

The UMLB AD Element base class for all diagram components provides two meth-
ods which return a boolean depending on whether a node is legal to start from, or to
end at. The method isLegalToStartFrom checks to see if the given element is of type
UMLB AD Element NoOutgoing, if it is then false is returned as the element cannot
accept any Flows. Next the isLegalToStartFrom method will check to see if the element
is of type UMLB AD Element OneOutgoing, if it is and the number of outgoing Flows
is zero then the element is legal to start a Flow from. The method isLegalToEnd checks
to see if the given element can have another incoming Flow assigned to it. Firstly isLe-
galToEnd checks to see if the element is of type UMLB AD Element NoIncoming, if it
is false is returned as the element cannot accept incoming Flows. Next isLegalToEnd
checks to see if the element is of type UMLB AD Element OneIncoming, if it is the
incoming Flows is checked to see if it is empty and so able to accept this incoming Flow,
the result of this is returned.

5.1.2 Activity

An Activity is a rounded rectangle with a label corresponding to the name attribute
defined in UMLB AD Activty in the metamodel. An Activity is only allowed to have
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Figure 5.1: The Activity Diagram Metamodel

a single incoming Flow and a single outgoing Flow. The incoming Flow should contain
the guard conditions for the Activity and this ability to do this is provided by the
Flow object in the metamodel. An Activity is only allowed one incoming Flow and one
outgoing Flow, which is restricted in the metamodel.
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5.1.3 Initial Node

The Initial Node is a filled circle and is defined in the metamodel as
UMLB AD InitialNode. The Initial Node is restricted in the metamodel so that it has
no incoming and only one outgoing Flow.

5.1.4 Decision

The Decision node is a diamond shaped element and is defined in the metamodel as
UMLB AD Decision. Decisions are restricted in the metamodel so that they have one
incoming Flow, the outgoing Flows are not restricted as multiple outgoing Flows are
allowed.

5.1.5 Merge

The Merge node defined in the metamodel as UMLB AD Merge, is graphically equivalent
to the Decision node and so uses the same graphical component in the GMF graph. The
Merge element is not restricted in its incoming Flows so as to allow multiple incoming
Flows, whilst the outgoing Flows are restricted so that only one outgoing Flow is allowed.

5.1.6 Fork

The Fork node is a thin, filled rectangular bar that can be positioned horizontally or
vertically in a standard UML 2.0 Activity Diagram. In this Activity Diagram, the Fork
graphical component is by default a vertical bar however the user can resize and reshape
the bar to allow them to produce a horizontal bar. The Fork element has its incoming
Flows restricted so that only one incoming Flow is allowed, whilst the outgoing Flows
are not restricted thus allowing multiple outgoing Flows.

5.1.7 Join

The Join element, defined in the metamodel as UMLB AD Join, is graphically equivalent
to Fork and so uses the same graphical component. The Join element has no restrictions
on the incoming Flows so as to allow many incoming Flows, whilst the outgoing Flows
are restricted so as to allow only one outgoing Flow.

5.1.8 Flow Final

The Flow Final element is graphically defined as a circle with a cross through through it,
in the metamodel Flow Final is defined as UMLB AD FlowFinal. The size of the Flow
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Final graphical component cannot be changed by the user, as GMF does not resize the
cross in relation to the size of the circle meaning that resizing the figure would produce
an unrecognisable diagram element. The Flow Final element is restricted so that it
accepts only on incoming Flow and no outgoing Flows.

5.1.9 Final Node

The Final Node element is defined graphically as a circle with a second filled inner
circle, in the metamodel Final Node is defined as UMLB AD FinalNode. The Final
Node element is restricted so that only one incoming Flow is accepted and no outgoing
Flows are allowed.

5.1.10 Flow

The Flow element is the most complex part of the Activity Diagram to define, due to
there being many restrictions on the Flows that Activity Diagrams can have incoming
and outgoing. In the metamodel, Flows are defined as UMLB AD Flow and have one
property, the guard, which should be used to show the guard conditions going into an
Activity. Graphically, a Flow is a line with an open arrow head pointing in the direction
of the Flow, but it also contains a label element that is linked to the guard attribute.

In GMF, Flows are assigned two link constraints, one for incoming and one for outgoing
nodes. These constraints are defined in Java in the diagram code and when the con-
straints are called by the editor, the methods isLegalToStartFrom or isLegalToEnd are
called depending on whether the Flow is trying to start from or connect to a graphical
component. These constraints determine whether the editor allows a Flow to be placed
in the model.

5.1.11 Technical Challenge

The Activity Diagram presented a technical challenge in terms of defining the restrictions
on Flows between Activity Diagram elements in the metamodel. Activity Diagrams have
various different restrictions on the number of Flows that a diagram element can have
incoming and outgoing, which is difficult to define in the metamodel.

Initially the Activity Diagram Metamodel was produced so that every diagram element
type generalized the same parent base class that had a single Flow association referencing
itself, see Figure 5.2. The problem with this approach was that it meant any element
could have any number of incoming outgoing Flows, which is not the behaviour required.

Another way that was looked at to try and control Flows was to try and define all of the
links that are possible between all pairs of elements. By doing this you would be able
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Figure 5.2: Initial implementation of defining a Flow in the Activity Diagram. All
Activity Diagram elements generalize the UMLB AD Element.

to define the relationship constraints, such as one to one, one to many. However this
method has three disadvantages to it, the first disadvantage is that the metamodel would
become extremely complicated with such a high number of associations between classes.
The second disadvantage is that GMF would create a separate link in the diagrams
editor for each and every association that defines a link in the metamodel, meaning it
would make the editor extremely unintuitive for the user. Finally, this way of defining
the metamodel would have the problem that you would still be able to have multiple
Flows coming out of an element, such as an Initial Node, where you only want at most
one Flow to come out of. Multiple Flows coming out of an Initial Node would be legal
in this type of model as there would be a link from the Initial Node to multiple other
nodes.

Looking at the original UML-B diagrams found that the State Diagram had a similar
requirement on counting the number of links diagram elements had going in and coming
out. The portion of the Activity Diagram metamodel shown in Figure 5.3, shows how
the metamodel has to be defined in order to count the number of incoming and outgoing
Flows. In the metamodel the incoming and outgoing associations will contain all of the
Flows that are going into and coming out of the given diagram element.

The final problem was to use the information about the number of incoming and out-
going Flows to try and constrain whether or not any given diagram element can have a
Flow assigned to them. In Figure 5.3 there are the operations isLegalToStartFrom and
isLegalToEnd, which are used to determine whether or not Flows can leave or enter a
given element. The code in these operations could have been defined for each and every
diagram element, however this would have created a large amount of code, with little
indication in the metamodel of what was happening. This is why the final metamodel
has the constraint classes talked about in Section 5.1.1, so as to show in the metamodel
what the Flow constraints for each element are.
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Figure 5.3: Part of the Activity Diagram Metamodel that demonstrates how incoming
and outgoing Flows can be differentiated. The associations source and target are define
whether a given Flow is coming from the element of going into the element. The
associations incoming and outgoing define the set of incoming and the set of outgoing

Flows an element has.

5.2 Component Diagram

The Component Diagram consists of Components, Required Interfaces, Provided Inter-
faces, associations between Required and Provided Interfaces, and associations between
Objects. The Component Diagram is used to show how a system is built up and how
the different parts interact. In UML-B this is at the Package level, with a Compo-
nent representing a Machine or Group of Machines. The design of the Metamodel and
implementation of the Editor are explained in the following section.

5.2.1 Metamodel

To get the required graphical behaviour for the Component Diagram the Metamodel
shown in Figure 5.4 was created. This metamodel is stand alone but has been included
in the UML-B Metamodel for the sake of completeness.

The UMLBComponentDiagram class is the main root of the diagram and is aggregated
to the UMLBComponent class. The UMLBComponent class is the main class for the
diagram as it is the representation of a Component. Both interfaces are aggregated to
the UMLBComponent to allow them to be used as child nodes when the Component
Diagram is being used. The Compartment has two self referencing links; the aggregation
CD Subcomponent, which allows for the nesting of Components, and the association
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Figure 5.4: The Component Diagram Metamodel

CD Association, which allows Components to have associations that do not involve
interfaces.

Having Interfaces as children of a Component will make using the XMI output of the
diagram easier in translation to B, because the process of identifying the interfaces that
belong to a Component is straight forward. The child Interfaces are part of the parent
Component’s XMI node, which would not be the case if the Interfaces were not children.
In this case, the links between Components and Interfaces would have to be looked at,
which would be more difficult and time consuming.

Required Interfaces are associated to Provided Interfaces through the CD InterfaceUses
association. This allows for Required Interfaces to link to Provided Interfaces and visu-
alize interface usage in the Component Diagram.

5.2.2 Component

The Component is implemented using a custom Java class to define the shape that the
node uses. The custom class draws the Component as a square edged rectangle with the
UML 2.0 Component icon in the top right-hand corner. The rectangle is drawn a set
distance inside the bounds of the node to create a margin in which Required Interfaces
and Provided Interfaces can sit. This allows the Interfaces to sit next to their parent
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Component and appear to be joined to the outside. This would not have been possible
if the rectangle was drawn on the bounds of the node as the Interfaces would lie inside
the rectangle.

Interfaces are positioned inside the Component through use of the Layout Manager.
GMF provides a Layout Manager that, by default, allows child nodes to be repositioned
anywhere within the bounds of the parent node. The required behaviour for the Com-
ponent is that its children are snapped to the edge of the Component so that Interfaces
appear to be joined to the edge of the drawn rectangle. Interfaces are also able to be
dragged and dropped into a new location and snap to the closest edge from that point.
To achieve this behaviour a custom Layout Manager was written.

The custom Layout Manager calculates which edge of the Component each Interface is
closest to and moves the Interface to be sitting on the outside of that edge. This is done
by calculating the centre points of both parent and child. These are used to get the
normalized vectors from the centre point of the parent to the four corners of its bounds
and to the centre of the child. These vectors are used to calculate which sector (top,
bottom, left or right) the child lies in, and therefore which edge it is closest to on the
parent. Calculating the closest edge by using vectors allows the Interfaces to be dropped
outside the bounds of the Component and still snap back correctly.

5.2.3 Interfaces

Both the Required Interface and Provided Interface are implemented through the use
of a custom Java class to define their shape. The Required Interface is drawn as a
semicircular arc, connected to the Component through a perpendicular line extending
from the base of the arc. The Provided Interface is drawn as a closed, unfilled circle,
joined to the Component through a short, perpendicular line.

As both Interfaces need to be attached to all four sides of the Component, their drawn
image must be rotated such that they are always connected to the Component. To do
this, the Interface classes make use of the custom Layout Manager to calculate their
closest edge. The image is then drawn to align with the closest edge.

5.2.4 Interface Association

The association between a Required Interface and a Provided Interface is visualized
in the diagram by a dashed line with an open arrowhead pointing from the Required
Interface to the Provided Interface.
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5.2.5 Component Association

The association between Components in the diagram is visualized by a solid line with
no arrowhead between the two Components in the association.

5.2.6 Technical Challenges

The technical challenge in developing the Component Diagram lay in the custom Layout
Manager, which was challenging for two reasons. Firstly, when defining a custom Layout
Manager in GMF, layout edit policies are used to define which child nodes in the parent
node can be moved and edited. The edit policy must be specified within the generated
diagram code, rather than in the GMFGraph file where the Layout Manager is specified,
and will use the default policy otherwise. The default edit policy is not to allow anything
to be moved within the parent and this initially caused problems. Since there is no
mention in the available documentation about setting an edit policy, the default edit
policy was being used. Using the default edit policy meant that the drag and drop
functionality for the Interfaces did not function. As the only visible thing to be changed
in the GMFGraph file was the Layout Manager, the assumption was that it was the
custom Layout Manager that was causing the drag and drop to be non-functional. This
assumption led to a lot of time being spent with the custom Layout Manager before it
being realized that the layout edit policy needed to be changed. The requisite changes
were made to use the XYLayoutEditPloicy, which provided the functionality that was
needed.

Secondly, the algorithm to snap Interfaces to the edge of the Component took sev-
eral iterations to obtain the correct functionality. The initial algorithm calculated the
closest edge by calculating the distances between each edge of the Interface and each
corresponding edge of the Component using the bounds of both nodes. The Interface
was snapped to the edge with the shortest distance. This produced the desired result
provided that the Interface was not moved outside the bounds of the Component. If
this were the case, the Interface would occasionally snap to an incorrect edge, especially
if it had been moved outside a corner. Figure 5.5 shows an example of bad snapping in
the Component Diagram Layout Manager. This problem was rectified by implementing
the vector system described above.

5.3 Object Diagram

The Object Diagram consists of Objects, Attributes and associations between Objects
and is used to model a static instance of a dynamic system. Within UML-B this could be
showing how a system looks during animation, showing how a system looks at a point in
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Figure 5.5: An example of a Component Diagram showing a configuration where
component i would snap down to the boundary line A, when it should snap to B.

a Sequence Diagram or showing the relationships between real-world objects before the
system is formally designed. The metamodel and editor design for the Object Diagram
is explained in the following section.

5.3.1 Metamodel

To get the required graphical behaviour for the Object Diagram the metamodel shown
in Figure 5.6 was created. This metamodel is not stand-alone but is integrated with
the UML-B metamodel. This is to allow the diagrams functionality to be integrated
with the rest of the UML-B diagrams and to allow the diagram to make use of existing
UML-B classes.

The UMLBObjectDiagram class is the main root class for the diagram and is linked
through an aggregation to the UMLBObject class. The UMLBObject class is the repre-
sentation of an Object in the metamodel and has a name attribute and an association
back to itself. This association provides for the ability to link Objects to other Objects
in the diagram. The UMLBObject class is associated to two additional classes that were
already present in the UML-B Metamodel; UMLBAttribute and UMLBClass. The link
to UMLBAttribute allows Objects to have optional Attributes with the same function-
ality as UMLBAttributes, which are used in the already existing Class Diagram. The
instanceOf association to UMLBClass is included for completeness but should allow for
enhancements to the functionality of the diagram.

The aggregation from UMLBSequenceElement to the UMLBObjectDiagram class is to
allow the Object Diagram to be linked to the Sequence Diagram through the Event
Calls. Having the Object Diagram as a child of the UMLBSequenceElement allows for a
link between an Event Call and an Object Diagram, which can be used when providing
the right-click pop-up menu functionality.
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Figure 5.6: The Object Diagram Metamodel

5.3.2 Object

The Object node is represented graphically with a rounded rectangle containing a label
for the Object’s name, and a separate labelled compartment that stores the Object’s
Attributes. Attributes have a label that is used to display both the name and value of
the attribute. The rounded rectangle and labelled compartment were used to maintain a
visual similarity between the Object Diagram and Class Diagram, which uses the same
design for Class nodes. The Object is resizeable to any dimension, again, matching the
functionality of the Class Diagram.

The mapping of two data items to one label, for both the Object and Attribute labels,
is defined in the GMF mapping. Labels can take a variable number of features, which
correspond to Class attributes in the metamodel. Labels have a view pattern, which
defines how the features are viewed in the diagram, and an edit pattern, which defines
how the features are edited in the label. The feature used for the Object label are name.
The features used for the Attribute label are name and initialValue. For the Attribute
label the view and edit patterns used are 0:1, which produces the ‘name: value’ style
view for Attributes.
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It is possible to have null values for any label feature in the Object Diagram, which
provides for having attributes without a specified value. However, to get a null value,
the value for the non-null part of the label must be entered via the properties window.
This is due to the direct editing on the label not handling null values very well. If one
feature is left blank when the label is being edited no value will be recorded for either
feature.

5.3.3 Object Association

The Object association for the diagram is visualized as a solid line with no arrow. Asso-
ciations are constrained using an OCL constraint, specified within the GMF mapping,
so that the two Objects joined by an association are different. This prevents associations
from one Object back to itself.

5.3.4 Toolbar

The toolbar is defined in the GMF tooling definition and contains the buttons necessary
to create Objects, Attributes and associations. The toolbar is split into two tool group-
ings, one for nodes and one for links, both of which are collapsible. This has been done
to keep the toolbar looking similar to the toolbars in the other UML-B diagram editors.

5.4 Sequence Diagram

The Sequence Diagram represents the sequence of operations to be carried out by a
Machine in some example procedure, possibly with the aim of driving an animation
script. The diagram displays UML-B Objects as swimlanes, with calls to events as
arrows that take the state of the Machine from one point to another. Visually on the
diagram, the arrows move from a calling Object to a receiving Object, denoting the
sequence in which the units of code are executed.

5.4.1 Metamodel

The UML-B Sequence Diagram meta model (see Figure 5.7) is relatively straightforward
in terms of complexity, at least compared to some of the other diagrams. The root node
is the sequence itself, which is then comprised of Object Lifetimes, a start point and
sequential elements (links).

The Object lifetime elements have three types of children: A name property that acts
as a label to distinguish one instance of a class from another. A reference to a Class
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object that records what Class the object is an instance of (this will have been defined
in another diagram, such as a Class Diagram). And finally the Activity Boxes, which
are the yellow vertical boxes that provide a region for the links to anchor to.

Figure 5.7: The Sequence Diagram Metamodel

The start point is a leaf node on the diagram that does not have any children or at-
tributes. This is due to the fact that the start point is merely a graphical widget that
provides a starting position for the sequence. It is not a mandatory element on the
diagram and it does not carry any semantic meaning with it. However, an Event Call
linking the start point to an object can be associated with an event just like any other,
this is useful if there is an initialisation method that is called by the environment, per-
haps when a program is first started up (it can be used to show an Event Call coming
from a region of the system that falls outside of the scope of the Sequence Diagram).
It shares a common superclass with the object lifetime, UMLBTemporal element, this
is so that the elements which are to be arranged horizontally on the page can be han-
dled uniformly by the Layout Manager. It also means that, in theory, one could easily
extend the notation at this level to include another type of element, without having to
reimplement the layout.

The two types of links, or sequential elements, on the diagram are the Event Calls and
the backtrack link. They are linked by a common superclass as they are handled very
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similarly by the canvas. It again, allows the same code for positioning, linking and
layout to be applied universally to all links. Links are represented by their own elements
on the diagram, rather than simply allowing object lifetimes to directly reference other
object lifetimes. This provides a more distinct representation of the Event Calls, which
are arguably the most important element on the diagram, within the model file. Rather
than simply having a reference under the lifetime node, there is a child link node that
holds all the information in a readily available and explicit place. It also allows us to
record the order of the nodes on the diagram, which could not have been done if there
was not an actual node for each link.

The backtrack link is very simple, only recording where it comes from and goes to. There
is no need to record anything else, as the link merely represents a transition back to a
previous state and provides no new data. The Event Call is slightly more complicated,
here there is a reference to the event that is being called, a label attribute to aid it’s
identification on the diagram and a string that represents the parameters being passed
to the event.

5.4.2 Technical Challenges

Figure 5.8: The Sequence Proto Diagram

Whilst the metamodel is simple, creating the Sequence Diagram editor so that it looks
and behaves in a way similar to the UML 2.0 Sequence Diagram is another matter. Of
all the UML 2.0 diagrams, this is the one that is mostly frequently poorly implemented
and awkward to use. The main reason for this, is that it is not simple type of diagram
where the user can drop elements onto the canvas anywhere and then link them up
as they wish. As stated in the requirements, the layout is quite strict, with elements
being aligned in swim lanes and links always being horizontal. Unfortunately GMF only
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natively supports the former and so the complex functionality has to be programmed in
manually.

To demonstrate the magnitude of this, Figure 5.8 shows the proto-Sequence Diagram
that GMF was able to produce. This was the basis of the editor, all other functionality
has been added by hand.

5.4.2.1 Custom Shapes

Figure 5.9: A Custom Shape used in the Sequence Diagram

The shapes displayed on the diagram, which represent the Object Life Time elements
proved too complex to create in GMF. Instead they were created by utilising a custom
shape object that extends the Draw2d.Shape class and is registered as the graphical
representation of the element at the GMF level. This class can be found in the Package
ac.soton.umlb.umlbMetamodel.diagram.custom. By overriding the class’ draw and fill
methods it was possible to recreate the desired shape exactly. First an outline is drawn;
the box at the top of the shape (shown in Figure 5.9) is of a set relative size and shape,
this is multiplied by the zoom level of the diagram to produce an absolute size. The
dotted line that travels down the centre of the shape, starts from where the box at the
top finished and ends at a position that is half the absolute size of the cross at the
bottom away from the lower limit of the area. The cross is drawn in the same way as
the box, only using two drawLine() calls, rather than drawRectangle(). Secondly the
shape is filled, in reality only the box needs colouring in and so a fill rectangle, slightly
smaller than the border is used.
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5.4.2.2 Layout

There are two aspects of the Sequence Diagram that required specialised forms of layouts.
These were hinted at during the requirements phase and are now shown in Figure 5.10.
Firstly the elements that are placed directly onto the canvas have to be laid out as
shown; that is the Object Life Time elements are all aligned to the top of the page and
the start point is kept at the left hand side. Other than the start point, the elements
may be arranged horizontally, with the ability to reorder them, though they must not
overlap. The second layout behaviour required is the positioning of the Activity Boxes
within the life times. Here the box must be aligned to the dotted line and must start at
a given distance below the Object Box.

Figure 5.10: Layout Manager behaviour in the Sequence Diagram.

Adding a custom layout to a container requires attaching a special class that implements
Draw2D.AbstractHintLayout. Within this interface the key method is Layout(IFigure
Parent), which handles the laying out of all the children of the supplied figure (which
will correspond to the container being manipulated). The layout code iterates through
each of the figure’s children and alters their bounds and positioning depending upon
the desired location (acquired using getConstraints()). Beyond this it is a simple matter
of crunching numbers and calculating the correct positions. It is also important to
take into account the zoom and scroll functions of Eclipse, this is done by translating
the calculated coordinates from relative points to absolute points (there is a method
provided for this, IFigure.translateToAbsolute()).

Layouts are generally registered with the plug-in at the GMF level. In the GMFGraph
model it is possible to specify a custom layout class for any container. When specifying
a layout for the canvas itself it is slightly harder, this has to be done using GEF. The
layout class has to be added in to the GEF code responsible for creating the canvas
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figure (in the Sequence Diagram this is ac.soton.umlb.umlbMetamodel.diagram.edit.parts
.UMLBSequenceEditPart).

5.4.2.3 Connection Anchors

The behaviours of the links on the Sequence Diagram proved very challenging to im-
plement: how they were laid out, where they were connected and how they could be
moved. Link behaviour in GEF (there are no options whatsoever for changing link
behaviour in GMF) is managed by two classes, the EditPart class that controls the
figure to which the link is connected to and the ConnectionAnchor class. In essence
the behaviour is controlled by having two connection anchors, one at either end of the
link. By controlling the positioning of these anchors on the border of the connected
elements, the position of the link can be changed. This is done by implementing the
ConnectionAnchor.getLocation(Point reference) method.

Figure 5.11: Diagram showing connection behaviour in the Sequence Diagram.

The EditPart class, in this case ac.soton.umlb.umlbMetamodel.diagram.edit.parts
.UMLBObjectActivityEditPart, contains four methods that handle creation of connec-
tion anchors. The getSourceConnectionAnchor(Request request) and getTargetConnec-
tionAnchor(Request request) methods are called whilst the links are being created and
dragged around, but before the mouse is let go and the position becomes permanent.
These methods are passed a Request object that contains the position of the connec-
tion request. The getTargetConnectionAnchor(org.eclipse.gef.ConnectionEditPart arg0)
and getTargetConnectionAnchor(org.eclipse.gef.ConnectionEditPart arg0) methods han-
dle permanently setting the link location and recreating the anchors when the diagram
is opened from a saved file. These methods are only passed a ConnectionEditPart ob-
ject that does not contain any information regarding the desired position of the link.
As a result the final position of the link should either not depend upon the position at
which the mouse was clicked on the diagram, or the location has to be somehow trans-
ferred from the first two methods to the second two. The Sequence Diagram does the
later. When a connection anchor is created from a request object, the mouse location is
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recorded in a static variable, this is then used to remember the correct y coordinate of
the connection. The x coordinate is always equal to the x bound of the ObjectActivity
element border that is closest to the opposing anchor (the position of which is passed via
the reference point), ensuring that the connection always runs between the closest two
sides of the connected elements. A convenient knock on effect of using a static variable
is that the y coordinate for the source and target anchors is shared, causing the two to
move in sync vertically, always perpendicular to the ObjectActivity box.

The actual y positions are not exactly equal to the position at which the link was initially
placed, the order of the link on the diagram is taken into account and used to space the
links nicely. This can be seen in Figure 5.11, where adding a new link to the middle of
the diagram causes the other links to space out.

5.4.2.4 Ordered Links

It was important that the links were not only arranged neatly on the diagram, but also
that the order in which they appeared, running from top to bottom, was recorded in the
meta model. This was achieved by ensuring the the collection of Event Calls recorded
in the meta model was orderable (an option present when configuring the EMF) and by
including code to update the order at relevant points.

The code was added to the Connection Anchors so that whenever a link was either added
or moved on the canvas, the position in the order was recalculated. The key aspect here
is that the existing links are always spaced at a specific distance apart (taking into
account the level of zoom on the diagram). By taking the desired position of either the
source or target anchor, belonging to the new or relocated link, relative to the top of the
Activity Box, and dividing it by the spacing; one could (with some rounding) obtain the
position of the link in the order. This is then used to a) work out the correct position

Figure 5.12: Diagram showing model link ordering in the Sequence Diagram.
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for the link on the canvas, and b) update the order of the link in the meta model. This
behaviour can be seen on Figure 5.12, even though link C was added to the diagram
after all the other links, it appears in the correct order in the model hierarchy

Updating the meta model from the GEF layer in the framework is not just a matter
of calling the relevant method. Changes made to the model have to pass through a
command system, which manages concurrent changes being made to the model from
the various different views upon it. This allows changes to be done and undone trans-
actionally, without violating the consistency of the data. In order to change the order
of the links, first the command stack has to be obtained from the diagram, then a new
MOVE command is created. This is supplied with details of: the model feature that is
being altered, the element that is being moved, the editing context that is performing
the operation and the new position in the index that the element is to be moved to. The
object can then be pushed onto the stack, which will execute it in due course.

5.5 Use-Case Diagram

The Use-Case Diagrams consist of three element types: Actor; Use-Case and System
Box, along with the various links that join them all together.

5.5.1 Metamodel

The base class in the Use-Case Diagram Metamodel, shown in Figure 5.13, is the Use-
CaseDiagramParent that represents the overall Use-Case Diagram. The UseCaseDia-
gramParent is made up of many Actor, UseCaseItem and SystemBox elements. Actor,
UseCaseItem and SystemBox generalize UCDElement, where UCDElement is designed
to allow shared properties between all of the Use-Case Diagram elements. UCDElement
creates the name property so that Actor, UseCaseItem and SystemBox all have a name
attribute.

As System Boxes are required to allow other System Boxes and Use-Cases to be nested
inside of them, there are aggregates from SystemBox to SystemBox and SystemBox to
UseCaseItem. These aggregates allow multiple SystemBox and UseCaseItem items to
be created inside of any SystemBox.

Associations between classes in the Use-Case Metamodel represent the types of links that
are allowed in a Use-Case Diagram. The links uses and calls represent the situations
where an Actor can use a Use-Case and where a Use-Case requires an Actor to complete
its execution. The UseCaseItem is associated to itself through the includeUseCase and
extendUseCase links that represent the situations where a Use-Case has to include or
extend another Use-Case.
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The generalization of Actors or Use-Cases also requires a self-referencing association
from both the Actor and UseCaseItem classes. Doing this however complicates the
model definition as the Use-Case Diagram would have two different generalize links. To
solve this problem, the Actor and UseCaseItem classes generalize UCDGeneralizable in
the metamodel. There is then a single generalize self-referencing association from the
UCDGeneralizable class.

Figure 5.13: The Use-Case Diagram Metamodel

5.5.2 Actor

The Actor is comprised of a graphical component, the ‘stick man’, along with a label
that is linked to the Actor’s name attribute. The ‘stick man’ graphical component is
defined in GMF as an ellipse for the head and a custom figure for the body, positioned
so that the body and head match. The graphical component cannot be resized by the
user when they are creating a Use-Case Diagram, because this caused problems of the
head and body no longer joining each other. This is not a problem when the diagram
is viewed at a different zoom level inside of Eclipse, as GMF maintains the structure of
the graphical component by scaling it.

The label for the Actor is positioned outside of the main Actor graphical object, so that
the label can resize itself without trying to resize the ‘stick man’ graphical object.
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5.5.3 Use-Case

The Use-Case is an ellipse containing a centered label that is linked to the name of the
Use-Case. In GMF the label is centered by applying a border layout to the ellipse shape
and then setting the label to be a center component. The Use-Case ellipse will also
expand automatically as the length of the text in the label increases so that all of the
text in the label is shown.

5.5.4 System Box

The System Box is a rectangle container with a labelled bar at the top that shows the
name of the System Box. As in the UML 2.0 Use-Case Diagram, System Boxes are able
to nest other System Boxes and Use-Cases. Providing this nesting capability is a two
stage problem, the first part of defining a metamodel to allow this has been discussed
in Section 5.5.1, the second part is setting up GMF to allow this.

To allow nesting in GMF, child references for System Box and Use-Case have to be
added to Node Mapping for the System Box Top Node Reference in the GMF mapping
file. The System Box node mapping must also be set as a compartment by adding
a Compartment Mapping. By doing this, GMF will now manage the graphics and
interface when any System Boxes or Use-Cases that are placed inside of another System
Box. The graphical and interface components that GMF will control here include adding
and removing components from a System Box, moving a System Box and adding scroll
bars to a System Box to show its entire contents if the System Box is not large enough
to show its entire contents.

5.5.5 Links

The links defined in the Use-Case Diagram are designed to look like the links in a UML
2.0 Use-Case Diagram. Therefore the use, include and extend links are all lines with an
open arrow head pointing in the direction of the link. The generalize link has a closed
arrow head and the call link from a Use-Case to an Actor has no arrow head.

The include and extend links automatically generate a label depicting whether they are
an include or extend link as they should do in a UML 2.0 Use-Case Diagram. The
include and extend labels have had the editable property set to false so as not to allow
the label to be modified.

The links designed in the metamodel allow multiple links to be made per element in
the Use-Case Diagram. There are some properties for links that cannot be defined
in the metamodel, such as preventing Use-Cases including, extending or generalizing
themselves. In these cases the links can have link constraints set in the GMF mapping
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defined using OCL as shown in OCL 1, which ensures that the node at the start of the
link is not the same as the node at the end of the link.

self <> oppositeEnd

OCL 1: OCL to ensure no self-referencing

In the Use-Case Metamodel, Actor and UseCaseItem have been generalized to UCDGen-
eralizable, so in its default behaviour any generalize link will allow Actors to generalize
Use-Cases legally. As this behaviour is not legal in a Use-Case Diagram, there must be
some constraints made about the links that are made, which again can be made in the
GMF mapping. The OCL shown in OCL 2 ensures that the start and end nodes in a
link are of the same type, either Actor or UseCaseItem.

(self.oclIsTypeOf(Actor) and oppositeEnd.oclIsTypeOf(Actor)) or
(self.oclIsTypeOf(UseCaseItem) and oppositeEnd.oclIsTypeOf(UseCaseItem))

OCL 2: OCL for generalize constraint

5.6 Diagram Integration

Part of the requirements for each diagram was that they must be integrated into the
existing UML-B notations and, where appropriate, integrated with each other. As al-
ready discussed, the first stage of this is to unify the metamodels under a single file.
Beyond this, integration takes the form of being able to create or open specific diagrams
via a right-click option on relevant diagram elements. It has also been made possible to
navigate from a nested diagram, back up to the parent. For instance, where a Sequence
Diagram is created as a child of a Machine element, it is possible to open the Package
Diagram in which that Machine appears, by right-clicking on the Sequence Diagram
canvas and clicking ‘Open Parent’.

This functionality is obtained by extending the editors at the GEF level. A custom class
is created within the Package of each editor that is to have a right-click action added.
This class is registered with Eclipse in the plugin.xml file of that editor, as an object
contributor to the popupMenu plug-in extension point. The class then has to handle
calls to the new action, providing the relevant prompts and either opening the relevant
file or displaying a new diagram wizard. When creating a new diagram the class has to
provide the correct root element, in some cases (where the root node is not an element
on the parent diagram) this has to be created using an Add Command to the model.



Chapter 6

Testing

The development of new diagram editors for the UML-B system has produced many
things than need to be tested for correctness and completeness. Elements that need
testing fit broadly into one of four categories; requirements, Metamodels, diagram be-
haviour and custom code. The testing procedure used for each of these categories is
discussed in this chapter.

6.1 Requirements Testing

As most of the requirements were to define UML 2.0 style models that already existed,
requirements testing was a relatively simple process. Once the requirements were de-
fined they were presented to our supervisors who then agreed each of our requirements
documents.

6.2 Testing Metamodel Design

The design of the Metamodel for each diagram type was critical to ensure that the
diagram worked correctly when it was implemented. Testing the Metamodel design was
through peer review, which occurred in design meetings. Each Metamodel was presented
to the group along with the reasons as to how it was designed and how it is intended to
work. Once the group agreed that the Metamodel design was reasonable, the Metamodel
was implemented as a diagram type.

48



Chapter 6 Testing 49

6.3 Testing Diagram Behaviours

Testing diagram behaviours was again a relatively simple process as we were creating
refinements of standard UML 2.0 models with well known behaviours. Each diagram
type was tested against its requirements to ensure that correct linking between diagram
elements took place, that diagram elements could only be used in certain legal situations
and that any data handling not visible to the user took place. The outcome of this testing
process is shown in Appendix A, where each diagram is shown in a complex configuration
demonstrating all possible link types and diagram elements.

In some circumstances more in-depth testing of diagram behaviour had to be carried out
because there were large amounts of coded elements that provided behaviours and func-
tionality that GMF cannot provide on its own. In particular in-depth testing involved
the Sequence Diagram’s layout management and the Component Diagram’s Component
Layout Manager.

6.3.1 Testing the Component Layout Manager

The Component Layout Manager is responsible for ensuring that both Provided and
Required Interfaces snap to the edge of a Component in the diagram editor. This
behaviour was thoroughly tested by attempting to position Interfaces at several points
around the diagram. Positioning points were chosen so that they would test both the
snapping when the Interface was inside the drawn area and when the Interface was
outside the drawn area. In the cases where the Interface was outside, more points were
chosen to test the correctness of snapping near corners as described in Section 5.2.6.

6.3.2 Testing the Sequence Layout Manager

The Sequence Diagram Layout Managers controlled two aspects of the diagrams be-
haviour: the positioning and management of the top level elements on the canvas and
the positioning and sizing of the Object Activity Boxes within the Object Life Time
boxes. The later was tested by ensuring that the Activity Box was always correctly
positioned and sized no matter what the size or position of the parent element. It was
also tested by resizing the parent element after the box had been added, ensuring that
size moved relative to the parent and that the spacing between the top of the box and
the top of the dotted line remained constant.

The Canvas Layout Manager has several elements that had to be tested. Firstly, we
ensured that start points were always on the left and could not be moved and that
Object Life Times elements were always a set distance from the canvas top and could
not be moved vertically. Secondly, we ensured that the horizontal positioning of the
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Object Life Times was correct. The elements were allowed to be placed at any point
along the x-axis, but were not permitted to overlap. We ensured moving one of the
elements to the opposite side of another correctly caused them to be reordered. Each
of these areas was rigorously tested by carrying out repeated tests of every possible
combination of moving, resizing and reordering. Attempts were also made to induce
incorrect behaviour by trying to overlap elements.

6.3.3 Testing Link Management

The important aspects of the link behaviour to be tested are that the links must always
remain horizontal, must by movable and reorderable and must be evenly spaced in the
order they appear in the Metamodel. Each of these factors was verified through repeated
testing of the linking; repeatedly recreating links in every possible location with every
different combination of parent nodes.

6.4 User Acceptance Testing

Throughout the project we demonstrated the diagrams as they were implemented with
our project supervisors. This ensured that any changes to the diagrams or their require-
ments were determined as early on in the project as possible.

In the penultimate week of the project we were able to demonstrate all of the diagrams
with most of their features working to our supervisors and our customer. In this session
we were able to demonstrate how all of the diagrams would sit together inside a UML-B
project and it gave our supervisors and customer chance to provide us with feedback and
a small number of extensions to implement. In this meeting our supervisors requested
that the Activity and Component Diagrams should be linked back to the original UML-B
diagram types.
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Future Work

Updating and extending UML-B has a very large scope for continued work. In this
project we have worked on designing and specifying the requirements for the various
models we have implemented. Throughout this process we have developed some further
ideas of how UML-B can interact with other components in RODIN and in this next
section we will outline some key ideas about updates to RODIN through UML-B. These
are discussed in this chapter.

7.1 Integration with a Model Animator

In the B animator ProB, the system is held in terms of the state the system is in, the
operations that are enabled and the history of operations that took place in an animation.
Sequence Diagrams are used to show the order and flow of actions in a given system,
whilst Object Diagrams can be used to show the state of a system at a given time. Here
we can see the beginning of the link between the two diagrams and the animator, where
Sequence Diagrams can be linked to the animator’s history of operations and the Object
Diagram can be linked to the animator’s state properties.

UML-B interacting with model animators will be of use in two areas of model checking.
Firstly a user may wish to define a set of sequences to perform on a model to determine
that a particular behaviour maintains the invariant. To do this we will need a method of
translating UML-B to an animation script. Alternatively, a user may wish to investigate
an animation sequence that had taken place, especially if a given animation violated the
invariant. In this scenario we should provide a system that takes an animation output
and produces a UML-B model showing how the animation progressed.
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7.1.1 UML-B to Animation Script

The UML-B Sequence Diagram can be used to develop a sequence of events to apply
to the system being designed. Starting from the Initial Node, the Sequence Diagram
allows the user to define the events being called along with any parameters that need to
be passed to the event. This is achieved through the Event Call link. The terminating
end of the Event Call link determines the Class to which the event belongs. Finally the
order in which the Event Calls are placed can determine the order in which the events
are called.

Eclipse stores the Sequence Diagram data in an XMI file that is ordered in the event
order defined in the diagram. This means it should be possible for the XMI file to be
taken and converted into a format that an animator can take as input, defining the
sequence of events to call in a given model.

7.1.2 Animation to UML-B

A user may also wish to have a more in-depth look at how an animation sequence ran,
especially in terms of debugging animations that lead to an invariant being violated.
In this situation both the sequence and Object Diagrams come into use, by using the
Sequence Diagram to show the sequence of events and the Object Diagram to show the
system state.

Firstly we must assume that the animator stores the state of the animation after each
animation step. Secondly, the animator must store all Event Calls and all backtracks
that occur during an animation sequence. This means that after any event or backtrack
we can recall the state of the system. The animator should be able to provide this
data in a file that can be subsequently opened by RODIN and used to build a Sequence
Diagram.

In loading the output from an animation, a UML-B Sequence Diagram should be built
and the state information stored in a format that can be used to link from the Event Call
in the Sequence Diagram to the state at that time. In an inverse operation to the UML-
B to animation sequence method previously described, the Sequence Diagrams can have
events added to them in the order in which they happened in the animation. The target
for an event and the parameters passed to the event should be a part of the information
passed back from the animator about the event called. What cannot be determined is
where an event originated from, except for the very first event that must have come from
the Initial Node. The UML-B Sequence Diagram in this situation should not attempt
to work out where events originate from as this is an unsolvable problem with many
different solutions but all with different meaning to the user, see Figure 7.1. In this case
all events should originate from a System Class and the user can then decide to arrange
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where events originate from if they so wish. With the Sequence Diagram built, the user
should then be given the option to select any event in the Sequence Diagrams operation
and build an Object Diagram showing the system state at that time.

Figure 7.1: Two Sequence Diagrams showing a restaurant scenario with a Customer,
Waiter and Chef. In a UML-B Sequence Diagram these two diagrams would produce
the same animation script, but are different in meaning. Diagram (a) shows a model
where the originating Class of an event is determined by the last Class to accept an
event, which produces the meaning that the Chef is ordering a drink. Diagram (b)
shows the real meaning that was required in this diagram, where it is a Customer who

orders a drink.

7.2 Model Refinement

Refinement in B is a key component of formal system design and one that is currently
missing from UML-B. With the addition of the Component Diagram, it could now be
possible to implement model refinement in UML-B.

The Component Diagram lets us unplug elements of the system and replace them with
modifications whilst still maintaining the same system behaviour. To create a system for
refinement, the Component Diagram would need to be further integrated into UML-B
such that a Component represented an element of the UML-B model or a section of
Event-B code where refinement would be required.

An example situation may be that a UML-B model is defined that includes a set con-
taining all the users of a particular system. A Component of this model would be the
Class containing all of the users that was modelled as a set. This Component could
then be replaced with a refined Component that contained all of the users of a system
modelled in a list with the various checks to ensure a user only occurs at most once in
that list.
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7.3 Error Notification

The U2B process may in some cases come across errors in the models defined. The
diagrams that were part of UML-B before this project are able to report these errors to
the user, this is achieved by highlighting in red sections of the model that have caused
errors [32]. Error notification may not be appropriate in all of the diagram types; here
we present the diagrams where error notification could be used.

7.3.1 Activity Diagram

At this time the Activity Diagram does not have a specific role inside UML-B in terms
of U2B translation and determining how error notification could be provided is limited.
One error checking method that could be included would be to check the guard conditions
that lead into activities to ensure that they are in a legal syntax. In a situation where
the guard condition is not legal syntax, the guard label could be coloured red to show
where the error has occurred.

7.3.2 Sequence Diagram

As Sequence Diagrams will be used to run and display model checking animation se-
quences, error notification in Sequence Diagrams could be used to show where a model
checker violates an invariant. This form of error notification could have two distinct
circumstances.

The first error reporting situation is when a model checker is used and no Sequence
Diagram was used to provide a test script. In this situation we have no expected list of
events to be called and if the model checker violates the invariant the Sequence Diagram
could display all of the events leading up to the violation.

The second scenario is if a Sequence Diagram has been used to provide an animation
test sequence that subsequently led to the invariant being violated. In this situation
the model checker should return back the original Sequence Diagram but clearly show
the events that were called and the events that did not occur because of the invariant
violation. To do this, the event arrow that caused the violation could be coloured red
and all of the events after be coloured in a different colour, perhaps orange, to signify
they were never called.
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7.4 Custom Properties Windows

The UML-B diagrams implemented before this project all have custom properties win-
dows [11] that are used to hide the unrequired EMF and GMF properties that would
otherwise be shown in the diagram [32]. Implementing custom properties windows for
each diagram would have the advantage of removing the complexity of the EMF and
GMF default properties and just focusing the user’s attention on the UML-B specific
properties, as well as keeping the same look and feel throughout UML-B.

7.5 Mathematical Notation

In some of the diagrams there is a requirement to include some formal notation by using
µB. In the diagrams we have created, this is achieved through ASCII entry and display
only. A future improvement to the diagrams we have created would be to implement
a system similar to that produced by Andrew Tillman [32] in entering µB through the
RODIN UML-B keyboard and to display any µB in true mathematical notation.
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Project Management

Developing the new diagram editors for UML-B has been an involved and complex
process, requiring careful management of time and personnel throughout the course
of the project. The roles of each individual, group dynamics, project planning and
communication are discussed in this chapter.

8.1 Individual Roles

The group members had little prior knowledge about the technologies being used in this
project. As the project progressed, members were able to specialise their skills in various
aspects of the technologies used.

While a large amount of the project was group based especially during the specification
of requirements and design, the group was able to split the work into individual tasks
when it came to implementing the models designed.

8.1.1 James Amor

James brought a good knowledge of Java to the project, along with a solid understanding
of the UML 2.0 diagram set. As a result James took on a major part in the group’s design
meetings, those held with the group’s supervisors and in drawing up the requirements
specifications for each diagram. James also took a secondary coding role, providing
the additional functionality needed on the Component Diagram and acquiring a good
understanding of the GMF framework through the implementation process. James also
took on the role of editor for the group’s final report, becoming responsible for ensuring
that the report was consistent and well proof read.

During the implementation process, James worked on the Object Diagram and the
Component diagram. The Object Diagram was a relatively simple model to implement,
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whilst the Component diagram was far more complex, with a hard to define graphical
editor, requiring large amounts of custom code. This involved the definition of new
graphical elements and the creation of a Layout Manager to snap Interfaces to the side
of Components.

In writing the report, James wrote about the diagrams he implemented in the Require-
ments and Design chapters and wrote, with contributions from other members of the
group, the Evaluation and Editor Construction chapters. James also contributed to the
Project Management and Testing chapters.

8.1.2 Tim Lewy

Tim came to the project from a strong Java background, with a keen interest in software
engineering, application development and implementing technologies. As a result he took
on the major programming aspects of the project, in particular the Sequence Diagram,
becoming an expert in extending and manipulating the supplied frameworks to provide
complex functionality. In meetings he gave many demonstrations of the work in progress,
answering questions on implementation specifics and endeavouring to ensure that the
software engineering aspects of the project were always well looked after, and did not
become overlooked.

During the implementation process, Tim worked the Sequence Diagram. With the
Sequence Diagram being extremely challenging in terms of developing an entirely new
Layout Manager and linking system that was not supported by GMF.

In writing the report, Tim wrote about the diagram he implemented in the Require-
ments and Design chapters, along with the vast technical challenges of implementing
the Sequence Diagram. Tim also researched and wrote background on UML 2.0, Eclipse
and its various plug-ins as well as contributing to the Abstract, Introduction, Editor
Construction, Future Work, Testing, Project Management and Conclusion chapters.

8.1.3 Chris Lovell

Chris was the only member of the group to take the required course, Comp3011: Critical
Systems and as such provided insight into B for the group. The knowledge of B was of use
to the group during the specification of requirements, so as to help develop links between
UML 2.0 and B. His knowledge of B was also used to answer questions in progress
seminars that revolved around the ideas of translating the new diagrams produced to B
or animation sequences. Chris was also the only member of the group to have experience
in using LaTeX to produce a large technical document and so made sure this process
went smoothly by supporting the other group members.
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During the implementation process, Chris worked on Use-Case Diagram and the Activity
Diagram. With the Use-Case Diagram being a relatively easy diagram to implement and
the Activity Diagram being a far more complex diagram in terms of defining a metamodel
and controlling flows between diagram elements.

In writing the report, Chris wrote about the diagrams he implemented in the Require-
ments and Design chapters. Chris also wrote the formal methods sections of the Back-
ground chapter, along with sections in the Project Management, Future Work, Testing,
Conclusions chapters and compiling the Appendices.

8.2 Group Dynamics

Even though none of the group members had worked on projects with each other previ-
ously, the group quickly gelled and worked solidly together throughout the entire project.
This group project was also unusual in that no one member neither acted nor needed to
act as a group leader to guide the project. The reason for there being no requirement for
a group leader was that we divided the tasks to be carried out as a group and individual
members chose the tasks to do themselves. Each member then took full responsibility
for ensuring that the task was completed too a very high standard.

Throughout the project, all group members listened to each others ideas and thoughts
about the direction the project should take, along with determining how to resolve the
technical challenges faced. This was especially important in working out the require-
ments for the diagrams developed and in writing the final technical report. Equally
important was group members questioning each others ideas to try and determine if a
particular line of thinking may lead to undesirable consequences elsewhere in the project.
For example, when defining how an animation sequence could be converted back into
a Sequence Diagram, the idea was originally presented that each Event Call in the se-
quence would start from the Class that the previous Event Call ended. After analysing
this further we realised that this could create diagrams with the wrong meaning, as
discussed in Section 7.1.2. Next the idea that Event Calls would not need to have a
starting Class when being converted from an animation sequence was introduced by a
group member. This idea again seemed reasonable, but when another group member
questioned the technical feasibility of defining a link in GMF with no starting node, the
idea was refined further to end with the method defined in Section 7.1.2.

There was a level or respect in the group in ensuring that work was carried out as soon as
possible. For example, most of the design meetings took place on a Thursday or Friday
and usually ended with a couple of new diagram types that could be implemented. The
usual etiquette was for a proof of concept prototype diagram to be implemented by the
following Monday morning were any implementation issues were discussed, the level of
completeness of the diagram only depended on the technical aspects of the model.
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When a group member became stuck with an aspect of the project, be it trying to solve
a particular problem, understanding how to create the graphs in Eclipse or creating the
final document in LaTeX, another group member was quick to offer guidance or help.
For example, in the beginning of the project we struggled to understand how to use
GMF to create the diagrams as this process had minimal documentation. One group
member was able to put in more time in trying to understand how to develop a diagrams
using GMF and so was then able to help the rest of the group when they became stuck
with various issues in the implementation process. Another example came later on in the
project when the report writing started. We decided to write the document in LaTeX,
so as to help version control and multiple accesses to the document. However, only one
group member had any real experience in writing a large report in LaTeX and so it
became their responsibility to support the other two group members.

Overall, the group formed a very strong bond during the project, meaning the whole
project was completed as a group and that any decisions, problems and achievements
belonged to the group and not any individual.

8.3 Work Plan Overview

The planning of the project was undertaken by the entire group at the beginning of
the project. A meeting was held to discuss the work that needed to be done and the
individual task breakdowns that this would entail. Estimates of the time it would take
to complete each task were drawn up, resulting in the Gantt chart shown in Figure 8.1.

Figure 8.1: The Initial Gantt Chart, produced during Week One

This Gantt chart shows that the group intended to have all the diagram editors complete
by the end of week 7 and then spend some time on translating one of the diagrams into
UML-B. This was a very optimistic estimate of, which it became clear was not achievable
as development of the diagram editors was far more complex and time consuming than
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had been initially thought. This led the group to have another project planning meeting
to discuss and revise the goals of the project. The outcome of that meeting was that
the group would concentrate on the diagram editors and drop the implementation of a
translation element of the project. The Gantt chart shown in Figure 8.2 was drawn up
as a revised project schedule.

Figure 8.2: The Revised Gantt Chart, produced in Week Six

The revised Gantt chart shows that the estimates of the length of time required to
complete the diagram editors has increased to compensate for their increased complexity
and time drain. There is also a fifth diagram on the revised diagram (the Component
Diagram), which was added after a meeting with the project supervisors. The revised
Gantt chart has dropped the translation element, aside from the feasibility assessment
that had been carried out.

Figure 8.3: The Final Gantt chart

The revised project plan was followed up to the end of the project, with some devel-
opment tasks over-running. This was due to some last minute changes and integrating
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the editors into the rest of the UML-B environment. The final Gantt chart, shown in
Figure 8.3, charts the group’s actual progress through the project and is very similar
to the revised Gantt chart, shown in Figure 8.2.

8.4 Communication

Communication between the group and the supervisors took place through email, dis-
cussions and meetings.

8.4.1 Communication with Supervisors and Customer

Throughout the project we had weekly meetings with our supervisors, Michael Butler
and Colin Snook. These meetings were a time to show the progress we had made, address
any problems and guidance on the direction the project should take. We first met our
customer, Ian Johnson from AT Engine Controls Ltd. at our first progress seminar and
we met again at the end of the project where we demonstrated a near complete project.

As the project required us to look at how the models we were designing could fit in with
UML-B and RODIN, the weekly meetings gave us opportunity to discuss the various
ideas that we had. Most of the time we presented our ideas and our supervisors looked
at whether they were feasible ideas. In some situations we were unable to determine how
a particular model might be used in UML-B and our supervisors were able to advise us
on how they thought it might be used.

8.4.2 Communication between the Group

The group communicated through informal meetings in the undergraduate labs, more
formal meetings in library study rooms and through email.

During a typical week the group met for a minimum of four hours to discuss project
progress, problems and technical issues that we needed to resolve. In the implementation
process this usually involved us demonstrating what we had achieved so far, how we had
gone about achieving it and discussing any problems that were found when implementing
it. As we found that we all met similar problems at various stages of the implementation
process, these informal meetings were valuable to help each other.

The group also met roughly once a fortnight for a structured technical meeting lasting
two to three hours where system requirements and designs were developed. In these
design meetings, each diagram type was presented to the group by the person who had
taken the responsibility to implement the diagram. This presentation normally consisted
of a reminder of what the standard UML 2.0 equivalent is required to have in terms of
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its components along with how the model should be used. The presentation also had
the initial ideas for how the diagram could be used in UML-B. The meeting then set
out about defining the requirements as well as trying to see what the likely technical
difficulties would be and these difficulties could be overcome.
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Evaluation

Updating and extending the UML-B tool set to include five new diagram types has
produced a large number of requirements that cover the form and function of these
diagrams. The new diagrams all require evaluation against their original requirements
and this chapter discusses that evaluation.

9.1 Activity Diagram

The Activity Diagram meets all the requirements set out in Section 3.1. The requirement
for the diagram to use the same graphical elements as the UML 2.0 Activity Diagram has
been met, resulting in the same graphical appearance. The restrictions on the number
of Flows and outgoing Flows from each diagram element have been met to give the same
functionality in the diagram as the UML 2.0 equivalent.

The integration of the diagram to the UML-B tool has been partially accomplished.
Activity Diagrams can be liked to Machines, and opened through the right-click menu
from a Machine in a Package Diagram.

There is a very minor issue with Flows not joining directly to the edges of some nodes
but ending in blank space a small distance away. This is not a major issue and is purely
graphical. It does not detract from the functionality of the diagram, which will be very
useful in the early stages of designing a UML-B system.

9.2 Component Diagram

The Component Diagram has met most of the points set out in Section 3.2. The graphical
requirements for the Component, Required Interface and Provided Interface nodes have
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mostly been met, as have the requirement for the graphical appearance of Component
associations.

The requirement for Interface pairs to join using the ‘ball and socket’ style has not been
met due to time and complexity reasons. Instead, a dashed arrow with an open arrow-
head has been used to join Required Interfaces to Provided Interfaces. The dashed arrow
is legal notation in UML 2.0 and has not adversely affected the diagram’s functionality
but has had the effect of allowing a Required Interface to connect to multiple Provided
Interfaces. This was not specified but is advantageous as it allows the diagram to be
used to model more complex interactions between Components.

The Component association link does not appear to link up properly to the Components
it is linking. This is because the bounds of the Component element are a set distance
outside the drawn rectangle of the Component. The result is that the anchor points
for the link attach to the bounds, not the drawn rectangle. As this does not affect
the functionality of the diagram it has not been fixed due to time restraints and the
complexity of the fix. This is not a major issue for the diagram

The integration of the Component Diagram with the rest of the UML-B tool has been
implemented at the Package level. A Component Diagram can be opened through
the right-click popup menu from blank space in the Package Diagram and the owning
Package Diagram can be opened from a Component Diagram.

Overall the Component Diagram has met most of its requirements and not suffered in
functionality by not meeting any. The diagram has in fact gained some functionality by
allowing Required Interfaces to link to many Provided Interfaces, thus allowing for the
modelling of more complicated systems. The Component Diagram will be a very useful
tool to aid in the UML-B refinement process.

9.3 Object Diagram

The Object Diagram has met most of the points specified in Section 3.3. All the graphical
requirements have been met, resulting in the required UML 2.0 style being achieved. The
look of the Object has been modified slightly (rounding the corners and adding a label
to the Attributes compartment) to better fit the look of the other UML-B diagrams but
this only serves to enhance the diagram. The associations in the diagram also meet the
requirements.

The functionality for the Object name label to show both the Object’s name and its
class type has not been met as this is not possible in GMF at this time. The requirement
for the Attribute name: value label to require that all Objects have a class type and
that all Attributes have a name has not been implemented due to time restrictions. This
does not affect the core functionality of the diagram.
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The integration of the Object Diagram into the rest of UML-B has been largely accom-
plished. The Object Diagram is creatable from both UML-B Machines and Contexts,
through the right-click popup menu. It is also possible to open the containing Machine
or Context Diagram from the Object Diagram, again, through the popup menu. The
ability to create an Object as an instance of an existing Class has not been implemented
due to time constraints but this does not adversely affect the core functionality of the
diagram.

Overall, the Object Diagram has met enough of the requirements for it to be useful
in the UML-B environment. The features that are unimplemented were mostly only
required as additional touches to make the diagram easier to use. Their exclusion has
not affected the core functionality to any great extent.

9.4 Sequence Diagram

The Sequence Diagram has met all of the points specified in Section 3.4. All of the
graphical requirements for the layout and appearance of the diagram have been adhered
to and the required similarity to UML 2.0 has been achieved.

The requirement for the diagram to record Event Calls in the vertical order in which
they appear in the diagram has been met by re-ordering the XMI produced from the
diagram. This is a very important achievement for the diagram as it will make the
transition of the diagram into an animation script significantly easier.

The Sequence Diagram is also fully integrated to the UML-B Package Diagram; Sequence
Diagrams are able to be linked to Machines and opened from the right-click menu on
the Machine. The Sequence Diagram has also integrated the Object Diagram, which
can be linked to an Event Call in the diagram and opened accordingly.

Overall the Sequence Diagram has met all of the requirements and is a very useful
addition to the UML-B tool.

9.5 Use-Case Diagram

The Use-Case Diagram meets all of the points specified in Section 3.5. The graphical
elements used are the same as those in the UML 2.0 Use-Case Diagram and the re-
quirement to have the same look as UML 2.0 has been met. The requirement for the
behaviour of the diagrams has also been met. Restrictions on the elements that can be
placed into System Boxes have been observed and System Boxes are nestable. The links
between the elements in the diagram all conform to the specification in both graphical
and behavioural terms.
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The integration of Use-Case Diagrams into UML-B has been fully completed. Use-
Case Diagrams are integrated to the UML-B Package Diagram and Machines within
the Package Diagram. New Use-Case Diagrams can be created through the right-click
menus from both of the existing UML-B elements. The parent element can be opened
from the child Use-Case Diagram.

Overall, the Use-Case Diagram has met all of its requirements and provides all of the
correct functionality to make it a useful tool in the design of UML-B systems.
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Conclusions

The existing UML-B notations provide diagrams that can be used by a developer to
graphically create B-method specifications. We have taken these notations and built
upon them, creating new diagram types and editors that support not just the formal
methods behind UML-B, but the entire software engineering process as well. This project
has:

• Proposed five new diagram notations.

• Created supporting metamodels for these notations through EMF.

• Developed graphical editors for each notation through GEF and GMF.

• Defined possible semantics for the elements of each new diagram.

• Advised on possible future uses and work to take advantage of the extentions.

10.1 Project Outcome

This project has been extremely successful, we have produced a wide variety of diagram
types that can now be used within UML-B. Implementing these diagrams has meant
overcoming a very large learning curve in building the skills to effectively use EMF and
GMF to define diagram editors.

Our biggest achievement has been to define possible new ways for the UML-B notation
to be used, through utilising Sequence Diagrams to define animation sequences that can
be used in a model checker. It is also possible that the Sequence and Object Diagrams
could be used to show the system state when a model checker violates the invariant. This
is an important achievement as previously UML-B diagrams were only being thought
of as being used in U2B translation. Combining Sequence and Object diagrams with
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the model checking process would open up a new area of development in RODIN and
UML-B, with many possibilities for further projects.

10.2 Project Management

The group has performed well, forming an effective and cohesive team in a very short
space of time. We have succeeded, especially in terms of work load management, sharing
responsibilities and using each others expertise. Our time and efforts have been handled
well and we have managed to bring the project to a natural conclusion within the ten
week time span.
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Testing Diagrams

1
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Figure A.1: Example of the Activity Diagram with all link types implemented.
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Figure A.2: Example of the Component Diagram with all links, elements and nesting
features shown.

Figure A.3: Example of the Object Diagram with all elements and links shown.
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Figure A.4: Example of the Sequence Diagram with all elements and links shown.
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Figure A.5: Example of the Use-Case Diagram with all link types implemented. Also
shown is the nesting ability of the System Boxes. Note that the links between Use-Cases
are not affected by whether the Use-Cases is inside a System Box or not, or whether

two Use-Cases are inside the same System Box.
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CD Listing

Presented here is a summarised listing of all of the files that have been submitted.

B.1 Basic GMF Required Files

All five of the diagrams implemented have their own set of files that GMF requires to cre-
ate the diagram type. These files are all stored in ac.soton.umlb.umlbMetamodel/model/
and have the following file types and meanings as shown in Table B.1.

File Extension Description
.gmfgraph Contains all of the image data that GMF uses in a diagram. Special

cases are for the Use-Case and Activity diagrams, as their .gmf-
graph file calls in another .gmfgraph file that contains the drawing
elements, this is covered later on.

.gmftool Defines the order and layout of the toolbar in the graphical editor.

.gmfmap Combines all elements of the metamodel, .gmfgraph and .gmftool
that make up the given diagram.

.gmfgen Produced by GMF, this is the file that is used to generate the
diagram code.

Table B.1: Table showing the files GMF expects and their location in our file system.
All files can be found under ac.soton.umlb.umlbMetamodel/model/.

The prefixes for each diagram type are:

• umlbMetamodelActivity - for the Activity Diagram

• umlbComponentDiag - for the Component Diagram

• umlbObjectDiagram - for the Object Diagram

• umlbMetamodelStateDiag - for the State Diagram

• umlbMetamodelUseCaseDiag - for the Use Case Diagram

6



Appendix B CD Listing 7

B.1.1 Activity and Use-Case Diagram Special Case

Both the Activity and Use-Case Diagrams use two .gmfgraph files to define the graph-
ical components. The .gmfgraph files mentioned previously define the top level graphi-
cal components, but as both the Activity and Use-Case Diagrams require complicated
graphical components these have been defined in secondary .gmfgraph files.

File Description
mygraphs/activityDiagramGraph.gmfgraph Contains all of the shapes that make up

the graphical components found in the
Activity Diagram.

useCaseGraphs/useCaseModels.gmfgraph Contains all of the shapes that make up
the graphical components found in the
Use-Case Diagram.

Table B.2: Table showing extended GMF graph files we have imple-
mented and their location in our file system. All files can be found under

ac.soton.umlb.umlbMetamodel/model/.

B.2 Integration Code

All of the diagrams have had code added to them to assist in integrating the diagrams
with the rest of UML-B. The integration code for each and its location is summarised
in Table B.3.

File Description
Activity Diagram activitydiagram.custom.OpenParentDiagram

packageDiagram.custom.OpenActivityDiagram
classDiagram.custom.OpenActivityDiagram

Component Diagram componentDiagram.custom.OpenParentDiagram
packageDiagram.custom.OpenComponentDiagram

Object Diagram objectdiagram.custom.OpenParentDiagram
packageDiagram.custom.OpenObjectDiagram

Sequence Diagram diagram.custom.OpenParentDiagram
diagram.custom.OpenObjectDiagram
packageDiagram.custom.OpenSequenceDiagram

Use-Case Diagram usecasediagram.custom.OpenParentDiagram
packageDiagram.custom.OpenUseCaseDiagram

Table B.3: Table of classes used for integrating diagrams into the rest of UML-B. All
packages listed are local to the ac.soton.umlb.umlbMetamodel package
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B.3 Diagram Specific Code

Presented here are files that contain code that is specifically used by a particular diagram
to achieve some behaviour.

B.3.1 Activity Diagram

File Description
UMLB AD ElementImpl.java Contains the code isLegalToEnd() and isLegal-

ToStartFrom() defined in the Activity Diagram Meta-
model.

Table B.4: Table showing files in ac.soton.umlb.umlbMetamodel.componentDiagram/src/ac/
soton/umlb/umlbMetamodel/umlbMetamodel/impl that are used by the Activity Dia-

gram to implement code defined in the Activity Diagram Metamodel.

File Description
UmlbMetamodelBaseItemSemanticEditPolicy.java Contains the Java constraints

isLegalToStartFrom() and isLe-
galToEnd() defined in umlb-
MetamodelActivity.gmfmap.

Table B.5: Table showing files in ac.soton.umlb.umlbMetamodel.activitydiagram/src/ac/
soton/umlb/umlbMetamodel/activitydiagram/edit/policies that are used by the Activity

Diagram to implement code defined as Activity Diagram Link Constraints.

B.3.2 Component Diagram

File Description
Component.java Code that defines the custom shape of the Component node
ComponentLayout.java Code that defines behaviour of the custom layout manager
ProvidedInterface.java Code that defines the shape of the Provided Interface
RequiredInterface.java Code that defines the shape of the Required Interface

Table B.6: Table showing files in ac.soton.umlb.umlbMetamodel.componentDiagram/src/ac/
soton/umlb/umlbMetamodel/componentDiagram/custom/ that are used by the Com-

ponent Diagram.
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B.3.3 Sequence Diagram

File Description
edit/parts/FixedConnectionAnchor.java Code for controlling Connection Anchor

behaviour
custom/ActivityLayout.java Layout code for the activity box
custom/SequenceLayout.java Layout code for the diagram
custom/ObjectShape.java Code for generating a custom lifeline shape

Table B.7: Table showing files in ac.soton.umlb.umlbMetamodel.diagram/src/ac/soton/umlb/
umlbMetamodel/diagram/ that are used by the Sequence Diagram.
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