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Abstract

We review the development and extensions of the classitallleast squares method and describe algorithms
for its generalization to weighted and structured appratiom problems. In the generic case, the classical total
least squares problem has a unique solution, which is givemnalytic form in terms of the singular value de-
composition of the data matrix. The weighted and structtotal least squares problems have no such analytic
solution and are currently solved numerically by local optiation methods. We explain how special structure of
the weight matrix and the data matrix can be exploited focieffit cost function and first derivative computation.
This allows to obtain computationally efficient solutiontimeds. The total least squares family of methods has a
wide range of applications in system theory, signal prdogsand computer algebra. We describe the applications
for deconvolution, linear prediction, and errors-in-edles system identification.

Keywords: Total least squares; Orthogonal regression; Errors-iralsbes model; Deconvolution; Linear pre-
diction; System identification.

1 Introduction

The total least squares method was introduced by Golub and.d@n [25, 27] as a solution technique for an overde-
termined system of equatiodsX ~ B, whereA € R™" andB € R™¢ are the given data and € R™*9 is unknown.
With m > n, typically there is no exact solution fof, so that an approximate one is sought for. The total least
squares method is a natural generalization of the leastesjagproximation method when the data in batindB
is perturbed.

The least squares approximatiﬁrg is obtained as a solution of the optimization problem

{Xis, AByg} 1= argmin|AB||r  subjectto AX =B AB. (LS)

The rationale behind this approximation method is to caifeeright-hand sid8 as little as possible in the Frobenius
norm sense, so that the corrected system of equaki®ns I§, B:= B+ AB has an exact solution. Under the condition
that A is full column rank, the unique solutios = (ATA)~ATB of the optimally corrected system of equations
AX = By, Bis := B+ ABy is by definition the least squares approximate solution efdtiginal incompatible system
of equations.

The definition of the total least squares method is motivatethe asymmetry of the least squares metdds
corrected whiléA is not. Provided that botA andB are given data, it is reasonable to treat them symmetricalig
classical total least squares problem looks for the minifimathe Frobenius norm sense) correctidws and AB on
the given datah andB that make the corrected system of equatiﬁws: B, A:=A+AA B:=B-+ABsolvable, i.e.,

{Xus, AAys, ABys } := argX’ArrAiRBH[AA ABJ||. subjectto (A+AA)X =B+AB. (TLS1)

*Corresponding author.
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Ihe totaAI Ieelst squares appLoximate solutig for X is a solution of the optimally corrected system of equations
AysX = Bys, Aus := A+ DAys, Bys := B+ ABys.

The least squares approximation is statistically mott/atea maximum likelihood estimator in a linear regression
model under standard assumptions (zero mean, normaliibdigd residual with a covariance matrix that is a multiple
of the identity). Similarly, the total least squares apjmadion is a maximum likelihood estimator in the errors-in-
variables model _ _

A=A+A, B=B+B, thereexistsaX ¢ R™such thadX =B (EIV)

under the assumption that ¢& B]) is a zero mean, normally distributed random vector with adance matrix
that is a multiple of the identity. In the errors-in-variablmodelA, B are the “true data’X is the “true” value of the
parameteiX, andA, B consist of “measurement noise”.

Our first aim is to review the development and generalizatiohthe total least squares method. We start in
Section 2 with an overview of the classical total least sgsianethod. Section 2.1 gives historical notes that relate
the total least squares method to work on consistent esbimiat the errors-in-variables model. Section 2.2 presents
the solution of the total least squares problem and thetmegubasic computational algorithm. Some properties,
generalizations, and applications of the total least suarethod are stated in Sections 2.3, 2.4, and 2.5.

Our second aim is to present an alternative formulation efttiial least squares problem as a matrix low rank
approximation problem

Cys := argmin|C—C||r subjectto ran{C) <n, (TLS2)
c

which in some respects, described in detail later, has aalgas over the classical one. With= [A B] , the classical
total least squares problem (TLS1) is generically equivaie the matrix low rank approximation problem (TLS2),
however, in certain exceptional cases, known in the liteeads non-generic total least squares problems, (TL34) fai
to have a solution, while (TLS2) always has a solution.

The following example illustrates the geometry behind #ast squares and total least squares approximations.

Examplel (Geometry of the least squares and total least square®dstiConsider a data matrig = [a b] with
m = 20 rows andh+d = 2 columns. The data is visualized in the plane: the r@ws bi] of C correspond to the
circles on Figure 1. Finding an approximate solutioaf the incompatible system of equatioas~ b amounts to
fitting the data points by aon-verticalline passing through the origin. (The vertical line can netrépresented by
anx € R). The cases when the best fitting line happens to be verticedspond to non-generic problems.
Alternatively, finding a rank-1 approximati(ﬁof the given matrixC (refer to problem (TLS2)) amounts to fitting

the data points[a; bi] by points [a Bi] (corresponding to the rows ﬁ) that lie on a line passing through the

origin. Note that now we do not exclude an approximation leywartical line, because approximation points lying
on a vertical line define a rank deficient mat@xand problem (TLS2) does not impose further restrictionshan t
solution.

The least squares and total least squares methods asséiinthaccuracy in different ways: the least squares
method minimizes the sum of the squared vertical distarmmes the data points to the fitting line, while the total
least squares method minimizes the sum of the squared orthbdistances from the data points to the fitting line.
Figure 1 shows the least squares and total least squargeg fittes as well as the data approximation (the crosses
lying on the lines). In the least squares case, the data xippeibon Cis = [a b+ Ab|s] is obtained by correcting the

second coordinate only. In the total least squares casel,’;1tt:.1eeapproximatioﬁA:ﬂs = [a+ Days b+Abt|S] is obtained
by correcting both coordinates. O

In (TLS1) the constrainfX = B representshe rank constraint rarf€) < n, via the implication

there exists aX € R™9 such thabX =B = C:= {,& I§} ., rankC) <n.
Note, however, that the reverse implication does not holgeineral. This lack of equivalence is the reason for the
existence of non-generic total least squares problemsS1Jlis non-generic when the rank deficiencyGaf (an
optimal solution of (TLS2)) can not be expressed as existaridinear relationsAX = B for someX € R™9. In

Section 3.1, we give an interpretation of the linear systéequationsﬁx —Basan input/output representation of a
linear static model.
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Figure 1: Least squares and total least squares fits of a setd?0 data points in the plane—data points[a; bi] ,
x—approximations{aﬁ Bi} , solid line—fitting modeBX = b, dashed lines—approximation errors.

Apart fromAX = Bwith C = {,& I§} , there are numerous other ways to represent the rank cimhss&al(é) <n.

For exampIeAX =BwithCM = {ﬂ I§} , Wherel is an arbitrary permutation matrix, i.e., in (TLS2) we cana$e to

express ang columns ofC as a linear combination of the remaining columns in ordenguee rank deficiency .
Any a priori fixed selection, however, leads to non-generabfems and therefore will be inadequate in certain cases.
Of special importance are the kernel representa‘ﬁ =0, whereRR' = 4, and the image representati@ﬁ =PL,
whereP e R(Mdxn | ¢ R™M_|n contrast to the input/output representations, theédeand image representations
are equivalent to rarf) < n.

The representation-free total least squares problem fation (TLS2), described in Section 3, is inspired by the
behavioral approach to system theory, put forward by J. deWvs in the three part remarkable paper [91]. We give

an interpretation of the abstract rank condition as ext&tai a linear static model for the given data. Then

the total least squares method is viewed as a tool for dgrpproximate linear static models.

This point of view is treated in more details for dynamic adlae static models in [51].

In Sections 4 and 5 we describe the extensions of the clhssiahleast squares problem to weighted and struc-
tured total least squares problems and classify the egistiethods according to the representation of the rank con-
straint (input/output, kernel, or image) and the optini@atmethod that is used for the solution of the resulting
parameter optimization problem. We show that the blockkeastructured total least squares problem is a kernel
problem for approximate modeling by a linear time-invaridpnamical model. Motivating examples are the decon-
volution problem, the linear prediction problem, and th@es-in-variables system identification problem.
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Notation

RandR, the set of real numbers and nonnegative real numbers
:=and ;<= left-hand side is defined by the right-hand side
=:and < : right-hand side is defined by the left-hand side

vec column-wise vectorization of a matrix
C,/AC, c data, correction, and approximation matrices
C=[A B| input/output partitioning of the data
Cl,...,Cm observations[c; -+ cy| =C'
c=col(a,b)  the column vectoc = [}]
P C R a static model irRn+d
<z linear static model class
B e L linear static model of dimension at masti.e.,
a subspace (iiR"+9) of dimension at most
X,R P parameters of input/output, kernel, and image represengat
PBijo(X) input/output representation, see (I/O repr) on page 9
colspariP) image representation, i.e., the space spanned by the coloffn
ker(R) kernel representation, i.e., the right null spac&of

2 The classical total least squares method

2.1 History

Although the name “total least squares” appeared only ticigrthe literature [25, 27], this fitting method is not new
and has a long history in the statistical literature wheig kinown as “orthogonal regression”, “errors-in-variale
and “measurement errors”. The univariate= 1, d = 1) problem is discussed already in 1877 by Adcock [2].
Latter on contributions are made by Adcock [3], Pearson,[B2ppmans [30], Madansky [43], and York [94]. The
orthogonal regression method has been rediscovered nramg,toften independently. About thirty years ago, the
technique was extended by Sprent [76] and Gleser [24] toivatikite f > 1,d > 1) problems.

More recently, the total least squares method also stiedilmiterest outside statistics. In the field of numerical
analysis, this problem was first studied by Golub and Van [g&n27]. Their analysis, as well as their algorithm, are
based on the singular value decomposition. Geometridghhimto the properties of the singular value decompasitio
brought Staar [77] independently to the same concept. VdfeHand Vandewalle [84] generalized the algorithm of
Golub and Van Loan to all cases in which their algorithm faigproduce a solution, described the properties of
these so-called non-generic total least squares problaethpraved that the proposed generalization still satishies t
total least squares criteria if additional constraintsiamgosed on the solution space. This seemingly differemalin
algebraic approach is actually equivalent to the methoduwfivariate errors-in-variables regression analysisdigd
by Gleser [24]. Gleser's method is based on an eigenvalyereéctor analysis, while the total least squares method
uses the singular value decomposition which is numericalbye robust in the sense of algorithmic implementation.
Furthermore, the total least squares algorithm computemthimum norm solution whenever the total least squares
solution is not unique. These extensions are not considerézleser.

In engineering fields, e.g., experimental modal analyses{atal least squares technique (more commonly known
as the H technique), was also introduced about 20 years ago by laurd al. [41]. In the field of system iden-
tification, Levin [42] first studied the problem. His methathlled the eigenvector method or Koopmans—Levin
method [19], computes the same estimate as the total lazatesgalgorithm whenever the total least squares problem
has a unigue solution. Compensated least squares was yleeaname arising in this area: this method compensates
for the bias in the estimator, due to measurement error, @stidwn by Stoica and Sdderstrom [78] to be asymp-
totically equivalent to total least squares. Furthermorehe area of signal processing, the minimum norm method
Kumaresan and Tufts [34] was introduced and shown to be algmiyto minimum norm total least squares, see Dowl-
ing and Degroat [16]. Finally, the total least squares apgas tightly related to the maximum likelihood principal
component analysis method introduced in chemometrics byt et al. [90, 72], see the discussion in Section 4.2.

The key role of least squares in regression analysis is the sa that of total least squares in errors-in-variables
modeling. Nevertheless, a lot of confusion exists in thel§elf numerical analysis and statistics about the prin@ple
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total least squares and its relation to errors-in-varebiedeling. The computational advantages of total leastregu
are still largely unknown in the statistical community, \ehinversely the concept of errors-in-variables modeliity d
not penetrate sufficiently well in the field of computationsthematics and engineering.

A comprehensive description of the state of the art on tetdtl squares from its conception up to the summer of
1990 and its use in parameter estimation has been presentad Huffel and Vandewalle [87]. While the latter book
is entirely devoted to total least squares, a second [81}fardi[82] edited books present the progress in total least
squares and in the field of errors-in-variables modelingeetvely from 1990 till 1996 and from 1996 till 2001.

2.2 Algorithm

The following theorem gives conditions for the existence aniqueness of a total least squares solution.
Theoren? (Solution of the classical total least squares probldne}

C:=[A Bj=UzV", where 3 =diag(d1,...,0n.4d)

be a singular value decomposition@fo; > --- > 0,14 be the singular values @, and define the partitionings

n d n d
Vi1 V2| n _|Z1 0] n
V._|:V21 sz] d and Z._[O ZJ q-

A total least squares solution exists if and only4$ is non-singular. In addition, it is unique if and onlydf, # On. 1.
In the case when the total least squares solution existssamdque, it is given by

Xis = —ViV,"
and the corresponding total least squares correctionmatri
ACys := [AAys  ABys| = —U diag(0,Z)V .

In the generic case when a unique total least squares soKiicexists, it is computed from the right singular
vectors corresponding to the smallest singular values byalization. This gives Algorithm 1 as a basic algorithm
for solving the classical total least squares problem (TL8lbte that the total least squares correction ma&iGys is
such that the total least squares data approximation

Cuis := C + ACys = U diag(Z1,0)V '

is the best rankr approximation ofC.

Algorithm 1 Basic total least squares algorithm.

Input: A e R™" andB e R™,
: Compute the singular value decompositigh B| =UZV'.
if Voo i§ nonsingulathen
SetXys = —ViaVy,'.
else
Output a message that the problem (TLS1) has no solutiontapd s
end if
Output: Xﬂs — atotal least squares solution AK ~ B.

2 AN O A o

Most total least squares problems which arise in practioebeasolved by Algorithm 1. Extensions of the basic
total least squares algorithm to problems in which the tefdt squares solution does not exist or is not unique are
considered in detail in [87]. In addition, it is shown how fmesd up the total least squares computations directly
by computing the singular value decomposition only pdytial iteratively if a good starting vector is available.
More recent advances, e.g., recursive total least squiyastms, neural based total least squares algorithmg- ra
revealing total least squares algorithms, total least regualgorithms for large scale problems, etc., are reviewed
in [81, 82]. A novel theoretical and computational framekor treating non-generic and non-unique total least
squares problems is presented by Paige and Strakos [61].
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2.3 Properties

Consider the errors-in-variables model (EIV) and assuraé vbd [A é]) is a zero mean random vector with a
multiple of the identity covariance matrix. In additionsame that ling, .c ATA/ m exists and is a positive definite
matrix. Under these assumptions it is proven [23, 25] thatttital least squares solutiéfs is a weakly consistent
estimator of the true parameter valdési.e.,

Xis — X in probability as m— c.

This total least squares property does not depend on thébdigin of the errors. The total least squares correction
[AAﬂS ABUS], however, being a rank matrix is not an appropriate estimator for the measurement enatrix
[A I§] (which is a full rank matrix with probability one). Note thtte least squares estimatdg is inconsistent in
the errors-in-variables case.

In the special case of a single right hand sidle-(1) andA full rank, the total least squares problem has an analytic
expression that is similar to the one of the least squaresicol

least squares: Xis = (ATA)"*ATb,  total least squares:fys = (ATA— a2 41)*ATh, (%)

whereo,, 1 is the smallest singular value A b|. From a numerical analyst's point of view)(tells that the total
least squares solution is more ill-conditioned than thetlsguares solution since it has a higher condition number.
The implication is that errors in the data are more likelyffe@ the total least squares solution than the least square
solution. This is particularly true for the worst case pdsadions. In fact, total least squares isl@egularizing
procedure. However, from a statistician’s point of view) tells that the total least squares method asymptotically
removes the bias by subtracting the error covariance mastmated byfrirll) from the data covariance matix A.
While least squares minimizes a sum of squared residu#d$/east squares minimizes a sunwaightedsquared

residuals:
least squares: mitAx— b total least squares: m Ax—bj”
q . X bl q . X | XHZ + 1 .

From a numerical analyst’s point of view, total least sqaargnimizes the Rayleigh quotient. From a statistician’s
point of view, total least squares weights the residuals bifiptying them with the inverse of the corresponding error
covariance matrix in order to derive a consistent estimate.

Other properties of total least squares, which were stuidig¢de field of numerical analysis, are its sensitivity
in the presence of errors on all data [87]. Differences betwie least squares and total least squares solution are
shown to increase when the ratio between the second snsiligstar value ol[A b] and the smallest singular value
of Ais growing. In particular, this is the case when the set obiqusAx~ b becomes less compatible, the vector
y is growing in length, oA tends to be rank-deficient. Assuming independent and ichahytidistributed errors, the
improved accuracy of the total least squares solution coedpia that of the least squares solution is maximal when
the orthogonal projection db is parallel to the singular vector & corresponding to the smallest singular value.
Additional algebraic connections and sensitivity projgsriof the total least squares and least squares problems, as
well as other statistical properties have been describglirir81].

2.4 Extensions

The statistical model that corresponds to the basic totet lsquares approach is the errors-in-variables model with
the restrictive condition that the measurement errors are mean independent and identically distributed. In order
to relax these restrictions, several extensions of the ledgt squares problem have been investigated. mixed
least squares-total least squaneoblem formulation allows to extend consistency of thaltt#ast squares estimator
in errors-in-variables models, where some of the variatesneasured without error. Tlata least squareprob-
lem [15] refers to the special case in which thenatrix is noisy and th@& matrix is exact. When the erro{ﬁ\ I§]
are row-wise independent with equal row covariance maivixi¢h is known up to a scaling factor), tigeneralized
total least squareproblem formulation [86] allows to extend consistency & thtal least squares estimator.

More general problem formulations, suchrestricted total least squarg88], which also allow the incorporation
of equality constraints, have been proposed, as well akléatst squares problem formulations usijgnorms in
the cost function. The latter problems, caltethl ¢,, approximations proved to be useful in the presence of outliers.
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Robustness of the total least squares solution is also wegrby adding regularization, resultingriegularized total
least squaresnethods [20, 26, 74, 73, 7]. In addition, various types ofralad uncertainties have been proposed in
order to improve robustness of the estimators under varioise conditions [18, 11].

Similarly to the classical total least squares estimatar,generalized total least squares estimator is computed
reliably using the singular value decomposition. This islager the case for more generakighted total least
squaresproblems where the measurement errors are differentld sind/or correlated from row to row. Consistency
of the weighted total least squares estimator is proven aniteeative procedure for its computation is proposed
in [32]. This problem is discussed in more detail in Section 4

Furthermore constrained total least squarggoblems have been formulated. Arun [5] addressed theripita
constrained total least squares problem, AX ~ B, subject to the constraint that the solution maXiis unitary. He
proved that this solution is the same as the solution to ttiegonal Procrustes problem [28, page 582]. Abatzoglou
et al. [1] considered yet another constrained total leastrss problem, which extends the classical total leastegua
problem to the case where the errc@ﬁs L5>] are algebraically related. In this case, the total leasasgusolution is
no longer statistically optimal (e.g., maximum likelihodthe case of normal distribution).

In the so-calledstructured total least squargsroblems [12], the data matri%A B] is structured. In order
to preserve the maximum likelihood properties of the sohutithe total least squares problem formulation is ex-
tended [31] with the additional constraint that the struetof the data matri>{A B] is preserved in the correction
matrix [AA AB]. Similarly to the weighted total least squares problem sthectured total least squares solution, in
general, has no closed form expression in terms of the singalue decomposition. An important exception is the
circulant structured total least squares, which can besgolising the fast Fourier transform, see [6]. In the general
case, a structured total least squares solution is seavéhedimerical optimization methods. However, efficient al-
gorithms are proposed in the literature that exploit therixatructure on the level of the computations. This redearc
direction is further described in Section 5.

Regularized structured total least squares solution mdstace proposed in [95, 56]. Regularization turns out to be
important in the application of the structured total leagtases method for image deblurring [57, 60, 59]. In addjtion
solution methods for nonlinearly structured total leastesgs methods are developed in [68, 40].

2.5 Applications

Since the publication of the singular value decompositiaseldl total least squares algorithm [27], many new total
least squares algorithms have been developed and, as & tesulumber of applications in total least squares and
errors-in-variables modeling has increased in the lasidimcTotal least squares is applied in computer vision [58],
image reconstruction [65, 54, 22], speech and audio progef29, 29], modal and spectral analysis [89, 93], linear
system theory [14, 13], system identification [66, 37, 63, 88d astronomy [8]. An overview of errors-in-variables
methods in system identification is given by Séderstrom &j.[fh [81, 82], the use of total least squares and errors-
in-variables models in the application fields are surveyetireew algorithms that apply the total least squares concept
are described.

A lot of common problems in system identification and sigmakpssing can be reduced to special types of block-
Hankel and block-Toeplitz structured total least squareblpms. In the field of signal processing, in particular
in-vivo magnetic resonance spectroscopy, and audio copdiey state-space based methods have been derived by
making use of the total least squares approach for spestialaion with extensions to decimation and multichannel
data quantification [35, 36]. In addition, it has been showw o extend the least mean squares algorithm to the
errors-in-variables context for use in adaptive signatpssing and various noise environments. Finally, totatlea
squares applications also emerge in other fields, inclugifogmation retrieval [21], shape from moments [69], and
computer algebra [96, 47].

3 Representation-free total least squares problem formulz@on

An insightful way of viewing the abstract rank constraimkéC) < nis as the existence of a linear static modelCGor
rank(C) < nis equivalent to the existence of a subspate R™ of dimension at most that contains the rows .
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A subspace” C R™4 js referred to as &near static model Its dimensiom is a measure of the model
complexity: the higher the dimension the more complex apedefiore less useful is the mod#l.

The set of all linear static models of dimension at mos denoted by%,. It is a nonconvex set and has special
properties that make it a Grassman manifold.
Let [cl cm] :=C', i.e.,q is the transposeidh row of the matrixC and define the shorthand notation

CeBCR™ e c¢e®n, fori=1,....m
We have the following equivalence
rankC) <n <« CeABec L,

which relates the total least squares problem (TLS2) toamate linear static modeling. We restate problem (TLS2)
with this new interpretation and notation.

Problem3 (Total least squares)Given a data matri€ € R™ ("9 and a complexity specificatiom solve the opti-
mization problem L R
{ %us,Cus } = arg min min ||C —CJ|r. (TLS)
BeLhCeR

Note that (TLS) is a double minimization problem. On the inlegel is the search for the best approximation of
the given dat& in a given model4. The optimum value of this minimization

Mus(C, %) := min |C—C|e (Mtls)
Cexr

is @ measure of the lack of fit between the data and the modekaralledmisfit On the outer level is the search
for the optimal model in the model clasg, of linear static models with bounded complexity. The optitpaf the
model is in terms of the total least squares misfit funchg.

The double minimization structure, described above, isatttaristic for all total least squares problems. Since
the model# is linear and the cost function is convex quadratic, the irmimimization can be solved analytically
yielding a closed form expression for the misfit function.eTksulting outer minimization, however, is a nonconvex
optimization problem and needs numerical solution methbdthe case of the basic total least squares problem and
the generalized total least squares problem, presenteetiios 3.3, the outer minimization can be brought back to a
singular value decomposition computation. In more gerearsgs, however one has to rely on nonconvex optimization
methods and the guarantee to compute a global solutionlguiokl efficiently is lost.

In order to solve numerically the abstract total least segiaroblem (TLS), we need to parameterize the fitting
model. This important issue is discussed next.

3.1 Kernel, image, and input/output representations

As argued in the introduction, the representation-freentdation is conceptually useful. For analysis, howevedgrof

it is more convenient to consider concrete representatbtise model, which turn the abstract problem (TLS) into
concrete parameter optimization problems, such as (TU8 1his section, we present three representations of arlinea
static model: kernel, image, and input/output. They gifeetent parameterizations of the model and are important
in setting up algorithms for the solution of the problem.

Kernel representation

Let Z € %, i.e., Z is ann-dimensional subspace &#"t9. A kernel representation o¥ is given by a system of
equationRc= 0, such that
% ={ceR"Y | Rc=0} =: ker(R).

The matrixR € R9*("t9) is a parameter of the modéf.
The parameteR is not unique. There are two sources for the non-uniqueness:
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1. Rmight have redundant rows, and
2. for a full rank matrixJ, ker(R) = ker(UR).

The parameteR having redundant rows is related to the minimality of therespntation. For a given linear static
model %, the representatioRc= 0 of & is minimal if R has the minimal humber of rows among all paramekers
that define a kernel representationgf The kernel representation, definedRyis minimal if and only ifR is full
row rank.

Because of item 2, a minimal kernel representation is sttilumique. All minimal representations, however, are
related to a given one via a pre-multiplication of the par@mnRB with a nonsingular matrixJ. In a minimal kernel
representation, the rows & are a basis forz+, the orthogonal complement @, i.e., Z* = rowspariR). The
choice ofR is non-unique due to the non-uniqueness in the choice of lo&sp.

The minimal number of independent linear equations necgssalefine a linear static mode¥ is d, i.e., in a
minimal representatio®® = ker(R) with rowdim(R) = d.

Image representation

The dual of the kernel representatigh= ker(R) is the image representation
#={ceR™|c=Pl, | eR' } =:colspariP).

Again for a given# € .4, an image representatiod = colsparfP) is not unique because of possible non-minimality
of P and the choice of basis. The representation is minimal if @mg if P is a full column rank matrix. In a
minimal image representation, coldif) = dim(%) and the columns d? form a basis for. Clearly colspafP) =
colspartPU), for any nonsingular matridd € R' *! . Note that

ker(R) = colspanP) = % € 4, = RP=0,

which gives a link between the parametBrandR.

Input/output representation

Both, the kernel and the image representations, treat ia#lblas on an equal footing. In contrast, the more classical
input/output representation
Bio(X) :={c=:col(a,b) e R™9 | XTa=b} (/O repr)

distinguishes free variablesc R", called inputs, and dependent variabes RY, called outputs. In an input/output
representationg can be chosen freely, whileis fixed bya and the model. Note that for repeated observati®hs-=
[c1 -+ cm] the statemen® € %y (X) is equivalent to the linear system of equatiddé = B, where[A B| :=C
with A € R™" andB € R™d,

The partitioningc = col(a, b) gives an input/output partitioning of the variables: thstfir.= dim(a) variables are
inputs and the remainingd):= dim(b) variables are outputs. An input/output partitioning is moigue. Given a kernel
or image representation, finding an input/output partitigns equivalent to selectingdax d full rank submatrix olR
or ann x n full rank submatrix ofP. In fact, generically, any splitting of the variables int@m@up ofd variables
(outputs) and a group of remaining variables (inputs), @sfim valid input/output partitioning. In non-generic cases
certain partitionings of the variables into inputs and atgpare not possible.

Note thatin (/O repr), the firstvariables are fixed to be inputs, so that giverhe input/output represem#i;, (X)
is fixed and vice versa, give® € .4, the parameteX (if it exists) is unique. Thus, as opposed to the parameters
R andP in the kernel and the image representations, the paraXatethe input/output representation (/O repr) is
unique.

Consider the input/outpuBi,(X), kernel kefR), and image colspdR) representations o8 € ., and define
the partitionings
R
Po

The links among the parametetsR, andP are summarized on Figure 2.

R=[R R, RocR™¥ and P::[ ] P e R™M.
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% = ker(R) RP=0 2% = colspariP)

B = Bin(X)
Figure 2: Links among kernel, image, and input/output re@néations ofZ € 4.

3.2 Solution of the total least squares problem

Approximation of the data matri¢ with a model% in the model class?;, is equivalent to finding a matri€ €
R™=("+d) with rank at mosh. In the case when the approximation criteriorfj@— C|| (total least squares problem)
or ||C—C]|2, the problem has a solution in terms of the singular valuenigosition ofC. The result is known as the
Eckart—Young—Mirsky low-rank matrix approximation theor [17]. We state it in the next lemma.

Lemma4 (Matrix approximation lemma)LetC = U3V " be the singular value decomposition@t R™ ("% and
partition the matriceb, X =: diag(01, ..., On+q), andV as follows:

n d n d n d

1 0] n
U=:[Uy Up] m, z:;{ol 22] 4 and V=[Vi Vo] ntd. (SVDPRT)

Then the ranka matrixC* = Ulzlvf is such that

C—Clr= min |[[C—C|g= REPPY
c~Cllp= _min_|c—Clr Vo2 20

The solutionC* is unique if and only ifoy, 1 # On.
The solution of the total least squares problem (TLS) tiyillows from Lemma 4.

Theorenb (Solution of the total least squares problergtC =U>V " be the singular value decomposition®and
partition the matriced, Z, andV as in (SVD PRT). Then a total least squares approximati@hinf.%; is

Cis = U121V, Pys = ker(Vy ) = colspariVy),

and the total least squares misfit is

Mis(C, %) = |[Zallf = /021 ++++ 02, Where 3, =:diag(0n1,...,0n:a).

A total least squares approximation always exists. It igjuaiif and only ifa, # on. 1.

Note6 (Non-generic total least squares problenTd)e optimal approximating mod@ﬂS might have no input/output
representation (I/Orepr). In this case, the optlmlzatlmbtem (TLS1) has no solution. By suitable permutation of
the variables, however, (TLS1) can be made solvable, soKaxists and%’ﬂs = %./O(Xﬁs)

The issue of whether the total least squares problem is igemrenot is not related to the approximatior
of the dataper sebut to the possibility of representing the optimal mog#i in the form (/O repr), i.e.,
to the possibility of imposing giveninput/output partition omAys.

3.3 Generalized total least squares problem

LetW, € R™™M andW; € R(™d)x("+d) he given positive definite matrices and define the followiegeralized total
least squares misfit function

Mgis(C, ) = min [ VW (C — C)vW| . (Mgtls)

(W, allows for a row weighting antl; for a column weighting in the cost function.) The resultiqgpeoximation
problem is called generalized total least squares problem.
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Problem?7 (Generalized total least square§)iven a data matri€ € R™ (™4 positive definite weight matricaay,
andW;, and a complexity specificatiam solve the optimization problem

BeLn

{égtls,é\gtls} =arg Am,iir) Mgtls(C7 93) (GTLS)

The solution of the generalized total least squares proldambe obtained from the solution of a total least
squares problem for a modified data matrix.

TheorenB (Solution of the generalized total least squares problédefine the modified data matrix

Cm = iifc\/\/\_/r)

and Iet(fm,us, e%/?mﬂs = ker(Rmus) = colspariPn s) be a total least squares approximatiolCgfin .£,. Then a solution
of the generalized total least squares problem (GTLS) is

égtls = (\/va) _16m7tls (\/Wr) _17
,g/r??gﬂs = ker(%7t|s\/W) = C0|3par((\/Wr) _1Pm,tls)

and the corresponding generalized total least squared iaibfyys(C, ZBgiis) = Mus(Cm, Zms). A generalized total
least squares solution always exists. It is unique if angl B8, ys is unique.

Robust algorithms for solving the generalized total legatses problem without explicitly computing the inverses
(vW,)~1 and (/W) are proposed in [86, 85, 88]. These algorithms give bettemracy when the weight matrices
are nearly rank deficient. In addition, they can treat thgudar case, which implies that some rows and/or columns
of C are considered exact and are not modified in the sol@ion

If the matrices\, andW; are diagonal, i.eW, = diag(w 1,..., Wy m), wherew, € RT andW; = diag(W; 1, . .., Wr.n+d),
wherew, € Rf‘ﬁd the generalized total least squares problem is calteded total least squares

4 Weighted total least squares

For a given positive definite weight matii¥ € R™"+d)xmn+d) define the weighted matrix norm

ICIlw := \/vecT(CT)erc(CT)
and the weighted total least squares misfit function

Muis(C, #) := min [|C — Cllw. (Mwtls)
Ce#

The approximation problem with weighted total least sgsianésfit function is called the weighted total least squares
problem.

Problem9 (Weighted total least squaresFiven a data matri€ € R™("+d) g positive definite weight matri/, and
a complexity specification, solve the optimization problem

{QWﬂSaé\thS} ‘=arg %@Js? Muts(C, %). (WTLS)

The motivation for considering the weighted total leastasga problem is that it defines the maximum likeli-
hood estimator for the errors-in-variables model when tieasarement noisé = [A I§] is zero mean, normally
distributed, with a covariance matrix

cov(vedC)) = o’W 1, ()

i.e., the weight matrixV is up to a scaling factoo? the inverse of the measurement noise covariance matrix.
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Notel0 (Element-wise weighted total least squardd)e special case when the weight mathixs diagonal is called
element-wise weighted total least squares (element-wisghted total least squares). It corresponds to an emers-i
variables problem with uncorrelated measurement errogéWL= diag(wa, ... , Wmn.q)) and define thenx (n+d)
weight matrixz by Zjj := W(i_1)(n+d)+j- Denote by the element-wise produét® B = [a;j bij]. Then

[AC]Iw = [[Z© AC]|F.

Notell (Total least squares as an unweighted weighted totdl dgasres) The extreme special case whéah= |

is called unweighted. Then the weighted total least squai@sem reduces to the total least squares problem. The
total least squares misfillys weights equally all elements of the correction matk. It is a natural choice when
there is no prior knowledge about the data. In addition, theeaighted case is computationally easier to solve than
the general weighted case.

Special structure of the weight mathiX results in special weighted total least squares problengsiré3 shows
a hierarchical classification of various problems congidan the literature. From top to bottom the generality of
the problems decreases: on the top is a weighted total lqaares problem for a general positive semi-definite
weight matrix and on the bottom is the classical total legsiases problem. In between are weighted total least
squares problems with (using the stochastic terminologgprrelated errors among the rows, among the columns,
and among all elements (element-wise weighted total lepsires case). Row-wise and column-wise uncorrelated
weighted total least squares problems, in which the row lunen weight matrices are equal are generalized total least
squares problems with respectivély = | andW; = I. In order to express easily the structure of the weight matri
the case of column-wise uncorrelated errors, we introdoeavieight matrixV as follows: coyveqC)) = 02W 1,
compare with £x), whereC is transposed.

WithW =1, (WTLS) coincides with the total least squares problem (T IEXcept for the special case of general-
ized total least squares, however, the weighted total sspgires problem has no closed form solution in terms of the
singular value decomposition. As an optimization probléms non-convex, so that the currently available solution
methods do not guarantee convergence to a global optimurtiaol In the rest of this section, we give an overview
of solution methods for the weighted total least squareblpmo, with emphasis on the row-wise weighted total least
squares case, i.e., when the weight matvixs block diagonalV = diag(W, ..., W), W € RMHAx(+d) W > 0, In
the errors-in-variables setting, this assumption imptied the measurement errasandcj are uncorrelated for all
i,j=1,...,m, i ], which is a reasonable assumption for most applications.

Similarly to the total least squares and generalized tetmstl squares problems, the weighted total least squares
problem is a double minimization problem. The inner miniatian is the search for the best approximation of the
data in a given model and an outer minimization is the seanckthe model. First, we solve the inner minimization
problem—the misfit computation.

4.1 Best approximation of the data by a given model

Since the model is linear, (Mwtls) is a convex optimizatiomlgem with an analytic solution. In order to give
explicit formulas for the optimal approximatic®,us and misfitMyys(C, £), however, we need to choose a particular
parameterization of the given mod#l. We state the results for the kernel and the image reprasergaThe results
for the input/output representation follow from the giveres by the substitutiorR+— [X" —1] andP — [xIT]

Theoreml2 (Weighted total least squares misfit computation, keemkesentation version).et ker(R) be a minimal
kernel representation a¥ € .%,. The best weighted total least squares approximatidd iof 4, i.e., the solution
of (Mwitls), is

Cusi = (I -WRT(RW 'R")'R)g, fori=1....m

with the corresponding misfit

Mus (C, ker(R)) = ¢ _iCiTRT(RV\FlRT)lRQ- (Mwtisg)

The image representation is dual to the kernel representatCorrespondingly, the misfit computation with
kernel and with image representations of the model are doblgms. The kernel representation leads to a least norm
problem and the image representation leads to a least squantagem.
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WTLS

W>0
Row-wise WTLS Column-wise WTLS
W = diag(W, . .., W) W = diag(Wi, ..., Wh.q)

Column-wise GTLS
W = diag\W,, ..., W,)
N——

Row-wise GTLS
W = diagW, ..., W)
N——

m n+d
Row-wise scaled TLS Column-wise scaled TLS
W = diag( col(wr, ..., w)) W = diag(col(w, ..., w))
— —
m n+d
TLS — total least squares GTLS — generalized total leastregua
WTLS — weighted total least squares EWTLS — element-wisaylted total least squares

Figure 3: Hierarchy of weighted total least squares problastording to the structure of the weight maifx On
the left side are weighted total least squares problemsraithwise uncorrelated measurement errors and on the right
side are weighted total least squares problems with colwsa-uncorrelated measurement errors.

Theoreml13 (Weighted total least squares misfit computation, imageesentation version) et colsparP) be a
minimal image representation &f € .%;,. The best weighted total least squares approximati@hiof% is
Cwtisi = P(P'WP) *P"W,  fori=1,...,m

with the corresponding misfit

Muws (C, colsparfP)) = \/_iciTW.(l —P(PTWP)~1PTW)c. (Mwtlsp)

4.2 Optimization over the model parameters

The remaining problem—the minimization with respect tortiwel parameters is a nonconvex optimization problem
that in general has no closed form solution. For this reasonemical optimization methods are employed for its
solution.

Special optimization methods for the weighted total legatses problem are proposed in [12, 90, 64, 45, 44]. The
Riemannian singular value decomposition framework of D@M&2] is derived for the structured total least squares
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problem but includes the weighted total least squares @noblith diagonal weight matrix and = 1 as a special
case. The restriction to more general weighted total lepsires problems comes from the fact that the Riemannian
singular value decomposition framework is derived for imadpproximation problems with rank reduction by one.
De Moor proposed an algorithm resembling the inverse poteeation algorithm for computing the solution. The
method, however, has no proven convergence properties.

The maximum likelihood principle component analysis mdtlod Wentzell et al. [90] is an alternating least
squares algorithm. It applies to the general weighted tetat squares problems and is globally convergent, with
linear convergence rate. The method of Premoli and Rag@&tlois a heuristic for solving the first order optimality
condition of (WTLS). A solution of a nonlinear equation isugt instead of a minimum point of the original opti-
mization problem. The method is locally convergent withesumear convergence rate. The region of convergence
around a minimum point could be rather small in practice. Wk&hted low rank approximation framework of Man-
ton et al. [44] proposes specialized optimization methads Grassman manifold. The least squares nature of the
problem is not exploited by the algorithms proposed in [44].

The Riemannian singular value decomposition, maximumlii@ed principle component analysis,
Premoli—Rastello, and weighted low rank approximationhods differ in the parameterization of the
model and the optimization algorithm used, see Table 1.

Method Representation Algorithm
Riemannian singular value decomposition kernel inverse power iteration
maximum likelihood principle component analysis  image alternating projections
Premoli—-Rastello input/output  iteration based on heuristic linearization
weighted low rank approximation kernel Newton method

Table 1: Model representations and optimization algor#ttused in the methods of [12, 90, 64, 44, 72].

5 Structured total least squares

The total least squares problem is a tool for approximateetirgl by a static linear model. Similarly, the structured
total least squares problem with block-Hankel structurath anatrix is a tool for approximate modeling by a linear
time-invariant dynamic model. In order to show how the blétdnkel structure occurs, consider a difference equation
represented of the an linear time-invariant model

Row; + RiWe 1 4+ + R4y = 0. (KER)

HereRy,...,R are the model parameters and the intédgethelag of the equation. Far=1,..., T —I, the difference
equation (KER) is equivalent to the block-Hankel struatiusgstem of equations

W Wz oo W
Wy W3 e Wr_4g
[Ro Rt -+ R] . . =0. (Hank eqn)
Wit1 Wi - Wr
A (W)

Thus the constraint that a time serigs= (w(1),...,w(T)) is a trajectory of the linear time-invariant model implies
rank deficiency of the block-Hankel matri#{(w).

Next we show three typical examples that illustrate the oetice of structured system of equations in approxi-
mate modeling problems.
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5.1 Examples
Deconvolution

The convolution of the (scalar) sequences

(...,a-1,a0,a1,...) and (...,X_1,X0,X1,...)

is the sequence..,b_1,bg,by,...) defined as follows:

b = Z Xj@j_j. (CONV)
j=—00
Assume thak; = 0 for all j < 1 and for allj > n. Then (CONV) fori = 1,...,m can be written as the following
structured system of equations

ag a1 - an| [x b1
a a - & |X 07)

) =11 (CONV)
an-1 min-2 - am-n] [ Xn bm
A X b

Note that the matriA is Toeplitz structured and is parameterized by the vestoercol(a;_p,...,am-1) € RMN-1

The aim of the deconvolution problem is to findgivena andb. With exact data the problem boils down to
solving the system of equations (CONV’). By constructiohas an exact solution. Moreover the solution is unique
wheneverA is of full column rank, which can be translated to a persisgesf excitation condition om, see [92].

The deconvolution problem is more realistic and more chglleg when the data, b is perturbed. We assume
thatm > n, so that the system of equations (CONV’) is overdeterminBdcause botla andb are perturbed and
the A matrix is structured, the deconvolution problem is a totalst squares problem with structured data matrix
C=[A b, AToeplitz andb unstructured.

Linear prediction
In many signal processing applications the sum of dampedrexgials model

| .
i = _Zlciedité(‘*“*“”, wherei ;= v—1 (SDE)

is considered. Given an observed sequefeq,...,yd7) (“d” stands for data), the aim is to find parameters
{ci,di,cq,qq}}:l of a sum of damped exponentials model, such that the sigigaten by (SDE) is close to the
observed one, e.g.,
Yd,1 Y1
minj| | | —|:
Yd,T yr

Note that the sum of damped exponentials model is just amantous linear time-invariant model, i.g.js a
free response of an linear time-invariant system. Theegfeatisfies a homogeneous linear difference equation

Wt + Z arYiir =0. (LP)
=1

Approximatingyq by a signaly that satisfies (LP) is a linear prediction problem, so madgly as a sum of damped
exponentials is equivalent to the linear prediction probl©f course, there is a one-to-one relation between thalinit
conditionsyo, . ..,¥_i+1 and parameter§a; }|_, of (LP) and the parametefs;, di, @, @ }|_, of (SDE).
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For atime horizoi =1,..., T, with T > I+ 1, (LP) can be written as the structured system of equations

i - 9 a Yi+1
Y2 V3 o Yk | | Yi+2
Ym Ym0 Yroa q yr
wherem:=T —|. Therefore, the Hankel matrix4_1(y) with | +1 columns, constructed fromis rank deficient.

Conversely, if7{,1(Y) has a one dimensional left kernel, thgisatisfies the linear recursion (LP). Therefore, the
linear prediction problem is the problem of finding the smstllin some sense (e.g., 2-norm) correctignon the
given sequencygy that makes a block-Hankel matri{1(y) constructed from the corrected sequegice: yq — Ay
rank deficient. This is an structured total least squaresi@noAx ~ b with Hankel structured data matix= [A b] .
Errors-in-variables identification
Consider the linear time-invariant system described bydifierence equation
| [
i+ Z arYhir = z brl (DE)
=1 =0

and define the parameter vector
x:=col(by,...,by,—ag,...,—a_1) € R?*.

Given a set of input/output datég 1,Yd.1), - - -, (Ud.T,Yd.1) @and an order specificatidnwe want to find the parameter
of a system that fits the data.
For atime horizont = 1,..., T, (DE) can be written as the structured system of equations

G G - G| Y2 - W Yi+1

U Uz -+ Ug2| Y2 Y3 - Vi1 Yiv2 )
. . . . . . X=1 .1, (DE’)

Un Ung1 oo+ O [ Ym Yme1 - Y11 VT

wherem:=T —1|. We assume that the time horizon is large enough to emsur€l + 1. The system (DE’) is satisfied
for exact data and a solution is the true value of the parametdoreover, under additional assumption on the input
(persistency of excitation) the solution is unique.

For perturbed data an approximate solution is sought antathéhat the system of equation (DE’) is structured
suggests the use of the structured total least squares anethaler appropriate conditions for the data generating
mechanism an structured total least squares solutionges\d maximum likelihood estimator. The structure arising
in the errors-in-variables identification problenQs= [ " (us) 74" (ya)].

5.2 History of the structured total least squares problem

The origin of the structured total least squares problerasdiaack to the work of Aoki and Yue [4], although the name
“structured total least squares” appeared only 23 yeasilathe literature [12]. Aoki and Yue consider a single inpu
single output system identification problem, where bothiipet and the output are noisy (errors-in-variables sgtin
and derive a maximum likelihood solution. Under the norigassumption for the measurement errors, a maximum
likelihood estimate turns out to be a solution of the strrgxitotal least squares problem. Aoki and Yue approach the
optimization problem in a similar way to the one presente8eation 5.3: they use classical nonlinear least squares
minimization methods for solving an equivalent unconstdi problem.

The structured total least squares problem occurs frelyusnsignal processing applications. Cadzow [10],
Bresler and Macovski [9] propose heuristic solution methtitht turn out to basuboptimalwith respect to the,-
optimality criterion, see Tufts and Shah [80] and De Moor, [&8ction V]. These methods, however, became popular



Overview of total least squares methods 17

because of their simplicity. For example, the method of ©adis an iterative method that alternates between un-
structured low rank approximation and structure enforagnbereby only requiring singular value decomposition
computations and manipulation of the matrix entries.

Tufts and Shah propose in [80],r@niterativemethod for Hankel structured total least squares apprdioma
that is based on perturbation analysis and provides negtlgnal solution for high signal-to-noise ratio (SNR). In
a statistical setting, this method achieves the Crameri®&aer bound asymptotically as the SNR tends to infinity.
Noniterative methods for solving the linear prediction ligean (which, as shown in Section 5.1, is equivalent to
Hankel structured total least-squares problem) are peapbyg Tufts and Kumaresan in their seminal work [79, 33].

Abatzoglou et al. [1] are considered to be the first who foated a structured total least squares problem. They
called their approach constrained total least squares atidate the problem as an extension of the total least square
method to matrices with structure. The solution approadptedi by Abatzoglou et al. is closely related to the one of
Aoki and Yue. Again an equivalent optimization problem isided, but it is solved numerically using a Newton-type
optimization method.

Shortly after the publication of the work on the constraitetal least squares problem, De Moor [12] lists many
applications of the structured total least squares prolalethoutlines a new framework for deriving analytical prop-
erties and numerical methods. His approach is based on traihge multipliers and the basic result is an equivalent
problem, called Riemannian singular value decompositidnch can be considered as a “nonlinear” extension of the
classical singular value decomposition. As an outcomeeahtw problem formulation, an iterative solution method
based on the inverse power iteration is proposed.

Another algorithm for solving the structured total leastiags problem (even with, and/, norm in the cost
function), called structured total least norm, is propolsgdRosen et al. [67]. In contrast to the approaches of Aoki,
Yue and Abatzoglou et al., Rosen et al. solve the problemsimiiginal formulation. The constraint is linearized
around the current iteration point, which results in a lilheaonstrained least squares problem. In the algorithm of
Rosen et al., the constraint is incorporated in the costiimmby adding a multiple of its residual norm.

The weighted low rank approximation framework of Mantonlef4t] has been extended in [70, 71] to structured
low rank approximation problems. All problem formulaticersd solution methods cited above, except for the ones in
the structured low rank approximation framework, aim aknaduction of the data matr@ by one. A generalization
of the algorithm of Rosen et al. to problems with rank redurcby more than one is proposed by Van Huffel et al. [83].
It involves, however, Kronecker products that unnecessdigte the dimension of the involved matrices.

When dealing with a general affine structure the constraiodleast squares, Riemannian singular value decom-
position, and structured total least norm methods havecadinputational complexity per iteration in the number of
measurements. Fast algorithms with linear computatiomaptexity are proposed by Mastronardi et al. [38, 55, 53]
for special structured total least squares problems witd mhatrixC = [A b] that is Hankel or composed of a Hankel
block A and an unstructured colunim They use the structured total least norm approach but nEbeghat a matrix
appearing in the kernel subproblem of the algorithm has leplaicement rank. This structure is exploited using the
Schur algorithm.

The structured total least squares solution methods edtlbove point out the following issues:

e structure: the structure specification for the data matiwaries from general affine to specific affine, like
Hankel/Toeplitz, or Hankel/Toeplitz block augmented wathunstructured column,

e rank reduction:all methods, except for [83, 70, 71], reduce the rank of tha dwatrix by one,

e computational efficiencythe efficiency varies from cubic for the methods that use &igegmffine structure to
linear for the efficient methods of Lemmerling et al. [38] avidstronardi et al. [55] that use a Hankel/Toeplitz
type structure.

Efficient algorithms for problems with block-Hankel/To#plstructure and rank reduction with more than one are
proposed by Markovsky et al. [50, 49, 48]. In addition, a ndoadly reliable and robust software implementation is
available [46].

5.3 Structured total least squares problem formulation andsolution method

Let.7 : R™ — R™ (") he an injective function. A matrig € R™ ("9 js said to be#-structured ifC € imagg.&).
The vectomp for whichC = .7 (p) is called the parameter vector of the structured m&riRespectivelyR"™ is called
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the parameter space of the structife

The aim of the structured total least squares problem is tiiieas little as possible a given parameter
vector p by a vectorAp, so that the perturbed structured mate( p+ Ap) becomes rank deficient with
rank at most.

Problem14 (Structured total least square§)iven a data vectgp € R™, a structure specificatioft’ : R — R™ (n+d),
and a rank specificatiom solve the optimization problem

Apsys = arg TinHApH subjectto rank.¥(p—Ap)) <n.
p
In what follows, we will use the input/output representatio

F(P—DBPXexi=0,  Xexi= m

of the rank constraint, so that the structured total leashisgs problem becomes the following parameter optimizatio
problem

Xstls = arg)EnAinHApH subjectto .(p—Ap) [XI] =0. (STL)
Ap -
The structured total least squares problem is said to beeadfroctured if the functior” is affine, i.e.,

Np

L(p) =S+ ZSpi, for all pe R and for some§, i =1,...,n,. (AFF)
i=

In an affine structured total least squares problem, theti@ns s (p— Ap)Xext = O is bilinear in the decision variables
X andAp.

Lemmal5. Let.7 : R — R™(+d) he an affine function. Then
L (Pp—Ap)Xext=0 <= G(X)Ap=r(X),
where
G(X) == [vec((SiXex) ) -+ vec((SyXex)')] € RM M, (G)
and .
r(xX):= vec((Y(p)Xext) ) e RM,

Using Lemma 15, we rewrite the affine structured total legstises problem as follows
mxin(rRinHApu subjectto G(X)Ap= r(X)). (STLS,)
p

The inner minimization problem has an analytic solutionjohtallows to derive an equivalent optimization problem.

Theoreml6 (Equivalent optimization problem for affine structurethat least squares)Assuming than, > md, the
affine structured total least squares problem (SJ)LiS equivalent to

rr;(ian(X)FT(X)r(X) where T(X):=G(X)G'(X), (STLSY)

andr' is the pseudoinverse 6f

The significance of Theorem 16 is that the constraint and éeesiton variablé\p in problem (STL%) are elimi-
nated. Typically the number of elememidin X is much smaller than the number of elememsn the correctiom\p.
Thus the reduction in the complexity is significant.

The equivalent optimization problem (ST4Bs a nonlinear least squares problem, so that classicahiation
methods can be used for its solution. The optimization nasthiequire a cost function and first derivative evaluation.
In order to evaluate the cost function for a given value ofdtggimentX, we need to form the weight matrix X) and
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to solve the system of equatioRgX)y(X) = r(X). This straightforward implementation requi@m?) floating point
operation (flops). For large (the applications that we aim at) this computational coxiptdbecomes prohibitive.
It turns out, however, that for the special case of affinecttines

S(p)=[Ct ... C9], forall peR™, whereC', forl =1,...,q, is
block-Toeplitz, block-Hankel, unstructured, or exact.

(A)

the weight matrix” (X) has a block-Toeplitz and block-banded structure, whichlmexploited for efficient cost
function and first derivative evaluations. According to ésption (A), .7 (p) is composed of blocks, each one
of which is block-Toeplitz, block-Hankel, unstructured, exact (an exact block' is not modified in the solution
C:=.7(p—Ap),ie,C =C.

Theoreml7 (Structure of the weight matrix [50]). Consider the equivalent optimization problem (STLSIf in
addition to the assumptions of Theorem 16, the structdris such that (A) holds, then the weight matfixX) has
the block-Toeplitz and block-banded structure,
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wheres= max-_1,__q(n — 1) andn is the number of block columns in the bloek.

6 Conclusions

We reviewed the development and extensions of the clagsizdlleast squares problem and presented a new total
least squares problem formulation. The new formulation isadrix low rank approximation problem and allows
for different representations of the rank constraint. Oacepresentation is fixed the matrix low rank approximation
problem becomes a parameter optimization problem. Theickdgotal least squares formulation results from the new
one when an input/output representation is chosen. Thd/mput representation is a linear system of equations
AX = B, which is the classical way of addressing approximatiorblgmms. However, the input/output representation
is not equivalent to the low rank constraint, which leads ém-generic total least squares problems. Using the
representation-free formulation, we classified existioigltleast squares solution methods. The existing methods
differ in the representation and the optimization methaetlus

The basic and generalized total least squares problemsamagaalytic solution in terms of the singular value
decomposition of the data matrix, which allows fast ancat#é computation of the solution. Moreovali, globally
optimal solutionscan be classified in terms of the singular value decompasitim contrast, more general total
least squares problems like the weighted and structuredlleatst squares problems require numerical optimization
methods, which at best findsangle locally optimal solution The separation between the global total least squares
problem and general weighted and structured total leastreguyroblems is an important dividing line in the total
least squares hierarchy.

We emphasized the double minimization structure of thd teést squares problems and showed how it can be
used for deriving efficient solution methods. The key stepun approach is the elimination of the correction by
analytically minimizing over it. Then the structure of thatal and weight matrices are exploited for efficient cost
function and first derivative evaluation.
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